JP2011255416A - Method and structure for joining clad steel - Google Patents

Method and structure for joining clad steel Download PDF

Info

Publication number
JP2011255416A
JP2011255416A JP2010134258A JP2010134258A JP2011255416A JP 2011255416 A JP2011255416 A JP 2011255416A JP 2010134258 A JP2010134258 A JP 2010134258A JP 2010134258 A JP2010134258 A JP 2010134258A JP 2011255416 A JP2011255416 A JP 2011255416A
Authority
JP
Japan
Prior art keywords
clad
layer
carbon steel
joining
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010134258A
Other languages
Japanese (ja)
Other versions
JP5538079B2 (en
Inventor
Yuji Kisaka
有治 木坂
Fumiaki Kimura
文映 木村
Toshihide Hakoda
利秀 箱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2010134258A priority Critical patent/JP5538079B2/en
Publication of JP2011255416A publication Critical patent/JP2011255416A/en
Application granted granted Critical
Publication of JP5538079B2 publication Critical patent/JP5538079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Arc Welding In General (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for joining clad steel by which welding speed is increased in the site-welding of the clad steel, and the toughness of a joint is improved.SOLUTION: The method is for joining the clad steel by which the mutual end faces of the clad steel 4 which includes laminated carbon steel layer 5 and clad layer 6 are butted and joined. The method includes a friction stir welding step where the clad layers 6 and the carbon steel layers 5 which are mutually opposed to each other are joined so that they may be stirred at the same time and, after that, an arc welding step where the unwelded portion between the mutual carbon steel layers which are situated in a position apart from the clad layers is welded from the side of the carbon steel layer by arc welding.

Description

本発明は、クラッド鋼材の端面どうしの突き合せ接合に関するものであり、特に摩擦攪拌接合とアーク溶接方法を組み合わせた接合方法及びクラッド鋼材の接合構造に関するものである。   The present invention relates to a butt joint between end faces of clad steel materials, and particularly to a joining method combining friction stir welding and an arc welding method and a joining structure of clad steel materials.

硫化水素雰囲気などの高腐食環境に設置される材料として、板厚1〜3mm程度のステンレス鋼(またはNi基合金)と炭素鋼とを板厚方向に張り合わせたクラッド鋼材が使用される場合がある。このようなクラッド鋼材において薄いステンレス鋼(またはNi基合金)側はクラッド層と呼ばれる。   As a material installed in a highly corrosive environment such as a hydrogen sulfide atmosphere, a clad steel material in which a stainless steel (or Ni-based alloy) having a thickness of about 1 to 3 mm and a carbon steel are laminated in the thickness direction may be used. . In such a clad steel material, the thin stainless steel (or Ni-based alloy) side is called a clad layer.

一方でクラッド鋼材の端面どうしの突き合わせ溶接は、溶接金属内のマルテンサイトの析出および割れ発生を防止するため、通常は、初めに炭素鋼層から炭素鋼用の溶接材料を用いて溶接し、最後にクラッド層をNi4%以上かつCrl2%以上含んだクラッド層用の溶接材料を用いて溶接する溶接施工方法が採用される。   On the other hand, in order to prevent martensite precipitation and cracking in the weld metal, butt welding between the end faces of clad steel materials is usually performed by first welding from the carbon steel layer using a welding material for carbon steel, and finally. In addition, a welding method is employed in which a clad layer welding material containing at least 4% Ni and at least 2% Crl is welded.

しかしながら、硫化水素雰囲気などの高腐食環境が鋼管内面となるクラッド鋼ラインパイプではクラッド層は内面となり炭素鋼側は外面となる。このようなクラッド鋼ラインパイプの鋼管端面どうしの現地円周溶接では、鋼管内面側から溶接作業を行うことは非常に困難であるため、鋼管端部に開先を取り、鋼管外部から初めにクラッド層をクラッド層用のNiやCrを多く含んだ溶接材料を用いて溶接し、その後、当該溶接ビードの上に鋼管外部からクラッド層用の溶接材料を用いて溶接を行っている。これは、クラッド層用溶接材料(例えばステンレス用溶接材料)によって形成された溶接ビードの上に炭素鋼用の溶接材料を用いて溶接を行うと、溶接ビード中にマルテンサイトが形成され、それを起点に割れが発生する場合があるからである。   However, in a clad steel line pipe where a highly corrosive environment such as a hydrogen sulfide atmosphere is the inner surface of the steel pipe, the clad layer is the inner surface and the carbon steel side is the outer surface. It is very difficult to perform welding work from the inner surface of the steel pipe in the field circumferential welding between the steel pipe end faces of such a clad steel line pipe. Therefore, a groove is formed at the end of the steel pipe, and the clad is first clad from the outside of the steel pipe. The layer is welded using a welding material containing a large amount of Ni or Cr for the cladding layer, and then welding is performed on the welding bead from the outside of the steel pipe using the welding material for the cladding layer. When welding is performed using a welding material for carbon steel on a welding bead formed of a welding material for a cladding layer (for example, a welding material for stainless steel), martensite is formed in the welding bead. This is because a crack may occur at the starting point.

特にステンレス鋼用などのNiやCrなどの合金元素を多く含む溶接材料を用いて,下進溶接を行った場合,炭素鋼の場合と比較して融点が低いかつ表面張力も低いため融合不良等の欠陥が発生しやすい。また、上進溶接した場合には凸ビードになりやすい,溶融プールの追従性が悪いなどの理由から鋼管どうしの突き合わせ現地円周溶接においては、10〜30cm/min程度の溶接速度が限界である。一方で、炭素鋼部どうしの突き合わせ溶接部ではクラッド層用溶接材料と炭素鋼の異材継手となり、両者の境界部において靭性が著しく低下する。また、クラッド層(ステンレス、Ni基合金)用の溶接材料には、高価なNiやCrが多く含まれているため、溶接材料の1kg当たりのコストが鋼用の溶接材料と比較して6〜10倍程度高くなる。   In particular, when welding is performed using welding materials containing a large amount of alloying elements such as Ni and Cr, such as for stainless steel, the melting point is lower and the surface tension is lower than in the case of carbon steel. The defect is likely to occur. In addition, when welding in an upward direction, it is easy to form a convex bead, and the followability of the molten pool is poor, so in local circumferential welding of steel pipes, a welding speed of about 10 to 30 cm / min is the limit. . On the other hand, the butt weld between the carbon steel parts becomes a dissimilar joint between the clad layer welding material and the carbon steel, and the toughness is remarkably reduced at the boundary between them. In addition, since the welding material for the cladding layer (stainless steel, Ni-based alloy) contains a large amount of expensive Ni and Cr, the cost per kg of the welding material is 6 to 6 in comparison with the welding material for steel. About 10 times higher.

