JP2011258467A - Solid polymer fuel battery - Google Patents

Solid polymer fuel battery Download PDF

Info

Publication number
JP2011258467A
JP2011258467A JP2010133220A JP2010133220A JP2011258467A JP 2011258467 A JP2011258467 A JP 2011258467A JP 2010133220 A JP2010133220 A JP 2010133220A JP 2010133220 A JP2010133220 A JP 2010133220A JP 2011258467 A JP2011258467 A JP 2011258467A
Authority
JP
Japan
Prior art keywords
oxygen
fuel
containing gas
flow path
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010133220A
Other languages
Japanese (ja)
Inventor
Osamu Yamazaki
修 山▲崎▼
Shingo Watanabe
真吾 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010133220A priority Critical patent/JP2011258467A/en
Publication of JP2011258467A publication Critical patent/JP2011258467A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel battery which supplies a gas containing oxygen and a gas containing hydrogen in a non-humidified state or a low humidity state while stabilizing generated electric power.SOLUTION: In the solid polymer fuel battery, a fuel battery cell C, a separator on an oxygen side 5 and a separator on a fuel side 6 are laminated; a gas containing oxygen and a gas containing hydrogen are configured to be supplied to an oxygen supply passage S and a fuel supply passage F in a non-humidified state or in a state in which the gas containing oxygen or the gas containing hydrogen are humidified to a low humidity state so as to have a dew point lower than an operation temperature of the fuel battery cell C; the oxygen supply passage S and the fuel supply passage F are configured to circulate the gas containing oxygen and the gas containing hydrogen in a counter-flow state in a lamination direction of the battery fuel cell C; and the whole passage part Sr encompassing an inlet part SI and an exit part SO of the oxygen supply passage S and the whole passage part Fr encompassing an inlet part FI and an exit part FO of the fuel supply passage F are formed to be arranged along a horizontal direction.

Description

本発明は、固体高分子電解質膜の一方の面に酸素極を備え且つ他方の面に燃料極を備えた燃料電池セルにおける酸素極側箇所に、前記酸素極に酸素含有ガスを供給する酸素供給流路を形成する酸素側セパレータを位置させ、かつ、前記燃料電池セルにおける燃料極側箇所に、前記燃料極に水素含有ガスを供給する燃料供給流路を形成する燃料側セパレータを位置させた状態で、前記燃料電池セル、前記酸素側セパレータ、及び、前記燃料側セパレータが積層され、
前記酸素含有ガス及び前記水素含有ガスを加湿しない無加湿状態、前記酸素含有ガス及び前記水素含有ガスのいずれか一方を前記燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態、又は、前記酸素含有ガス及び前記水素含有ガスを前記燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態で、前記酸素含有ガス及び前記水素含有ガスが前記酸素供給流路及び前記燃料供給流路に供給されるように構成され、
前記酸素供給流路と前記燃料供給流路とが、前記燃料電池セルの積層方向視にて、前記酸素供給流路の入口部と前記燃料供給流路の出口部とを近づけて位置させ且つ前記酸素供給流路の出口部と前記燃料供給流路の入口部とを近づけて位置させて、前記酸素含有ガスと前記水素含有ガスとを対向流状態で流動させるように構成されている固体高分子型の燃料電池に関する。
The present invention provides an oxygen supply for supplying an oxygen-containing gas to an oxygen electrode in a fuel cell having an oxygen electrode on one surface of the solid polymer electrolyte membrane and a fuel electrode on the other surface. A state in which an oxygen-side separator that forms a flow path is positioned, and a fuel-side separator that forms a fuel supply flow path that supplies a hydrogen-containing gas to the fuel electrode is positioned at a position on the fuel electrode side in the fuel cell. And the fuel battery cell, the oxygen side separator, and the fuel side separator are laminated,
Non-humidified state in which the oxygen-containing gas and the hydrogen-containing gas are not humidified, and a state in which any one of the oxygen-containing gas and the hydrogen-containing gas is humidified in a low humidified state where the dew point is lower than the operating temperature of the fuel cell. Alternatively, in a state where the oxygen-containing gas and the hydrogen-containing gas are humidified in a low humidified state having a dew point lower than the operating temperature of the fuel cell, the oxygen-containing gas and the hydrogen-containing gas are supplied to the oxygen supply channel. And is configured to be supplied to the fuel supply channel,
The oxygen supply channel and the fuel supply channel are positioned close to an inlet portion of the oxygen supply channel and an outlet portion of the fuel supply channel in the stacking direction view of the fuel cell, and A solid polymer configured to cause the oxygen-containing gas and the hydrogen-containing gas to flow in a counterflow state with the outlet portion of the oxygen supply channel and the inlet portion of the fuel supply channel positioned close to each other Type fuel cell.

かかる固体高分子型の燃料電池は、酸素含有ガス及び水素含有ガスを加湿しない無加湿状態、酸素含有ガス及び水素含有ガスのいずれか一方を燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態、又は、酸素含有ガス及び水素含有ガスを燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態で、酸素含有ガス及び水素含有ガスが酸素供給流路及び燃料供給流路に供給されるものであるため、酸素含有ガス及び水素含有ガスが、燃料電池セルの作動温度と同じ露点となる高加湿状態に加湿された状態で、酸素供給流路及び燃料供給流路に供給されるように構成する場合に較べて、加湿装置を省略できる、または、加湿装置を設けるにしても、簡素な加湿装置を設けるだけで良いため、全体の構成の簡素化を図ることができるものとなり、システムコストの低減を図ることができる。またシステムの簡素化によりセンサーや制御点数を少なくすることが可能となり、システムの信頼性向上も図ることが可能となる。   Such a polymer electrolyte fuel cell is a non-humidified state in which an oxygen-containing gas and a hydrogen-containing gas are not humidified, and a low humidification in which one of the oxygen-containing gas and the hydrogen-containing gas has a dew point lower than the operating temperature of the fuel cell. The oxygen-containing gas and the hydrogen-containing gas are supplied to the oxygen supply channel and the oxygen-containing gas and the hydrogen-containing gas in a state where the oxygen-containing gas and the hydrogen-containing gas are humidified in a low-humidified state having a dew point lower than the operating temperature of the fuel cell Since the oxygen-containing gas and the hydrogen-containing gas are humidified in a highly humid state where the dew point is the same as the operating temperature of the fuel cell, the oxygen supply channel and the fuel supply are supplied to the fuel supply channel. Compared to the case where it is configured to be supplied to the flow path, the humidifier can be omitted, or even if a humidifier is provided, it is only necessary to provide a simple humidifier. It shall be able to achieve, it is possible to reduce the system cost. In addition, the simplification of the system makes it possible to reduce the number of sensors and control points, and to improve the reliability of the system.

また、酸素供給流路と燃料供給流路とが、燃料電池セルの積層方向視にて、酸素供給流路の入口部と燃料供給流路の出口部とを近づけて位置させ且つ酸素供給流路の出口部と燃料供給流路の入口部とを近づけて位置させて、酸素含有ガスと水素含有ガスとを対向流状態で流動させるように構成されているから、酸素供給流路の出口側部分と燃料供給流路の入口側部分とが、燃料電池セルの積層方向視にて、近づいた状態で位置するため、発電に伴って生成されて酸素供給流路に存在する水分を、燃料供給流路の入口側部分において適切に供給し易いため、固体高分子電解質膜の湿潤状態を的確に現出させて、発電を良好に行えるものである。   Further, the oxygen supply channel and the fuel supply channel are positioned so that the inlet part of the oxygen supply channel and the outlet part of the fuel supply channel are located close to each other in the stacking direction of the fuel cells. Because the oxygen-containing gas and the hydrogen-containing gas are made to flow in a counterflow state with the outlet portion of the fuel supply channel and the inlet portion of the fuel supply flow channel positioned close to each other, the outlet side portion of the oxygen supply flow channel And the inlet side portion of the fuel supply channel are located close to each other when viewed in the stacking direction of the fuel cells, so that the water generated in the power generation and existing in the oxygen supply channel is removed from the fuel supply channel. Since it is easy to supply appropriately in the entrance side part of a path | route, the wet state of a solid polymer electrolyte membrane can be made to appear correctly, and electric power generation can be performed favorably.

すなわち、かかる固体高分子型の燃料電池においては、発電に伴って燃料電池セルの酸素極にて水分が生成され、その水分が酸素含有ガスの流動に伴って酸素供給流路を流動しながら、水分濃度が低い燃料供給流路側に拡散することにより、固体高分子電解質膜を湿潤させることになる。   That is, in such a polymer electrolyte fuel cell, moisture is generated at the oxygen electrode of the fuel cell as the power is generated, and the moisture flows through the oxygen supply channel as the oxygen-containing gas flows. The solid polymer electrolyte membrane is wetted by diffusing to the fuel supply channel side where the moisture concentration is low.

そして、発電に伴って生成される水分は、酸素含有ガスの流動に伴って、酸素供給流路の出口側部分に流動するため、酸素供給流路における水分量は、出口側ほど多い傾向となり、このように酸素供給流路の出口側部分に多量に存在する水分を、水分が少ない燃料供給流路の入口側部分に適切に拡散させることができるため、固体高分子電解質膜における燃料供給流路の入口側部分に対応する部分をも、的確に湿潤させるようにしながら、固体高分子電解質膜の湿潤状態を的確に現出させることができるのである。   And since the water generated with power generation flows to the outlet side portion of the oxygen supply channel along with the flow of the oxygen-containing gas, the amount of water in the oxygen supply channel tends to be larger on the outlet side, Since the water present in a large amount at the outlet side portion of the oxygen supply channel can be appropriately diffused into the inlet side portion of the fuel supply channel with less moisture in this way, the fuel supply channel in the solid polymer electrolyte membrane Thus, the wet state of the solid polymer electrolyte membrane can be accurately revealed while the portion corresponding to the inlet side portion of the solid polymer electrolyte is also properly wetted.

かかる固体高分子型の燃料電池において、従来では、燃料電池セル、酸素側セパレータ、及び、燃料側セパレータが、水平方向に沿って積層され、そして、燃料供給流路が、上方の入口から下方の出口に向けて、上下方向に蛇行する状態に形成され、酸素供給流路が、下方の入口から上方の出口に向けて、上下方向に蛇行する状態に形成されていた(例えば、特許文献1)。   In such a polymer electrolyte fuel cell, conventionally, a fuel cell, an oxygen-side separator, and a fuel-side separator are stacked along a horizontal direction, and a fuel supply flow path extends from an upper inlet to a lower portion. It was formed in a state of meandering in the vertical direction toward the outlet, and the oxygen supply channel was formed in a state of meandering in the vertical direction from the lower inlet toward the upper outlet (for example, Patent Document 1). .

