JP2011256604A - Design method of embankment reinforcement structure - Google Patents

Design method of embankment reinforcement structure Download PDF

Info

Publication number
JP2011256604A
JP2011256604A JP2010132073A JP2010132073A JP2011256604A JP 2011256604 A JP2011256604 A JP 2011256604A JP 2010132073 A JP2010132073 A JP 2010132073A JP 2010132073 A JP2010132073 A JP 2010132073A JP 2011256604 A JP2011256604 A JP 2011256604A
Authority
JP
Japan
Prior art keywords
embankment
ground
resistor
reinforcement structure
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010132073A
Other languages
Japanese (ja)
Other versions
JP5421191B2 (en
Inventor
Tadafumi Fujiwara
斉郁 藤原
Akira Tateishi
章 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2010132073A priority Critical patent/JP5421191B2/en
Publication of JP2011256604A publication Critical patent/JP2011256604A/en
Application granted granted Critical
Publication of JP5421191B2 publication Critical patent/JP5421191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Revetment (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a design method of an embankment reinforcement structure capable of effectively reinforcing an embankment so as not to be damaged to the extent of the loss of the function of the embankment when the liquefaction of the weak ground occurs in an earthquake.SOLUTION: The design method is provided for designing the reinforcement structure 10 of embankment M which is constructed on weak ground G having possibilities of liquefaction or settlement and includes at least slope surfaces M2 facing each other and nearly-flat top end surface M1. The reinforcement structure 10 of the embankment M includes: a retaining member 1 disposed on the slope surface M2; a resisting member 3 disposed in the ground Ga; and a tension member 2 connecting the retaining member 1 and the resisting member 3. In the design method, the resisting member 3 is disposed in the weak ground Ga underneath the embankment M where the upper load caused by the embankment M could be expected.

Description

本発明は、液状化もしくは沈下の可能性のある軟弱地盤の上に造成された既設もしくは新設の盛土の補強構造を設計する方法に関するものである。   The present invention relates to a method for designing a reinforcement structure for an existing or new embankment built on soft ground that may be liquefied or subsided.

道路や鉄道、防波堤や護岸などの各種堰堤として供される盛土の造成に際し、その下部地盤が軟弱な場合には盛土を支持し得るだけの強度を有する程度に補強施工される。例えば、下部地盤が軟弱な粘性土層を有している場合には、過度な沈下や不等沈下を防止するために浅層混合処理ないしは深層混合処理をはじめとする適宜の地盤改良施工が当該粘性土層をターゲットに実施される。一方、下部地盤(の特に上部層)に砂質層が存在し、かつ地下水が比較的高い場合には、地震時に当該砂質層が液状化して盛土法面がはらみ出すこと等を防止するために、地下水位低下工法や過剰間隙水圧消散工法などの地盤改良施工が実施される。   When the embankment to be used as roads, railways, breakwaters, revetments and other dams is created, if the lower ground is soft, it will be reinforced to the extent that it is strong enough to support the embankment. For example, when the lower ground has a soft viscous soil layer, appropriate ground improvement work such as shallow layer mixing treatment or deep layer mixing treatment should be applied to prevent excessive subsidence or uneven subsidence. It is carried out with a viscous soil layer as a target. On the other hand, if there is a sandy layer in the lower ground (particularly the upper layer) and the groundwater is relatively high, the sandy layer will be liquefied during an earthquake to prevent the embankment slope from protruding. In addition, ground improvement works such as groundwater level lowering method and excess pore water pressure dissipation method will be implemented.

ところで、盛土の破壊形態を分類すると、図8a〜dで示すように大きく4つのタイプに分類することができる。図8aで示すタイプIは法面崩壊タイプであり、地震時に盛土自体に作用する慣性力等によって法面の表層部分が地すべり状に崩壊するタイプである。   By the way, if the embankment failure mode is classified, it can be roughly classified into four types as shown in FIGS. The type I shown in FIG. 8a is a slope collapse type, and the surface layer portion of the slope collapses like a landslide due to the inertial force acting on the embankment itself during an earthquake.

一方、図8bで示すタイプIIは地震時の慣性力等により、盛土内部で円弧すべり破壊を生じる場合や、盛土のみならず、その下部地盤をも巻き込んで円弧すべり破壊を形成する場合である。また、図8cで示すタイプIIIは盛土自体が分断する破壊態様であり、図8dで示すタイプIVは盛土自体が沈下する形態である。このタイプIVでは、過度な沈下量の場合に堰堤の機能を確保することができない。   On the other hand, type II shown in FIG. 8b is a case where an arc slip failure occurs inside the embankment due to an inertial force or the like at the time of an earthquake, or an arc slip failure is formed by involving not only the embankment but also the lower ground. Further, type III shown in FIG. 8c is a breaking mode in which the embankment itself divides, and type IV shown in FIG. 8d is a form in which the embankment itself sinks. In this type IV, the function of the dam cannot be secured in the case of excessive subsidence.

ここで、上記する盛土の破壊形態のうち、特に、タイプII,IIIの場合の破壊形態では、盛土の天端面の平坦性や連続性が失われ、道路や鉄道などの線状盛土の場合には、その機能が完全に失われる。そこで、これらの破壊形態に対しても効果的に盛土の破壊を防止するとともに当該盛土の機能維持を図る盛土補強技術の開発が切望されている。   Here, among the failure modes of the embankment described above, the flatness and continuity of the top surface of the embankment are lost particularly in the case of type II and III, and in the case of a linear embankment such as a road or a railway. Its function is completely lost. Therefore, development of embankment reinforcement technology for effectively preventing breakage of the embankment and maintaining the function of the embankment is also desired for these failure modes.

なお、盛土直下の軟弱地盤に薬液注入処理やセメント混合処理等を実施することによって地盤改良をおこなう方策や、基礎地盤内で軟弱地盤下方の比較的硬質で液状化や沈下の可能性のない(低い)地盤まで鋼矢板等を打設して盛土直下地盤を締め切り、さらに矢板頭部をタイロッドで結ぶ等の方策は従来一般におこなわれる方法である。しかし、これらの方策は沈下抑制等に対する高い効果が期待できる一方で、タイロッドで結ぶために施工コストが高くなり、既設盛土の補強の場合においては、盛土の変状防止や近接施工における施工エリア確保などの面でタイロッドの施工が極めて困難であるといったデメリットも大きい。そして、このデメリットは、その延長が長スパンに及ぶ道路や鉄道などに供される線状盛土において特に顕著となる。   In addition, there is no possibility of liquefaction or subsidence due to measures to improve the ground by performing chemical injection treatment, cement mixing treatment, etc. on the soft ground directly under the embankment, and relatively hard under the soft ground in the foundation ground ( Conventionally, measures such as placing steel sheet piles etc. to the ground (low), closing the foundation directly on the embankment, and tying the sheet pile heads with tie rods are the conventional methods. However, while these measures can be expected to have a high effect on subsidence suppression, etc., the tie rods tie up the construction cost, and in the case of reinforcement of the existing embankment, prevention of deformation of the embankment and securing of a construction area for adjacent construction There is also a major demerit that tie rod construction is extremely difficult. This disadvantage is particularly noticeable in a linear embankment used for roads, railways, etc., whose extension extends over a long span.