ここで、下記の特許文献1には、クラッド鋼板の端面どうしの突き合わせ溶接において、鋼管外面から、まず初めにステンレス層をガスシールドアーク溶接によって溶接し、次に当該溶接ビードの上をサブマージアーク溶接によって溶接する方法が開示されている。   Here, in the following Patent Document 1, in the butt welding between the end faces of the clad steel plate, the stainless steel layer is first welded from the outer surface of the steel pipe by gas shield arc welding, and then the submerged arc welding is performed on the welding bead. Discloses a method of welding.

特開2001−38472号公報JP 2001-38472 A

前記特許文献1に開示された技術にて用いられているサブマージアーク溶接は、フラックスを散布し当該フラックス中でアークを発生させるため、全姿勢溶接である鋼管の突き合わせ円周溶接に用いることに難があること、炭素鋼部どうしの突き合わせ溶接部において、ステンレス用溶接材料と炭素鋼の異材継手となる部分が存在し、両者の境界部において靭性が著しく低下していると思われる。   Since the submerged arc welding used in the technique disclosed in Patent Document 1 spreads a flux and generates an arc in the flux, it is difficult to use it for butt circumference welding of a steel pipe that is all-position welding. In the butt weld between the carbon steel parts, there is a part that becomes a dissimilar joint between the welding material for stainless steel and the carbon steel, and it seems that the toughness is remarkably lowered at the boundary part between the two.

本発明は、このような問題点に鑑みてなされたものであって、クラッド鋼材の現地溶接における溶接速度の高速化を図ることができ、かつ継手の靭性を向上させることができる、クラッド鋼材の接合方法及び接合構造を提供するものである。 The present invention has been made in view of such problems, and it is possible to increase the welding speed in field welding of clad steel materials and improve the toughness of joints. A bonding method and a bonding structure are provided.

本発明者らは、クラッド鋼材の溶接における初層溶接において、クラッド層と炭素鋼層が同時に攪拌するように摩擦攪拌接合を行うことで、攪拌された接合ビード内の成分が板厚方向にクラッド層の成分と炭素鋼層の成分に分離されることを発見した。これにより以降の炭素鋼層の溶接において、NiやCrを多く含まない炭素鋼用の溶接材料を用いてもマルテンサイトの析出および割れが発生しないと考えた。   In the first layer welding in the welding of the clad steel material, the present inventors perform friction stir welding so that the clad layer and the carbon steel layer are stirred at the same time, so that the components in the stirred bead are clad in the thickness direction. It has been found that it is separated into a component of the layer and a component of the carbon steel layer. As a result, in the subsequent welding of the carbon steel layer, it was thought that precipitation and cracking of martensite would not occur even if a welding material for carbon steel that does not contain a large amount of Ni or Cr was used.

即ち、本発明の要旨とするところは以下のとおりである。
本発明に係るクラッド鋼材の接合方法は、積層された炭素鋼層とクラッド層とを備えるクラッド鋼材の端面どうしを突き合わせて接合するクラッド鋼材の接合方法において、互いに対向する前記クラッド層どうしと前記炭素鋼層どうしをそれらが同時に撹伴するように摩擦攪拌接合にて接合する摩擦攪拌接合工程と、その後、前記クラッド層から離れた位置にある前記炭素鋼層どうしの未接合部分を前記炭素鋼層側からアーク溶接により接合するアーク溶接工程と、を備えることを特徴とする。
That is, the gist of the present invention is as follows.
A method for joining clad steel materials according to the present invention is a method for joining clad steel materials in which end surfaces of clad steel materials each having a laminated carbon steel layer and a clad layer are brought into contact with each other, and the clad layers facing each other and the carbon are joined together. Friction stir welding step for joining the steel layers by friction stir welding so that they are simultaneously stirred, and then, the unbonded portion of the carbon steel layers located at a position away from the cladding layer is the carbon steel layer. And an arc welding process for joining by arc welding from the side.

上記のクラッド鋼材の接合方法によれば、摩擦攪拌接合により、互いに対向するクラッド層どうしと炭素鋼層どうしを接合するが、このとき、接合ビード内の成分が板厚方向で、クラッド層の成分と炭素鋼層の成分とに分離される。このため、その後クラッド層から離れた位置にある炭素鋼層どうしの未接合部分を炭素鋼層側からアーク溶接するとき、アーク溶接の先端側が接合ビート内の炭素鋼層の成分にのみ接するように溶接すれば、NiやCrを多く含まない炭素鋼用の溶接材料を用いて溶接したとしても、割れなどの不具合が発生しない。   According to the above clad steel joining method, the clad layers and the carbon steel layers facing each other are joined by friction stir welding. At this time, the components in the joint bead are in the plate thickness direction, and the components of the clad layer And the components of the carbon steel layer. For this reason, when arc welding is performed from the carbon steel layer side to the unbonded portions of the carbon steel layers that are further away from the cladding layer, the tip side of the arc welding should be in contact with only the components of the carbon steel layer in the joining beat. If it welds, even if it welds using the welding material for carbon steel which does not contain much Ni and Cr, defects, such as a crack, will not generate | occur | produce.

なお、前記アーク溶接工程で、Niが4wt%以下かつCrが12wt%以下の溶接材料を用いてアーク溶接を行うことが好ましい。
また、前記摩擦攪拌接合工程で、回転工具のプローブとして長さが前記クラッド層の厚さよりも2mm以上長いものを用い、前記回転工具の回転数を200min―1以上400min―1以下に設定し、接合速度を、前記回転工具の回転数が200min―1の時10cm/min以上20cm/min以下、前記回転工具の回転数が400min―1の時20cm/min以上40cm/min以下に設定して摩擦接伴接合を行うことが好ましい。
In the arc welding step, it is preferable to perform arc welding using a welding material having Ni of 4 wt% or less and Cr of 12 wt% or less.
Further, in the friction stir welding step, a probe having a length longer than the thickness of the cladding layer by 2 mm or more is used as a probe of the rotary tool, and the rotational speed of the rotary tool is set to 200 min −1 or more and 400 min −1 or less, the welding speed, the rotational speed of the rotary tool below 20 cm / min when 10 cm / min or more 200 min -1 rotational speed of the rotary tool is set below 20 cm / min or more 40 cm / min when 400 min -1 friction It is preferable to perform tangential joining.

また、前記摩擦攪拌工程と前記アーク溶接工程の間に、前記摩擦攪拌工程で接合した部分を前記炭素鋼層側から削り込むガウジング工程を備えることが好ましい。
さらに、前記ガウジング工程で形成された溝のルートフェイスは、回転工具のプローブの長さに2mm足した長さよりも長くかつプローブの長さに3mm足した長さよりも短いことが好ましい。
Moreover, it is preferable to provide the gouging process which scrapes the part joined by the said friction stirring process from the said carbon steel layer side between the said friction stirring process and the said arc welding process.
Furthermore, it is preferable that the root face of the groove formed in the gouging process is longer than the length obtained by adding 2 mm to the length of the probe of the rotary tool and shorter than the length obtained by adding 3 mm to the length of the probe.