特開2001−185172号公報JP 2001-185172 A

従来では、酸素供給流路を流動する酸素含有ガスの流動状態が不安定になることに起因して、発生電力が安定し難い虞があり、改善が望まれるものであった。
すなわち、酸素供給流路には、上述の如く、発電に伴って発生する水分が出口側に向けて流動され、そして、その水分は、酸素供給流路の出口から排出されることになる。
Conventionally, since the flow state of the oxygen-containing gas flowing in the oxygen supply channel becomes unstable, the generated power may be difficult to stabilize, and an improvement has been desired.
That is, as described above, the moisture generated with power generation flows toward the outlet side in the oxygen supply channel, and the moisture is discharged from the outlet of the oxygen supply channel.

しかしながら、従来では、酸素供給流路が、下方の入口から上方の出口に向けて、上下方向に蛇行する状態に形成されているから、酸素供給流路内の水分は、重力に抗して、酸素含有ガスの流動に伴って流動されることになるため、酸素供給流路内の水分を酸素含有ガスの流動に伴って出口側に流動させることを適切に行い難いものとなる。
このため、例えば、酸素供給流路内に水分の溜り部が生じて、酸素含有ガスの流動が妨げられることがある等に起因して、酸素供給流路を流動する酸素含有ガスの流動状態が不安定になり、発生電力が安定し難いものであった。
However, conventionally, since the oxygen supply channel is formed in a state of meandering in the vertical direction from the lower inlet to the upper outlet, the moisture in the oxygen supply channel resists gravity, Since it flows along with the flow of the oxygen-containing gas, it becomes difficult to appropriately cause the moisture in the oxygen supply flow path to flow toward the outlet side along with the flow of the oxygen-containing gas.
For this reason, the flow state of the oxygen-containing gas flowing in the oxygen supply flow path is caused by, for example, a water reservoir in the oxygen supply flow path, which may hinder the flow of the oxygen-containing gas. It became unstable and the generated power was difficult to stabilize.

ちなみに、このような問題を解消すべく、酸素供給流路を、上方の入口から下方の出口に向けて、上下方向に蛇行する状態に形成し、燃料供給流路を、下方の入口から上方の出口に向けて、上下方向に蛇行する状態に形成することが考えられるが、この構成の場合には、酸素供給流路内に存在する水分を円滑に流動させることができるものの、燃料供給流路内に存在する水分を、重力に抗して、水素含有ガスの流動に伴って流動されることになるため、燃料供給流路内の水分を水素含有ガスの流動に伴って出口側に流動させることを適切に行い難いものとなる。   Incidentally, in order to solve such a problem, the oxygen supply channel is formed so as to meander in the vertical direction from the upper inlet to the lower outlet, and the fuel supply channel is formed upward from the lower inlet. Although it is conceivable to form a meandering state in the vertical direction toward the outlet, in this configuration, although the water present in the oxygen supply channel can be smoothly flowed, the fuel supply channel Moisture present in the fluid flows with the flow of the hydrogen-containing gas against gravity, so the moisture in the fuel supply channel flows to the outlet side with the flow of the hydrogen-containing gas. It is difficult to do things properly.

このため、例えば、燃料供給流路内に水分の溜り部が生じて、水素含有ガスの流動が妨げられることがある等に起因して、燃料供給流路を流動する水素含有ガスの流動状態が不安定になり、発生電力が安定し難いものとなる。
しかも、燃料供給流路を流動する水素含有ガスの流動状態が不安定になると、水素含有ガスの供給が不安定となることに起因して、固体高分子電解質膜を損傷する虞もある。
For this reason, the flow state of the hydrogen-containing gas flowing in the fuel supply flow path is caused by, for example, a water reservoir in the fuel supply flow path that may hinder the flow of the hydrogen-containing gas. It becomes unstable and the generated power is difficult to stabilize.
In addition, when the flow state of the hydrogen-containing gas flowing through the fuel supply channel becomes unstable, the solid polymer electrolyte membrane may be damaged due to the unstable supply of the hydrogen-containing gas.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、酸素含有ガス及び水素含有ガスを、無加湿状態または低加湿状態で供給するものでありながらも、発生電力の安定化を図ることができる固体高分子型の燃料電池を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to stabilize the generated power while supplying an oxygen-containing gas and a hydrogen-containing gas in a non-humidified state or a low humidified state. An object of the present invention is to provide a solid polymer fuel cell that can be realized.

本発明の固体高分子型の燃料電池は、固体高分子電解質膜の一方の面に酸素極を備え且つ他方の面に燃料極を備えた燃料電池セルにおける酸素極側箇所に、前記酸素極に酸素含有ガスを供給する酸素供給流路を形成する酸素側セパレータを位置させ、かつ、前記燃料電池セルにおける燃料極側箇所に、前記燃料極に水素含有ガスを供給する燃料供給流路を形成する燃料側セパレータを位置させた状態で、前記燃料電池セル、前記酸素側セパレータ、及び、前記燃料側セパレータが積層され、
前記酸素含有ガス及び前記水素含有ガスを加湿しない無加湿状態、前記酸素含有ガス及び前記水素含有ガスのいずれか一方を前記燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態、又は、前記酸素含有ガス及び前記水素含有ガスを前記燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態で、前記酸素含有ガス及び前記水素含有ガスが前記酸素供給流路及び前記燃料供給流路に供給されるように構成され、
前記酸素供給流路と前記燃料供給流路とが、前記燃料電池セルの積層方向視にて、前記酸素供給流路の入口部と前記燃料供給流路の出口部とを近づけて位置させ且つ前記酸素供給流路の出口部と前記燃料供給流路の入口部とを近づけて位置させて、前記酸素含有ガスと前記水素含有ガスとを対向流状態で流動させるように構成されているものであって、その第1特徴構成は、
前記酸素供給流路の入口部と出口部とに亘る流路部分の全体、及び、前記燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態に形成されている点を特徴とする。
The solid polymer type fuel cell of the present invention has an oxygen electrode on one side of a solid polymer electrolyte membrane and a fuel electrode having a fuel electrode on the other surface. An oxygen separator that forms an oxygen supply channel for supplying an oxygen-containing gas is positioned, and a fuel supply channel for supplying a hydrogen-containing gas to the fuel electrode is formed at a location on the fuel electrode side of the fuel cell. With the fuel side separator positioned, the fuel cell, the oxygen side separator, and the fuel side separator are laminated,
Non-humidified state in which the oxygen-containing gas and the hydrogen-containing gas are not humidified, and a state in which any one of the oxygen-containing gas and the hydrogen-containing gas is humidified in a low humidified state where the dew point is lower than the operating temperature of the fuel cell. Alternatively, in a state where the oxygen-containing gas and the hydrogen-containing gas are humidified in a low humidified state having a dew point lower than the operating temperature of the fuel cell, the oxygen-containing gas and the hydrogen-containing gas are supplied to the oxygen supply channel. And is configured to be supplied to the fuel supply channel,
The oxygen supply channel and the fuel supply channel are positioned close to an inlet portion of the oxygen supply channel and an outlet portion of the fuel supply channel in the stacking direction view of the fuel cell, and An oxygen supply channel outlet and an fuel supply channel inlet are positioned close to each other so that the oxygen-containing gas and the hydrogen-containing gas flow in a counterflow state. The first characteristic configuration is
The entire flow path portion extending between the inlet portion and the outlet portion of the oxygen supply flow path and the entire flow path portion extending between the inlet portion and the outlet portion of the fuel supply flow path are formed in a state along the horizontal direction. It is characterized by that.

すなわち、酸素供給流路の入口部と出口部とに亘る流路部分の全体、及び、燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態に形成されているから、酸素供給流路内の水分は、水平方向に沿って、酸素含有ガスの流動に伴って流動されることになるため、酸素供給流路内の水分を酸素含有ガスの流動に伴って出口側に流動させることを円滑に行うことができ、また、燃料供給流路内の水分は、水平方向に沿って、水素含有ガスの流動に伴って流動されることになるため、燃料供給流路内の水分を水素含有ガスの流動に伴って出口側に流動させることを円滑に行うことができる。   That is, the entire flow path portion extending from the inlet portion to the outlet portion of the oxygen supply flow channel and the entire flow passage portion extending from the inlet portion to the outlet portion of the fuel supply flow channel are formed in a state along the horizontal direction. Therefore, since the water in the oxygen supply channel flows along with the flow of the oxygen-containing gas along the horizontal direction, the water in the oxygen supply channel is converted into the flow of the oxygen-containing gas. Accordingly, it is possible to smoothly flow to the outlet side, and the water in the fuel supply flow path flows along with the flow of the hydrogen-containing gas along the horizontal direction. It is possible to smoothly cause the water in the supply flow path to flow toward the outlet side as the hydrogen-containing gas flows.

このように、酸素供給流路内の水分を酸素含有ガスの流動に伴って出口側に流動させることを円滑に行うことができ、また、燃料供給流路内の水分を水素含有ガスの流動に伴って出口側に流動させることを円滑に行うことができるため、酸素供給流路内に水分の溜り部が生じて、酸素含有ガスの流動が不安定になることや、燃料供給流路内に水分の溜り部が生じて、水素含有ガスの流動が不安定になることがなくなるため、発生電力が安定することになる。   In this way, the water in the oxygen supply channel can be smoothly flown to the outlet side along with the flow of the oxygen-containing gas, and the water in the fuel supply channel can be changed to the flow of the hydrogen-containing gas. Accordingly, the flow to the outlet side can be smoothly performed, so that a reservoir of moisture is generated in the oxygen supply channel, and the flow of the oxygen-containing gas becomes unstable. Since the water reservoir does not occur and the flow of the hydrogen-containing gas does not become unstable, the generated power is stabilized.