施工コストと耐震補強の必要性の双方に鑑みれば、盛土の多少の沈下は許容するものの、上記のごとき法面のはらみ出しを防止して、当該盛土の最低限の機能確保、たとえばその天端面の平坦性を確保する等を図ることのできる盛土の補強方法や補強構造が望ましい。   Considering both the construction cost and the necessity of seismic reinforcement, although some embankment of the embankment is allowed, the above described slope is prevented from protruding and the minimum function of the embankment is ensured, for example, its top end surface An embankment reinforcement method and structure that can ensure flatness of the embankment are desirable.

本発明者等はこのような盛土の補強方法や補強構造に関する技術の発案に至り、これを特許文献1に開示している。より具体的には、特許文献1の図1で開示するように、盛土Bの有する対向した法面の法尻にそのはらみ出しを抑制するための抑え部材1,1’を設け、これに法尻よりも外側の軟弱な砂質地盤G1内に抵抗体3,3’を配し、抑え部材1,1’と抵抗体3,3’をそれぞれ引張部材2,2’にて繋いで形成された補強構造である。   The inventors of the present invention have come up with a technique related to such embankment reinforcement method and reinforcement structure, and disclose this in Patent Document 1. More specifically, as disclosed in FIG. 1 of Patent Document 1, a restraining member 1, 1 ′ for suppressing the protrusion is provided on the slope of the facing slope of the embankment B. Resistors 3 and 3 'are arranged in the soft sandy ground G1 outside the buttocks, and the restraining members 1 and 1' and the resistors 3 and 3 'are connected by the tension members 2 and 2', respectively. Reinforced structure.

この抵抗体3,3’の設置位置は、砂質地盤G1が液状化した際に、それぞれの水平変位が大きくなる、好ましくは最も大きくなる領域に設置されるようにしたものであり、下部地盤の液状化によって盛土Bが沈下した場合に、法面上の抑え部材1,1’にはらみ出そうとする力が作用する一方で、液状化によって地盤には水平変位が生じ、地盤内の抵抗体3,3’はこの地盤の水平変位に追随して外周の土とともに側方へ変位することで引張部材2,2’に張力を作用させ、盛土のはらみ出しを効果的に抑止するものである。   The positions of the resistors 3, 3 'are such that when the sandy ground G1 is liquefied, the horizontal displacement of each of the resistors 3, 3' increases, preferably in the region where it becomes the largest. When the embankment B sinks due to liquefaction, a force that tries to protrude from the restraining members 1 and 1 ′ on the slope acts, while the liquefaction causes horizontal displacement in the ground, and resistance in the ground The bodies 3 and 3 'follow the horizontal displacement of the ground and move sideways together with the outer soil so that the tension members 2 and 2' act on the tension, effectively preventing the embankment from protruding. is there.

このように、特許文献1で開示する技術は、盛土の法面がはらみ出そうとする方向とこれを抑えようとする抑え部材に繋がれた抵抗体の変位方向が相反する方向であることを利用し、双方の力が相殺されることで盛土のはらみ出しを抑止するものである。   As described above, the technique disclosed in Patent Document 1 shows that the direction in which the slope of the embankment protrudes and the displacement direction of the resistor connected to the restraining member that suppresses this are opposite directions. It is used to deter the embankment of the embankment by offsetting both forces.

この公開技術によって奏される効果を肯定しながらも、本発明者等はさらなる研究開発によって特に液状化に対する盛土のはらみ出しをより一層抑制できる技術の発案に至っている。   While affirming the effect exerted by the disclosed technology, the present inventors have come up with a technology that can further suppress the protrusion of embankment against liquefaction by further research and development.

特開2009−79415号公報JP 2009-79415 A

本発明は上記する問題に鑑みてなされたものであり、特に地震時における下部の軟弱地盤の液状化に対して、盛土の損傷をその機能停止にまで至らない程度に効果的に補強することのできる盛土補強構造を設計する方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and in particular, for liquefaction of the lower soft ground at the time of an earthquake, it is possible to effectively reinforce the damage to the embankment to the extent that it does not stop functioning. It aims at providing the method of designing the embankment reinforcement structure which can be performed.

前記目的を達成すべく、本発明による盛土補強構造の設計方法は、液状化もしくは沈下の可能性のある軟弱地盤の上に造成され、対向する法面と略平坦な天端面を少なくとも有する盛土の補強構造を設計する方法であって、前記盛土の補強構造は、法面に配される抑え部材と、地盤内に配されると抵抗体と、抑え部材と抵抗体を繋ぐ引張部材とから構成されるものであり、盛土直下の軟弱地盤であって、盛土による上載荷重を見込むことのできる軟弱地盤内に前記抵抗体を配設するものである。   In order to achieve the above-mentioned object, the embankment reinforcing structure design method according to the present invention is a method for embankment having at least a facing slope and a substantially flat top end face, which is constructed on a soft ground that may be liquefied or subsided. A method for designing a reinforcing structure, wherein the embankment reinforcing structure includes a restraining member disposed on a slope, a resistor when disposed in the ground, and a tension member connecting the restraining member and the resistor. The resistor is disposed in a soft ground directly under the embankment, in which the upper load due to the embankment can be expected.

本発明の設計方法によって形成される盛土の補強構造は、特許文献1で開示する盛土補強構造に対して補強構造を構成する軟弱地盤内に配設される抵抗体の配設位置を盛土直下で盛土による上載荷重を見込むことのできる軟弱地盤内とすることにより、抵抗体に期待される反力をより一層大きくすることができ、これに起因してより一層高い盛土のはらみ出し抑制効果を期待することのできる補強構造である。   The embankment reinforcement structure formed by the design method of the present invention has a placement position of the resistor disposed in the soft ground constituting the reinforcement structure with respect to the embankment reinforcement structure disclosed in Patent Document 1, immediately below the embankment. By using soft ground that can anticipate the overload due to the embankment, the reaction force expected for the resistor can be further increased, and as a result, it is expected that the embankment will be further prevented from protruding. It is a reinforcement structure that can be done.

特許文献1で開示する盛土の補強構造は、液状化が懸念される軟弱地盤のうちで無補強の場合に側方への地盤変位が期待される領域内に抵抗体を配設することによって法面抑えに要する反力を期待するものであり、液状化によって剛性が低下した地盤(粘性流体のような状態)が側方へ変位しようとする流動力による抵抗体の支圧効果を利用している。この「支圧効果」とは、グラウンドアンカーの抵抗体(改良体)における抵抗力として知られる摩擦効果と支圧効果のうちの後者を意味するものであるが、剛性の低下した地盤の流動方向に対して直角方向の抵抗体の投影面積が大きいほど、抵抗体による反力は大きくなる。   The embankment reinforcement structure disclosed in Patent Document 1 is a method in which a resistor is disposed in a region where lateral displacement is expected in the case of non-reinforcement in soft ground where liquefaction is a concern. The reaction force required to suppress the surface is expected, and the effect of supporting the resistor by the fluid force that causes the ground (like a viscous fluid) whose rigidity has been lowered by liquefaction to move sideways is utilized. Yes. This "bearing effect" means the latter of the friction effect and the bearing effect known as the resistance force in the resistance body (improved body) of the ground anchor, but the flow direction of the ground with reduced rigidity The greater the projected area of the resistor in the direction perpendicular to the direction, the greater the reaction force by the resistor.