本発明に係るクラッド鋼材の接合構造は、積層された炭素鋼層とクラッド層とを備えるクラッド鋼材の端面どうしを突き合わせて接合されたクラッド鋼材の接合構造であって、摩擦攪拌接合によって形成された1つの接合ビードの断面内に互いに対向する前記クラッド層どうしを接合したクラッド層接合部と、互いに対向する前記炭素鋼層どうしを接合した炭素鋼層接合部との間に、該クラッド層接合部と炭素鋼層接合部を仕切る仕切面が形成され、該仕切面は、接合前の互いに対向する接合端部の前記炭素鋼層と前記クラッド層との境界部を結ぶ仮想境界面を基準に、そこから0.5mmの範囲に形成されていることを特徴とする。   A clad steel material joining structure according to the present invention is a clad steel material joining structure in which end faces of clad steel materials each having a laminated carbon steel layer and a clad layer are joined to each other and formed by friction stir welding. Between the clad layer joint part joining the clad layers facing each other in the cross section of one joint bead and the carbon steel layer joint part joining the carbon steel layers facing each other, the clad layer joint part And a partition surface that partitions the carbon steel layer joint portion is formed, and the partition surface is based on a virtual boundary surface that connects the boundary portion between the carbon steel layer and the cladding layer at the joint end portions facing each other before joining, It is characterized by being formed in a range of 0.5 mm from there.

上記のクラッド鋼材の接合構造によれば、クラッド層接合部と炭素鋼層接合部を仕切る仕切面が、接合前の互いに対向する接合端部の前記炭素鋼層と前記クラッド層との境界部を結ぶ仮想境界面を基準に、そこから0.5mmの範囲に形成されており、クラッド層の成分と炭素鋼層の成分とが混ざり合うことなく、互いに対向するクラッド層どうしおよび炭素鋼どうしがそれぞれ接合される。   According to the joining structure of the clad steel material described above, the partition surface that divides the clad layer joint and the carbon steel layer joint has a boundary between the carbon steel layer and the clad layer at the joint ends facing each other before joining. It is formed within the range of 0.5 mm from the connecting virtual boundary surface, and the clad layers and carbon steels facing each other are mixed without mixing the components of the clad layer and the carbon steel layer. Be joined.

ちなみに、クラッド層接合部と炭素鋼層接合部を仕切る仕切面が、接合前の互いに対向する接合端部の前記炭素鋼層と前記クラッド層との境界部を結ぶ仮想境界面を基準に、そこから0.5mmの範囲を超える場合には、クラッド層の成分と炭素鋼層の成分とが混ざり合うおそれがある。この場合、例えば、次工程で、クラッド層から離れた位置にある炭素鋼層どうしの未接合部分を炭素鋼層側からアーク溶接するとき、NiやCrを多く含まない炭素鋼用の溶接材料を用いて溶接する際に割れなどの不具合が発生するおそれがある。   By the way, the partition surface that divides the clad layer joint and the carbon steel layer joint is located on the basis of a virtual boundary surface that connects the boundary between the carbon steel layer and the clad layer at the joint ends facing each other before joining. If it exceeds 0.5 mm, the components of the cladding layer and the carbon steel layer may be mixed. In this case, for example, in the next step, when arc welding is performed from the carbon steel layer side of the unbonded portions of the carbon steel layers that are located away from the cladding layer, a welding material for carbon steel that does not contain a lot of Ni or Cr is used. There is a risk that problems such as cracking may occur when welding with the use.

本発明によれば、アーク溶接に用いる溶接材料として、Niが4%以下かつCrが12%以下の作業性の良いかつ安価な溶接材料を用いても割れ等の不具合が発生することがなく、炭素鋼層を溶接する際の溶接速度の向上が可能となり、かつ、施工コストを低減させることが可能となり、炭素鋼部どうしの突き合わせ溶接部において、異材継手とならない構造となるため、靭性の低下を防止することができる。   According to the present invention, as a welding material used for arc welding, Ni is 4% or less and Cr is 12% or less. It is possible to improve the welding speed when welding the carbon steel layer, and it is possible to reduce the construction cost, and the structure that does not become a dissimilar joint in the butt welds between the carbon steel parts, resulting in reduced toughness Can be prevented.

また、本発明によれば、クラッド層接合部と炭素鋼層接合部を仕切る仕切面が、接合前の互いに対向する接合端部の前記炭素鋼層と前記クラッド層との境界部を結ぶ仮想境界面を基準に、そこから0.5mmの範囲に形成されるため、接合部の耐食性をクラッド鋼材と同等レベルにすることができ、接合部からの腐食を防止できる。   Further, according to the present invention, the partition surface that partitions the clad layer joint portion and the carbon steel layer joint portion is a virtual boundary that connects the boundary portion between the carbon steel layer and the clad layer at the joint end portions facing each other before joining. Since it is formed within a range of 0.5 mm from the surface as a reference, the corrosion resistance of the joint can be made equal to that of the clad steel material, and corrosion from the joint can be prevented.

本発明に係るクラッド鋼材の接合方法における摩擦攪拌接合工程で用いる回転ツールの形状を示す概念図である。It is a conceptual diagram which shows the shape of the rotary tool used at the friction stir welding process in the joining method of the clad steel materials concerning this invention. 本発明に係るクラッド鋼材の接合方法の実施形態を示す概念図である。It is a conceptual diagram which shows embodiment of the joining method of the clad steel materials concerning this invention. 本発明に係るクラッド鋼材の接合構造の実施形態を示すマクロ断面図である。It is a macro sectional view showing an embodiment of a joining structure of clad steel materials concerning the present invention. クラッド鋼材の接合構造の比較例を示す断面図である。It is sectional drawing which shows the comparative example of the joining structure of a clad steel material. クラッド鋼材の接合構造の比較例を示す断面図である。It is sectional drawing which shows the comparative example of the joining structure of a clad steel material. 本発明に係るクラッド鋼材の接合方法のガウジング工程の溝を説明する概略図である。It is the schematic explaining the groove | channel of the gouging process of the joining method of the clad steel materials which concerns on this invention.