要するに、本発明の第1特徴構成によれば、酸素含有ガス及び水素含有ガスを、無加湿状態または低加湿状態で供給し、且つ、対向流状態で流動させるものでありながらも、発生電力の安定化を図ることができる固体高分子型の燃料電池を提供するに至った。   In short, according to the first characteristic configuration of the present invention, the oxygen-containing gas and the hydrogen-containing gas are supplied in a non-humidified state or a low humidified state, and flowed in a counterflow state, The present inventors have provided a solid polymer fuel cell that can be stabilized.

本発明の固体高分子型の燃料電池の第2特徴構成は、
前記燃料電池セル、前記酸素側セパレータ、及び、前記燃料側セパレータが、上下方向に沿って積層されることにより、前記酸素供給流路の入口部と出口部とに亘る流路部分の全体、及び、前記燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態となるように形成されている点を特徴とする。
The second characteristic configuration of the polymer electrolyte fuel cell of the present invention is:
The fuel cell, the oxygen-side separator, and the fuel-side separator are stacked along the vertical direction, so that the entire flow path portion extending between the inlet portion and the outlet portion of the oxygen supply flow path, and The fuel flow path is characterized in that the entire flow path portion extending from the inlet portion to the outlet portion of the fuel supply flow path is formed along the horizontal direction.

すなわち、燃料電池セル、酸素側セパレータ、及び、燃料側セパレータが、上下方向に沿って積層されることにより、酸素供給流路の入口部と出口部とに亘る流路部分の全体、及び、燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態となるように形成されているから、酸素供給流路の入口部と出口部とに亘る流路部分の全体、及び、燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態となるようにしながらも、酸素供給流路や燃料供給流路を蛇行状にする等、酸素供給流路や燃料供給流路を種々の形態に形成できるものとなる。   That is, the fuel cell, the oxygen-side separator, and the fuel-side separator are stacked along the vertical direction, so that the entire flow path portion extending between the inlet portion and the outlet portion of the oxygen supply flow path, and the fuel Since the entire flow path portion extending between the inlet portion and the outlet portion of the supply flow path is formed in a state along the horizontal direction, the flow path portion extending between the inlet portion and the outlet portion of the oxygen supply flow path And the entire flow path portion extending from the inlet portion to the outlet portion of the fuel supply flow path are in a state along the horizontal direction, while the oxygen supply flow path and the fuel supply flow path are meandered. For example, the oxygen supply channel and the fuel supply channel can be formed in various forms.

要するに、本発明の第2特徴構成によれば、上記第1特徴構成による作用効果に加えて、酸素供給流路の入口部と出口部とに亘る流路部分の全体、及び、燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態となるようにしながらも、酸素供給流路や燃料供給流路を種々の形態に形成することができ固体高分子型の燃料電池を提供するに至った。   In short, according to the second characteristic configuration of the present invention, in addition to the function and effect of the first characteristic configuration, the entire flow path portion extending between the inlet portion and the outlet portion of the oxygen supply flow path, and the fuel supply flow path A solid polymer that can form an oxygen supply channel and a fuel supply channel in various forms while the entire flow channel portion extending between the inlet portion and the outlet portion is in a state along the horizontal direction. Led to the provision of a type of fuel cell.

本発明の固体高分子型の燃料電池の第3特徴構成は、上記第1特徴構成に加えて、
前記燃料電池セル、前記酸素側セパレータ、及び、前記燃料側セパレータが、水平方向に沿って積層され、
前記酸素供給流路の入口部と出口部とが、上下方向に沿って形成され、かつ、それらに亘る複数の流路部分が、上下方向に並ぶ状態で水平方向に沿って形成されることにより、前記酸素供給流路の入口部と出口部とに亘る流路部分の全体の全体が、水平方向に沿う状態となるように形成され、
前記燃料供給流路の入口部と出口部とが、上下方向に沿って形成され、かつ、それらに亘る複数の流路部分が、上下方向に並ぶ状態で水平方向に沿って形成されることにより、前記燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態となるように形成されている点を特徴とする。
In addition to the first characteristic configuration described above, the third characteristic configuration of the polymer electrolyte fuel cell of the present invention includes:
The fuel battery cell, the oxygen side separator, and the fuel side separator are stacked along a horizontal direction,
By forming the inlet portion and the outlet portion of the oxygen supply channel along the vertical direction, and forming a plurality of flow channel portions extending in the vertical direction along the horizontal direction. , The entirety of the flow path portion extending between the inlet and outlet of the oxygen supply flow path is formed so as to be in a state along the horizontal direction,
An inlet portion and an outlet portion of the fuel supply flow path are formed along the vertical direction, and a plurality of flow path portions extending therebetween are formed along the horizontal direction in a state of being aligned in the vertical direction. The fuel flow path is characterized in that the entire flow path portion extending from the inlet portion to the outlet portion of the fuel supply flow path is formed along the horizontal direction.

すなわち、燃料電池セル、酸素側セパレータ、及び、燃料側セパレータを、水平方向に沿って積層しながら、酸素供給流路の入口部と出口部とに亘る流路部分の全体の全体を、水平方向に沿う状態となるように形成し、かつ、燃料供給流路の入口部と出口部とに亘る流路部分の全体を、水平方向に沿う状態となるようにすることができる。   That is, the fuel cell, the oxygen-side separator, and the fuel-side separator are stacked in the horizontal direction, and the entire flow path portion extending from the inlet portion to the outlet portion of the oxygen supply flow path is horizontally aligned. And the entire flow path portion extending between the inlet portion and the outlet portion of the fuel supply flow path can be in a state along the horizontal direction.

このように、酸素供給流路の入口部と出口部とに亘る流路部分の全体の全体、及び、燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態となるようにしながらも、燃料電池セル、酸素側セパレータ、及び、燃料側セパレータを、水平方向に沿って積層するものであるから、積層されて燃料電池セルの積層方向に長くなる燃料電池セル、酸素側セパレータ、及び、燃料側セパレータからなる積層体を、横倒れ姿勢で安定性良く設置できるものとなり、設置面において有利となる。   In this way, the entire channel portion extending from the inlet portion to the outlet portion of the oxygen supply channel and the entire channel portion extending from the inlet portion to the outlet portion of the fuel supply channel are horizontally aligned. A fuel cell that stacks the fuel cells, the oxygen-side separator, and the fuel-side separator along the horizontal direction, and that is stacked and becomes longer in the stacking direction of the fuel cells while being in a state of being aligned. The laminate composed of the cell, the oxygen side separator, and the fuel side separator can be installed with stability in a sideways posture, which is advantageous in terms of installation.

要するに、本発明の第3特徴構成によれば、上記第1特徴構成による作用効果に加えて、設置面において有利となる固体高分子型の燃料電池を提供するに至った。   In short, according to the third characteristic configuration of the present invention, in addition to the operational effects of the first characteristic configuration, a polymer electrolyte fuel cell that is advantageous in terms of installation has been provided.

第1実施形態の燃料電池を示す正面図The front view which shows the fuel cell of 1st Embodiment. 第1実施形態の燃料電池の要部を示す分解斜視図The disassembled perspective view which shows the principal part of the fuel cell of 1st Embodiment. 第1実施形態の燃料電池の要部を示す展開図The expanded view which shows the principal part of the fuel cell of 1st Embodiment. 第1実施形態の燃料電池の要部を示す分解斜視図The disassembled perspective view which shows the principal part of the fuel cell of 1st Embodiment. 第2実施形態の燃料電池を示す正面図Front view showing a fuel cell of a second embodiment 第2実施形態の燃料電池の要部を示す分解斜視図The disassembled perspective view which shows the principal part of the fuel cell of 2nd Embodiment. 第2実施形態の燃料電池の要部を示す展開図The expanded view which shows the principal part of the fuel cell of 2nd Embodiment. 第3実施形態の燃料電池を示す正面図Front view showing a fuel cell of a third embodiment

〔第1実施形態〕
以下、本発明の第1実施の形態を図面に基づいて説明する。
図1に示すように、固体高分子型の燃料電池は、固体高分子電解質膜1の一方の面に酸素極2を備え且つ他方の面に燃料極3を備えた燃料電池セルCを備えている。
尚、図2にも示すように、燃料電池セルCにおける固体高分子電解質膜1の一方の面には、酸素極2に加えて、ガスおよび水分の透過性を備えたカーボン製の集電板4が配置され、且つ、固体高分子電解質膜1の一方の面には、燃料極3加えて、ガスおよび水分の透過性を備えたカーボン製の集電板4が配置されている。
[First Embodiment]
A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a solid polymer type fuel cell includes a fuel cell C having an oxygen electrode 2 on one surface of a solid polymer electrolyte membrane 1 and a fuel electrode 3 on the other surface. Yes.
As shown in FIG. 2, on one surface of the solid polymer electrolyte membrane 1 in the fuel cell C, a carbon current collector plate having gas and moisture permeability in addition to the oxygen electrode 2 is provided. 4, and on one surface of the solid polymer electrolyte membrane 1, in addition to the fuel electrode 3, a carbon current collector plate 4 having gas and moisture permeability is disposed.

そして、燃料電池セルCにおける酸素極側箇所に、酸素極2に酸素含有ガスを供給する酸素供給流路Sを形成する酸素側セパレータ5を位置させ、かつ、燃料電池燃料電池セルCにおける燃料極側箇所に、燃料極3に水素含有ガスを供給する燃料供給流路Fを形成する燃料側セパレータ6を位置させた状態で、燃料電池セルC、酸素側セパレータ5、及び、燃料側セパレータ6が積層され、さらに、燃料電池セルC、酸素側セパレータ5、及び、燃料側セパレータ6を積層した積層体の両端部夫々に、電力取り出し用の集電部7が設けられて、セルスタックNCが構成されている。
尚、一対の集電部7には、発電電力を消費する外部負荷Rが接続されることになる。
And the oxygen side separator 5 which forms the oxygen supply flow path S which supplies oxygen-containing gas to the oxygen electrode 2 is located in the oxygen electrode side location in the fuel cell C, and the fuel electrode in the fuel cell fuel cell C The fuel cell C, the oxygen-side separator 5 and the fuel-side separator 6 are in a state where the fuel-side separator 6 that forms the fuel supply flow path F for supplying the hydrogen-containing gas to the fuel electrode 3 is positioned at the side location. Further, a current collecting part 7 for taking out electric power is provided at each of both ends of the laminated body in which the fuel cell C, the oxygen side separator 5 and the fuel side separator 6 are laminated. Has been.
An external load R that consumes the generated power is connected to the pair of current collectors 7.