ところで、本発明者等によれば、液状化が懸念される比較的均一な軟弱地盤上の盛土を想定した際に、地震により、盛土直下の軟弱地盤よりも盛土重量による上載荷重の影響が無い盛土直下の外側エリアの軟弱地盤が先行して液状化(過剰間隙水圧の上昇)するとの知見が得られている。   By the way, according to the present inventors, when assuming a relatively uniform embankment on soft ground where liquefaction is a concern, there is no influence of the overlay load due to the embankment weight than the soft ground directly under the embankment due to an earthquake. The knowledge that the soft ground in the outer area directly under the embankment is liquefied in advance (increase in excess pore water pressure) has been obtained.

このことを図7を参照して説明する。同図において、盛土Mの下方には地下水位が高い砂質系の軟弱地盤が広がっており、この軟弱地盤は盛土Mの直下の軟弱地盤G1とその外側エリアの軟弱地盤G2から構成されている。そして、この軟弱地盤が地震時に液状化した際には、上載荷重の影響の無い軟弱地盤G2が先行して液状化することによってここに側方変位X1が生じ、この側方変位X1によって盛土MにストレッチングX2(盛土のせん断変形にともなう水平方向拡幅)が生じ得る。   This will be described with reference to FIG. In the figure, a sandy soft ground having a high groundwater level spreads below the embankment M, and this soft ground is composed of a soft ground G1 immediately below the embankment M and a soft ground G2 in the outer area. . When the soft ground is liquefied during an earthquake, the soft ground G2 that is not affected by the loading load is liquefied in advance, thereby causing a lateral displacement X1, where the lateral displacement X1 causes the embankment M. Stretching X2 (horizontal widening accompanying the shear deformation of the embankment) may occur.

その一方で、盛土直下の軟弱地盤G1は周辺の軟弱地盤G2が液状化している時点では液状化に達していないことから、剛性の高い状態が維持されている。したがって、仮に抵抗体が軟弱地盤G2内に配されている場合には、軟弱地盤G2の液状化によって盛土にストレッチングが発生し、このストレッチングによって引張部材に張力が発生するのに対して、抵抗体が軟弱地盤G1内に配されている場合にはこのエリアの地盤が未だ液状化に達していないことから、この抵抗体による抵抗力によって盛土のストレッチングの増大を効果的に抑えることが可能となるのである。   On the other hand, since the soft ground G1 directly under the embankment has not reached liquefaction at the time when the surrounding soft ground G2 is liquefied, the state of high rigidity is maintained. Therefore, if the resistor is disposed in the soft ground G2, stretching occurs in the embankment due to liquefaction of the soft ground G2, and tension is generated in the tensile member by this stretching. When the resistor is arranged in the soft ground G1, since the ground in this area has not yet reached liquefaction, it is possible to effectively suppress the increase in stretching of the embankment by the resistance force of this resistor. It becomes possible.

液状化に達した軟弱地盤内での流動力による抵抗体の反力(特許文献1に開示の技術)と、液状化に達していないことで剛性が確保された軟弱地盤内での抵抗体の反力(本発明の技術)を比較した場合に、抵抗体1個あたりに期待される反力の大きさは後者の方が大きいことは明らかであり、このことは、抵抗体1個あたりの補強効果が大きくなることを意味している。すなわち、液状化している軟弱地盤内では抵抗体の支圧効果のみが期待されるのに対して、液状化に達していない地盤内では、従来のグラウンドアンカー工法の改良体と同様にさらに大きな支圧効果や抵抗体周面の摩擦効果も期待できるからである。   The reaction force of the resistor due to the fluid force in the soft ground that has reached liquefaction (the technology disclosed in Patent Document 1), and the resistance of the resistor in the soft ground that has secured rigidity by not having reached liquefaction When the reaction force (technique of the present invention) is compared, it is clear that the magnitude of the reaction force expected per resistor is larger in the latter. This means that the reinforcing effect is increased. That is, only the resistance support effect is expected in liquefied soft ground, while in ground that has not reached liquefaction, a larger support is provided as in the case of the improved ground anchor method. This is because a pressure effect and a friction effect on the peripheral surface of the resistor can also be expected.

ここで、盛土直下の軟弱地盤内に配設される抵抗体の配設位置は、天端面直下の軟弱地盤内に配設するように設計するのが望ましい。   Here, it is desirable to design the position of the resistor disposed in the soft ground immediately below the embankment so that the resistor is disposed in the soft ground directly below the top end surface.

これは、天端面直下と法面直下で下方の軟弱地盤に作用する上載荷重が相違することによるものであり、上載荷重が相対的に大きくなる天端面直下に抵抗体を配設することで、より大きな支圧効果と抵抗体周面の摩擦効果を期待することができる。   This is due to the difference between the upper load acting on the soft ground below the top end surface and the slope, and by disposing the resistor directly below the top end surface where the upper load becomes relatively large, A larger bearing effect and a frictional effect on the peripheral surface of the resistor can be expected.

また、本発明の設計方法の他の実施の形態において、前記軟弱地盤における液状化に対する安全率に関し、盛土直下のエリアが盛土直下の外側エリアよりも高い安全率を有し、かつ、盛土直下のエリアにおいては上方エリアが下方エリアよりも高い安全率を有しており、少なくともこの液状化に対する安全率を前記抵抗体の配設位置を決定する決定要因とするものであってもよい。   Further, in another embodiment of the design method of the present invention, regarding the safety factor against liquefaction in the soft ground, the area immediately below the embankment has a higher safety factor than the outer area directly below the embankment, and In the area, the upper area may have a higher safety factor than the lower area, and at least the safety factor against liquefaction may be a determining factor for determining the placement position of the resistor.

事前に液状化解析を実施して軟弱地盤内における液状化安全率コンタ等を作成しておき、この安全率コンタに基づいて、最も安全率の高いエリアに抵抗体を配設するといった設計方法や、さらに施工性等も加味して可及的に安全率の高いエリアに抵抗体を配設するといった設計方法がある。ここで、解析の実施例としては、コンピュータ内で盛土およびその下方の軟弱地盤をモデル化し(たとえば2次元、3次元のFEM解析用のメッシュモデル)、コンピュータ内でこのモデルに所定の入力地震動もしくは水平震度を載荷した際の地盤内における過剰間隙水圧分布を求め、この過剰間隙水圧分布に基づいて液状化に対する安全率分布(コンタ)を作成する方法などを挙げることができる。   Perform a liquefaction analysis in advance to create a liquefaction safety factor contour etc. in soft ground, and based on this safety factor contour, design methods such as placing resistors in the area with the highest safety factor In addition, there is a design method in which a resistor is arranged in an area with a safety factor as high as possible, taking into consideration the workability and the like. Here, as an embodiment of the analysis, the embankment and the soft ground below it are modeled in a computer (for example, a mesh model for two-dimensional and three-dimensional FEM analysis), and a predetermined input earthquake motion or A method of obtaining an excess pore water pressure distribution in the ground when the horizontal seismic intensity is loaded, and creating a safety factor distribution (contour) against liquefaction based on this excess pore water pressure distribution can be mentioned.