本発明に係るクラッド鋼材の接合方法の実施形態を以下に説明する。図1は本発明に係るクラッド鋼材の接合方法における摩擦攪拌接合工程で用いる回転ツールの形状を示す概念図、図2は本発明に係るクラッド鋼材の接合方法の実施形態を示す概念図である。
回転ツール1は、円柱状のショルダ2とショルダ2の下面に該ショルダ2に対して同芯状かつショルダ2の径よりも小径とされたプローブ3とを備える。この回転ツール1は図示せぬ摩擦攪拌接合装置本体に結合され、該装置本体から、ショルダ2の軸線を中心に回転力が付与されるとともに、ショルダ2からプローブ3へ(図1において下方へ)押圧荷重が加えられるようになっている。
また、回転ツール1の材料としては、クラッド鋼材4を構成するクラッド層材5および炭素鋼材6の融点より高い温度においてクラッド鋼材4よりも強度の高い例えば多結晶立方晶窒化ホウ素(以下PCBN)およびPCBNとタングステン複合材料との合金材などが使用される。
Embodiments of the clad steel joining method according to the present invention will be described below. FIG. 1 is a conceptual diagram showing the shape of a rotary tool used in the friction stir welding process in the clad steel joining method according to the present invention, and FIG. 2 is a conceptual diagram showing an embodiment of the clad steel joining method according to the present invention.
The rotary tool 1 includes a columnar shoulder 2 and a probe 3 concentric with the shoulder 2 and having a diameter smaller than the diameter of the shoulder 2 on the lower surface of the shoulder 2. The rotary tool 1 is coupled to a friction stir welding apparatus main body (not shown). A rotational force is applied from the apparatus main body around the axis of the shoulder 2 and from the shoulder 2 to the probe 3 (downward in FIG. 1). A pressing load is applied.
Further, as the material of the rotary tool 1, for example, polycrystalline cubic boron nitride (hereinafter referred to as PCBN) having higher strength than the clad steel material 4 at a temperature higher than the melting point of the clad layer material 5 and the carbon steel material 6 constituting the clad steel material 4 and An alloy material of PCBN and tungsten composite material or the like is used.

図2において符号4で示すものがクラッド鋼材である。このクラッド鋼材4は炭素鋼層5とこの炭素鋼層5上に積層されたクラッド層6を備える。本発明に係るクラッド鋼材の接合方法では、最初に、図2に示すように、クラッド鋼材4の端面どうしを突き合わせた状態とし、クラッド層6側から回転ツール1のプローブ3をクラッド層6どうしと炭素鋼層5どうしを攪拌するように、該プローブ3の側面がクラッド層6と炭素鋼層5の両方と接触するまで挿入する。そして、回転ツール1をクラッド鋼材4に押しつけた状態で回転させながら、接合しようとする箇所に沿って移動させることでクラッド鋼材4どうし、具体的には、互いに対向するクラッド層6どうしと、該クラッド層6に隣接する位置にある炭素鋼層5どうしを接合する(摩擦攪拌接合工程)。   In FIG. 2, what is indicated by reference numeral 4 is a clad steel material. The clad steel material 4 includes a carbon steel layer 5 and a clad layer 6 laminated on the carbon steel layer 5. In the method for joining clad steel materials according to the present invention, first, as shown in FIG. 2, the end surfaces of the clad steel materials 4 are brought into contact with each other, and the probe 3 of the rotary tool 1 is placed between the clad layers 6 from the clad layer 6 side. The carbon steel layers 5 are inserted so that the side surfaces of the probe 3 are in contact with both the cladding layer 6 and the carbon steel layer 5 so as to stir the carbon steel layers 5. Then, while rotating the rotary tool 1 in a state of being pressed against the clad steel material 4, the clad steel materials 4 are moved by moving along the locations to be joined, specifically, the clad layers 6 facing each other, The carbon steel layers 5 at positions adjacent to the cladding layer 6 are joined together (friction stir welding step).

次に、炭素鋼層5側からNiおよびCrを含まない炭素鋼用の溶接材料を用いてアーク溶接用のトーチ7により、クラッド層6から離れた位置にある炭素鋼層5どうしの未接合部分を接合する(アーク溶接工程)。   Next, an unjoined portion between the carbon steel layers 5 located away from the clad layer 6 by a torch 7 for arc welding using a welding material for carbon steel not containing Ni and Cr from the carbon steel layer 5 side. Are joined together (arc welding process).

前記摩擦攪拌接合工程で接合ビート8が形成されるが、この溶接ビート8によって、互いに対向するクラッド層6どうしと、該クラッド層に隣接する位置にある炭素鋼層5どうしが接合される。すなわち、溶接ビート8は、互いに対向するクラッド層6どうしを接合するクラッド層接合部8aと、クラッド層に隣接する位置にある炭素鋼層5どうしを接合する炭素鋼層接合部8bを備える。また、アーク溶接工程では、溶接ビート9が形成される。この溶接ビート9によって、クラッド層から離れた位置にある炭素鋼層5どうしの未接合部分が接合される。   A joining beat 8 is formed in the friction stir welding process, and the welding beat 8 joins the clad layers 6 facing each other and the carbon steel layers 5 located adjacent to the clad layer. That is, the welding beat 8 includes a clad layer joint 8a that joins the clad layers 6 that face each other, and a carbon steel layer joint 8b that joins the carbon steel layers 5 located adjacent to the clad layer. In the arc welding process, a welding beat 9 is formed. The welded beat 9 joins the unjoined portions of the carbon steel layers 5 located away from the clad layer.

以上の工程により、図3に示すように、クラッド層6どうしと炭素鋼層5どうしが接合した、本発明に係るクラッド鋼材の接合構造Cが得られる。   Through the above steps, as shown in FIG. 3, a clad steel material joining structure C according to the present invention in which the clad layers 6 and the carbon steel layers 5 are joined to each other is obtained.

クラッド鋼材の接合構造Cでは、互いに対向するクラッド層6どうしを接合したクラッド層接合部8aと、互いに対向する炭素鋼層5どうしを接合した炭素鋼層接合部8bとの間に、該クラッド層接合部8aと炭素鋼層接合部8bを仕切る仕切面Sが形成されている。この仕切面Sは、前記摩擦攪拌接合工程において、クラッド層6と炭素鋼層5が同時に攪拌するように摩擦攪拌接合されるときに、攪拌された接合ビード8内の成分が板厚方向にクラッド層の成分と炭素鋼層の成分に分離されることにより形成される。また、図3に示すように、仕切面Sは、接合前の互いに対向する接合端部の炭素鋼層5とクラッド層6との境界部を結ぶ仮想境界面Kを基準に、そこの近傍、具体的には仮想境界面から0.5mmの範囲に形成されている。   In the joint structure C of the clad steel material, the clad layer joint 8a between the clad layers 6 facing each other and the carbon steel layer joint 8b between the carbon steel layers 5 opposed to each other are disposed between the clad layer joints 8a. A partition surface S that partitions the joint 8a and the carbon steel layer joint 8b is formed. In the friction stir welding process, the partition surface S is formed so that the components in the stir welding bead 8 are clad in the plate thickness direction when the clad layer 6 and the carbon steel layer 5 are friction stir welded so as to stir simultaneously. It is formed by separating into a layer component and a carbon steel layer component. Moreover, as shown in FIG. 3, the partition surface S is in the vicinity of the virtual boundary surface K connecting the boundary portions between the carbon steel layer 5 and the cladding layer 6 at the joining ends facing each other before joining, Specifically, it is formed within a range of 0.5 mm from the virtual boundary surface.