固体高分子電解質膜1は、例えば、フッ素樹脂系のイオン交換膜(ナフィオン等)にて構成され、酸素極2及び燃料極3は、白金等の電極触媒を担持したカーボンから成る多孔状の導電材から形成され、酸素側セパレータ5及び燃料側セパレータ6は、カーボン等から成る気密性の導電材にて形成されている。   The solid polymer electrolyte membrane 1 is composed of, for example, a fluororesin ion exchange membrane (Nafion or the like), and the oxygen electrode 2 and the fuel electrode 3 are porous conductive materials made of carbon carrying an electrode catalyst such as platinum. The oxygen side separator 5 and the fuel side separator 6 are made of an airtight conductive material made of carbon or the like.

図2及び図3に示すように、酸素側セパレータ5の酸素極2に対向する一方の面に、酸素供給流路Sを形成する酸素含有ガス通流溝5sが形成され、且つ、図4に示すように、酸素側セパレータ5の他方の面に、冷却水を通流させる冷却水通流溝5wが形成されている。
また、図3に示すように、燃料側セパレータ6の燃料極3に対向する一方の面に、燃料供給流路Fを形成する水素含有ガス通流溝6fが形成され、且つ、図4に示すように、燃料側セパレータ6の他方の面に、酸素側セパレータ5の冷却水通流溝5wと面対称となる冷却水通流溝6wが形成されている。
As shown in FIGS. 2 and 3, an oxygen-containing gas flow groove 5s that forms an oxygen supply channel S is formed on one surface of the oxygen-side separator 5 that faces the oxygen electrode 2, and FIG. As shown, a cooling water flow groove 5 w that allows the cooling water to flow is formed on the other surface of the oxygen-side separator 5.
Further, as shown in FIG. 3, a hydrogen-containing gas flow groove 6f that forms a fuel supply flow path F is formed on one surface of the fuel-side separator 6 that faces the fuel electrode 3, and as shown in FIG. As described above, the cooling water flow groove 6 w that is plane-symmetric with the cooling water flow groove 5 w of the oxygen separator 5 is formed on the other surface of the fuel side separator 6.

図2〜図4に示すように、固体高分子電解質膜1、酸素側セパレータ5、及び、燃料側セパレータ6の夫々には、それらを積層した状態において、その積層方向に連なる酸素供給通路Aを形成する貫通孔1a、5a、6a、及び、その積層方向に連なる酸素排出通路Bを形成する貫通孔1b、5b、6bが形成されている。
酸素供給通路Aは、酸素側セパレータ5の酸素供給流路Sの入口部SIに接続され、酸素排出通路Bは、酸素側セパレータ5の酸素供給流路Sの出口部SOに接続されている。
As shown in FIGS. 2 to 4, each of the solid polymer electrolyte membrane 1, the oxygen-side separator 5, and the fuel-side separator 6 has an oxygen supply passage A that is continuous in the stacking direction when they are stacked. Through holes 1a, 5a, 6a to be formed, and through holes 1b, 5b, 6b forming an oxygen discharge passage B continuous in the stacking direction are formed.
The oxygen supply passage A is connected to the inlet portion SI of the oxygen supply passage S of the oxygen side separator 5, and the oxygen discharge passage B is connected to the outlet portion SO of the oxygen supply passage S of the oxygen side separator 5.

したがって、酸素供給通路Aを通流する酸素含有ガスが、複数の酸素側セパレータ5の夫々に形成した酸素供給流路Sに分岐流動し、各酸素供給流路Sを流動する酸素含有ガスが酸素排出通路Bに流動する形態で、酸素含有ガスが流動するように構成されている。   Therefore, the oxygen-containing gas flowing through the oxygen supply passage A branches and flows into the oxygen supply flow paths S formed in each of the plurality of oxygen-side separators 5, and the oxygen-containing gas flowing through each oxygen supply flow path S is oxygen. The oxygen-containing gas is configured to flow in a form that flows to the discharge passage B.

また、図2〜図4に示すように、固体高分子電解質膜1、酸素側セパレータ5、及び、燃料側セパレータ6の夫々には、それらを積層した状態において、その積層方向に連なる燃料供給通路Dを形成する貫通孔1d、5d、6d、及び、その積層方向に連なる燃料排出通路Eを形成する貫通孔1e、5e、6eが形成されている。
燃料供給通路Aは、燃料側セパレータ6の燃料供給流路Fの入口部FIに接続され、燃料排出通路Eは、燃料側セパレータ6の燃料供給流路Fの出口部FOに接続されている。
As shown in FIGS. 2 to 4, each of the solid polymer electrolyte membrane 1, the oxygen side separator 5, and the fuel side separator 6 has a fuel supply passage that is continuous in the stacking direction in the stacked state. Through holes 1d, 5d, and 6d that form D, and through holes 1e, 5e, and 6e that form a fuel discharge passage E continuous in the stacking direction are formed.
The fuel supply passage A is connected to the inlet portion FI of the fuel supply passage F of the fuel side separator 6, and the fuel discharge passage E is connected to the outlet portion FO of the fuel supply passage F of the fuel side separator 6.

したがって、燃料供給通路Dを通流する水素含有ガスが、複数の燃料側セパレータ6の夫々に形成した燃料供給流路Fに分岐流動し、各燃料供給流路Fを流動する水素含有ガスが燃料排出通路Eに流動する形態で、水素含有ガスが流動するように構成されている。   Accordingly, the hydrogen-containing gas flowing through the fuel supply passage D branches and flows into the fuel supply passages F formed in the fuel separators 6, and the hydrogen-containing gas flowing through each fuel supply passage F is fuel. The hydrogen-containing gas is configured to flow in a form that flows to the discharge passage E.

さらに、図2〜図4に示すように、固体高分子電解質膜1、酸素側セパレータ5、及び、燃料側セパレータ6の夫々には、それらを積層した状態において、その積層方向に連なる冷却水供給通路Gを形成する貫通孔1g、5g、6g、及び、その積層方向に連なる冷却水排出通路Hを形成する貫通孔1h、5h、6hが形成されている。
冷却水供給通路Gは、酸素側セパレータ5及び燃料側セパレータ6の冷却水通流溝5w、6wの入口部に接続され、冷却水排出通路Hは、酸素側セパレータ5及び燃料側セパレータ6の冷却水通流溝5w、6wの出口部に接続されている。
Furthermore, as shown in FIGS. 2 to 4, the solid polymer electrolyte membrane 1, the oxygen-side separator 5, and the fuel-side separator 6 are each supplied with cooling water that is continuous in the stacking direction in the stacked state. Through holes 1g, 5g, and 6g that form the passage G, and through holes 1h, 5h, and 6h that form the cooling water discharge passage H that are continuous in the stacking direction are formed.
The cooling water supply passage G is connected to the inlet portions of the cooling water flow grooves 5 w and 6 w of the oxygen side separator 5 and the fuel side separator 6, and the cooling water discharge passage H is used to cool the oxygen side separator 5 and the fuel side separator 6. It is connected to the outlets of the water flow grooves 5w, 6w.

したがって、冷却水供給通路Gを通流する冷却水が、酸素側セパレータ5及び燃料側セパレータ6の冷却水通流溝5w、6wに分岐流動し、酸素側セパレータ5及び燃料側セパレータ6の冷却水通流溝5w、6wを流動する冷却水が冷却水排出通路Hに流動する形態で、冷却水が流動するように構成されている。   Therefore, the cooling water flowing through the cooling water supply passage G branches and flows into the cooling water flow grooves 5w and 6w of the oxygen side separator 5 and the fuel side separator 6, and the cooling water of the oxygen side separator 5 and the fuel side separator 6 is flown. The cooling water that flows through the flow grooves 5w and 6w flows in the cooling water discharge passage H, and the cooling water flows.

図1に示すように、セルスタックNCの積層方向の一端部には、酸素供給通路A、燃料供給通路D、及び、冷却水供給通路Gに各別に連通する3個の筒状の接続部8a、8d、8gを備えた供給側端板9が設けられている。
また、セルスタックNCの積層方向の他端部には、酸素排出通路B、燃料排出通路E、及び、冷却水排出通路Hに各別に連通する3個の筒状の接続部10b、10e、10hを備えた排出側端板11が設けられている。
As shown in FIG. 1, at one end of the cell stack NC in the stacking direction, three cylindrical connecting portions 8a that communicate with the oxygen supply passage A, the fuel supply passage D, and the cooling water supply passage G, respectively. , 8d, 8g are provided.
Further, at the other end of the cell stack NC in the stacking direction, three cylindrical connection portions 10b, 10e, 10h communicating with the oxygen discharge passage B, the fuel discharge passage E, and the cooling water discharge passage H, respectively. A discharge side end plate 11 is provided.

供給側端板9における酸素供給通路Aに連通する接続部8aには、酸素含有ガス供給管12が接続され、供給側端板9における燃料供給通路Dに連通する接続部8dには、水素含有ガス供給管13が接続され、供給側端板9における冷却水供給通路Gに連通する接続部8gには、冷却水供給管14が接続されている。   An oxygen-containing gas supply pipe 12 is connected to the connection portion 8a that communicates with the oxygen supply passage A in the supply-side end plate 9, and a hydrogen-containing gas is contained in the connection portion 8d that communicates with the fuel supply passage D in the supply-side end plate 9. A gas supply pipe 13 is connected, and a cooling water supply pipe 14 is connected to a connection portion 8 g communicating with the cooling water supply passage G in the supply side end plate 9.

尚、例示はしないが、排出側端板11における酸素排出通路Bに連通する接続部10bには、酸素排出管が接続され、排出側端板11における燃料排出通路Eに連通する接続部10eには、燃料排出管が接続され、排出側端板11における冷却水排出通路Hに連通する排出部10hには、冷却水排出管が接続されることになる。   Although not illustrated, an oxygen discharge pipe is connected to the connection portion 10 b that communicates with the oxygen discharge passage B in the discharge side end plate 11, and a connection portion 10 e that communicates with the fuel discharge passage E in the discharge side end plate 11. The fuel discharge pipe is connected, and the cooling water discharge pipe is connected to the discharge portion 10 h communicating with the cooling water discharge passage H in the discharge side end plate 11.