ところで、設計時に想定した地震動よりも大きな地震が発生し、盛土直下の基礎地盤が完全に液状化する場合においても、上記する本発明の設計方法によって形成された盛土の補強構造が有効であることを以下で説明する。   By the way, the embankment reinforcement structure formed by the above-described design method of the present invention is effective even when an earthquake larger than the earthquake motion assumed at the time of design occurs and the foundation ground directly under the embankment is completely liquefied. Is described below.

地震動の大小に関わらず、基礎地盤が液状化する場合には必ず、盛土による上載荷重の影響のない盛土直下外周の地盤から盛土直下の地盤への順で液状化が生じる。このため、想定を超えるような大きな地震動が発生した場合に、盛土のストレッチングが発生する盛土直下外周地盤の液状化時に盛土直下地盤は未だ液状化に達していないため、アンカー張力を期待することができる。   Regardless of the magnitude of the earthquake motion, whenever the foundation ground liquefies, liquefaction always occurs in the order from the ground directly under the embankment to the ground directly under the embankment without the influence of the overload due to the embankment. For this reason, in the event of a large earthquake motion that exceeds the expected level, anchor tension will be expected because the foundation base immediately below the embankment has not yet reached liquefaction when the outer periphery directly below the embankment where stretch stretching occurs. Can do.

したがって、通常の設計では、対象構造物に対して想定地震規模が設定され、この規模を超えた地震に対する構造物の安全性を十分に保証することはできなくなるが、本発明の設計方法で形成される盛土の補強構造は、想定地震動を超えた地震動に対してもその補強効果を見込むことができるのである。   Therefore, in an ordinary design, an assumed earthquake scale is set for the target structure, and it will not be possible to sufficiently guarantee the safety of the structure against an earthquake exceeding this scale, but it is formed by the design method of the present invention. The embankment reinforcement structure that can be used can expect the reinforcement effect against the earthquake motion exceeding the assumed earthquake motion.

さらに、対向する法面の補強構造のそれぞれの抵抗体を、盛土の中心ラインよりも他方の法面側となる位置に配設するように設計してもよいし、盛土の中心ラインよりも他方の法面側とならない位置、すなわち、中心ラインよりも自身の法面側に配設するように設計してもよい。   Furthermore, each resistor of the reinforcing structure on the opposite slope may be designed to be disposed at a position on the other slope side with respect to the center line of the embankment, or on the other side of the center line of the embankment You may design so that it may arrange | position to the position which does not become the slope side of this, ie, its own slope side rather than a center line.

これは、特許文献1で開示する技術と異なり、本発明の設計方法によって形成される補強構造が、盛土による上載荷重を見込むことのできる軟弱地盤内に抵抗体を配設して剛性の高い地盤にて法面のはらみ出しを抑制できる高い反力を期待するという設計思想(技術思想)に立脚するものであって、他方側の法尻直下地盤の側方流動に沿った抵抗体の移動による反力を期待する設計思想でないことから、双方の引張部材やその先端の抵抗体が必ずしも交差する態様で地盤内に配設される必要はないのである。   This is different from the technique disclosed in Patent Document 1 in that the reinforcing structure formed by the design method of the present invention is a ground having high rigidity by disposing a resistor in a soft ground that can allow for an overload due to embankment. Based on the design philosophy (technical philosophy) of expecting a high reaction force that can suppress the protrusion of the slope, it is due to the movement of the resistor along the lateral flow of the base plate on the other side Since it is not a design philosophy that expects a reaction force, it is not necessary to dispose both tensile members and the resistors at the tip thereof in the ground so as to intersect each other.

ここで、本発明の設計方法で形成される盛土の補強構造にて適用される抑え部材は特に限定されるものではないが、それ自体が破壊することなく盛土を拘束できる強度を具備する適宜の材料から構成されればよい。例えば、鋼板やコンクリートブロック、鋼繊維や炭素繊維等を含んだシート材、土嚢、所定間隔で設置されたH鋼と該H鋼間に配設された木板とからなる親杭横矢板など、適宜の材料(部材)から抑え部材を構成することができる。さらに、抑え部材が設置される法面箇所は、法尻のみの形態、法肩のみの形態、法面全面の形態、法尻〜法面の中段の所定レベルまでの範囲の形態など、抑え部材にて法面のはらみ出しが抑制できる適宜の箇所を選定できる。   Here, although the restraining member applied in the embankment reinforcement structure formed by the design method of the present invention is not particularly limited, an appropriate member having a strength capable of restraining the embankment without destroying itself. What is necessary is just to be comprised from a material. For example, a steel pile, a concrete block, a sheet material containing steel fiber, carbon fiber, etc., a sandbag, a parent pile horizontal sheet pile composed of H steel installed at a predetermined interval and a wooden board arranged between the H steel, etc. The restraining member can be formed from the material (member). In addition, the slope location where the restraint member is installed is the restraint member, such as the form of only the slope, the form of the slope only, the form of the entire slope, the form of the range from the slope to the middle of the slope. Thus, it is possible to select an appropriate portion where the protrusion of the slope can be suppressed.

また、引張部材は、タイロッド、PC鋼棒、PC鋼線、高張力棒鋼など、法面がはらみ出そうとした際に生じ得る張力にて耐え得る引張耐力を具備する適宜の素材を選定できる。   Further, as the tension member, an appropriate material having a tensile strength that can withstand the tension that can be generated when the slope is about to protrude, such as a tie rod, a PC steel bar, a PC steel wire, and a high-tensile steel bar can be selected.

本発明の設計方法で形成される盛土補強構造は、新設する盛土の補強構造として適用できることは勿論のこと、既存の盛土を経済的に補強施工できることに大きな利点がある。盛土直下を大規模に地盤改良する等の方法ではなくて、法面への抑え部材の設置や、軟弱地盤内への抵抗体の配設が主たる施工となることから、既存の盛土を残し、これを供用させながら補強施工をおこなうことができるためである。   The embankment reinforcement structure formed by the design method of the present invention can be applied as a reinforcement structure for newly established embankments and has a great advantage in that existing embankments can be reinforced economically. It is not a method of improving the ground directly under the embankment, but it is mainly the installation of restraining members on the slope and the placement of resistors in the soft ground, leaving the existing embankment, This is because the reinforcement work can be performed while using this.

また、この盛土が道路や鉄道などの線状盛土の場合には、この線状に沿って所定間隔に引張部材が配設される。なお、必要な場合には、この引張部材は法面の法尻から天端方向に2段、または3段の多段に設置することもできる。   Moreover, when this embankment is a linear embankment such as a road or a railroad, tensile members are arranged at predetermined intervals along the line. If necessary, the tension member can be installed in two or three stages from the slope of the slope to the top.