ここで、前記摩擦攪拌接合工程で用いる回転ツール1のプローブ3の長さLはクラッド層6の板厚tより少なくとも2mm以上長く設定することが望ましい。これは、摩擦攪拌接合工程において、クラッド層6どうしに限られることなく、炭素鋼層5どうしも攪拌されるように接合するためである。   Here, it is desirable that the length L of the probe 3 of the rotary tool 1 used in the friction stir welding process is set to be at least 2 mm longer than the plate thickness t of the clad layer 6. This is because, in the friction stir welding process, the carbon steel layers 5 are joined to each other without being limited to the clad layers 6.

摩擦攪拌接合時における接合条件として、主に回転ツール1の回転数と接合速度によって接合部に投入されるエネルギーが決定されるが、その投入エネルギーが高い場合(回転ツール1の回転数が大きくかつ接合速度が遅い場合)は、クラッド層6と炭素鋼層5がお互いに混ざりあってしまう。すなわち、図4は、投入エネルギーが高い場合に形成された接合ビード近傍の断面写真である。この写真からわかるように、クラッド層6どうしを接合するクラッド層接合部と炭素鋼層5どうしを接合する炭素鋼層接合部とは混ざり合っていて、両者の間に明確な仕切面は形成されていない。
このような場合に炭素鋼層5側から、NiやCrを含まない溶接材料でアーク溶接を行うと、溶接金属内に割れが発生してしまう。また、このような溶接部がサワー環境などの高腐食環境にさらされた場合、クラッド層6側の表面が腐食されてしまう恐れがある。
As the welding conditions at the time of friction stir welding, the energy input to the joint is determined mainly by the rotation speed and the bonding speed of the rotary tool 1, but when the input energy is high (the rotation speed of the rotary tool 1 is large and When the joining speed is low), the clad layer 6 and the carbon steel layer 5 are mixed with each other. That is, FIG. 4 is a cross-sectional photograph of the vicinity of the bonding bead formed when the input energy is high. As can be seen from this photograph, the clad layer joint for joining the clad layers 6 and the carbon steel layer joint for joining the carbon steel layers 5 are mixed, and a clear partitioning surface is formed between them. Not.
In such a case, if arc welding is performed from the carbon steel layer 5 side with a welding material that does not contain Ni or Cr, cracks occur in the weld metal. Further, when such a welded part is exposed to a highly corrosive environment such as a sour environment, the surface on the clad layer 6 side may be corroded.

一方、投入エネルギーが小さい場合(回転ツールの回転数が低くかつ接合速度が速い場合)は、接合するためのエネルギー不足となり、クラッド層6の接合部にて接合欠陥が発生する。図5は、投入エネルギーが低い場合に形成された接合ビード近傍の断面写真である。この写真からわかるように、クラッド層6の接合部に接合欠陥Zが見られる。
このため、摩擦攪拌接合時の回転ツール1の回転数と接合速度は、好適な範囲に設定される。これについては後ほど詳しく説明する。
On the other hand, when the input energy is small (when the rotational speed of the rotary tool is low and the bonding speed is high), the energy for bonding becomes insufficient, and a bonding defect occurs at the bonding portion of the cladding layer 6. FIG. 5 is a cross-sectional photograph of the vicinity of the bonding bead formed when the input energy is low. As can be seen from this photograph, a junction defect Z is seen at the junction of the cladding layer 6.
For this reason, the rotation speed and joining speed of the rotary tool 1 at the time of friction stir welding are set to a suitable range. This will be described in detail later.

また、アーク溶接工程では、アーク溶接により形成される溶接ビード9の先端(すなわち溶け込みの先端)9aが、摩擦攪拌接合によって形成された接合ビード8内でかつ炭素鋼層接合部8bの範囲に位置するよう制御する。   In the arc welding process, the tip of the weld bead 9 formed by arc welding (that is, the tip of the penetration) 9a is located in the joint bead 8 formed by friction stir welding and within the range of the carbon steel layer joint 8b. Control to do.

アーク溶接の溶け込みが浅く、図2に示す炭素鋼層接合部8bの範囲を外れた場合、溶け込み不良が発生する。
一方、アーク溶接の溶け込みが深すぎて、溶接ビードの先端9aが炭素鋼層接合部8b範囲を外れてさらに奥側のクラッド層接合部8aに至る場合には、溶接ビード9でマルテンサイトが析出され、場合によっては割れが発生する場合がある。
When the arc welding is shallow and the carbon steel layer joint 8b shown in FIG. 2 is out of the range, a poor penetration occurs.
On the other hand, when arc welding is so deep that the tip 9a of the weld bead is out of the range of the carbon steel layer joint 8b and reaches the inner cladding layer joint 8a, martensite precipitates on the weld bead 9. In some cases, cracks may occur.

炭素鋼層5の板厚が厚い場合など、アーク溶接により形成される溶接ビード9の先端が図2に示す炭素鋼層接合部8bの範囲に入らない場合、炭素鋼層5側からガウジングを行った後にアーク溶接を行うことで、溶接ビード9の先端を炭素鋼層接合部8bの範囲することができる。
図6はガウジングを行う場合の概略図である。図中Gがガウジングを行って得られる溝を示す。このときの溝GのルートフェイスFは、回転ツール(回転工具)のプローブ3の長さに2mm足した長さよりも長くかつプローブ3の長さに3mm足した長さよりも短い値に設定される。ルートフェイスFをこのような値に設定することにより、溶接ビード9の先端を炭素鋼層接合部8bの範囲することができる。
なお、ガウジングを行う代わりに、あらかじめ炭素鋼層5側に開先を取っておくことで、アーク溶接により形成される溶接ビード9の先端を炭素鋼層接合部8bの範囲とすることも可能である。
When the tip of the weld bead 9 formed by arc welding is not within the range of the carbon steel layer joint portion 8b shown in FIG. 2, such as when the carbon steel layer 5 is thick, gouging is performed from the carbon steel layer 5 side. After that, by performing arc welding, the tip of the weld bead 9 can be within the range of the carbon steel layer joint 8b.
FIG. 6 is a schematic diagram when performing gouging. In the figure, G indicates a groove obtained by performing gouging. At this time, the root face F of the groove G is set to a value that is longer than the length of the probe 3 of the rotary tool (rotary tool) added by 2 mm and shorter than the length of the probe 3 added by 3 mm. . By setting the root face F to such a value, the tip of the weld bead 9 can be within the range of the carbon steel layer joint 8b.
In addition, it is also possible to make the front-end | tip of the weld bead 9 formed by arc welding into the range of the carbon steel layer junction part 8b by previously making a groove | channel on the carbon steel layer 5 side instead of performing gouging. is there.