そして、酸素含有ガスとしての空気を供給する送風機15から供給される空気を、無加湿状態で、酸素含有ガス供給管12を通して酸素供給通路Aに供給し、水素含有ガス供給源16から供給される水素含有ガスとしての水素を、無加湿状態で、水素含有ガス供給管13を通して燃料供給通路Dに供給することにより、各燃料電池セルCにて発電するように構成されている。
すなわち、本実施形態においては、酸素含有ガスとしての空気、及び、水素含有ガスとしての水素を無加湿状態で供給し、そして、発電に伴って燃料電池セルCの酸素極2に生成される水分を、酸素含有ガスの流動に伴って酸素供給流路Sを流動させながら、水分濃度が低い燃料供給流路D側に拡散されることにより、固体高分子電解質膜1を湿潤させるようして、燃料電池セルCにて発電するように構成されている。
Then, the air supplied from the blower 15 that supplies air as the oxygen-containing gas is supplied to the oxygen supply passage A through the oxygen-containing gas supply pipe 12 and supplied from the hydrogen-containing gas supply source 16 in an unhumidified state. The fuel cell C is configured to generate power by supplying hydrogen as a hydrogen-containing gas to the fuel supply passage D through the hydrogen-containing gas supply pipe 13 in a non-humidified state.
That is, in the present embodiment, air as an oxygen-containing gas and hydrogen as a hydrogen-containing gas are supplied in a non-humidified state, and moisture generated at the oxygen electrode 2 of the fuel cell C upon power generation The solid polymer electrolyte membrane 1 is wetted by being diffused to the fuel supply flow path D having a low moisture concentration while flowing the oxygen supply flow path S along with the flow of the oxygen-containing gas, The fuel cell C is configured to generate power.

また、冷却水供給ポンプ17にて供給される冷却水を、冷却水供給管14を通して冷却水供給通路Gに供給することにより、各燃料電池セルCに対応する冷却水通流溝5w,6wを冷却水が通流して、各燃料電池セルCの温度が所定温度(例えば、70℃)に維持されるように構成されている。   In addition, by supplying the cooling water supplied by the cooling water supply pump 17 to the cooling water supply passage G through the cooling water supply pipe 14, the cooling water flow grooves 5w and 6w corresponding to each fuel cell C are provided. The cooling water flows and the temperature of each fuel cell C is maintained at a predetermined temperature (for example, 70 ° C.).

また、本実施形態においては、酸素供給流路Sと燃料供給流路Fとが、燃料電池セルCの積層方向視にて、酸素含有ガスと水素含有ガスとを対向流状態で流動させるように構成されて、酸素極2に生成される水分にて固体高分子電解質膜1を湿潤させることを良好に行えるようにしてある。   Further, in the present embodiment, the oxygen supply channel S and the fuel supply channel F cause the oxygen-containing gas and the hydrogen-containing gas to flow in a counterflow state as viewed in the stacking direction of the fuel cells C. Thus, the solid polymer electrolyte membrane 1 can be satisfactorily wetted with moisture generated in the oxygen electrode 2.

燃料電池セルCの積層方向視にて、酸素含有ガスと水素含有ガスとを対向流状態で流動させる構成について説明する。
すなわち、燃料電池セルC、酸素側セパレータ5、及び、燃料側セパレータ6が、燃料電池セルCの積層方向視にて、矩形状に構成されるため、セルスタックNCは、燃料電池セルCの積層方向視にて、矩形状に形成されている。
A configuration in which the oxygen-containing gas and the hydrogen-containing gas are caused to flow in a counterflow state as viewed from the stacking direction of the fuel cells C will be described.
That is, since the fuel battery cell C, the oxygen-side separator 5 and the fuel-side separator 6 are configured in a rectangular shape as viewed in the stacking direction of the fuel battery cell C, the cell stack NC is a stack of the fuel battery cells C. It is formed in a rectangular shape when viewed from the direction.

そして、図3に示すように、酸素側セパレータ5の酸素供給流路Sの入口部SIと燃料側セパレータ6の燃料供給流路Fの出口部FOとが、燃料電池セルCの積層方向視にて矩形状となるセルスタックNCにおける4隅の1つの隅部に対応する箇所に近づいた状態で位置し、かつ、酸素側セパレータ5の酸素供給流路Sの出口部SOと燃料側セパレータ6の燃料供給流路Fの入口部FIとが、燃料電池セルCの積層方向視にて矩形状となるセルスタックNCにおける4隅のうちの1つの隅部であって、酸素供給流路Sの入口部SIや燃料供給流路Fの出口部FOが位置する隅部に対して対角線上に位置する隅部に対応する箇所に、近づいた状態で位置するように設けられている。   As shown in FIG. 3, the inlet portion SI of the oxygen supply channel S of the oxygen-side separator 5 and the outlet portion FO of the fuel supply channel F of the fuel-side separator 6 are viewed in the stacking direction of the fuel cells C. In the cell stack NC having a rectangular shape, the cell stack NC is located close to a portion corresponding to one corner, and the outlet SO of the oxygen supply channel S of the oxygen separator 5 and the fuel separator 6 The inlet portion FI of the fuel supply channel F is one of the four corners of the cell stack NC that is rectangular when viewed in the stacking direction of the fuel cells C, and the inlet of the oxygen supply channel S It is provided so as to be positioned in a state of approaching a corner corresponding to the corner located diagonally with respect to the corner where the portion SI and the outlet FO of the fuel supply flow path F are located.

酸素側セパレータ5における酸素供給流路Sを形成する酸素含有ガス通流溝5sが、図3に示すように、蛇行状に形成されている。
また、燃料側セパレータ6における燃料供給流路Fを形成する水素含有ガス通流溝6fが、図3に示すように、蛇行状に形成されている。
As shown in FIG. 3, the oxygen-containing gas flow groove 5s that forms the oxygen supply channel S in the oxygen-side separator 5 is formed in a meandering shape.
Further, the hydrogen-containing gas flow groove 6f forming the fuel supply flow path F in the fuel separator 6 is formed in a meandering shape as shown in FIG.

つまり、酸素側セパレータ5における酸素供給流路Sを形成する酸素含有ガス通流溝5sと、燃料側セパレータ6における燃料供給流路Fを形成する水素含有ガス通流溝6fとが、同じ形態で溝部分を備えるように構成されている。
換言すれば、酸素側セパレータ5における酸素供給流路S及び燃料側セパレータ6における燃料供給流路Fが、入口部SI、FI及び出口部SO、FOを除いた大部分の流路部分Sr、Frを同じ形態とする状態に構成されている。
That is, the oxygen-containing gas flow groove 5s that forms the oxygen supply flow path S in the oxygen-side separator 5 and the hydrogen-containing gas flow groove 6f that forms the fuel supply flow path F in the fuel-side separator 6 have the same form. It is comprised so that a groove part may be provided.
In other words, the oxygen supply flow path S in the oxygen-side separator 5 and the fuel supply flow path F in the fuel-side separator 6 are mostly flow-path portions Sr, Fr excluding the inlet portions SI, FI and the outlet portions SO, FO. Are configured in the same form.

そして、酸素側セパレータ5における酸素供給流路Sを形成する酸素含有ガス通流溝5s、及び、燃料側セパレータ6における燃料供給流路Fを形成する水素含有ガス通流溝6fが、つまり、酸素側セパレータ5における酸素供給流路S及び燃料側セパレータ6における燃料供給流路Fが、入口部SI、FI及び出口部SO、FOを除いた大部分の流路部分Sr、Frが、燃料電池セルCの積層方向視において、重複する状態で位置されて、酸素供給流路Sと燃料供給流路Fとが、燃料電池セルCの積層方向視にて、酸素含有ガスと水素含有ガスとを対向流状態で流動させるように構成されている。   The oxygen-containing gas flow groove 5s that forms the oxygen supply flow path S in the oxygen-side separator 5 and the hydrogen-containing gas flow groove 6f that forms the fuel supply flow path F in the fuel-side separator 6 are oxygen oxygen. The oxygen supply flow path S in the side separator 5 and the fuel supply flow path F in the fuel side separator 6 are composed of most of the flow path portions Sr and Fr excluding the inlet portions SI and FI and the outlet portions SO and FO. The oxygen supply channel S and the fuel supply channel F are opposed to each other when viewed in the stacking direction of the fuel cell C in the stacking direction of C. It is configured to flow in a flow state.

また、本実施形態においては、図1に示すように、燃料電池セルC、酸素側セパレータ5、及び、燃料側セパレータ6が、上下方向に沿って積層されている。
このように、燃料電池セルC、酸素側セパレータ5、及び、燃料側セパレータ6が、上下方向に沿って積層されるため、酸素供給流路Sの入口部SIと出口部SOとに亘る流路部分Srの全体、及び、燃料供給流路Fの入口部FIと出口部FOとに亘る流路部分Frの全体が、水平方向に沿う状態となるように形成されることになる。
Moreover, in this embodiment, as shown in FIG. 1, the fuel cell C, the oxygen side separator 5, and the fuel side separator 6 are laminated | stacked along the up-down direction.
Thus, since the fuel cell C, the oxygen-side separator 5 and the fuel-side separator 6 are stacked along the vertical direction, the flow path extending between the inlet portion SI and the outlet portion SO of the oxygen supply flow path S. The entire portion Sr and the entire flow passage portion Fr extending between the inlet portion FI and the outlet portion FO of the fuel supply flow passage F are formed so as to be in a state along the horizontal direction.

したがって、酸素供給流路S内の水分は、水平方向に沿って、酸素含有ガスの流動に伴って流動されることになるため、酸素含有ガスの流動に伴って出口側に向けて円滑に流動し、また、燃料供給流路F内の水分は、水平方向に沿って、水素含有ガスの流動に伴って流動されることになるため、水素含有ガスの流動に伴って出口側に向けて円滑に流動することになる。
その結果、酸素供給流路Sを流動する酸素含有ガスの流動状態が安定し、且つ、燃料供給流路Fを流動する水素含有ガスの流動状態が安定することになるため、燃料電池の発生電力が安定するものとなる。
Accordingly, the moisture in the oxygen supply channel S flows along the horizontal direction along with the flow of the oxygen-containing gas, and thus smoothly flows toward the outlet side as the oxygen-containing gas flows. In addition, since the water in the fuel supply flow path F flows along the horizontal direction along with the flow of the hydrogen-containing gas, the water smoothly flows toward the outlet side along with the flow of the hydrogen-containing gas. Will flow.
As a result, the flow state of the oxygen-containing gas flowing through the oxygen supply channel S is stabilized, and the flow state of the hydrogen-containing gas flowing through the fuel supply channel F is stabilized. Becomes stable.