また、引張部材に連結される抵抗体は、その材質も形状も特に限定されるものではないが、たとえば、引張部材先端に装着される支圧板、コンクリートの柱状ブロックなど、少なくとも引張部材よりもその断面が大きく、引張部材から伝達される引張力に対して地盤内に留まろうとして抗する形状、強度(引張強度、摩擦強度など)を具備していればよい。   Further, the material and the shape of the resistor connected to the tension member are not particularly limited. For example, a resistance plate attached to the tip of the tension member, a columnar block of concrete, etc. It is only necessary to have a shape and strength (tensile strength, friction strength, etc.) that have a large cross section and resist the tensile force transmitted from the tensile member to stay in the ground.

さらに、引張部材と抵抗体が、先端に定着体を有するグラウンドアンカーからなる実施の形態であってもよい。グラウンドアンカーは、引張力を地盤に伝達するために、グラウトによって造成されるアンカー体と引張部、アンカー頭部によって大略構成されるものである。ここで、アンカー頭部は、盛土法面がはらみ出そうとする際に受ける力を引張部に伝達させる箇所であり、定着金具や支圧板、台座ブロック等から構成できる。また、引張部はアンカー頭部からの引張り力を軟弱地盤内に設置されたアンカー体に伝達させる箇所であり、引張材であるテンドンとシース等で構成でき、地盤や法面と絶縁されて伸縮自在な構造になっている。さらにアンカー体は、テンドンの引張力を地盤に伝達させるために地中に造成あるいは設置された引抜きに対する抵抗部分である。このアンカー体は、セメント系のグラウト(セメントペーストやモルタル)、合成樹脂系グラウト等を注入して造成できる。   Furthermore, an embodiment in which the tension member and the resistor are formed of a ground anchor having a fixing body at the tip may be used. The ground anchor is generally constituted by an anchor body formed by a grout, a tension portion, and an anchor head in order to transmit a tensile force to the ground. Here, the anchor head is a portion that transmits the force received when the embankment slope is about to protrude to the tension portion, and can be constituted by a fixing bracket, a bearing plate, a pedestal block, or the like. In addition, the tension part is a part that transmits the tensile force from the anchor head to the anchor body installed in the soft ground, which can be composed of a tendon and a sheath, etc., which is insulated from the ground and slope. It has a flexible structure. Further, the anchor body is a resistance portion against pulling that is formed or installed in the ground in order to transmit the tensile force of tendon to the ground. The anchor body can be formed by injecting cement grout (cement paste or mortar), synthetic resin grout, or the like.

本発明の盛土補強構造の設計方法によれば、特許文献1で開示する補強構造に対して抵抗体の配設位置を盛土直下の軟弱地盤内へ変更し、特に、その設計に際して液状化安全率を抵抗体配設位置の決定要因として補強構造が設計されることから、地震時において抵抗体により一層大きな反力を発揮することができ、盛土のはらみ出しをより効果的に抑制することのできる盛土補強構造を形成できる。   According to the design method of the embankment reinforcement structure of the present invention, the arrangement position of the resistor is changed to the soft ground directly under the embankment with respect to the reinforcement structure disclosed in Patent Document 1, and in particular, the liquefaction safety factor in the design Because the reinforcement structure is designed as a determinant of the resistor placement position, a greater reaction force can be exerted by the resistor during an earthquake, and the flooding can be more effectively suppressed. An embankment reinforcement structure can be formed.

以上の説明から理解できるように、本発明の盛土補強構造の設計方法によれば、特に地震時における盛土下部の軟弱地盤の液状化に対して、盛土の損傷をその機能停止にまで至らない程度に効果的に補強することのできる補強構造を設計することができる。   As can be understood from the above description, according to the embankment reinforcing structure design method of the present invention, the damage to the embankment is not brought to a stop due to liquefaction of the soft ground below the embankment particularly during an earthquake. It is possible to design a reinforcing structure that can be effectively reinforced.

本発明の盛土補強構造の設計方法を説明したフロー図である。It is the flowchart explaining the design method of the embankment reinforcement structure of this invention. 本発明の設計方法によって形成された盛土補強構造の一実施の形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the embankment reinforcement structure formed by the design method of this invention. 本発明の設計方法によって形成された盛土補強構造の他の実施の形態を示す模式図である。It is a schematic diagram which shows other embodiment of the embankment reinforcement structure formed by the design method of this invention. 遠心力載荷模型実験による過剰間隙水圧比分布図である。It is an excess pore water pressure ratio distribution map by centrifugal loading model experiment. 液状化解析による過剰間隙水圧比分布図である。It is an excess pore water pressure ratio distribution map by liquefaction analysis. 液状化解析による地盤内の液状化安全率コンタを示した図であり、(a)は盛土高8m、盛土天端幅25、軟弱地盤層厚20mの解析モデルの結果であり、(b)は盛土高6m、盛土天端幅10.8、軟弱地盤層厚20mの解析モデルの結果である。It is the figure which showed the liquefaction safety factor contour in the ground by liquefaction analysis, (a) is the result of the analysis model of embankment height 8m, embankment top width 25, soft ground layer thickness 20m, (b) It is the result of the analysis model of embankment height 6m, embankment top end width 10.8, soft ground layer thickness 20m. 盛土直下の外側エリアの軟弱地盤が先行して液状化している状態を説明した図である。It is the figure explaining the state where the soft ground of the outer area just under embankment has liquefied ahead. (a)〜(d)は、盛土の破壊形態を示した模式図である。(A)-(d) is the schematic diagram which showed the destruction form of the embankment.

以下、図面を参照して本発明の実施の形態を説明する。なお、図示例は液状化の可能性の高い軟弱地盤上での既設もしくは新設の盛土の補強構造の設計方法と、この設計方法によってデザインされる補強構造を示すものであるが、粘性土からなり、圧密沈下の可能性のある軟弱地盤に対しては、本発明の設計方法を圧密沈下対策のための補強構造用に適宜修正して適用できることは勿論のことである。   Embodiments of the present invention will be described below with reference to the drawings. The illustrated example shows a design method for the reinforcement structure of an existing embankment on soft ground where liquefaction is highly likely, and a reinforcement structure designed by this design method. Of course, the design method of the present invention can be appropriately modified and applied to a reinforcing structure for measures against consolidation subsidence, for soft ground with the possibility of consolidation subsidence.

図1は、本発明の盛土補強構造の設計方法を説明したフロー図である。この設計方法では、まず、新設の盛土、もしくは既設の盛土の下に広がる地盤において、地下水位が比較的高く(たとえば地表下10mよりも浅い地下水位)、この表層20m程度の範囲に砂質系の地盤が存在する場合に、この対象地盤を液状化の可能性がある軟弱地盤と認定し、液状化解析によって軟弱地盤における液状化安全率分布(液状化安全率コンタ)を作成する(ステップS1)。なお、図6a,bには、液状化安全率コンタの一例を示している。   FIG. 1 is a flowchart illustrating a method for designing a bank reinforcement structure according to the present invention. In this design method, first, the groundwater level is relatively high (for example, the groundwater level shallower than 10 m below the ground surface) in the new bank or the ground spreading under the existing bank, and the sandy system is within the surface layer of about 20 m. In the case where there is an existing ground, this target ground is recognized as a soft ground that may be liquefied, and a liquefaction safety factor distribution (liquefaction safety factor contour) in the soft ground is created by liquefaction analysis (step S1). ). 6A and 6B show an example of a liquefaction safety factor contour.

