JP2011257094A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2011257094A
JP2011257094A JP2010133268A JP2010133268A JP2011257094A JP 2011257094 A JP2011257094 A JP 2011257094A JP 2010133268 A JP2010133268 A JP 2010133268A JP 2010133268 A JP2010133268 A JP 2010133268A JP 2011257094 A JP2011257094 A JP 2011257094A
Authority
JP
Japan
Prior art keywords
temperature
circuit
refrigerant
heat medium
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010133268A
Other languages
English (en)
Inventor
Takuya Okumura
拓也 奥村
Katsushi Taniguchi
勝志 谷口
Yuichi Kusumaru
雄一 藥丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010133268A priority Critical patent/JP2011257094A/ja
Publication of JP2011257094A publication Critical patent/JP2011257094A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】冷凍サイクル装置の立ち上げ時間を短縮できる技術を提供することを目的とする。
【解決手段】冷凍サイクル装置1は、主冷媒回路10と、インジェクション流路17と、主冷媒回路10の熱を熱媒体を介して暖房端末22に供給する暖房回路26と、主冷媒回路10の熱を熱媒体を介してインジェクション流路17に供給する熱交換回路21と、流路切替部18と、を備える。流路切替部18は、冷凍サイクル装置1は、起動モードで運転されているときは、熱媒体が暖房回路26と熱交換回路21との間を交互に循環するように暖房回路26と熱交換回路21とを接続し、冷凍サイクル装置1が定常モードで運転されているときは、熱媒体が暖房回路26および熱交換回路21を個別に循環するように暖房回路26と熱交換回路21とを分断する。
【選択図】図1

Description

本発明は、冷凍サイクル装置に関する。
寒冷地で用いられる冷凍サイクル装置の能力を確保するための1つの手段として、冷媒を圧縮機にインジェクションする技術が知られている。例えば、特許文献1は、第1の熱交換器と、インジェクション流路と、第2の熱交換器と、冷媒加熱用熱源と、を備えた冷凍サイクル装置を開示する。第1の熱交換器は、圧縮機の吸入冷媒と高圧液冷媒を熱交換する。インジェクション流路は、ガス冷媒を圧縮機にインジェクションする。第2の熱交換器は、高圧液冷媒と圧縮機にインジェクションされるガス冷媒を熱交換させる。冷媒加熱用熱源は、圧縮機にインジェクションされるガス冷媒を加熱する。特許文献1に開示された冷凍サイクル装置は、外気が−10℃以下となるような寒冷地においても十分な暖房能力を発揮できる。
特開2006−112753号公報
ところで、寒冷地で用いられる冷凍サイクル装置にとって最も重要な課題の1つとして、起動契機の発生から、十分な能力を発揮できる状態に到達するまでに必要な時間(いわゆる立ち上げ時間)を短縮することが挙げられる。
圧縮機に冷媒をインジェクションすれば、冷凍サイクルのCOP(coefficient of performance)は確かに改善する。しかし、この技術は、立ち上げ時間の短縮化に直接的に寄与するものではなく、立ち上げ時間の短縮化に関して言えば、改善の余地がある。
本発明は、冷凍サイクル装置の立ち上げ時間を短縮できる技術を提供することを目的とする。
本発明は、インジェクション部を含む圧縮機と、第1放熱器と、第2放熱器と、第1膨張機構と、第2膨張機構と、蒸発器とを有し、これらがこの順番で環状に接続されている主冷媒回路と、前記主冷媒回路における前記第1膨張機構と前記第2膨張機構の間の部分から前記インジェクション部に冷媒を供給するインジェクション流路と、暖房端末を有し、前記暖房端末と前記第1放熱器との間で熱媒体を循環させる暖房回路と、熱交換器を有し、前記第2放熱器を流れる冷媒の熱が前記インジェクション流路を流れる冷媒に伝わるように前記第2放熱器と前記熱交換器との間で熱媒体を循環させる熱交換回路と、当該冷凍サイクル装置が起動モードで運転されているときは、前記暖房回路の熱媒体および前記熱交換回路の熱媒体が前記暖房回路と前記熱交換回路との間を交互に循環するように前記暖房回路と前記熱交換回路とを接続し、当該冷凍サイクル装置が定常モードで運転されているときは、前記暖房回路の熱媒体および前記熱交換回路の熱媒体が前記暖房回路および前記熱交換回路を個別に循環するように前記暖房回路と前記熱交換回路とを分断する流路切替部と、を備えた、冷凍サイクル装置、を提供する。