ちなみに、この第1実施形態においては、燃料電池セルC、酸素側セパレータ5、及び、燃料側セパレータ6を、上下方向に沿って積層することによって、酸素供給流路Sの入口部SIと出口部SOとに亘る流路部分Srの全体、及び、燃料供給流路Fの入口部FIと出口部FOとに亘る流路部分Frの全体を、水平方向に沿う状態となるように形成するものであるから、酸素供給流路S及び燃料供給流路Fの形態は、上記した構成以外のものを採用できるものあり、例えば、後述する第2実施形態と同様な形態に構成する等、酸素含有ガスと水素含有ガスとを対向流状態で流動させるものであれば、種々の形態に構成できるものである。   Incidentally, in the first embodiment, the fuel cell C, the oxygen-side separator 5 and the fuel-side separator 6 are stacked in the vertical direction, whereby the inlet portion SI and the outlet portion of the oxygen supply channel S are stacked. The entire flow passage portion Sr extending over SO and the entire flow passage portion Fr extending between the inlet portion FI and the outlet portion FO of the fuel supply flow passage F are formed in a state along the horizontal direction. Therefore, the oxygen supply flow path S and the fuel supply flow path F can adopt forms other than those described above. For example, the oxygen supply gas S can be configured in the same form as the second embodiment described later. As long as the gas and the hydrogen-containing gas are allowed to flow in a counterflow state, they can be configured in various forms.

〔第2実施形態〕
次に、本発明の第2実施形態を説明する。
この第2実施形態は、酸素供給流路Sと燃料供給流路Fとが、燃料電池セルCの積層方向視にて、酸素含有ガスと水素含有ガスとを対向流状態で流動させ、且つ、酸素供給流路Sの入口部SIと出口部SOとに亘る流路部分Srの全体、及び、燃料供給流路Fの入口部FIと出口部FOとに亘る流路部分Frの全体を、水平方向に沿う状態にする構成の別実施形態を示すものであり、第1実施形態と同様な構成については、重複する記載を省略するために、その説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
In the second embodiment, the oxygen supply flow path S and the fuel supply flow path F cause the oxygen-containing gas and the hydrogen-containing gas to flow in a counterflow state when viewed in the stacking direction of the fuel cell C, and The entire channel portion Sr extending from the inlet portion SI to the outlet portion SO of the oxygen supply channel S and the entire channel portion Fr extending from the inlet portion FI to the outlet portion FO of the fuel supply channel F are horizontally aligned. Another embodiment of the configuration that follows the direction is shown, and the description of the same configuration as the first embodiment will be omitted to omit the overlapping description.

この第2実施形態においては、図5に示すように、燃料電池セルC、酸素側セパレータ5、及び、燃料側セパレータ6が、水平方向に沿って積層されている。
燃料電池セルC、酸素側セパレータ5、及び、燃料側セパレータ6が、燃料電池セルCの積層方向視にて、矩形状に構成されるため、セルスタックNCは、燃料電池セルCの積層方向視にて、矩形状に形成されている点は、第1実施形態と同様である。
In the second embodiment, as shown in FIG. 5, the fuel cell C, the oxygen-side separator 5 and the fuel-side separator 6 are stacked along the horizontal direction.
Since the fuel cell C, the oxygen-side separator 5 and the fuel-side separator 6 are configured in a rectangular shape when viewed from the stacking direction of the fuel cell C, the cell stack NC is viewed from the stacking direction of the fuel cell C. The point formed in the rectangular shape is the same as in the first embodiment.

また、固体高分子電解質膜1、酸素側セパレータ5、及び、燃料側セパレータ6の夫々に、その積層方向に連なる酸素供給通路Aを形成する貫通孔1a、5a、6a、その積層方向に連なる酸素排出通路Bを形成する貫通孔1b、5b、6b、その積層方向に連なる燃料供給通路Dを形成する貫通孔1d、5d、6d、その積層方向に連なる燃料排出通路Eを形成する貫通孔1e、5e、6e、その積層方向に連なる冷却水供給通路Gを形成する貫通孔1g、5g、6g、及び、その積層方向に連なる冷却水排出通路Hを形成する貫通孔1h、5h、6hが形成される点も、第1実施形態と同様である。   Further, the through holes 1a, 5a, 6a that form the oxygen supply passages A continuous in the stacking direction in the solid polymer electrolyte membrane 1, the oxygen side separator 5, and the fuel side separator 6, respectively, and the oxygen connected in the stacking direction. Through holes 1b, 5b, 6b forming the discharge passage B, through holes 1d, 5d, 6d forming the fuel supply passage D connected in the stacking direction, through holes 1e forming the fuel discharge passage E connected in the stacking direction, 5e, 6e, through holes 1g, 5g, 6g forming a cooling water supply passage G continuous in the stacking direction and through holes 1h, 5h, 6h forming a cooling water discharge passage H connecting in the stacking direction are formed. This is also the same as in the first embodiment.

この第2実施形態においては、供給側端版9の位置する側から燃料電池を見た場合において、燃料電池セルCの積層方向視にて矩形状となるセルスタックNCにおける4隅のうちの、上方側で左側の隅部に対応する箇所に、酸素供給通路Aが形成され、セルスタックNCにおける4隅のうちの、下方側で右側の隅部に対応する箇所に、酸素排出通路Bが形成されている。
また、供給側端版9の位置する側から燃料電池を見た場合において、燃料電池セルCの積層方向視にて矩形状となるセルスタックNCにおける4隅のうちの、上方側で右側の隅部に対応する箇所に、燃料供給通路D及び冷却水排出通路Hが形成され、セルスタックNCにおける4隅のうちの、下方側で左側の隅部に対応する箇所、燃料排出通路E及び冷却水供給通路Gが形成されている。
In the second embodiment, when the fuel cell is viewed from the side where the supply side end plate 9 is located, of the four corners of the cell stack NC that is rectangular when viewed in the stacking direction of the fuel cell C, An oxygen supply passage A is formed at a location corresponding to the left corner on the upper side, and an oxygen discharge passage B is formed at a location corresponding to the right corner on the lower side among the four corners of the cell stack NC. Has been.
Further, when the fuel cell is viewed from the side where the supply side end plate 9 is located, the upper right corner of the four corners of the cell stack NC that is rectangular when viewed in the stacking direction of the fuel cells C A fuel supply passage D and a cooling water discharge passage H are formed at locations corresponding to the section, and of the four corners of the cell stack NC, the location corresponding to the left corner on the lower side, the fuel discharge passage E and the cooling water A supply passage G is formed.

尚、このように、冷却水供給通路Gを下方側に設けることにより、セルスタックNCの下方側を上方側より低温に冷却して、酸素供給流路Sの入口部SIと出口部SOとに亘る流路部分Srのうちの酸素排出通路Bに近い下方側部分の温度を低くできるため、その下方側部分に多量に存在する水分が気化して酸素排出通路Bに出て行くことを抑制できるものとなる。   In this way, by providing the cooling water supply passage G on the lower side, the lower side of the cell stack NC is cooled to a lower temperature than the upper side, and the inlet portion SI and the outlet portion SO of the oxygen supply flow path S are connected. Since the temperature of the lower side portion close to the oxygen discharge passage B in the flow passage portion Sr can be lowered, it is possible to suppress the moisture present in a large amount in the lower portion from vaporizing and going out to the oxygen discharge passage B. It will be a thing.

そして、酸素供給流路Sの入口部SIと出口部SOとが、セルスタックNCの横幅方向に離れた位置に、酸素側セパレータ5の上部から下部に亘って伸びる状態で上下方向に沿って形成され、かつ、それらに亘る複数の流路部分Sr、つまり、酸素含有ガス通流溝5sが、上下方向に並ぶ状態で水平方向に沿って形成されることにより、酸素供給流路の入口部S1と出口部SOとに亘る流路部分Srの全体が、水平方向に沿う状態となるように形成されている。
ちなみに、酸素供給流路Sの入口部SIと出口部SOとは、それらに亘る複数の流路部分Sr、つまり、酸素含有ガス通流溝5sの幅よりも十分に大きな幅を有する状態に形成されて、酸素含有ガスを貯留するマニホールドとしての作用を発揮するように構成されている。
Then, the inlet portion SI and the outlet portion SO of the oxygen supply flow path S are formed in the vertical direction in a state extending from the upper part to the lower part of the oxygen-side separator 5 at positions separated in the lateral width direction of the cell stack NC. In addition, the plurality of flow path portions Sr extending over them, that is, the oxygen-containing gas flow grooves 5s are formed along the horizontal direction in a state of being arranged in the vertical direction, whereby the inlet portion S1 of the oxygen supply flow path. And the entire flow path portion Sr extending to the outlet portion SO are formed in a state along the horizontal direction.
Incidentally, the inlet portion SI and the outlet portion SO of the oxygen supply channel S are formed in a state having a sufficiently larger width than the width of the plurality of channel portions Sr extending over them, that is, the oxygen-containing gas flow groove 5s. Thus, it is configured to exhibit an action as a manifold for storing the oxygen-containing gas.

また、燃料供給流路Fの入口部FIと出口部FOとが、セルスタックNCの横幅方向に離れた位置に、燃料側セパレータ6の上部から下部に亘って伸びる状態で上下方向に沿って形成され、かつ、それらに亘る複数の流路部分Fr、つまり、水素含有ガス通流溝6fが、上下方向に並ぶ状態で水平方向に沿って形成されることにより、燃料供給流路Fの入口部FIと出口部FOとに亘る流路部分Frの全体が、水平方向に沿う状態となるように形成されている。
ちなみに、燃料供給流路Fの入口部FIと出口部FOとは、それらに亘る複数の流路部分Fr、つまり、水素含有ガス通流溝6fの幅よりも十分に大きな幅を有する状態に形成されて、水素含有ガスを貯留するマニホールドとしての作用を発揮するように構成されている。
In addition, the inlet portion FI and the outlet portion FO of the fuel supply flow path F are formed along the vertical direction in a state extending from the upper part to the lower part of the fuel-side separator 6 at positions separated in the lateral width direction of the cell stack NC. In addition, the plurality of flow path portions Fr extending over them, that is, the hydrogen-containing gas flow grooves 6f are formed along the horizontal direction in a state of being aligned in the vertical direction, so that the inlet portion of the fuel supply flow path F is formed. The entire flow path portion Fr extending between the FI and the outlet portion FO is formed to be in a state along the horizontal direction.
Incidentally, the inlet portion FI and the outlet portion FO of the fuel supply passage F are formed in a state having a sufficiently larger width than the width of the plurality of passage portions Fr extending over them, that is, the hydrogen-containing gas flow groove 6f. Thus, it is configured to exhibit an action as a manifold for storing the hydrogen-containing gas.