以上説明したように発明に係るクラッド鋼材の接合方法によれば、摩擦攪拌接合により、互いに対向するクラッド層6どうしと炭素鋼層5どうしを接合するが、このとき、接合ビード8内の成分が板厚方向で、クラッド層の成分と炭素鋼層の成分とに分離される。このため、その後クラッド層6から離れた位置にある炭素鋼層5どうしの未接合部分を炭素鋼層5側からアーク溶接するとき、アーク溶接の先端側が接合ビート8内の炭素鋼層の成分にのみ、つまり炭素鋼層接合部8bにのみ接するように溶接すれば、NiやCrを多く含まない炭素鋼用の溶接材料を用いて溶接したとしても、割れなどの不具合が発生しない。したがって、炭素鋼用の安価な溶接材料を用いることが可能となり、低コスト化を図ることができ、炭素鋼層5を溶接する際の溶接速度の向上が可能となり、施工コストも低減させることが可能となる。また炭素鋼部どうしの突き合わせ溶接部において、異材継手とならない構造となるため、靭性の低下を防止することができる。   As described above, according to the method for joining clad steel materials according to the present invention, the clad layers 6 and the carbon steel layers 5 facing each other are joined by friction stir welding. In the plate thickness direction, it is separated into a component of the cladding layer and a component of the carbon steel layer. For this reason, when arc welding is performed from the carbon steel layer 5 side to the unjoined portions of the carbon steel layers 5 that are separated from the cladding layer 6 thereafter, the tip side of the arc welding is the component of the carbon steel layer in the joining beat 8. In other words, if welding is performed so as to contact only the carbon steel layer joint 8b, defects such as cracks do not occur even if welding is performed using a carbon steel welding material that does not contain a large amount of Ni or Cr. Therefore, it becomes possible to use an inexpensive welding material for carbon steel, to reduce the cost, to improve the welding speed when welding the carbon steel layer 5, and to reduce the construction cost. It becomes possible. Moreover, since it becomes a structure which does not become a dissimilar material joint in the butt welding part of carbon steel parts, the fall of toughness can be prevented.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
例えば、上記実施形態では、摩擦攪拌接合をクラッド層6側から行っているが、これに限られることなく炭素鋼層5側から摩擦攪拌接合を行っても良い。
また、前記実施形態で示した回転ツール1はあくまで一例であり、他の構造として、例えば、プローブに3にねじ状の螺旋溝が形成されたものを用いても良い。
また、本発明はクラッド鋼材を接合する場合であれば適用可能であり、クラッド鋼材の形状は問わない。例えば、クラッド鋼材が板状であってもあるいはパイプ状であっても本発明は適用可能である。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The change of the structure of the range which does not deviate from the summary of this invention, etc. are included.
For example, in the above embodiment, the friction stir welding is performed from the clad layer 6 side, but the present invention is not limited to this, and the friction stir welding may be performed from the carbon steel layer 5 side.
Further, the rotary tool 1 shown in the above embodiment is merely an example, and as another structure, for example, a probe in which a screw-like spiral groove is formed in 3 may be used.
Moreover, this invention is applicable if it joins a clad steel material, and the shape of a clad steel material is not ask | required. For example, the present invention is applicable regardless of whether the clad steel material is plate-shaped or pipe-shaped.

以下、本発明を実施例により詳細に説明する。
本発明では、試験材としてSUS316LとAPI 5L X65相当材を板厚方向に張り合わせたクラッド鋼材を用いた。また、クラッド層であるSUS316Lの板厚は2mmと1mmの2種類とした。
Hereinafter, the present invention will be described in detail with reference to examples.
In the present invention, a clad steel material in which SUS316L and an API 5L X65 equivalent material are bonded in the thickness direction is used as a test material. Moreover, the thickness of SUS316L which is a clad layer was made into 2 types, 2 mm and 1 mm.

実施方法は、上述したクラッド鋼材どうしを突き合わせた状態とし、まず初めにクラッド層どうしと炭素鋼層どうしが同時に撹伴するようにクラッド層側から摩擦攪拌接合にて接合し、その後Niが4wt%以下かつCrが12wt%以下の溶接材料を用いて、炭素鋼側からアーク溶接を実施した。   The implementation method is such that the above clad steel materials are in contact with each other. First, the clad layers and carbon steel layers are joined together by friction stir welding so that the clad layers and carbon steel layers are simultaneously stirred, and then Ni is 4 wt%. Then, arc welding was performed from the carbon steel side using a welding material having Cr of 12 wt% or less.

表1に実施例として、クラッド層側から摩擦攪拌接合を行った場合の実施結果を示す。摩擦攪拌接合に用いた回転ツールの材質はPCBN単独のものと、PCBNとW−reを混ぜたものの2種類とし、プローブの長さは、両者とも4mmのものを用いた。接合条件として回転ツールの回転数を200min―1〜600min―1、接合速度を10cm/min〜40cm/minの範囲で変化させ、クラッド層と炭素鋼層の板厚方向の攪拌の有無、欠陥の有無について評価した。 As an example, Table 1 shows the results when the friction stir welding is performed from the clad layer side. The rotary tool used for the friction stir welding was made of two types, that is, a single PCBN material and a mixed material of PCBN and W-re, and the probe lengths were both 4 mm. 200min -1 ~600min -1 the rotation speed of the rotary tool as the bonding condition, the bonding rate was varied in the range of 10cm / min~40cm / min, the plate thickness direction of the cladding layer and the carbon steel layer whether agitation, the defect The presence or absence was evaluated.

まず回転ツール材料としてPCBN単独を用いた場合(TP1〜TP12)について述べる。表1に示すように回転ツールの回転数が200min―1の時10cm/min以上20cm/min以下、回転ツールの回転数が400min―1の時20cm/min以上40cm/min以下の条件においては、クラッド層と炭素鋼層の板厚方向の攪拌は見られず、欠陥についても発見されなかった。
この結果を下記の表2に示す。
First, the case where PCBN alone is used as the rotating tool material (TP1 to TP12) will be described. As shown in Table 1, when the rotational speed of the rotary tool is 200 min− 1 and 10 cm / min to 20 cm / min, and when the rotational speed of the rotary tool is 400 min− 1 , 20 cm / min and 40 cm / min. No agitation of the clad layer and carbon steel layer in the thickness direction was observed, and no defects were found.
The results are shown in Table 2 below.

TP13〜TP18は回転ツール材料としてPCBNとW−reを混ぜたものを使用した結果であるが、PCBNを用いた場合と同様の結果が得られた。   TP13 to TP18 are the results of using a mixture of PCBN and W-re as the rotating tool material, but the same results as when PCBN was used were obtained.