本発明の冷凍サイクル装置によれば、起動モードにおいて、圧縮機から吐出された高圧冷媒の熱が、第2放熱器のみならず第1放熱器において熱媒体に伝わり、その熱媒体からインジェクション流路を流れる冷媒に伝わる。特に、第1放熱器を流れる冷媒は、第2放熱器を流れる冷媒よりも高温であるため、起動モードではインジェクション流路を流れる冷媒に伝わる熱量が定常モードでの同熱量よりも相対的に大きくなる。したがって、起動契機の発生から、圧縮機にインジェクションされる冷媒が所望の温度に達するまでの時間(換言すると、所望の過熱度に達するまでの時間)を短縮することができる。これにより、起動契機の発生から、圧縮機へのインジェクションが効果を発揮するまでの時間を短縮することができる。すなわち、冷凍サイクル装置の立ち上げ時間を短縮できる。
本発明の実施形態の冷凍サイクル装置の概略構成図 本発明の実施形態の冷凍サイクル装置のモリエル線図 本発明の実施形態における制御方法を示すフローチャート 本発明の実施形態における制御方法を示すフローチャート 本発明の実施形態における制御方法を示すフローチャート 本発明の実施形態における制御方法を示すフローチャート 本発明の実施形態における制御方法を示すフローチャート 本発明の実施形態における制御方法を示すフローチャート
以下、本発明を実施するための形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態における冷凍サイクル装置の構成図である。図1に示すように、本実施形態の冷凍サイクル装置1は、主冷媒回路10と、インジェクション流路17と、暖房回路26と、熱交換回路21と、流路切替部18と、制御装置40とを備える。主冷媒回路10およびインジェクション流路17を流れる冷媒として、高圧側で超臨界域となる二酸化炭素を用いているが、その他、R407Cなどの非共沸混合冷媒およびR410Aなどの擬似共沸混合冷媒などを用いてもよい。また、暖房回路26および熱交換回路21を流れる熱媒体として、本実施形態では水を用いているが、熱媒体はこれに限定されない。
主冷媒回路10は、インジェクション部11cを含む圧縮機11と、第1放熱器12aと、第2放熱器12bと、第1流量調整弁(第1膨張機構)13aと、気液分離器15と、第2流量調整弁(第2膨張機構)13bと、蒸発器14とを有する。これらはこの順番で環状に接続されている。
圧縮機11は、インジェクション部11cよりも上流側の第1圧縮機構11aと、インジェクション部11cよりも下流側の第2圧縮機構11bとを有する。圧縮機11は、吸入した冷媒を圧縮して高温高圧の冷媒にする。なお、本実施形態においては、第1圧縮機構11aおよび第2圧縮機構11bは単一の圧縮機11を構成しているが、第1圧縮機構11aおよび第2圧縮機構11bは、それぞれが個別の圧縮機であってもよい。
第1放熱器12aは、圧縮機11から吐出された冷媒と、暖房回路26を流れる熱媒体とを熱交換させる。第2放熱器12bは、第1放熱器12aから流出した冷媒と、熱交換回路21を流れる熱媒体とを熱交換させる。
第1流量調整弁13aは、第2放熱器12bから流出した冷媒を減圧膨張させて中間圧力の冷媒にする。気液分離器15は、第1流量調整弁13aから流出した冷媒を気相冷媒と液相冷媒とに分離する。第2流量調整弁13bは、気液分離器15で分離された液相冷媒を減圧膨張させて低圧圧力の冷媒にする。
蒸発器14は、大気の熱を奪い、第2流量調整弁13bから流出した冷媒を温める。
インジェクション流路17は、主冷媒回路10の気液分離器15から分岐している。インジェクション流路17には、主冷媒回路10の気液分離器15から気相冷媒が優先的に供給される。供給された気相冷媒は、熱交換器12cおよび第3流量調整弁(第3膨張機構)13cを経て圧縮機11におけるインジェクション部11cに供給される。
暖房回路26は、第1ポンプ16aを有し、暖房端末22と第1放熱器12aとの間で熱媒体を循環させる。また、暖房回路26は、暖房端末22と並列に接続されたバイパス路27を有する。暖房端末22を流れる熱媒体の流量は第1開閉弁28aによって、バイパス路27を流れる熱媒体の流量は第2開閉弁28bによって、それぞれ調整される。なお、第1開閉弁28aおよび第2開閉弁28bは、後述するように制御装置40によって制御される流量調整機構である。この流量調整機構は、三方弁などの開閉弁以外の部材によって構成してもよい。
熱交換回路21は、第2ポンプ16bを有し、第2放熱器12bと熱交換器12cとの間で熱媒体を循環させる。第2放熱器12bを流れる冷媒の熱が熱媒体に伝わり、温められた熱媒体の熱が熱交換器12cを介してインジェクション流路17を流れる冷媒に伝わる。