さらに、この第2実施形態においては、燃料電池セルCの積層方向視において、酸素供給流路Sの入口部SIと燃料供給流路Fの出口部FOとが重複する状態で位置し、かつ、酸素供給流路Sの出口部SOと燃料供給流路Fの入口部FIとが重複する状態で位置することになり、酸素供給流路Sと燃料供給流路Fとが、燃料電池セルCの積層方向視にて、酸素含有ガスと水素含有ガスとを対向流状態で流動させるように構成されている。   Furthermore, in the second embodiment, when viewed in the stacking direction of the fuel cells C, the inlet portion SI of the oxygen supply channel S and the outlet portion FO of the fuel supply channel F are located in an overlapping state, and The outlet part SO of the oxygen supply channel S and the inlet part FI of the fuel supply channel F are located in an overlapping state, and the oxygen supply channel S and the fuel supply channel F are connected to the fuel cell C. When viewed in the stacking direction, the oxygen-containing gas and the hydrogen-containing gas are configured to flow in a counterflow state.

したがって、この第2実施形態においては、酸素供給流路Sと燃料供給流路Fとが、燃料電池セルCの積層方向視にて、酸素含有ガスと水素含有ガスとを対向流状態で流動させるように構成されているため、酸素極2に生成される水分にて固体高分子電解質膜1を湿潤させることを良好に行えるものとなる。   Therefore, in the second embodiment, the oxygen supply flow path S and the fuel supply flow path F cause the oxygen-containing gas and the hydrogen-containing gas to flow in a counterflow state as viewed in the stacking direction of the fuel cells C. Thus, the solid polymer electrolyte membrane 1 can be satisfactorily wetted with moisture generated in the oxygen electrode 2.

また、酸素供給流路Sの入口部SIと出口部SOとに亘る流路部分Srの全体、及び、燃料供給流路Fの入口部FIと出口部FOとに亘る流路部分Frの全体が、水平方向に沿う状態となるように形成されているため、酸素供給流路S内の水分が、酸素含有ガスの流動に伴って出口側に向けて円滑に流動し、また、燃料供給流路F内の水分が、水素含有ガスの流動に伴って出口側に向けて円滑に流動することになる。
その結果、酸素供給流路Sを流動する酸素含有ガスの流動状態が安定し、且つ、燃料供給流路Fを流動する水素含有ガスの流動状態が安定することになるため、燃料電池の発生電力が安定するものとなる。
Further, the entire flow path portion Sr extending between the inlet portion SI and the outlet portion SO of the oxygen supply flow path S and the entire flow path portion Fr extending between the inlet portion FI and the outlet portion FO of the fuel supply flow path F The water in the oxygen supply flow path S flows smoothly toward the outlet side with the flow of the oxygen-containing gas, and the fuel supply flow path. The moisture in F smoothly flows toward the outlet side as the hydrogen-containing gas flows.
As a result, the flow state of the oxygen-containing gas flowing through the oxygen supply channel S is stabilized, and the flow state of the hydrogen-containing gas flowing through the fuel supply channel F is stabilized. Becomes stable.

ちなみに、この第2実施形態においては、上下方向に沿って形成される酸素供給流路Sの入口部SIと出口部SOとの夫々を、酸素含有ガスが上方側から下方側に向かって流動させることにより、酸素供給流路Sの入口部SIと出口部SOの下方側に水溜りが生成されて、酸素含有ガスの通流が阻害される事態が発生するのを回避するようにしている。
同様に、この第2実施形態においては、上下方向に沿って形成される燃料供給流路Fの入口部FIと出口部FOとの夫々を、水素含有ガスが上方側から下方側に向かって流動させることにより、燃料供給流路Fの入口部FIと出口部FOの下方側に水溜りが生成されて、水素含有ガスの通流が阻害される事態が発生するのを回避するようにしている。
Incidentally, in the second embodiment, the oxygen-containing gas flows from the upper side to the lower side in each of the inlet portion SI and the outlet portion SO of the oxygen supply channel S formed along the vertical direction. Thus, it is possible to avoid a situation in which a water pool is generated below the inlet portion SI and the outlet portion SO of the oxygen supply flow path S and the flow of the oxygen-containing gas is inhibited.
Similarly, in the second embodiment, the hydrogen-containing gas flows from the upper side to the lower side in each of the inlet portion FI and the outlet portion FO of the fuel supply flow path F formed along the vertical direction. By doing so, it is possible to avoid a situation in which a water pool is generated below the inlet portion FI and the outlet portion FO of the fuel supply flow path F and the flow of the hydrogen-containing gas is obstructed. .

〔第3実施形態〕
次に、本発明の第3実施形態を説明する。
この第3実施形態は、酸素含有ガスを、燃料電池セルCの作動温度よりも低い露点となる低加湿状態に加湿された状態で、酸素供給流路Sに供給する構成を例示するものであって、その他の構成は、第2実施形態と同様であるので、第2実施形態と同様の構成についての説明は省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
The third embodiment exemplifies a configuration in which the oxygen-containing gas is supplied to the oxygen supply channel S in a state where the oxygen-containing gas is humidified in a low humidified state where the dew point is lower than the operating temperature of the fuel cell C. Since the other configuration is the same as that of the second embodiment, description of the same configuration as that of the second embodiment is omitted.

すなわち、図8に示すように、酸素含有ガスとしての空気を供給する送風機15から供給側端板9の接続部8aに供給される空気を加湿する加湿手段Kが設けられている。
この加湿手段Kは、吸湿性を備えた膜状体20の両側部のうちの一方側を通して、送風機15から供給される酸素含有ガスとしての空気を通流させ、そして、膜状体20の両側部のうちの他方側を通して、排出側端板11の接続部10bから排出された酸素含有ガスを通流させるように構成されている。
That is, as shown in FIG. 8, humidifying means K is provided for humidifying the air supplied from the blower 15 that supplies air as the oxygen-containing gas to the connection portion 8 a of the supply side end plate 9.
The humidifying means K allows air as an oxygen-containing gas supplied from the blower 15 to flow through one side of the both sides of the membrane-like body 20 having hygroscopicity, and both sides of the membrane-like body 20. The oxygen-containing gas discharged from the connection portion 10b of the discharge side end plate 11 is passed through the other side of the portions.

そして、排出側端板11の接続部10bから排出された酸素含有ガスに含まれている水分を膜状体20に吸収して、膜状体20に吸収した水分にて水素含有ガス(水素)を加湿するように構成されるものである。
ちなみに、燃料電池セルCの作動温度が、例えば70℃であるのに対して、加湿手段Kは常温にて作動させるため、水素含有ガスが、燃料電池セルCの作動温度よりも低い露点となる低加湿状態に加湿されることになる。
Then, the moisture contained in the oxygen-containing gas discharged from the connection portion 10b of the discharge side end plate 11 is absorbed by the film-like body 20, and the hydrogen-containing gas (hydrogen) is absorbed by the moisture absorbed by the film-like body 20. Is configured to humidify.
Incidentally, while the operating temperature of the fuel cell C is 70 ° C., for example, the humidifying means K is operated at room temperature, so that the hydrogen-containing gas has a dew point lower than the operating temperature of the fuel cell C. It will be humidified in a low humidified state.

〔別実施形態〕
次に別実施形態を説明する。
(イ)上記第3実施形態においては、水素含有ガスを無加湿状態で燃料供給流路に供給する場合を例示したが、酸素含有ガスに加えて、水素含有ガスを、燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態で、燃料供給流路に供給するように構成してもよい。
ちなみに、この場合、酸素含有ガスを、燃料電池セルCの作動温度よりも低い露点となる低加湿状態に加湿することを省略するようにしても良い。
[Another embodiment]
Next, another embodiment will be described.
(A) In the third embodiment, the case where the hydrogen-containing gas is supplied to the fuel supply channel in a non-humidified state is exemplified. However, in addition to the oxygen-containing gas, the hydrogen-containing gas is used as the operating temperature of the fuel cell. Alternatively, the fuel supply flow path may be supplied in a state of being humidified in a low humidified state where the dew point is lower.
Incidentally, in this case, it may be omitted to humidify the oxygen-containing gas in a low humidified state where the dew point is lower than the operating temperature of the fuel cell C.

(ロ)水素含有ガス又は酸素含有ガスを、燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿する場合において、その加湿手段は、上記の第3実施形態にて例示した加湿手段に代えて、タンク内に貯留した加湿水の内部を通して、水素含有ガス又は酸素含有ガスを通流させる構成を採用する等、水素含有ガス又は酸素含有ガスを加湿するための構成は、種々変更できるものである。 (B) When the hydrogen-containing gas or the oxygen-containing gas is humidified in a low humidified state where the dew point is lower than the operating temperature of the fuel cell, the humidifying means is the humidifying means exemplified in the third embodiment. Instead of, the configuration for humidifying the hydrogen-containing gas or oxygen-containing gas, such as adopting a configuration in which the hydrogen-containing gas or oxygen-containing gas flows through the inside of the humidified water stored in the tank can be variously changed. Is.

(ハ)上記の各実施形態において、水素含有ガスとは、水素ガスを主成分とするガスであり、純水素ガスに限定されるものではなく、例えば、炭化水素系のガスを、水蒸気を用いて改質した改質ガスでも良い。ちなみに、水素含有ガスには、基本的には酸素ガスは含まれるものではないが、燃料電池セルにおける発電反応に影響を与えない程度の微量の酸素ガスを含んでいても良い。 (C) In each of the above embodiments, the hydrogen-containing gas is a gas containing hydrogen gas as a main component, and is not limited to pure hydrogen gas. For example, a hydrocarbon-based gas is converted into water vapor. The reformed gas may be modified. Incidentally, the hydrogen-containing gas does not basically contain oxygen gas, but may contain a trace amount of oxygen gas that does not affect the power generation reaction in the fuel cell.