表3に、クラッド層側からクラッド層どうしと炭素鋼層どうしが同時に撹伴するように摩擦攪拌接合にて接合したクラッド鋼材の突き合わせ溶接部を炭素鋼層側からアーク溶接を行った場合の実施例を示す。   Table 3 shows the results when arc welding is performed from the carbon steel layer side to the butt weld of the clad steel material joined by friction stir welding so that the clad layers and carbon steel layers are simultaneously stirred from the clad layer side An example is shown.

試験材として、表1に示した実施例において、クラッド層の板厚が2mmのものでかつ総合評価が良好であったテストピースを用いた。   As a test material, in the example shown in Table 1, a test piece having a clad layer thickness of 2 mm and good overall evaluation was used.

試験方法は、上述したテストピースを炭素鋼側からガウジングし、ガスメタルアーク溶接にてアーク溶接を実施した。ガスメタルアーク溶接に用いた溶接材料としてJIS Z3312 YGW24を用いた。ガスメタルアーク溶接に用いた溶接材料の成分を表4に示す。   In the test method, the test piece described above was gouged from the carbon steel side, and arc welding was performed by gas metal arc welding. JIS Z3312 YGW24 was used as a welding material used for gas metal arc welding. Table 4 shows the components of the welding material used for gas metal arc welding.

本実施例では、アーク溶接により形成される溶接ビードの先端9a(すなわち溶け込みの先端)位置を制御するために炭素鋼側からガウジング深さを変化させた。   In this example, the gouging depth was changed from the carbon steel side in order to control the position of the tip 9a of the weld bead formed by arc welding (that is, the tip of the penetration).

表4に示すように、アーク溶接により形成される溶接ビードの先端9a(すなわち溶け込みの先端)が摩擦攪拌接合によって形成された接合ビード8内でかつ炭素鋼層接合部8b内であった場合(すなわちTP19の場合)、割れや溶け込み不良やマルテンサイトは発生しなかったが、TP20に示すようにアーク溶接の溶け込みが浅く、摩擦攪拌接合によって形成された接合ビード8に達しない場合は溶け込み不良となり、TP21に示すようにアーク溶接の溶け込みが深く、クラッド層接合部8aに達した場合は、溶接金属内に割れが発生した。   As shown in Table 4, when the tip 9a of the weld bead formed by arc welding (that is, the tip of the penetration) is in the joint bead 8 formed by friction stir welding and in the carbon steel layer joint 8b ( That is, in the case of TP19), cracks, poor penetration, and martensite did not occur. However, as shown in TP20, the penetration of arc welding is shallow, and if it does not reach the joint bead 8 formed by friction stir welding, the penetration is poor. As shown in TP21, when arc welding was deep and reached the clad layer joint 8a, cracks occurred in the weld metal.

1:回転ツール
2:ショルダ
3:プローブ
4:クラッド鋼材
5:クラッド層
6:炭素鋼層
7:アーク溶接用トーチ
8:接合ビード
8a:クラッド層接合部
8b:炭素鋼層接合部
9:溶接ビード
9a:溶接ビードの先端
1: rotating tool 2: shoulder 3: probe 4: clad steel material 5: clad layer 6: carbon steel layer 7: arc welding torch 8: joint bead 8a: clad layer joint 8b: carbon steel layer joint 9: weld bead 9a: The tip of the weld bead

Claims (6)

積層された炭素鋼層とクラッド層とを備えるクラッド鋼材の端面どうしを突き合わせて接合するクラッド鋼材の接合方法において、
互いに対向する前記クラッド層どうしと前記炭素鋼層どうしをそれらが同時に撹伴するように摩擦攪拌接合にて接合する摩擦攪拌接合工程と、
その後、前記クラッド層から離れた位置にある前記炭素鋼層どうしの未接合部分を前記炭素鋼層側からアーク溶接により接合するアーク溶接工程と、
を備えることを特徴とするクラッド鋼材の接合方法。
In a method for joining clad steel materials in which end faces of clad steel materials each having a laminated carbon steel layer and a clad layer are butted against each other,
A friction stir welding step of joining the clad layers facing each other and the carbon steel layers by friction stir welding so that they are simultaneously stirred;
Thereafter, an arc welding step of joining the unbonded portions of the carbon steel layers located away from the cladding layer by arc welding from the carbon steel layer side,
A method for joining clad steel materials, comprising:
前記アーク溶接工程で、Niが4wt%以下かつCrが12wt%以下の溶接材料を用いてアーク溶接を行うことを特徴とする請求項1に記載のクラッド鋼材の接合方法。   The method for joining clad steel according to claim 1, wherein arc welding is performed in the arc welding process using a welding material having Ni of 4 wt% or less and Cr of 12 wt% or less. 積層された炭素鋼層とクラッド層とを備えるクラッド鋼材の端面どうしを突き合わせて接合されたクラッド鋼材の接合構造であって、
互いに対向する前記クラッド層どうしを接合したクラッド層接合部と、互いに対向する前記炭素鋼層どうしを接合した炭素鋼層接合部との間に、該クラッド層接合部と炭素鋼層接合部を仕切る仕切面が形成され、
該仕切面は、接合前の互いに対向する接合端部の前記炭素鋼層と前記クラッド層との境界部を結ぶ仮想境界面を基準に、そこから0.5mmの範囲に形成されていることを特徴とするクラッド鋼材の接合構造。
A clad steel material joined structure in which end faces of clad steel materials each having a laminated carbon steel layer and a clad layer are joined to each other,
The clad layer joint and the carbon steel layer joint are partitioned between a clad layer joint that joins the clad layers facing each other and a carbon steel layer joint that joins the carbon steel layers facing each other. A partition surface is formed,
The partition surface is formed within a range of 0.5 mm from the virtual boundary surface connecting the boundary portion between the carbon steel layer and the cladding layer at the joining end portions facing each other before joining. Characteristic clad steel joint structure.
前記摩擦攪拌接合工程で、回転工具のプローブとして長さが前記クラッド層の厚さよりも2mm以上長いものを用い、前記回転工具の回転数を200min―1以上400min―1以下に設定し、接合速度を、前記回転工具の回転数が200min―1の時10cm/min以上20cm/min以下、前記回転工具の回転数が400min―1の時20cm/min以上40cm/min以下に設定して摩擦接伴接合を行うことを特徴とする請求項1または2に記載のクラッド鋼材の接合方法。 In the friction stir welding step, a probe having a length that is 2 mm or longer than the thickness of the cladding layer is used as a probe for the rotary tool, the rotational speed of the rotary tool is set to 200 min −1 or more and 400 min −1 or less, and the welding speed is set. and the rotational speed of the rotary tool below 20 cm / min when 10 cm / min or more 200 min -1, the rotation speed of the rotary tool is set below 20 cm / min or more 40 cm / min when 400 min -1 friction Seppan The method for joining clad steel materials according to claim 1, wherein joining is performed. 前記摩擦攪拌工程と前記アーク溶接工程の間に、前記摩擦攪拌工程で接合した部分を前記炭素鋼層側から削り込むガウジング工程を備えることを特徴とする請求項1,2,4のいずれか一項に記載のクラッド鋼材の接合方法。   5. A gouging step of cutting a portion joined in the friction stirring step from the carbon steel layer side between the friction stirring step and the arc welding step. The method for joining clad steel materials according to Item. 前記ガウジング工程で形成された溝のルートフェイスは、回転工具のプローブの長さに2mm足した長さよりも長くかつプローブの長さに3mm足した長さよりも短いことを特徴とする請求項5に記載のクラッド鋼材の接合方法。


6. The root face of the groove formed in the gouging process is longer than a length obtained by adding 2 mm to the length of the probe of the rotary tool and shorter than a length obtained by adding 3 mm to the length of the probe. The joining method of clad steel materials as described.