そして、図示する設計方法では、原則として、盛土直下の軟弱地盤を地盤改良せずに、盛土に補強構造を施工することによって、盛土の多少の沈下は許容するものの、法面のはらみ出しによって盛土崩壊に至ることを抑制し、もって盛土の天端面の平坦性などの最低限の機能確保を図ることを設計目的としたものである。   In the design method shown in the figure, as a general rule, the soft ground directly under the embankment is not improved, but a reinforcement structure is applied to the embankment. The purpose of the design is to secure the minimum functions such as flatness of the top edge of the embankment by suppressing the collapse.

ステップS1で液状化安全率コンタが作成されたら、補強構造の仕様の決定と、盛土直下の地盤エリア内で、補強構造を形成する抵抗体の配設位置を決定する(ステップS2)。   When the liquefaction safety factor contour is created in step S1, the specification of the reinforcement structure is determined, and the arrangement position of the resistor forming the reinforcement structure is determined in the ground area directly under the embankment (step S2).

具体的に、この設計方法で設計された補強構造を図2を参照して説明する。
この補強構造10は、図1の設計フローに基づいて設計された、液状化の可能性のある軟弱地盤G上に造成される既設または新設の盛土Mを補強する構造である。具体的には、略平坦な天端面M1と、対向する法面M2,M2とから外形が形成される盛土Mの法尻にそのはらみ出しを抑制するための抑え部材1,1が設けられ、これに盛土M直下の軟弱地盤G内に設置された抵抗体3,3が、引張部材2,2にてそれぞれ繋がれて各法面M1ごとに補強構造10が形成される。なお、この補強構造10にて補強された盛土Mは、一般にその延長が長スパンに亘る線状盛土である、鉄道や道路などのインフラ施設として供されるものである。また、天端面M1が「略平坦」とは、天端面M1が平坦であることのほかに、天端面M1の中央が若干高く、その側方が若干低くなっている通常の道路構造の形態などを包含する意味である。
Specifically, a reinforcing structure designed by this design method will be described with reference to FIG.
The reinforcing structure 10 is a structure that reinforces an existing bank M that is designed on the soft ground G that may be liquefied and that is designed based on the design flow of FIG. Specifically, the restraining members 1 and 1 are provided to suppress the protrusion of the embossing of the embankment M in which the outer shape is formed from the substantially flat top end face M1 and the opposing slopes M2 and M2. Resistors 3 and 3 installed in the soft ground G just below the embankment M are connected by the tension members 2 and 2, respectively, and the reinforcement structure 10 is formed for each slope M1. In addition, the embankment M reinforced with this reinforcement structure 10 is provided as infrastructure facilities, such as a railroad and a road, whose extension is a linear embankment that extends over a long span in general. In addition to the fact that the top end face M1 is flat, the top end face M1 is “substantially flat”, and the form of a normal road structure in which the center of the top end face M1 is slightly higher and the sides are slightly lower. It is a meaning including.

ここで、抑え部材1は、鋼板やコンクリートブロック、鋼繊維や炭素繊維等を含んだシート材、土嚢などのうちのいずれか一種、もしくはこれらのうちの複数の組合せを使用でき、少なくとも法面が地震時にはらみ出そうとした際に、作用するはらみ出し力に抗し得る強度を具備するものである。   Here, the restraining member 1 can use any one of a steel plate, a concrete block, a sheet material containing steel fiber or carbon fiber, a sandbag, or a combination of these, and at least a slope is used. It is strong enough to resist the protruding force that acts when it tries to protrude during an earthquake.

また、引張部材2は、タイロッド、PC鋼棒、PC鋼線、高張力棒鋼などのうちのいずれか一種を使用でき、法面がはらみ出そうとした際に抑え部材1を介して伝達される張力に耐え得る引張耐力を具備するものである。   Moreover, the tension member 2 can use any one of a tie rod, a PC steel bar, a PC steel wire, a high-tensile steel bar, and the like, and is transmitted via the restraining member 1 when the slope is about to protrude. It has a tensile strength that can withstand tension.

さらに、抵抗体3は、支圧板、コンクリートの柱状ブロックなど、少なくとも引張部材よりもその断面が大きく、引張部材から伝達される引張力に対して地盤内に留まろうとして抗する形状、強度を具備するものである。   Further, the resistor 3 has a cross section larger than at least the tension member such as a bearing plate and a concrete columnar block, and has a shape and strength that resists the tensile force transmitted from the tension member to stay in the ground. It has.

また、引張部材2と抵抗体3のユニットとして、テンドンとシース等で構成される引張部材と、セメント系のグラウトからなる抵抗体と、を具備するグラウンドアンカーを適用することもできる。   In addition, as a unit of the tension member 2 and the resistor 3, a ground anchor including a tension member composed of a tendon and a sheath and a resistor composed of a cement grout can be applied.

本設計方法では、この抵抗体3の配設位置を、軟弱地盤Gの中でも盛土Mの直下で、盛土Mによる上載荷重を見込むことのできる軟弱地盤内のいずれかのエリアに配設するものである。   In the present design method, the position of the resistor 3 is arranged in any area in the soft ground in the soft ground G, which is directly under the bank M, and where the loading load due to the bank M can be expected. is there.

より具体的には、図示する盛土Mにおいては、その中央の天端面M1の直下エリアGaと、その側方の法面M2の直下エリアGbが盛土Mによる上載荷重を見込むことのできるエリアであることから、このエリアのいずれかの箇所に抵抗体3を配設する。   More specifically, in the embankment M shown in the figure, the area Ga immediately below the center top end face M1 and the area Gb directly below the side slope M2 are areas in which the loading due to the embankment M can be expected. Therefore, the resistor 3 is disposed in any part of this area.

より大きな上載荷重を受ける地盤エリアに抵抗体3が配設されていることによって、液状化の際に法面M2がはらみ出そうとした際に抵抗体3からより大きな反力を得られることから、抵抗体3の配設位置は図示例のようにエリアGa,Gbの中でも天端面M1の直下エリアGaであるのが好ましい。   Since the resistor 3 is disposed in the ground area that receives a larger overload, a larger reaction force can be obtained from the resistor 3 when the slope M2 is about to protrude during liquefaction. The arrangement position of the resistor 3 is preferably the area Ga immediately below the top end face M1 among the areas Ga and Gb as shown in the drawing.

このことは、後述する図6で説明するように、液状化解析の結果から、一般にその安全率は、上載荷重を見込むことのできない盛土直下の外側エリアGcが最も小さく、エリアGb,Gaの順に安全率が大きくなることからも、安全率の最も高いエリアGa内で抵抗体が配設されるのがよいことが分かる。   As will be described later with reference to FIG. 6, from the results of liquefaction analysis, the safety factor is generally the smallest in the outer area Gc directly under the embankment where the overload cannot be expected, and in the order of areas Gb and Ga. From the fact that the safety factor increases, it can be seen that the resistor is preferably arranged in the area Ga having the highest safety factor.