(ニ)上記実施形態においては、酸素側セパレータ及び燃料側セパレータの両者に、冷却水を通流させるように構成したが、酸素側セパレータ及び燃料側セパレータの酸素側セパレータ及び燃料側セパレータのいずれか一方に冷却水を通流させるように構成する形態で実施してもよい。 (D) In the above embodiment, the cooling water is passed through both the oxygen side separator and the fuel side separator. However, any one of the oxygen side separator and the fuel side separator of the oxygen side separator and the fuel side separator is used. You may implement with the form comprised so that cooling water may be flowed through to one side.

(ホ)酸素側セパレータ及び燃料側セパレータは、必ずしも別体に構成する必要はなく、
一体状態に構成してもよい。
この場合、一体状態に構成されたセパレータの内部を通して、冷却水を通流させるようにすると良い。
(E) The oxygen side separator and the fuel side separator do not necessarily need to be configured separately.
You may comprise in an integrated state.
In this case, it is preferable to allow the cooling water to flow through the inside of the separator configured in an integrated state.

1 電解質層
2 酸素極
3 燃料極
5 酸素側セパレータ
6 燃料側セパレータ
C 燃料電池セル
F 燃料供給流路
FI 入口部
FO 出口部
Fr 流路部分
S 酸素供給流路
SI 入口部
SO 出口部
Sr 流路部分
DESCRIPTION OF SYMBOLS 1 Electrolyte layer 2 Oxygen electrode 3 Fuel electrode 5 Oxygen side separator 6 Fuel side separator C Fuel cell F Fuel supply channel FI Inlet part FO Outlet part Fr Channel part S Oxygen supply channel SI Inlet part SO Outlet part Sr Channel portion

Claims (3)

固体高分子電解質膜の一方の面に酸素極を備え且つ他方の面に燃料極を備えた燃料電池セルにおける酸素極側箇所に、前記酸素極に酸素含有ガスを供給する酸素供給流路を形成する酸素側セパレータを位置させ、かつ、前記燃料電池セルにおける燃料極側箇所に、前記燃料極に水素含有ガスを供給する燃料供給流路を形成する燃料側セパレータを位置させた状態で、前記燃料電池セル、前記酸素側セパレータ、及び、前記燃料側セパレータが積層され、
前記酸素含有ガス及び前記水素含有ガスを加湿しない無加湿状態、前記酸素含有ガス及び前記水素含有ガスのいずれか一方を前記燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態、又は、前記酸素含有ガス及び前記水素含有ガスを前記燃料電池セルの作動温度よりも低い露点となる低加湿状態に加湿した状態で、前記酸素含有ガス及び前記水素含有ガスが前記酸素供給流路及び前記燃料供給流路に供給されるように構成され、
前記酸素供給流路と前記燃料供給流路とが、前記燃料電池セルの積層方向視にて、前記酸素供給流路の入口部と前記燃料供給流路の出口部とを近づけて位置させ且つ前記酸素供給流路の出口部と前記燃料供給流路の入口部とを近づけて位置させて、前記酸素含有ガスと前記水素含有ガスとを対向流状態で流動させるように構成されている固体高分子型の燃料電池であって、
前記酸素供給流路の入口部と出口部とに亘る流路部分の全体、及び、前記燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態に形成されている固体高分子型の燃料電池。
An oxygen supply channel for supplying an oxygen-containing gas to the oxygen electrode is formed at a position on the oxygen electrode side of a fuel cell having an oxygen electrode on one surface of the solid polymer electrolyte membrane and a fuel electrode on the other surface. The fuel-side separator is positioned, and a fuel-side separator that forms a fuel supply channel for supplying a hydrogen-containing gas to the fuel electrode is positioned at a position on the fuel electrode side of the fuel cell. A battery cell, the oxygen side separator, and the fuel side separator are laminated,
Non-humidified state in which the oxygen-containing gas and the hydrogen-containing gas are not humidified, and a state in which any one of the oxygen-containing gas and the hydrogen-containing gas is humidified in a low humidified state where the dew point is lower than the operating temperature of the fuel cell. Alternatively, in a state where the oxygen-containing gas and the hydrogen-containing gas are humidified in a low humidified state having a dew point lower than the operating temperature of the fuel cell, the oxygen-containing gas and the hydrogen-containing gas are supplied to the oxygen supply channel. And is configured to be supplied to the fuel supply channel,
The oxygen supply channel and the fuel supply channel are positioned close to an inlet portion of the oxygen supply channel and an outlet portion of the fuel supply channel in the stacking direction view of the fuel cell, and A solid polymer configured to cause the oxygen-containing gas and the hydrogen-containing gas to flow in a counterflow state with the outlet portion of the oxygen supply channel and the inlet portion of the fuel supply channel positioned close to each other Type fuel cell,
The entire flow path portion extending between the inlet portion and the outlet portion of the oxygen supply flow path and the entire flow path portion extending between the inlet portion and the outlet portion of the fuel supply flow path are formed in a state along the horizontal direction. Solid polymer fuel cell.
前記燃料電池セル、前記酸素側セパレータ、及び、前記燃料側セパレータが、上下方向に沿って積層されることにより、前記酸素供給流路の入口部と出口部とに亘る流路部分の全体、及び、前記燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態となるように形成されている請求項1記載の固体高分子型の燃料電池。   The fuel cell, the oxygen-side separator, and the fuel-side separator are stacked along the vertical direction, so that the entire flow path portion extending between the inlet portion and the outlet portion of the oxygen supply flow path, and 2. The solid polymer fuel cell according to claim 1, wherein an entire flow path portion extending between an inlet portion and an outlet portion of the fuel supply flow path is formed in a state along a horizontal direction. 前記燃料電池セル、前記酸素側セパレータ、及び、前記燃料側セパレータが、水平方向に沿って積層され、
前記酸素供給流路の入口部と出口部とが、上下方向に沿って形成され、かつ、それらに亘る複数の流路部分が、上下方向に並ぶ状態で水平方向に沿って形成されることにより、前記酸素供給流路の入口部と出口部とに亘る流路部分の全体の全体が、水平方向に沿う状態となるように形成され、
前記燃料供給流路の入口部と出口部とが、上下方向に沿って形成され、かつ、それらに亘る複数の流路部分が、上下方向に並ぶ状態で水平方向に沿って形成されることにより、前記燃料供給流路の入口部と出口部とに亘る流路部分の全体が、水平方向に沿う状態となるように形成されている請求項1記載の固体高分子型の燃料電池。
The fuel battery cell, the oxygen side separator, and the fuel side separator are stacked along a horizontal direction,
By forming the inlet portion and the outlet portion of the oxygen supply channel along the vertical direction, and forming a plurality of flow channel portions extending in the vertical direction along the horizontal direction. , The entirety of the flow path portion extending between the inlet and outlet of the oxygen supply flow path is formed so as to be in a state along the horizontal direction,
An inlet portion and an outlet portion of the fuel supply flow path are formed along the vertical direction, and a plurality of flow path portions extending therebetween are formed along the horizontal direction in a state of being aligned in the vertical direction. 2. The solid polymer fuel cell according to claim 1, wherein an entire flow path portion extending between an inlet portion and an outlet portion of the fuel supply flow path is formed in a state along a horizontal direction.
JP2010133220A 2010-06-10 2010-06-10 Solid polymer fuel battery Pending JP2011258467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133220A JP2011258467A (en) 2010-06-10 2010-06-10 Solid polymer fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133220A JP2011258467A (en) 2010-06-10 2010-06-10 Solid polymer fuel battery

Publications (1)

Publication Number Publication Date
JP2011258467A true JP2011258467A (en) 2011-12-22

Family

ID=45474423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133220A Pending JP2011258467A (en) 2010-06-10 2010-06-10 Solid polymer fuel battery

Country Status (1)

Country Link
JP (1) JP2011258467A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184428A (en) * 2000-12-11 2002-06-28 Toyota Motor Corp Fuel cell
JP2004079435A (en) * 2002-08-21 2004-03-11 Honda Motor Co Ltd Fuel cell and its operation method
JP2004079431A (en) * 2002-08-21 2004-03-11 Honda Motor Co Ltd Fuel cell and its operation method
JP2007255808A (en) * 2006-03-24 2007-10-04 Toyota Motor Corp Humidifier and fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184428A (en) * 2000-12-11 2002-06-28 Toyota Motor Corp Fuel cell
JP2004079435A (en) * 2002-08-21 2004-03-11 Honda Motor Co Ltd Fuel cell and its operation method
JP2004079431A (en) * 2002-08-21 2004-03-11 Honda Motor Co Ltd Fuel cell and its operation method
JP2007255808A (en) * 2006-03-24 2007-10-04 Toyota Motor Corp Humidifier and fuel cell system

Similar Documents

Publication Publication Date Title
KR102593276B1 (en) Humidifiers with integrated water separators for fuel cell systems, fuel cell systems and vehicles containing the same
US7566511B2 (en) Solid polymer cell assembly
JP2022091833A (en) Fuel cell membrane humidifier
JP2009076211A (en) Fuel cell stack
JP2001307753A (en) Solid polymer type fuel cell
JPH09283162A (en) Solid high molecular fuel cell
JP2013008664A (en) Fuel cell system
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
JP2006216293A (en) Fuel cell system
JP2013191433A (en) Fuel cell stack and fuel cell system
KR20190035002A (en) Hollow fiber membrane module with hollow fiber membrane of different material and fuel cell membrane humidifier comprising thereof
JP4790964B2 (en) Fuel cell with dehumidifying device
JP3963716B2 (en) Fuel cell stack
JP6138081B2 (en) Fuel cell system
JP2011258467A (en) Solid polymer fuel battery
EP2375485B1 (en) Fuel cell system
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JP2001185169A (en) Solid polymeric fuel cell
JP2010003603A (en) Fuel cell stack
WO2004062016A1 (en) Hydrogen gas humidity controller, fuel cell, hydrogen gas humidity controlling method, and humidity controlling method of fuel cell
JP7183435B2 (en) FUEL CELL STACK AND METHOD OF OPERATION OF FUEL CELL STACK
JP2011154802A (en) Fuel cell system
JP2013157315A (en) Fuel battery
JP2010135071A (en) Fuel cell, method for operating same, and fuel cell device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140320