JP2010134258A 2010-06-11 2010-06-11 Clad steel material joining method and structure Active JP5538079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134258A JP5538079B2 (en) 2010-06-11 2010-06-11 Clad steel material joining method and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134258A JP5538079B2 (en) 2010-06-11 2010-06-11 Clad steel material joining method and structure

Publications (2)

Publication Number Publication Date
JP2011255416A true JP2011255416A (en) 2011-12-22
JP5538079B2 JP5538079B2 (en) 2014-07-02

Family

ID=45472176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134258A Active JP5538079B2 (en) 2010-06-11 2010-06-11 Clad steel material joining method and structure

Country Status (1)

Country Link
JP (1) JP5538079B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141423A1 (en) * 2013-03-14 2014-09-18 新日鉄住金エンジニアリング株式会社 Method and structure for welding clad steel tube
WO2015053258A1 (en) * 2013-10-07 2015-04-16 新日鉄住金エンジニアリング株式会社 Friction stir welding tool and method for joining laminated material
GB2526121A (en) * 2014-05-14 2015-11-18 Acergy France SAS Fabrication of pipe strings using friction stir welding
CN110587165A (en) * 2019-09-16 2019-12-20 辽宁石油化工大学 Composite welding process method for aluminum and aluminum alloy section

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155030A (en) * 1992-10-27 1994-06-03 Sumitomo Special Metals Co Ltd Joined clad plate and its manufacture
JPH07314174A (en) * 1994-05-20 1995-12-05 Nippon Steel Corp Pipe making welding method of clad stainless steel pipe
JP2001038472A (en) * 1999-07-26 2001-02-13 Nippon Welding Rod Kk Welding method of stainless steel clad plate
JP2005205449A (en) * 2004-01-22 2005-08-04 Mitsubishi Heavy Ind Ltd Clad material manufacturing method
JP2007313541A (en) * 2006-05-26 2007-12-06 Sumitomo Light Metal Ind Ltd Method for manufacturing clad tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155030A (en) * 1992-10-27 1994-06-03 Sumitomo Special Metals Co Ltd Joined clad plate and its manufacture
JPH07314174A (en) * 1994-05-20 1995-12-05 Nippon Steel Corp Pipe making welding method of clad stainless steel pipe
JP2001038472A (en) * 1999-07-26 2001-02-13 Nippon Welding Rod Kk Welding method of stainless steel clad plate
JP2005205449A (en) * 2004-01-22 2005-08-04 Mitsubishi Heavy Ind Ltd Clad material manufacturing method
JP2007313541A (en) * 2006-05-26 2007-12-06 Sumitomo Light Metal Ind Ltd Method for manufacturing clad tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141423A1 (en) * 2013-03-14 2014-09-18 新日鉄住金エンジニアリング株式会社 Method and structure for welding clad steel tube
WO2015053258A1 (en) * 2013-10-07 2015-04-16 新日鉄住金エンジニアリング株式会社 Friction stir welding tool and method for joining laminated material
JP5879460B2 (en) * 2013-10-07 2016-03-08 新日鉄住金エンジニアリング株式会社 Laminate joining method
GB2526121A (en) * 2014-05-14 2015-11-18 Acergy France SAS Fabrication of pipe strings using friction stir welding
GB2526121B (en) * 2014-05-14 2017-02-01 Acergy France SAS Fabrication of pipe strings using friction stir welding
US10010970B2 (en) 2014-05-14 2018-07-03 Acergy France SAS Fabrication of pipe strings using friction stir welding
EP3142822B1 (en) * 2014-05-14 2020-08-05 Acergy France SAS Fabrication of pipe strings using friction stir welding
CN110587165A (en) * 2019-09-16 2019-12-20 辽宁石油化工大学 Composite welding process method for aluminum and aluminum alloy section
CN110587165B (en) * 2019-09-16 2021-02-05 辽宁石油化工大学 Composite welding method for aluminum and aluminum alloy section

Also Published As

Publication number Publication date
JP5538079B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN100450688C (en) Thin-wall stainless steel double-layer and carbon steel base layer composite tube girth weld welding method
JP5619023B2 (en) Manufacturing method using butt weld and fusion welding and friction stir welding
CN101927390A (en) Method for welding circumferential weld between metal thin-wall clad layer and base layer of clad pipe
CN101362249A (en) Girth welding method of duplex stainless steel bimetal composite pipe
US20070175967A1 (en) High integrity welding and repair of metal components
JP2010519053A (en) Corrosion-resistant alloy welds in carbon steel structures and pipelines adapted to large axial plastic strain
JP5538079B2 (en) Clad steel material joining method and structure
JP2009214127A (en) Submerged arc welding method for steel material
CN110076526B (en) Manufacturing process of three-layer stainless steel and carbon steel composite steel pipe
JP3702216B2 (en) Manufacturing method for inner and outer surface submerged arc welded steel pipes with excellent seam weld toughness
JP2009233679A (en) Submerged arc welding method of steel material
JP5742091B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP2013158774A (en) Welding method, weld bonding structure and stainless steel welded structure
EP3389918A1 (en) Process of butt-welding a laminated item, and an assembly comprising a butt-welded laminated item
JP6051292B2 (en) Clad steel pipe joining method and structure
WO2020148191A1 (en) Improvements in the welding of pipes
JP4259376B2 (en) UOE steel pipe manufacturing method
KR20120029650A (en) Welding method of steel piping component
JP3182672B2 (en) Internal welding method of clad steel pipe
JP5742090B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP2006281303A (en) Submerged arc welding method for high strength steel sheet
Mahoney et al. Friction stir welding of pipeline steels
CN114985878B (en) Welding method for large-caliber girth weld
Aderinola et al. Efficient welding technologies applicable to HSS arctic offshore structures
JPH0788653A (en) Butt welding method for copper alloy clad steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5538079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250