地震時において、盛土直下の地盤エリアGa,Gbよりも盛土重量による上載荷重の影響が無い盛土直下の外側エリアGcが先行して液状化することになる。この際に、盛土直下の外側エリアGcの剛性が低下し、盛土Mにはストレッチング(盛土のせん断変形にともなう水平方向拡幅)が生じる。この外側エリアGcが液状化している段階で、盛土直下の地盤エリアGa,Gbは液状化に達しておらず、したがって高い地盤剛性が維持されている。   In the event of an earthquake, the outer area Gc directly under the embankment, which is not affected by the loading load due to the embankment weight, is liquefied ahead of the ground areas Ga and Gb directly under the embankment. At this time, the rigidity of the outer area Gc immediately below the embankment is lowered, and stretching (horizontal widening accompanying shear deformation of the embankment) occurs in the embankment M. At the stage where the outer area Gc is liquefied, the ground areas Ga and Gb immediately below the embankment have not reached liquefaction, and therefore high ground rigidity is maintained.

この高い剛性の維持された盛土直下の地盤エリアGa,Gb内に抵抗体が配設されていることにより、軟弱地盤Gの液状化発生の初期の段階、すなわち、外側エリアGcが液状化している段階において、この外側エリアGcが液状化していることによって生じる盛土のストレッチングが増大するのを効果的に抑制することができる。   Since the resistors are arranged in the ground areas Ga and Gb immediately below the embankment where the high rigidity is maintained, the initial stage of the liquefaction of the soft ground G, that is, the outer area Gc is liquefied. In the stage, it is possible to effectively suppress an increase in the stretching of the embankment caused by the liquefaction of the outer area Gc.

そして、この液状化初期の段階における盛土のストレッチングの抑制によって、本発明の設計方法が掲げる目的である、盛土の多少の沈下は許容するものの、法面のはらみ出しによる盛土崩壊を抑制することが達成されることになる。   And, by suppressing the stretching of the embankment at the initial stage of liquefaction, the design method of the present invention is intended to suppress the embankment collapse due to the protrusion of the slope, while allowing some settlement of the embankment. Will be achieved.

図3は、補強構造の他の実施の形態を示したものである。この補強構造10Aは、対向する法面M2,M2それぞれの抑え部材1から伸びる引張部材2’、2’が相互にクロスし、抵抗体3,3が天端面M1の直下エリアGa内に配設されたものである。   FIG. 3 shows another embodiment of the reinforcing structure. In this reinforcing structure 10A, the tensile members 2 'and 2' extending from the restraining members 1 of the opposing slopes M2 and M2 cross each other, and the resistors 3 and 3 are disposed in the area Ga immediately below the top end face M1. It has been done.

また、図示例以外にも、抵抗体が対応する法面M2の直下エリアGb内に配設されるもの(引張部材がクロスしないもの)や、相手側の法面M2の直下エリアGb内に配設されるもの(引張部材がクロスするもの)などであってもよい。   In addition to the example shown in the figure, the resistor is disposed in the area Gb immediately below the corresponding slope M2 (the tensile member does not cross) or in the area Gb directly below the counterpart slope M2. It may be provided (one in which the tensile member crosses).

図4は、本発明の設計方法におけるステップS1において、地盤の液状化解析の一実施の形態の結果を示すものであり、本発明者等が遠心力載荷模型実験によって過剰間隙水圧比分布を求めてコンタ図化したものである。また、図5は、本発明者等が液状化解析によって過剰間隙水圧比分布を求めてこれを図化したものである。   FIG. 4 shows the result of one embodiment of the ground liquefaction analysis in step S1 in the design method of the present invention. The inventors obtained the excess pore water pressure ratio distribution by a centrifugal loading model experiment. It is a contour chart. FIG. 5 is a graph showing the excess pore water pressure ratio distribution obtained by the present inventors by liquefaction analysis.

いずれの分布図とも、過剰間隙水圧比は盛土直下のエリアに比してその外側のエリアが相対的に高くなっており、盛土直下の中でも天端面直下が法面直下に比して過剰間隙水圧比が小さくなっている。さらに、盛土直下の中では、下方エリアに比して上方エリアの過剰間隙水圧比が小さくなっている。この過剰間隙水圧比は、過剰間隙水圧と初期鉛直有効応力との比の値であり、この値が1.0に達した状態が液状化していること、すなわち、安全率1.0に相当することから、図4で示す過剰間隙水圧比に関するコンタがそのまま液状化安全率となる。   In both distribution maps, the excess pore water pressure ratio is relatively high in the area outside the area immediately below the embankment, and the excess pore water pressure directly below the top of the embankment is below the slope. The ratio is getting smaller. Furthermore, in the area directly under the embankment, the excess pore water pressure ratio in the upper area is smaller than that in the lower area. The excess pore water pressure ratio is a value of the ratio between the excess pore water pressure and the initial vertical effective stress, and the state where this value reaches 1.0 corresponds to a liquefaction, that is, a safety factor of 1.0. Therefore, the contour regarding the excess pore water pressure ratio shown in FIG. 4 becomes the liquefaction safety factor as it is.

また、図6a,bには、本発明者等による高速道路や鉄道の盛土構造物をモデル化した液状化解析による液状化安全率コンタを示しており、より具体的には、図6aは盛土高8m、盛土天端幅25、軟弱地盤層厚20mの解析モデルの結果であり、図6bは盛土高6m、盛土天端幅10.8、軟弱地盤層厚20mの解析モデルの結果である。   FIGS. 6a and 6b show liquefaction safety factor contours by liquefaction analysis modeling the embankment structure of highways and railways by the present inventors. More specifically, FIG. 6a shows embankment. FIG. 6B shows the result of an analysis model with a height of 8 m, a bank top edge width of 25, and a soft ground layer thickness of 20 m, and FIG. 6B shows the result of an analysis model with a bank height of 6 m, a bank top edge width of 10.8, and a soft ground layer thickness of 20 m.

図6a,b等の液状化安全率分布(コンタ)をステップS1で作成し、この安全率と、施工性、工費等を勘案して、それらを要素とする最適値、すなわち、可及的に液状化安全率が高い盛土直下の地盤内であって、可及的に工費の安くなる位置(天端面直下か法面直下か、それらのいずれかにおいて上方地盤内か下方地盤内か、など)が抵抗体の配設位置として決定され、補強構造の具体的なデザインが決定されることになる。なお、工費よりも急速復旧に重きがおかれる場合は、安全率と施工性の2つを主たる抵抗体配設位置の決定要素として盛土直下における抵抗体の配設位置が決定される。   The liquefaction safety factor distributions (contours) shown in FIGS. 6a and 6b are created in step S1, and the optimum value with these factors taken into consideration, that is, as much as possible, taking this safety factor, workability, construction cost, etc. Position in the ground just below the embankment where the liquefaction safety rate is high and where the construction cost is as low as possible (whether directly below the top or slope, either in the upper ground or in the lower ground) Is determined as the arrangement position of the resistor, and the specific design of the reinforcing structure is determined. In the case where the rapid recovery is more important than the construction cost, the placement position of the resistor immediately below the embankment is determined using the safety factor and workability as two main factors for determining the resistor placement position.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…抑え部材、2,2’…引張部材、3…抵抗体、10、10A…補強構造、M…盛土、M1…天端面、M2…法面、G…軟弱地盤(液状化の可能性のある地盤)、Ga…盛土の天端面直下エリア、Gb…盛土の法面直下エリア、Gc…盛土直下の外側エリア   DESCRIPTION OF SYMBOLS 1 ... Suppression member, 2, 2 '... Tensile member, 3 ... Resistor 10, 10A ... Reinforcement structure, M ... Embankment, M1 ... Top end surface, M2 ... Slope, G ... Soft ground (possibility of liquefaction Some ground), Ga ... Area just below the top of the embankment, Gb ... Area just below the slope, Gc ... Outside area just below the embankment