本実施形態では、流路切替部18によって、起動モードと定常モードとを切り替える。すなわち、冷凍サイクル装置1が起動モードで運転されているときは、流路切替部18は暖房回路26の熱媒体および熱交換回路21の熱媒体が暖房回路26と熱交換回路21の間を交互に循環するように暖房回路26と熱交換回路21とを接続する(すなわち、図1の流路切替部18の実線を熱媒体が流れる)。他方、冷凍サイクル装置1が定常モードで運転されているときは、流路切替部18は、暖房回路26の熱媒体および熱交換回路21の熱媒体が暖房回路26と熱交換回路21の間を個別に循環するように暖房回路26と熱交換回路21とを分断する(すなわち、図1の流路切替部18の破線を熱媒体が流れる)。
次に、主冷媒回路10およびインジェクション流路17を流れる冷媒の状態について、図1および図2を用いて説明する。なお、図2のモリエル線図におけるA〜Jは、図1のA〜Jの位置を流れる定常モードにおける冷媒の状態に対応している。第2圧縮機構11bから吐出された高温高圧の冷媒(状態A)は、第1放熱器12aおよび第2放熱器12bにおいて熱媒体と熱交換して冷やされ、エンタルピが低下する(状態B)。第2放熱器12bから流出した冷媒は、第1流量調整弁13aを通過し、中間圧力になった後(状態C)、気液分離器15において気相冷媒を主成分とする冷媒(状態I)と、液相成分を主成分とする冷媒(状態D)とに分離される。気相成分を主成分とする冷媒は、インジェクション流路17に流入し、熱交換器12cにおいて熱交換回路21を流れる熱媒体と熱交換して温められた後(状態J)、圧縮機11におけるインジェクション部11cに吸入される。他方、気液分離器15において分離された液相冷媒を主成分とする冷媒は、第2流量調整弁13bによって低圧圧力にまで減圧膨張され(状態E)、蒸発器14において外気によって温められ、エンタルピが上昇する(状態F)。蒸発器14から流出した冷媒は、第1圧縮機構11aに吸入される。第1圧縮機構11aから吐出された冷媒は(状態G)、インジェクション部11cに吸入された冷媒と合流後(状態H)、第2圧縮機構11bに吸入される。なお、起動モードの冷媒の状態は、定常モードの冷媒の状態と基本的には同様であるが、起動モードでは、定常モードに比べると、気液分離器15において分離された気相冷媒を主成分とする冷媒中の液相成分が多くなることがある。すなわち、起動モードでは、図2において、状態Iが左側に移動することがある。
ここで、熱交換回路21の効果について説明する。第2放熱器12bを流れる冷媒は、第2放熱器12bを流れる熱媒体によって冷やされる。これにより、第2放熱器12bがない場合に比べて、第2圧縮機構11bから吐出された冷媒のエンタルピと第1流量調整弁13aの入口の冷媒のエンタルピとの差(図2のAとBの長さ)が大きくなる。これに対応して、第2流量調整弁13bの出口の冷媒のエンタルピと第1圧縮機構11aに吸入される冷媒のエンタルピとの差(図2のEとFの長さ)も大きくなる。すなわち、蒸発器14をより有効活用できるようになり、冷凍サイクル装置1の効率を向上させることができる。また、インジェクション流路17内の熱交換器12cを流れる冷媒は、熱交換器12cを流れる熱媒体によって温められる。これにより、圧縮機11のインジェクション部11cに吸入される冷媒の過熱度が高くなり、インジェクションの効果が向上する。
次に、起動モードにおける熱媒体の流れについて説明する。起動モードにおいては、流路切替部18は、暖房回路26の熱媒体および熱交換回路21の熱媒体が暖房回路26と熱交換回路21との間を交互に循環するように暖房回路26と熱交換回路21とを接続する。第2開放弁28bは、熱媒体の少なくとも一部がバイパス路27を流れるように開いた状態となっている。このとき、第1開閉弁28aは全閉、第2開閉弁28bは全開とすることが好ましい。第2放熱器12bおよび第1放熱器12aにおいて冷媒と熱交換して温められた熱媒体は、その一部または全部が暖房端末22を流れずバイパス路27を流れ、熱交換器12cに流入し、インジェクション流路17を流れる冷媒と熱交換して冷やされ、第2放熱器12bおよび第1放熱器12aで再度温められる。
次に、定常モードにおける熱媒体の流れについて説明する。定常モードにおいては、流路切替部18は、暖房回路26の熱媒体および熱交換回路21の熱媒体が暖房回路26と熱交換回路21との間を個別に循環するように暖房回路26と熱交換回路21とを分断する。このとき、第1開閉弁28aは全開、第2開閉弁28bは全閉となっている(換言すると、流量調整機構が熱媒体がバイパス路27を流れず暖房端末22を流れるように暖房回路26における熱媒体の流れを調整している)。暖房回路26を循環する熱媒体は、第1放熱器12aにおいて冷媒と熱交換して温められ、バイパス路27を流れず暖房端末22を流れ、室内空気に放熱して冷やされる。中温水となった熱媒体は、第1放熱器12aにおいて再度温められる。他方、熱交換回路21を流れる熱媒体は、第2放熱器12bにおいて冷媒と熱交換して温められ、熱交換器12cにおいて、インジェクション流路17を流れる冷媒と熱交換することで冷やされる。
上記のように制御すれば、起動モードにおいて、熱媒体が暖房回路26と熱交換回路21との間を交互に循環するため、圧縮機11から吐出された高圧冷媒が、第2放熱器12bだけではなく、第1放熱器12aにおいても熱交換回路21を流れる熱媒体を温めることができる。したがって、定常モードに比べると、熱媒体が熱交換器12cにおいてインジェクション流路17を流れる冷媒に伝えることができる熱量を大きくすることができる。これにより、起動契機の発生から、圧縮機11にインジェクションされる冷媒が所望の温度に達するまでの時間(換言すると、所望の過熱度に達するまでの時間)を短縮できる。第2圧縮機構11bの吸入温度が高くなると、第2圧縮機構11bの吐出温度も高くなる。吸入温度および吐出温度が高くなり所望の温度に近づけば、第2圧縮機構11bの加熱能力が向上する。したがって、冷凍サイクル装置1が有する全体の熱量の増加に要する時間が短縮される。これにより、冷凍サイクル装置1の立ち上げ時間を短縮できる。
起動モードにおいて、熱媒体が暖房端末22を流れないようにすると、熱媒体は、室内空気との熱交換によって冷やされない。すなわち、熱媒体は、より大きな熱をインジェクション流路17を流れる冷媒に伝えることができる。
定常モードにおいては、暖房回路26における熱媒体は、バイパス路27を流れず暖房端末22を流れるため、第1放熱器12aにおいて、冷媒と熱交換して熱媒体が得た熱を効率的に室内空気の暖房に用いることができる。なお、第2開閉弁28bを全閉にせず、第2開閉弁28bの開度をある程度まで絞ってもよい。これにより、定常モードにおいて、効率的に室内空気を暖房できるとともに、熱交換回路21によるインジェクション流路17への熱の供給量を第2開閉弁28bを完全に閉じた場合よりも大きくすることができる。ただし、この場合は、室内空気の暖房を優先させるために、第1放熱器12aを流れる熱媒体の流量に対する暖房端末22を流れる熱媒体の流量の比率が起動モードにおける同比率よりも大きくなるように流量調整機構を制御することが好ましい。
次に、制御装置40が行う流路切替部18の制御について、図3〜図6のフローチャートを用いて説明する。
図3は、起動モードと定常モードとを切り替えるためのフローチャートの一例である。まず、ステップ101で、暖房回路26内の第1放熱器12aの出口に設けられた第1温度センサ31によって、第1放熱器12aの出口の熱媒体の温度Tnを検出する。ステップ102では、熱媒体の温度Tnと、あらかじめ制御装置40に格納されている閾値Tn1とを比較する。熱媒体の温度Tnが閾値Tn1よりも大きければ、制御装置40は、定常モードを選択する。定常モードにおいては、流路切替部18が暖房回路26と熱交換回路21とを分断するように、流路切替部18を制御し(ステップ103)、第1開閉弁28aを全開、第2開閉弁28bを全閉とする(ステップ104)。他方、熱媒体の温度Tnが閾値Tn1以下であれば、制御装置40は、起動モードを選択する。起動モードにおいては、流路切替部18が暖房回路26と熱交換回路21とを接続するように、流路切替部18を制御し(ステップ105)、第1開閉弁28aを全閉、第2開閉弁28bを全開とする(ステップ106)。
図3のフローチャートに基づいて流路切替部18を制御することによって、起動モードと定常モードとを、熱媒体の温度Tnに基づいて適切に切り替えることができる。なお、本実施形態においては第1放熱器12aの出口の熱媒体の温度Tnに基づいて流路切替部18を(すなわち運転モードを)切り替えているが、第1放熱器12aの出口以外の熱媒体の温度に基づいて流路切替部18を切り替えてもよい。たとえば、熱交換回路21内の熱交換器12cの出口に第2温度センサ32を設け、熱交換器12cの出口で熱媒体の温度Teを検出し、熱媒体の温度Teに基づいて流路切替部18を切り替えてもよい。また、インジェクション流路17などを流れる冷媒の温度に基づいて流路切替部18を切り替えてもよい。図3を参照して説明したように、第1開放弁28aと第2開放弁28bとからなる流量調整機構は、起動モードにおいては熱媒体の少なくとも一部(好ましくは全部)がバイパス路27を流れるように暖房端末22を流れる熱媒体の量とバイパス路27を流れる熱媒体の量とを調整する。流量調整機構は、定常モードにおいては、基本的に、熱媒体がバイパス路27を流れず暖房端末22を流れるように熱媒体の流れを制御する。
図4Aは、起動モードにおいて第1ポンプ16aの出力Pwaを調整するためのフローチャートである。まず、ステップ201で、暖房回路26内の第1放熱器12aの出口に設けられた第1温度センサ31によって、第1放熱器12aの出口で熱媒体の温度Tnを検出する。ステップ202では、熱媒体の温度Tnと、あらかじめ制御装置40に格納されている閾値Tn2とを比較する。熱媒体の温度Tnが閾値Tn2よりも大きければ、第1ポンプ16aの出力PwaをPwa1だけ大きくする(ステップ203)。他方、熱媒体の温度Tnが閾値Tn2以下であれば、ステップ204に進む。ステップ204では、熱媒体の温度Tnと、あらかじめ制御装置40に格納されている閾値Tn3とを比較する。熱媒体の温度Tnが閾値Tn3よりも大きければ、ステップ201に戻る。他方、熱媒体の温度Tnが閾値Tn3以下であれば、第1ポンプ16aの出力PwaをPwa2だけ小さくする(ステップ205)。なお、上記のように第1ポンプ16aを制御しているときに、第2ポンプ16bの出力を一定としてもよいが、第2ポンプ16bも第1放熱器12aの出口で熱媒体の温度Tnに基づいて第1ポンプ16aと同様に制御してもよい。また、起動モードでは、第2ポンプ16bを停止させ、第1ポンプ16aのみを動作させてもよい。
図4Aのフローチャートに基づいた制御によると、インジェクション流路17を流れる冷媒の温度の上昇速度を速めることができる。なお、Tn1、Tn2およびTn3の大小関係は、Tn1>Tn2>Tn3である。
また、第1ポンプ16aの出力Pwaの代わりに第2ポンプ16bの出力Pwbを制御することによっても図4Aのフローチャートに基づく制御と同様の効果を得ることができる。すなわち、図4Bに示すように、まず、ステップ251で、熱交換回路21内の熱交換器12cの出口に設けられた第2温度センサ32によって、熱交換器12cの出口で熱媒体の温度Teを検出する。次に、ステップ252で、熱媒体の温度Teと、あらかじめ制御装置40に格納されている閾値Te1とを比較する。熱媒体の温度Teが閾値Te1よりも大きければ、第2ポンプ16bの出力PwbをPwb1だけ大きくする(ステップ253)。他方、熱媒体の温度Teが閾値Te2以下であれば、ステップ254に進む。ステップ254では、熱媒体の温度Teと、あらかじめ制御装置40に格納されている閾値Te2とを比較する。熱媒体の温度Teが閾値Te2よりも大きければ、ステップ251に戻る。他方、熱媒体の温度Teが閾値Te2以下であれば、第2ポンプ16bの出力PwbをPwb2だけ小さくする(ステップ255)。これにより、インジェクション流路17を流れる冷媒の温度の上昇速度を速めることができる。なお、Tn1、Te1およびTe2の大小関係は、Tn1>Te1>Te2である。また、第1ポンプ16aの制御と第2ポンプ16bの制御とを同時に行ってもよい。また、起動モードでは、第1ポンプ16aを停止させ、第2ポンプ16bのみを動作させてもよい。
図5は、第1流量調整弁13aの弁開度Vaを調整するためのフローチャートである。まず、ステップ301で、インジェクション流路17内の熱交換器12cの入口に設けられた第3温度センサ33によって、熱交換器12cの入口で冷媒の温度Tsを検出する。ステップ302では、冷媒の温度Tsと、あらかじめ制御装置40に格納されている閾値Ts1とを比較する。冷媒の温度Tsが閾値Ts1よりも大きければ、第1流量調整弁13aの弁開度VaをVa1だけ小さくする(ステップ303)。他方、冷媒の温度Tsが閾値Ts1以下であれば、ステップ304に進む。ステップ304では、冷媒の温度Tsと、あらかじめ制御装置40に格納されている閾値Ts2とを比較する。冷媒の温度Tsが閾値Ts2よりも大きければ、ステップ301に戻る。他方、冷媒の温度Tsが閾値Ts2以下であれば、第1流量調整弁13aの弁開度VaをVa2だけ大きくする(ステップ305)。
図5のフローチャートに基づいて第1流量調整弁13aの弁開度Vaを制御することによって、インジェクション流路17に流れる冷媒の圧力(中間圧)を適切に制御することができる。これにより、インジェクション部11cに供給される冷媒の圧力を、第1圧縮機構11aおよび第2圧縮機構11bが高効率に動作するような圧力にすることができる。これにより、冷凍サイクル装置1が定常状態に至るまでに要する時間を短縮できる。なお、本実施形態においては、熱交換器12cの入口の冷媒の温度Tsに基づいて第1流量調整弁13aの弁開度を制御しているが、熱交換器12cの入口の冷媒の圧力Psに基づいて、第1流量調整弁13aの弁開度Vaを制御してもよい。また、第2流量調整弁13bも併せて制御すると、より効果的にインジェクション流路17に流れる冷媒の圧力(中間圧)を制御することができる。
図6は、第3流量調整弁13cの弁開度Vcを調整するためのフローチャートである。まず、ステップ401で、第2圧縮機構11bとインジェクション流路11cとの間の第2圧縮機構11bの吸入配管に設けられた第4温度センサ34によって、第2圧縮機構11bの吸入配管で冷媒の温度(換言すると、第2圧縮機構11bに吸入される冷媒の温度)Thを検出する。ステップ402では、冷媒の温度Thと、あらかじめ制御装置40に格納されている閾値Th1とを比較する。冷媒の温度Thが閾値Th1よりも大きければ、第3流量調整弁13cの弁開度VcをVc1だけ大きくする(ステップ403)。他方、冷媒の温度Thが閾値Th1以下であれば、ステップ404に進む。ステップ404では、冷媒の温度Thと、あらかじめ制御装置40に格納されている閾値Th2とを比較する。冷媒の温度Thが閾値Th2よりも大きければ、ステップ401に戻る。他方、冷媒の温度Thが閾値Th2以下であれば、第3流量調整弁13cの弁開度VcをVc2だけ小さくする(ステップ405)。
図6のフローチャートに基づいて第3流量調整弁13cの弁開度Vcを制御することによって、インジェクション部11cに供給される冷媒を、第2圧縮機構11bが高効率に動作するような過熱度にすることができる。これにより、冷凍サイクル装置1が定常状態に至るまでに要する時間を短縮できる。なお、本実施形態においては、第2圧縮機構11bに吸入される冷媒の温度に基づいて第3流量調整弁13cの弁開度を制御しているが、他の部分の温度に基づいて第3流量調整弁13cの弁開度を制御してもよい。たとえば、インジェクション流路17内の熱交換器13cの出口の冷媒の温度に基づいて、第3流量調整弁13cの弁開度Vcを制御してもよい。また、第2圧縮機構11bに吸入される冷媒の圧力に基づいて、第3流量調整弁13cの弁開度Vcを制御してもよい。
図7は、外気温度Taにより、図3〜図6のフローチャートで用いられる熱媒体の温度の閾値Tn1、Tn2およびTn3、ならびに冷媒の温度の閾値Ts1、Ts2、Th1およびTh2を変化させるシステムの制御フローである。ステップ501で、外気温度センサ35によって、外気温度Taを検出する。ステップ502では、外気温度Taと、あらかじめ制御装置40に格納されている閾値Ta1とを比較する。外気温度Taが閾値Ta1よりも小さければ、閾値Tn1をTn11に、Tn2をTn21に、Tn3をTn31に、Ts1をTs11に、Ts2をTs21に、Th1をTh11に、Th2をTh21に、それぞれ設定する(ステップ503)。他方、外気温度Taが閾値Ta1以上であれば、ステップ504に進む。ステップ504では、ステップ501で検出した外気温度Taと、あらかじめ制御装置40に格納されている閾値Ta2とを比較する。外気温度Taが閾値Ta2よりも小さければ、閾値Tn1をTn12に、Tn2をTn22に、Tn3をTn32に、Ts1をTs12に、Ts2をTs22に、Th1をTh12に、Th2をTh22に、それぞれ設定する(ステップ505)。他方、外気温度Taが閾値Ta2以上であれば、ステップ506に進む。ステップ506では、ステップ1で検出した外気温度Taと、あらかじめ制御装置40に格納されている閾値Ta3とを比較する。外気温度Taが閾値Ta3よりも小さければ、閾値Tn1をTn13に、Tn2をTn23に、Tn3をTn33に、Ts1をTs13に、Ts2をTs23に、Th1をTh13に、Th2をTh23に、それぞれ設定する(ステップ507)。他方、外気温度Taが閾値Ta3以上であれば、閾値Tn1をTn14に、Tn2をTn24に、Tn3をTn34に、Ts1をTs14に、Ts2をTs24に、Th1をTh14に、Th2をTh24に、それぞれ設定する(ステップ508)。
図7のフローチャート示すように、外気温Taに対応する群に含まれる閾値をTn1、Tn2、Tn3、Ts1、Ts2、Th1およびTh2に当てはめることによって、外気温度に応じて冷凍サイクル装置1を効率的に運転させることができる。すなわち、図7のフローチャートに基づいた制御によれば、年間を通じて冷凍サイクル装置1の運転効率を向上させることができる。これにより、年間を通じて冷凍サイクル装置1が起動契機から定常状態に至るまでに要する時間を短縮できる。なお、制御において閾値Te1およびTe2が必要であれば、閾値Te1およびTe2を定めることができるように、図7のフローチャートに閾値Te1およびTe2に対応する閾値を追加すればよい。また、図7には各群に複数の閾値が格納されている形態を示したが、たとえば図3に示した制御のみを行う場合は、各群に一の閾値が格納されていれば足りる。
本発明にかかる冷凍サイクル装置は、特に寒冷地で運転される高温暖房システムの効率を向上させることができる。また、本発明にかかる冷凍サイクル装置は、給湯器、冷凍機器、空調機器など、多様な用途のシステムに採用することができる。
1 冷凍サイクル装置
10 主冷媒回路
11 圧縮機
11a,11b 圧縮機構
11c インジェクション部
12a 放熱器
12b 放熱器
12c 熱交換器
13a,13b,13c 流量調整弁
14 蒸発器
15 気液分離器
16a,16b ポンプ
17 インジェクション流路
18 流路切替部
21 熱交換回路
22 暖房端末
26 暖房回路
27 バイパス路
28a,28b 開閉弁
31,32,33,34 温度センサ
35 外気温度センサ
40 制御装置

Claims (12)

  1. インジェクション部を含む圧縮機と、第1放熱器と、第2放熱器と、第1膨張機構と、第2膨張機構と、蒸発器とを有し、これらがこの順番で環状に接続されている主冷媒回路と、
    前記主冷媒回路における前記第1膨張機構と前記第2膨張機構の間の部分から前記インジェクション部に冷媒を供給するインジェクション流路と、
    暖房端末を有し、前記暖房端末と前記第1放熱器との間で熱媒体を循環させる暖房回路と、
    熱交換器を有し、前記第2放熱器を流れる冷媒の熱が前記インジェクション流路を流れる冷媒に伝わるように前記第2放熱器と前記熱交換器との間で熱媒体を循環させる熱交換回路と、
    当該冷凍サイクル装置が起動モードで運転されているときは、前記暖房回路の熱媒体および前記熱交換回路の熱媒体が前記暖房回路と前記熱交換回路との間を交互に循環するように前記暖房回路と前記熱交換回路とを接続し、当該冷凍サイクル装置が定常モードで運転されているときは、前記暖房回路の熱媒体および前記熱交換回路の熱媒体が前記暖房回路および前記熱交換回路を個別に循環するように前記暖房回路と前記熱交換回路とを分断する流路切替部と、
    を備えた、冷凍サイクル装置。
  2. 前記主冷媒回路が、前記第1膨張機構と前記第2膨張機構の間に設けられた気液分離器をさらに備え、
    前記気液分離器から気相冷媒が前記インジェクション流路に優先的に供給されるように前記インジェクション流路が前記気液分離器において前記主冷媒回路から分岐している、請求項1に記載の冷凍サイクル装置。
  3. 前記暖房回路が、前記暖房端末と並列に設けられたバイパス路と、前記起動モードにおいて熱媒体の少なくとも一部が前記バイパス路を流れるように前記暖房端末を流れる熱媒体の量と前記バイパス路を流れる熱媒体の量とを調整する流量調整機構と、をさらに備えた、請求項1または2に記載の冷凍サイクル装置。
  4. 前記流量調整機構が、前記定常モードにおいて熱媒体が前記バイパス路を流れず前記暖房端末を流れるように前記暖房回路における熱媒体の流れを調整する、請求項3に記載の冷凍サイクル装置。
  5. 前記流路切替部を制御する制御装置をさらに備える、請求項1〜4のいずれか一項に記載の冷凍サイクル装置。
  6. 前記暖房回路が、前記第1放熱器の出口で熱媒体の温度を検出する第1温度センサをさらに備え、
    前記制御装置が、前記第1温度センサで検出された温度Tnと閾値Tn1とを対比し、Tn>Tn1の関係が成立すれば前記定常モードを選択し、Tn≦Tn1の関係が成立すれば起動モードを選択するように前記流路切替部を制御する、請求項5に記載の冷凍サイクル装置。
  7. 前記暖房回路が、前記第1放熱器の出口で熱媒体の温度を検出する第1温度センサと、第1ポンプと、をさらに備え、
    前記制御装置が前記第1温度センサで検出された温度Tnと閾値Tn2とを対比し、Tn>Tn2の関係が成立すれば前記第1ポンプの出力を大きくし、前記第1温度センサで検出された温度Tnと閾値Tn3とを対比し、Tn≦Tn3の関係が成立すれば前記第1ポンプの出力を小さくするように前記第1ポンプを制御する、請求項5または6に記載の冷凍サイクル装置。
  8. 前記熱交換回路が、前記熱交換器の出口で熱媒体の温度を検出する第2温度センサと、第2ポンプと、をさらに備え、
    前記制御装置が前記第2温度センサで検出された温度Teと閾値Te1とを対比し、Te>Te1の関係が成立すれば前記第2ポンプの出力を大きくし、前記第2温度センサで検出された温度Teと閾値Te2とを対比し、Te≦Te2の関係が成立すれば前記第2ポンプの出力を小さくするように前記第2ポンプを制御する、請求項5〜7のいずれか一項に記載の冷凍サイクル装置。
  9. 前記インジェクション流路が、前記熱交換器の入口で冷媒の温度を検出する第3温度センサをさらに備え、
    前記第1膨張機構が第1流量調整弁を含み、
    前記制御装置が前記第3温度センサで検出された温度Tsと閾値Ts1とを対比し、Ts>Ts1の関係が成立すれば前記第1流量調整弁の開度を小さくし、前記第3温度センサで検出された温度Tsと閾値Ts2とを対比し、Ts≦Ts2の関係が成立すれば前記第1流量調整弁の開度を大きくするように前記第1流量調整弁を制御する、請求項5〜8のいずれか一項に記載の冷凍サイクル装置。
  10. 前記熱交換器の出口での冷媒の温度または前記圧縮機における前記インジェクション部よりも下流側の圧縮機構に吸入される冷媒の温度を検出する第4温度センサをさらに備え、
    前記インジェクション流路が、第3流量調整弁を含む第3膨張機構をさらに備え、
    前記制御装置が前記第4温度センサで検出された温度Thと閾値Th1とを対比し、Th>Th1の関係が成立すれば前記第3流量調整弁の開度を大きくし、前記第4温度センサで検出された温度Thと閾値Th2とを対比し、Th≦Th2の関係が成立すれば前記第3流量調整弁の開度を小さくするように前記第3流量調整弁を制御する、請求項5〜9のいずれか一項に記載の冷凍サイクル装置。
  11. 外気温度を検出する外気温度センサをさらに備え、
    前記制御装置が前記外気温度センサで検出された温度Taと閾値Ta1とを対比し、Ta<Ta1の関係が成立すれば、前記制御装置に格納されている第1群に含まれる一または複数の閾値を用いて当該冷凍サイクル装置を制御し、Ta≧Ta1の関係が成立すれば、前記制御装置に格納されている別の群に含まれる一または複数の閾値を用いて当該冷凍サイクル装置を制御する、請求項5〜10のいずれか一項に記載の冷凍サイクル装置。
  12. 冷媒が二酸化炭素である請求項1〜11のいずれか一項に記載の冷凍サイクル装置。
JP2010133268A 2010-06-10 2010-06-10 冷凍サイクル装置 Pending JP2011257094A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133268A JP2011257094A (ja) 2010-06-10 2010-06-10 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133268A JP2011257094A (ja) 2010-06-10 2010-06-10 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2011257094A true JP2011257094A (ja) 2011-12-22

Family

ID=45473450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133268A Pending JP2011257094A (ja) 2010-06-10 2010-06-10 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP2011257094A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010178A1 (ja) * 2012-07-09 2014-01-16 株式会社デンソー 冷凍サイクル装置
CN112825000A (zh) * 2019-11-20 2021-05-21 Ckd株式会社 温度控制系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010178A1 (ja) * 2012-07-09 2014-01-16 株式会社デンソー 冷凍サイクル装置
JP2014016085A (ja) * 2012-07-09 2014-01-30 Denso Corp 冷凍サイクル装置
CN104487786A (zh) * 2012-07-09 2015-04-01 株式会社电装 制冷循环装置
US9494347B2 (en) 2012-07-09 2016-11-15 Denso Corporation Refrigeration cycle device
CN112825000A (zh) * 2019-11-20 2021-05-21 Ckd株式会社 温度控制系统
CN112825000B (zh) * 2019-11-20 2023-02-28 Ckd株式会社 温度控制系统

Similar Documents

Publication Publication Date Title
EP2631562B1 (en) Heat pump-type air-warming device
KR101192346B1 (ko) 히트 펌프식 급탕장치
KR101155496B1 (ko) 히트펌프식 급탕장치
EP2388530B1 (en) Hot water supply device with a heat pump
EP3285021B1 (en) Heat pump type air conditioning and hot water supplying device
KR101155497B1 (ko) 히트펌프식 급탕장치
CN101438109A (zh) 可变容量多回路空调系统
KR20110097203A (ko) 히트 펌프 시스템 및 그 제어방법
US20090120110A1 (en) Refrigeration System and Method with Controllable Heat Recovery
GB2527013A (en) Circulation and heating apparatus
US11802702B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
TW202018240A (zh) 調溫系統
EP3228951A1 (en) Refrigeration cycle apparatus
EP3643990A1 (en) Hybrid heating system
CN113348333A (zh) 制冷装置的室外机以及具备该室外机的制冷装置
JP4804528B2 (ja) 冷凍サイクル装置及び冷凍サイクル装置の制御方法
JP2018173260A (ja) 暖房および/または冷房用の循環システムならびに暖房および/または冷房運転方法
JP2021532327A (ja) 冷凍装置及び関連する操作方法
KR100712196B1 (ko) 히트펌프 시스템 및 실외기 제상 방법
US11181308B2 (en) Air-conditioner that prevents degradation in heating capability during defrosting operation
JP2017067318A (ja) 空気調和装置
JP2011257094A (ja) 冷凍サイクル装置
US11353234B2 (en) Air conditioning system
EP3825629B1 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
EP3779309B1 (en) Air conditioning system control device, outdoor unit, relay device, heat source device, and air conditioning system