Claims (5)

液状化もしくは沈下の可能性のある軟弱地盤の上に造成され、対向する法面と略平坦な天端面を少なくとも有する盛土の補強構造を設計する方法であって、
前記盛土の補強構造は、法面に配される抑え部材と、地盤内に配されると抵抗体と、抑え部材と抵抗体を繋ぐ引張部材とから構成されるものであり、
盛土直下の軟弱地盤であって、盛土による上載荷重を見込むことのできる軟弱地盤内に前記抵抗体を配設する盛土補強構造の設計方法。
A method for designing a reinforcement structure for embankments that is created on soft ground that may be liquefied or subsidence, and that has at least a facing slope and a substantially flat top face,
The reinforcing structure of the embankment is composed of a restraining member disposed on the slope, a resistor when disposed in the ground, and a tension member connecting the restraining member and the resistor,
A method for designing an embankment reinforcement structure in which the resistor is disposed in a soft ground that is directly under the embankment and that allows for an expected load due to the embankment.
前記抵抗体を前記天端面直下の軟弱地盤内に配設する請求項1に記載の盛土補強構造の設計方法。   The design method of the embankment reinforcement structure of Claim 1 which arrange | positions the said resistor in the soft ground just under the said top end surface. 前記軟弱地盤における液状化に対する安全率に関し、盛土直下の地盤エリアが盛土直下の外側の地盤エリアよりも高い安全率を有し、かつ、盛土直下の地盤エリアにおいては上方の地盤エリアが下方の地盤エリアよりも高い安全率を有しており、少なくともこの液状化に対する安全率を前記抵抗体の配設位置を決定する決定要因とする請求項1または2に記載の盛土補強構造の設計方法。   Regarding the safety factor against liquefaction in the soft ground, the ground area immediately below the embankment has a higher safety factor than the outer ground area directly below the embankment, and in the ground area directly below the embankment, the upper ground area is the lower ground 3. The embankment reinforcing structure design method according to claim 1 or 2, which has a safety factor higher than that of an area, and uses at least the safety factor against liquefaction as a determinant for determining the arrangement position of the resistor. 対向する法面の補強構造のそれぞれの抵抗体を、盛土の中心ラインよりも他方の法面側となる位置に配設する請求項1〜3のいずれかに記載の盛土補強構造の設計方法。   The design method of the embankment reinforcement structure in any one of Claims 1-3 which arrange | positions each resistor of the reinforcement structure of the opposing slope to the position which becomes the other slope side rather than the center line of embankment. 対向する法面の補強構造のそれぞれの抵抗体を、盛土の中心ラインよりも他方の法面側とならない位置に配設する請求項1〜3のいずれかに記載の盛土補強構造の設計方法。   The design method of the embankment reinforcement structure in any one of Claims 1-3 which arrange | positions each resistor of the reinforcement structure of the opposing slope to the position which does not become the other slope side rather than the center line of embankment.
JP2010132073A 2010-06-09 2010-06-09 Design method for embankment reinforcement structure Expired - Fee Related JP5421191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010132073A JP5421191B2 (en) 2010-06-09 2010-06-09 Design method for embankment reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132073A JP5421191B2 (en) 2010-06-09 2010-06-09 Design method for embankment reinforcement structure

Publications (2)

Publication Number Publication Date
JP2011256604A true JP2011256604A (en) 2011-12-22
JP5421191B2 JP5421191B2 (en) 2014-02-19

Family

ID=45473081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132073A Expired - Fee Related JP5421191B2 (en) 2010-06-09 2010-06-09 Design method for embankment reinforcement structure

Country Status (1)

Country Link
JP (1) JP5421191B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168952A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2015168954A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
CN115492131A (en) * 2022-08-23 2022-12-20 攀钢集团矿业有限公司 Embankment type soil covering method and device for tailing pond closed tail weak beach face

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121265A (en) * 2006-11-10 2008-05-29 Ohbayashi Corp Foundation structure of fill, and construction method for foundation
JP2009079415A (en) * 2007-09-26 2009-04-16 Taisei Corp Banking reinforcing structure, reinforcing method and linear banking

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121265A (en) * 2006-11-10 2008-05-29 Ohbayashi Corp Foundation structure of fill, and construction method for foundation
JP2009079415A (en) * 2007-09-26 2009-04-16 Taisei Corp Banking reinforcing structure, reinforcing method and linear banking

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168952A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2015168954A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
CN115492131A (en) * 2022-08-23 2022-12-20 攀钢集团矿业有限公司 Embankment type soil covering method and device for tailing pond closed tail weak beach face

Also Published As

Publication number Publication date
JP5421191B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US10407861B2 (en) Sheet pile retaining wall system
JP4965922B2 (en) Embankment reinforcement structure and embankment body
JP2007321452A (en) Construction method for bridge and bridge structure thereof
JP4851881B2 (en) Embankment structure and method for reinforcing embankment structure
JP5421191B2 (en) Design method for embankment reinforcement structure
CN103306295A (en) Rigid frame pile supporting and blocking structure
JP4987652B2 (en) Reinforcement structure and method of embankment and linear embankment
JP2007262815A (en) Floating inhibiting structure for floating of underground structure due to liquefaction
CN205662796U (en) Highway medium -and -large -sized solution cavity punishment structure that underlies
KR100787021B1 (en) High landfill part abutments of a bridge structure and it's construction method
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
CN103306292B (en) Skid resistance supporting straining protection method for passing through topsoil of landslide area of oil and gas conveying pipeline
JP2016180205A (en) Seismic reinforcement structure
JP2011202427A (en) Pile slab embankment and construction method thereof
JP5729754B2 (en) Seismic reinforcement structure for embankment and design method of underground wall used for it
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
JP2017048647A (en) Reinforcement earth built-in type precast grid frame construction method
JP3740600B2 (en) Structure for preventing settlement of underground structures
CN206346220U (en) A kind of pile foundation barricade antidetonation retaining structure of the cushion containing EPS
JP2014224355A (en) Embankment reinforcement structure
JP2015221994A (en) Embankment reinforcing structure
JP2003321826A (en) Earthquake resisting property reinforced structure of levee body such as earth filling dam or the like
JP3360061B2 (en) Preceding plate-shaped beam of mountain retaining frame
JP3807994B2 (en) Lightweight embankment structure
JP2005194774A (en) Cellular mortar filling structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Ref document number: 5421191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees