JP2011252808A - Magnetism detection device - Google Patents

Magnetism detection device Download PDF

Info

Publication number
JP2011252808A
JP2011252808A JP2010127177A JP2010127177A JP2011252808A JP 2011252808 A JP2011252808 A JP 2011252808A JP 2010127177 A JP2010127177 A JP 2010127177A JP 2010127177 A JP2010127177 A JP 2010127177A JP 2011252808 A JP2011252808 A JP 2011252808A
Authority
JP
Japan
Prior art keywords
coordinate
point data
detection
magnetic
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010127177A
Other languages
Japanese (ja)
Other versions
JP5643547B2 (en
Inventor
Yukimitsu Yamada
幸光 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2010127177A priority Critical patent/JP5643547B2/en
Publication of JP2011252808A publication Critical patent/JP2011252808A/en
Application granted granted Critical
Publication of JP5643547B2 publication Critical patent/JP5643547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform calibration processing for obtaining a reference original point of a spherical coordinate with a small operation amount concerning a magnetism detection device using three axial sensors for detecting geomagnetism.SOLUTION: Coordinate point data Di(xi, yi, zi) of geomagnetic vectors are obtained based on detection outputs from three geomagnetic sensors. The coordinate point data are positioned on a non-spherical coordinate Ga having a center Oc(xc, yc, zc) at an off-set position separated from the original point O of a three-dimensional detection coordinate and also having a distortion with the size of detection error coefficients a, b, c. Then, a temporary spherical coordinate G1, which has the center Oc and has an minimum error compared with a plurality of the coordinate point data Di, is obtained by calculation, so as to specify coordinate points xc, yc, zc. The detection error coefficients a, b, c are not obtained by calculation but selected from the prepared combinations of numerals as the ones with the smallest error.

Description

本発明は、磁気センサで検出された磁気ベクトルが、球面座標上の座標点データとして求められる磁気検知装置に係り、特に、座標点データの基準を求めるキャリブレーション処理を、最少の演算処理で行うことができる磁気検知装置に関する。   The present invention relates to a magnetic detection device in which a magnetic vector detected by a magnetic sensor is obtained as coordinate point data on spherical coordinates, and in particular, calibration processing for obtaining a reference of coordinate point data is performed with a minimum of arithmetic processing. The present invention relates to a magnetic detection device capable of performing the above.

3軸に配置された磁気センサを使用した磁気検知装置は、地磁気を検知する方位センサや角速度センサなどとして使用される。磁気検知装置は、互いに直交するX軸とY軸およびZ軸に向けて配置された磁気センサによって地磁気などの磁界強度が検知されると、その検知出力に基づいて、磁気ベクトルが三次元検知座標上の座標点として認識される。   A magnetic detection device using magnetic sensors arranged on three axes is used as an azimuth sensor or an angular velocity sensor that detects geomagnetism. When a magnetic field intensity such as geomagnetism is detected by a magnetic sensor arranged toward the X axis, the Y axis, and the Z axis that are orthogonal to each other, the magnetic detection device converts a magnetic vector into a three-dimensional detection coordinate based on the detection output. Recognized as the upper coordinate point.

この種の磁気検知装置は、電源を投入した時点で、オフセット磁界の存在や外部からの磁気ノイズの影響で、磁気ベクトルが三次元検知座標上のどの位置に現れるか不明である。そのため、キャリブレーション処理を行って、検知された座標点データを、予め決められている原点を中心とする三次元検知座標上のデータに変換することが必要である。   In this type of magnetic detection device, when the power is turned on, it is unclear at which position on the three-dimensional detection coordinates the magnetic vector appears due to the presence of an offset magnetic field and the influence of external magnetic noise. Therefore, it is necessary to perform calibration processing to convert the detected coordinate point data into data on three-dimensional detection coordinates centered on a predetermined origin.

以下の特許文献1には、磁気検知装置で地磁気を検知して得られた方位データが楕円に近似する座標系上に現れることが指摘されており、演算により、測定値の座標系を数学的に理想的な円形リングに変換して補償することが記載されている。   In the following Patent Document 1, it is pointed out that the azimuth data obtained by detecting geomagnetism with a magnetic detection device appears on a coordinate system that approximates an ellipse. Describes the compensation by converting to an ideal circular ring.

以下の特許文献2には、少ないデータ量で三次元検知座標上の基準原点を求める方法として、複数の地磁気ベクトルを検知して3つの座標点データが得られたときに、3つの座標点データから等距離の点を求め、この点を基準原点とする発明が開示されている。   In Patent Document 2 below, as a method for obtaining a reference origin on a three-dimensional detection coordinate with a small amount of data, three coordinate point data are obtained when a plurality of geomagnetic vectors are detected and three coordinate point data are obtained. An invention is disclosed in which an equidistant point is obtained from the reference point and this point is used as a reference origin.

特表平7−507874号公報Japanese translation of PCT publication No. 7-507874 特開2007−163389号公報JP 2007-163389 A

特許文献1に示すキャリブレーション処理は、演算処理によって求めるべき未知数が多いため、演算に時間が係り、正確なキャリブレーション処理を行うことが難しい。   In the calibration process shown in Patent Document 1, since there are many unknowns to be obtained by the calculation process, it takes time for the calculation and it is difficult to perform an accurate calibration process.

特許文献2に記載のキャリブレーション処理は、演算が簡単であるが、少数のデータから基準原点を求めているため、演算後の基準原点の誤差が大きくなる可能性が高い。   The calibration process described in Patent Document 2 is easy to calculate, but since the reference origin is obtained from a small number of data, there is a high possibility that the error of the reference origin after the calculation will increase.

本発明は上記従来の課題を解決するものであり、最少の演算処理で精度の高いキャリブレーション処理を行うことができる磁気検知装置を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a magnetic detection device capable of performing a highly accurate calibration process with a minimum of arithmetic processing.

本発明は、直交する3軸方向の磁界強度を検知する磁気センサを有する磁気検知部および演算部とを有し、前記演算部は、
(a)3軸方向の磁界強度の検出値から、磁気ベクトルの向きを三次元検知座標上の座標点データとして求め、
(b)複数の座標点データを得たときに、複数の座標点データとの誤差が最小となる仮球面座標と、三次元検知座標上における前記仮球面座標の中心の座標を求め、
(c)それぞれが定数である3軸方向の検知誤差係数a,b,cの組み合わせを予め複数組設定しておき、前記仮球面座標の中心と一致し且つ複数組の検知誤差係数a,b,cのいずれかを当てはめて得られる複数の非球面座標のうち、複数の座標点データとの誤差が最も少ないものを、座標点データが位置する非球面座標として特定する、ことを特徴とするものである。
The present invention includes a magnetic detection unit and a calculation unit having a magnetic sensor for detecting magnetic field strength in three orthogonal directions, and the calculation unit includes:
(A) From the detected value of the magnetic field strength in the three axis directions, the direction of the magnetic vector is obtained as coordinate point data on the three-dimensional detection coordinates,
(B) When a plurality of coordinate point data is obtained, a provisional spherical coordinate that minimizes an error from the plurality of coordinate point data and a coordinate of the center of the provisional spherical coordinate on the three-dimensional detection coordinates are obtained,
(C) A plurality of combinations of detection error coefficients a, b, and c in the three-axis directions, each of which is a constant, are set in advance, and coincide with the center of the provisional spherical coordinate and have a plurality of sets of detection error coefficients a, b. Among the plurality of aspherical coordinates obtained by applying any one of, c, the one having the smallest error from the plurality of coordinate point data is specified as the aspherical coordinate where the coordinate point data is located. Is.

さらに、本発明は、
(d)複数の座標点データとの誤差が最も少ない非球面座標の検知誤差係数a,b,cと、前記仮球面座標の中心の座標とから、座標点データを、補正球面座標上の補正座標点データに換算するものである。
Furthermore, the present invention provides
(D) The correction of the coordinate point data on the corrected spherical coordinate from the detection error coefficients a, b, c of the aspherical coordinate with the least error from a plurality of coordinate point data and the coordinates of the center of the provisional spherical coordinate. It is converted into coordinate point data.

磁気検知部の検知出力から得られる座標点データは、三次元検知座標の原点から離れた位置に中心を有し、且つX軸とY軸およびZ軸のそれぞれの検知誤差係数a,b,cを含む楕円球や長円球などの非球面座標上の点として現れる。したがって、三次元検知座標の原点から非球面座標の中心までのオフセット距離と、前記検知誤差係数a,b,cを求めないと、磁気ベクトルの方位や動きを正確に把握することができない。したがって、複数の座標点データを得たときに、その座標点データが現れる座標面と、非球面座標との誤差を求めることが必要である。   The coordinate point data obtained from the detection output of the magnetic detection unit has a center at a position away from the origin of the three-dimensional detection coordinates, and the detection error coefficients a, b, c for the X axis, the Y axis, and the Z axis, respectively. Appears as points on aspherical coordinates such as ellipsoidal spheres and ellipsoids. Therefore, unless the offset distance from the origin of the three-dimensional detection coordinates to the center of the aspherical coordinates and the detection error coefficients a, b, and c are obtained, the direction and motion of the magnetic vector cannot be accurately grasped. Therefore, when a plurality of coordinate point data is obtained, it is necessary to obtain an error between the coordinate surface on which the coordinate point data appears and the aspherical coordinates.

そこで、座標点データが仮球面座標に現れると仮定して、各未知数のうちの三次元検知座標の原点から非球面座標の中心までのオフセット距離のみを求め、検知誤差係数a,b,cに関しては、予め設定しておいた複数の定数の組み合わせのうちの実際の座標面との誤差が最も少ないものを求める。これにより、最少の演算数で、精度の高いキャリブレーション処理を行うことができる。   Therefore, assuming that the coordinate point data appears in the provisional spherical coordinates, only the offset distance from the origin of the three-dimensional detection coordinates to the center of the aspherical coordinates among the unknowns is obtained, and the detection error coefficients a, b, and c are determined. Finds the smallest combination of a plurality of constants set in advance with the smallest error from the actual coordinate plane. Thereby, a highly accurate calibration process can be performed with the minimum number of operations.

本発明は、前記(b)における仮球面座標の方程式は、数1で表わされる。また、前記(c)の非球面座標の方程式は、数2で表わされる。ただし、xc,yc,zcは、三次元検知座標上における前記仮球面座標の中心の座標である。   In the present invention, the equation of the provisional spherical coordinate in (b) is expressed by Equation 1. Further, the equation of the aspherical coordinate in (c) is expressed by Equation 2. However, xc, yc, zc are the coordinates of the center of the provisional spherical coordinates on the three-dimensional detection coordinates.

本発明は、前記補正球面座標上の補正座標点データから、磁気ベクトルの方位を求めることができる。または、前記補正球面座標の中心に対する複数の補正座標点データの開き角度から、磁気検知部の回動角度を求めることができ、さらに、前記補正球面座標の中心に対する複数の補正座標点データの開き角度および複数の前記補正座標データが得られた時間とから、磁気検知部の角速度を求めることができる。   In the present invention, the direction of the magnetic vector can be obtained from the corrected coordinate point data on the corrected spherical coordinate. Alternatively, the rotation angle of the magnetic detection unit can be obtained from the opening angle of a plurality of correction coordinate point data with respect to the center of the correction spherical coordinate, and the opening of the plurality of correction coordinate point data with respect to the center of the correction spherical coordinate can be obtained. The angular velocity of the magnetic detection unit can be obtained from the angle and the time when the plurality of correction coordinate data are obtained.

本発明は、キャリブレーション処理の演算で求めるべき未知数のうち、三次元検知座標の原点からのオフセット距離のみを演算で求め、3軸の検知誤差係数a,b,cは予め決められた定数から選択する。   The present invention calculates only the offset distance from the origin of the three-dimensional detection coordinates among the unknowns to be calculated by the calibration processing, and the three-axis detection error coefficients a, b, and c are determined from predetermined constants. select.

そのため、演算で求めるべき未知数が少なくなり、演算部での演算処理を短時間で行えるようになる。   For this reason, the number of unknowns to be obtained by calculation is reduced, and calculation processing in the calculation unit can be performed in a short time.

本発明の実施の形態の磁気検知装置の回路ブロック図、The circuit block diagram of the magnetic detection apparatus of embodiment of this invention, データバッファの処理動作を示す説明図、Explanatory drawing showing the processing operation of the data buffer, 磁気検知部に設けられたX軸センサとY軸センサおよびZ軸センサの説明図、Explanatory drawing of the X-axis sensor, Y-axis sensor, and Z-axis sensor provided in the magnetic detection unit 三次元検知座標上での非球面座標と仮球面座標および座標点データを示す説明図、An explanatory diagram showing aspherical coordinates, provisional spherical coordinates and coordinate point data on the three-dimensional detection coordinates, 伏角の演算を示す説明図、Explanatory drawing showing the calculation of the dip angle, 三次元検知座標の原点に中心を有する補正球面座標と補正座標点データを示す説明図、Explanatory drawing which shows the correction spherical coordinate and correction coordinate point data which have a center in the origin of a three-dimensional detection coordinate,

図1に示す本発明の実施の形態の磁気検知装置1は、主に方位センサとして使用されるものであり、地磁気検知部2と3軸加速度センサ8とを有している。   A magnetic detection device 1 according to an embodiment of the present invention shown in FIG. 1 is mainly used as an orientation sensor, and includes a geomagnetic detection unit 2 and a three-axis acceleration sensor 8.

図3に示すように、磁気検知装置1は、互いに直交する基準軸であるX1軸とY1軸およびZ1軸が固定軸として決められている。X1軸とY1軸およびZ1軸で三次元検知座標が決められている。磁気検知装置1は携帯用機器などに搭載されており、三次元検知座標のX1軸とY1軸およびZ1軸の直交関係を維持したまま、空間内で自由に移動できる。   As shown in FIG. 3, in the magnetic detection device 1, the X1, Y1, and Z1 axes, which are reference axes orthogonal to each other, are determined as fixed axes. Three-dimensional detection coordinates are determined by the X1 axis, the Y1 axis, and the Z1 axis. The magnetic detection device 1 is mounted on a portable device or the like, and can freely move in space while maintaining the orthogonal relationship between the X1 axis, the Y1 axis, and the Z1 axis of the three-dimensional detection coordinates.

図3に示すように、地磁気検知部2には、X軸センサ3がX1軸に沿って固定され、Y軸センサ4がY1軸に沿って固定され、Z軸センサがZ1軸に沿って固定されている。X軸センサ3とY軸センサ4およびZ軸センサ5は、いずれもGMR素子(巨大磁気抵抗効果素子)で構成されている。GMR素子は、Ni−Co合金やNi−Fe合金などの軟磁性材料で形成された固定磁性層および自由磁性層と、固定磁性層と自由磁性層との間に挟まれた銅などの非磁性導電層とを有している。固定磁性層の下に反強磁性層が積層され、反強磁性層と固定磁性層との交換結合により、固定磁性層の磁化が固定されている。   As shown in FIG. 3, the X-axis sensor 3 is fixed along the X1 axis, the Y-axis sensor 4 is fixed along the Y1 axis, and the Z-axis sensor is fixed along the Z1 axis. Has been. The X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5 are all configured by GMR elements (giant magnetoresistance effect elements). The GMR element is composed of a pinned magnetic layer and a free magnetic layer made of a soft magnetic material such as a Ni—Co alloy or a Ni—Fe alloy, and a nonmagnetic material such as copper sandwiched between the pinned magnetic layer and the free magnetic layer. And a conductive layer. An antiferromagnetic layer is laminated below the pinned magnetic layer, and the magnetization of the pinned magnetic layer is pinned by exchange coupling between the antiferromagnetic layer and the pinned magnetic layer.

X軸センサ3は、地磁気ベクトルのX1方向に向く成分を検知するものであり、固定磁性層の磁化の向きがX1軸に沿うPX方向に固定されている。自由磁性層の磁化の向きは地磁気の向きに反応する。自由磁性層の磁化の向きがPX方向と平行になるとX軸センサ3の抵抗値が極小になり、自由磁性層の磁化の向きがPX方向と逆向きになるとX軸センサ3の抵抗値が極大になる。また、自由磁性層の磁化の向きがPX方向と直交すると、抵抗値が前記極大値と極小値との平均値となる。   The X-axis sensor 3 detects a component of the geomagnetic vector facing the X1 direction, and the magnetization direction of the pinned magnetic layer is fixed in the PX direction along the X1 axis. The direction of magnetization of the free magnetic layer responds to the direction of geomagnetism. When the magnetization direction of the free magnetic layer is parallel to the PX direction, the resistance value of the X-axis sensor 3 is minimized, and when the magnetization direction of the free magnetic layer is opposite to the PX direction, the resistance value of the X-axis sensor 3 is maximized. become. Further, when the magnetization direction of the free magnetic layer is orthogonal to the PX direction, the resistance value is an average value of the maximum value and the minimum value.

図1に示す磁場データ検知部6では、X軸センサ3と固定抵抗とが直列に接続され、X軸センサ3と固定抵抗との直列回路に電圧が与えられており、X軸センサ3と固定抵抗との間の電圧がX1軸の検知出力として取り出される。X軸センサ3にX1方向に向く磁界が与えられていないとき、またはPXに対して直交する磁界が与えられているときに、X1軸の検知出力が中点電位となる。   In the magnetic field data detection unit 6 shown in FIG. 1, the X-axis sensor 3 and the fixed resistance are connected in series, and a voltage is applied to the series circuit of the X-axis sensor 3 and the fixed resistance. The voltage between the resistors is taken out as the detection output of the X1 axis. When a magnetic field directed in the X1 direction is not applied to the X-axis sensor 3, or when a magnetic field orthogonal to PX is applied, the detection output of the X1-axis becomes a midpoint potential.

地磁気検知部2の全体を傾け、X軸センサ3の固定磁性層の磁化の固定方向PXを地磁気ベクトルVと同じ向きにするとX軸センサ3に与えられる磁界成分が極大値となる。このときのX1軸の検知出力は、前記中点電位に対してプラス側の極大値となる。逆に、X軸センサ3の固定磁性層の磁化の固定方向PXを地磁気ベクトルVと反対に向けると、X軸センサ3に与えられる逆向きの磁界成分が極大値となる。このときのX1軸の検知出力は、前記中点電位に対してマイナス側の極大値となる。   When the entire geomagnetism detector 2 is tilted and the fixed direction PX of the magnetization of the pinned magnetic layer of the X-axis sensor 3 is set to the same direction as the geomagnetic vector V, the magnetic field component applied to the X-axis sensor 3 becomes a maximum value. The detected output of the X1 axis at this time becomes a maximum value on the plus side with respect to the midpoint potential. Conversely, when the fixed direction PX of the magnetization of the fixed magnetic layer of the X-axis sensor 3 is directed opposite to the geomagnetic vector V, the reverse magnetic field component applied to the X-axis sensor 3 has a maximum value. At this time, the detection output of the X1 axis has a maximum value on the minus side with respect to the midpoint potential.

Y軸センサ4とZ軸センサ5も、それぞれ固定抵抗とが直列に接続され、Y軸センサ4またはZ軸センサ5と固定抵抗との直列回路に電圧が与えられており、各センサと固定抵抗との間の電圧がY1軸またはZ1軸の検知出力として取り出される。   Each of the Y-axis sensor 4 and the Z-axis sensor 5 is also connected to a fixed resistor in series, and a voltage is applied to the Y-axis sensor 4 or a series circuit of the Z-axis sensor 5 and the fixed resistor. Is taken out as a detection output of the Y1 axis or the Z1 axis.

Y軸センサ4の固定磁性層の磁化の固定方向PYを地磁気ベクトルVと同じ向きにすると、Y1軸の検知出力は、中点電位に対してプラス側の極大値になる。Y軸センサ4の固定磁性層の磁化の固定方向PYを地磁気ベクトルVと反対に向けると、Y1軸の検知出力は、中点電位に対してマイナス側の極大値となる。同様に、Z軸センサ5の固定磁性層の磁化の固定方向PZを地磁気ベクトルVと同じ向きにすると、Z1軸の検知出力が、中点電位に対してプラス側の極大値になる。Z軸センサ5の固定磁性層の磁化の固定方向PYを地磁気ベクトルVと反対に向けると、Z1軸の検知出力は、中点電位に対してマイナス側の極大値となる。   When the fixed direction PY of the magnetization of the fixed magnetic layer of the Y-axis sensor 4 is set in the same direction as the geomagnetic vector V, the Y1-axis detection output has a maximum value on the plus side with respect to the midpoint potential. If the fixed direction PY of the magnetization of the fixed magnetic layer of the Y-axis sensor 4 is directed opposite to the geomagnetic vector V, the Y1-axis detection output becomes a maximum value on the minus side with respect to the midpoint potential. Similarly, when the fixed direction PZ of the magnetization of the fixed magnetic layer of the Z-axis sensor 5 is set to the same direction as the geomagnetic vector V, the detection output of the Z1-axis becomes a maximum value on the plus side with respect to the midpoint potential. When the pinned direction PY of the magnetization of the pinned magnetic layer of the Z-axis sensor 5 is directed opposite to the geomagnetic vector V, the detection output of the Z1-axis becomes a maximum value on the minus side with respect to the midpoint potential.

地磁気ベクトルVの大きさが一定であれば、X軸センサ3とY軸センサ4およびZ軸センサ5からの検知出力は、いずれもプラス側の極大値の絶対値と、マイナス側の極大値の絶対値とが同じである。   If the magnitude of the geomagnetic vector V is constant, the detection outputs from the X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5 are all of the absolute value of the plus side maximum value and the minus side maximum value. The absolute value is the same.

X軸センサ3としては、地磁気ベクトルの向きによってプラス側の検知出力とマイナス側の検知出力が得られ、プラス側の検知出力の極大値とマイナス側の検知出力の極大値とで絶対値が同じになれば、GMR素子以外の地磁気センサで構成することもできる。例えば、X1軸に沿ってプラス側の磁界強度のみを検知できるホール素子またはMR素子と、マイナス側の磁界強度のみを検知できるホール素子またはMR素子を組み合わせて、X軸センサ3として使用してもよい。これは、Y軸センサ4とZ軸センサ5においても同じである。   As the X-axis sensor 3, a positive detection output and a negative detection output are obtained depending on the direction of the geomagnetic vector, and the absolute value is the same between the maximum value of the positive detection output and the maximum value of the negative detection output. If it becomes, it can also be comprised with geomagnetic sensors other than a GMR element. For example, a Hall element or MR element that can detect only the positive magnetic field intensity along the X1 axis and a Hall element or MR element that can detect only the negative magnetic field intensity may be combined and used as the X-axis sensor 3. Good. The same applies to the Y-axis sensor 4 and the Z-axis sensor 5.

図1に示すように、磁場データ検知部6で検知されたX軸とY軸およびZ軸の検知出力は、演算部10に与えられる。演算部10は、A/D変換部とCPUおよびクロック回路などから構成されている。演算部10のクロック回路の計測時間に応じて、磁場データ検知部6で検知されたX軸とY軸およびZ軸の検知出力が、短いサイクルで間欠的にサンプリングされて演算部10に読み出される。それぞれの検知出力は、演算部内に設けられた前記A/D変換部によってディジタル値に変換される。   As shown in FIG. 1, the detection outputs of the X axis, the Y axis, and the Z axis detected by the magnetic field data detection unit 6 are given to the calculation unit 10. The arithmetic unit 10 includes an A / D converter, a CPU, a clock circuit, and the like. According to the measurement time of the clock circuit of the calculation unit 10, the detection outputs of the X axis, the Y axis, and the Z axis detected by the magnetic field data detection unit 6 are intermittently sampled in a short cycle and read out to the calculation unit 10. . Each detection output is converted into a digital value by the A / D conversion unit provided in the calculation unit.

演算部10を構成するCPUにはメモリ7が接続されている。メモリ7には、演算処理のためのソフトウエアがプログラミングされて格納されている。演算部10の演算処理は前記ソフトウエアによって実行される。   A memory 7 is connected to the CPU constituting the arithmetic unit 10. In the memory 7, software for arithmetic processing is programmed and stored. The arithmetic processing of the arithmetic unit 10 is executed by the software.

演算部10は、ソフトウエアに基づいて演算処理を行う。ディジタルデータに変換されたX1軸の検知出力とY1軸の検知出力およびZ1軸の検知出力は、演算部10で演算処理され、図4に示すX1−Y1−Z1の三次元検知座標上の座標点データDi(xi,yi,zi)に変換されて、図2に示すデータバッファ(バッファメモリ)11に格納される(iは1からNまでの整数であり、これは以下において同じである)。クロック回路と同期して短いサイクルでサンプリングされて演算された前記座標点データDiは、データバッファ11の格納部11aに与えられる。座標点データDiが格納部11aに与えられる毎に、その前に得られた座標点データDiが格納部11aから11mまで順に送り出され、最終段の格納部11mの座標点データDiが捨てられる。磁気検知装置1が動作している間は、磁場データ検知部6から最新のデータが一定時間毎に読み出され続け、演算後の座標点データDiがデータバッファ11に順番に格納されていく。   The arithmetic unit 10 performs arithmetic processing based on software. The X1 axis detection output, the Y1 axis detection output, and the Z1 axis detection output converted into digital data are subjected to calculation processing by the calculation unit 10, and the coordinates on the three-dimensional detection coordinates of X1-Y1-Z1 shown in FIG. It is converted into point data Di (xi, yi, zi) and stored in the data buffer (buffer memory) 11 shown in FIG. 2 (i is an integer from 1 to N, which is the same hereinafter). . The coordinate point data Di sampled and calculated in a short cycle in synchronization with the clock circuit is given to the storage unit 11a of the data buffer 11. Each time the coordinate point data Di is given to the storage unit 11a, the coordinate point data Di obtained before that is sequentially sent from the storage unit 11a to 11m, and the coordinate point data Di of the storage unit 11m at the final stage is discarded. While the magnetic detection device 1 is operating, the latest data is continuously read from the magnetic field data detection unit 6 at regular intervals, and the coordinate point data Di after calculation is sequentially stored in the data buffer 11.

図1に示すように、磁気検知装置1には、3軸加速度センサ8が設けられている。この3軸加速度センサ8は、X1軸とY1軸およびZ1軸のそれぞれに沿う向きの加速度を検知するものであり、その検知出力が姿勢検知部9に与えられる。姿勢検知部9では、X1軸とY1軸およびZ1軸のそれぞれに沿う向きの加速度から、図5に示す重力加速度ベクトルAが算出され、その情報が演算部10に与えられる。   As shown in FIG. 1, the magnetic detection device 1 is provided with a triaxial acceleration sensor 8. The triaxial acceleration sensor 8 detects accelerations in directions along the X1 axis, the Y1 axis, and the Z1 axis, and the detection output is given to the posture detection unit 9. In the posture detection unit 9, the gravitational acceleration vector A shown in FIG. 5 is calculated from the accelerations in the directions along the X1 axis, the Y1 axis, and the Z1 axis, and the information is given to the calculation unit 10.

図4に示すように、地磁気検知部2が地球上のいずれかの場所に置かれると、地磁気検知部2のX軸センサ3から検知出力xiが得られ、Y軸センサ4から検知出力yiが得られ、Z軸センサ5から検知出力ziが得られる。図1に示す演算部10において、各軸の検知出力xi,yi,ziから、X1−Y1−Z1軸の三次元検知座標上で、地磁気ベクトルVの向きを示す座標点データDi(xi,yi,zi)が演算される。   As shown in FIG. 4, when the geomagnetism detection unit 2 is placed anywhere on the earth, the detection output xi is obtained from the X-axis sensor 3 of the geomagnetism detection unit 2, and the detection output yi is obtained from the Y-axis sensor 4. Thus, a detection output zi is obtained from the Z-axis sensor 5. In the calculation unit 10 shown in FIG. 1, coordinate point data Di (xi, yi) indicating the direction of the geomagnetic vector V on the three-dimensional detection coordinates of the X1-Y1-Z1 axes from the detection outputs xi, yi, zi of the respective axes. , Zi) is calculated.

測定場所が北半球の場合、地磁気ベクトルVは地平線に向かって所定の伏角で入射する。図4に示すように、X1−Y1−Z1軸を有する三次元検知座標では、地磁気ベクトルVがキャリブレーション前の非球面座標Gaの中心Ocに向かい、地磁気ベクトルVの向きは、非球面座標Ga上の座標点データDi(xi,yi,zi)として表わされる。   When the measurement location is the northern hemisphere, the geomagnetic vector V is incident at a predetermined dip angle toward the horizon. As shown in FIG. 4, in the three-dimensional detection coordinates having the X1-Y1-Z1 axes, the geomagnetic vector V faces the center Oc of the aspherical coordinate Ga before calibration, and the orientation of the geomagnetic vector V is the aspherical coordinate Ga. It is expressed as the upper coordinate point data Di (xi, yi, zi).

図4に示すように、電源が投入されて地磁気の検知が開始された直後は、座標点データDi(xi,yi,zi)が現れる非球面座標Gaの中心Ocが三次元検知座標の原点Oから離れていることが多く、中心Ocと原点Oとの距離が、X軸センサ3とY軸センサ4およびZ軸センサ5で地磁気の磁界強度を検知するときのオフセット量となっている。   As shown in FIG. 4, immediately after the power is turned on and the detection of geomagnetism is started, the center Oc of the aspherical coordinate Ga in which the coordinate point data Di (xi, yi, zi) appears is the origin O of the three-dimensional detection coordinate. The distance between the center Oc and the origin O is an offset amount when the magnetic field strength of the geomagnetism is detected by the X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5.

X1−Y1−Z1の三次元検知座標の原点Oは、磁気ノイズなどが無く、各センサ3,4,5で純粋に地磁気のみを検知できたときに、地磁気ベクトルVが向く原点である。ただし、磁気検知装置1が内蔵される各種電子機器の筐体内には、磁気ノイズを発生する他の電子回路が存在する。また、地磁気を検知しようとする環境下では、近くに磁石が存在したり、鉄骨などの大きな磁性材料が存在するなどし、これらも磁気ノイズの原因となる。磁気ノイズなどに起因するバイアス磁界が各センサ3,4,5に作用すると、図4に示すように、地磁気ベクトルVが向く中心Ocが、三次元検知座標の原点Oから離れた位置に存在するようになる。   The origin O of the three-dimensional detection coordinates X1-Y1-Z1 is the origin to which the geomagnetic vector V is directed when there is no magnetic noise or the like, and only the geomagnetism can be detected purely by the sensors 3, 4 and 5. However, there are other electronic circuits that generate magnetic noise in the housings of various electronic devices in which the magnetic detection device 1 is built. In an environment in which geomagnetism is to be detected, there are magnets nearby or large magnetic materials such as steel frames, which also cause magnetic noise. When a bias magnetic field caused by magnetic noise or the like acts on each of the sensors 3, 4, 5, as shown in FIG. 4, the center Oc toward the geomagnetic vector V exists at a position away from the origin O of the three-dimensional detection coordinates. It becomes like this.

また、地磁気を検知するときに、X軸センサ3とY軸センサ4およびZ軸センサ5のそれぞれの感度が一致し、磁場データ検知部6においてX軸とY軸およびZ軸の磁界を検知する回路の特性が一致し、さらに磁性材料などが近くに存在していないときは、地磁気ベクトルVの向きを示す座標点データDi(xi,yi,zi)が、中心Ocを有する真の球面形状の球面座標上に現れる。しかし、実際には、X軸とY軸およびZ軸において地磁気強度を検知するときのセンサの感度に差があり、磁場データ検知部6の回路にも特性のばらつきがある。さらには、地磁気検知部2の近くにノイズを吸収するための磁気シートが存在するなど、地磁気検知部2が設置される環境に応じても、X軸とY軸およびZ軸の検知出力に誤差が生じる。   Further, when detecting the geomagnetism, the sensitivities of the X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5 match, and the magnetic field data detection unit 6 detects the magnetic fields of the X-axis, Y-axis, and Z-axis. When the circuit characteristics match and there is no magnetic material nearby, the coordinate point data Di (xi, yi, zi) indicating the direction of the geomagnetic vector V has a true spherical shape having the center Oc. Appears on spherical coordinates. However, in reality, there is a difference in the sensitivity of the sensor when detecting the geomagnetic intensity on the X axis, the Y axis, and the Z axis, and the circuit of the magnetic field data detection unit 6 also has variations in characteristics. Furthermore, even if there is a magnetic sheet for absorbing noise in the vicinity of the geomagnetism detection unit 2, there is an error in the detection output of the X axis, the Y axis, and the Z axis depending on the environment in which the geomagnetism detection unit 2 is installed. Occurs.

図4では、X軸の検知誤差係数をaで示し、Y軸の検知誤差係数をbで示し、Z軸の検知誤差係数をcで示している。非球面座標Gaの立体形状は、以下の数3に示すように、検知誤差係数a,b,cに応じて変化する。X軸とY軸およびZ軸の検知誤差係数a,b,cが互いに一致しない限り、非球面座標Gaは真の球面にはならず、楕円球や長円球になる。検知誤差係数a,b,cは、地磁気の測定を開始した時点で、前述の各種磁気ノイズなどに起因して発生するものであり、検知誤差係数a,b,cは、地磁気の測定を開始する度に相違し、地磁気検知部2が使用される環境においても変動する。   In FIG. 4, the detection error coefficient for the X axis is indicated by a, the detection error coefficient for the Y axis is indicated by b, and the detection error coefficient for the Z axis is indicated by c. The three-dimensional shape of the aspherical coordinates Ga changes according to the detection error coefficients a, b, and c as shown in Equation 3 below. Unless the detection error coefficients a, b, and c of the X axis, the Y axis, and the Z axis coincide with each other, the aspherical coordinate Ga does not become a true spherical surface but an elliptical sphere or an oval sphere. The detection error coefficients a, b, and c are generated due to the above-described various magnetic noises when the geomagnetism measurement is started, and the detection error coefficients a, b, and c start the geomagnetism measurement. It is different every time it is done, and also varies in the environment where the geomagnetism detector 2 is used.

したがって、電源が投入されて、検知動作が開示されると、座標点データDi(xi,yi,zi)が非球面座標Gaの表面に現れるが、この時点では、非球面座標Gaの中心Ocの座標(xc,yc,zc)が不明であり、また非球面座標Gaの形状も不明である。   Therefore, when the power is turned on and the detection operation is disclosed, the coordinate point data Di (xi, yi, zi) appears on the surface of the aspherical coordinate Ga. The coordinates (xc, yc, zc) are unknown, and the shape of the aspherical coordinates Ga is also unknown.

そこで、演算部10では、複数の座標点データDi(xi,yi,zi)が得られて図2に示すデータバッファ11に順番に格納された時点で、非球面座標Gaの中心Ocの座標(xc,yc,zc)を求め、非球面座標Gaの形状を求めるためのキャリブレーション処理を行う。
キャリブレーション前の非球面座標Gaの方程式は、以下の数3の通りである。
Therefore, the arithmetic unit 10 obtains a plurality of coordinate point data Di (xi, yi, zi) and sequentially stores them in the data buffer 11 shown in FIG. xc, yc, zc) is obtained, and a calibration process for obtaining the shape of the aspherical coordinate Ga is performed.
The equation of the aspherical coordinate Ga before calibration is as shown in Equation 3 below.

Figure 2011252808
Figure 2011252808

キャリブレーション処理は、数3のxc,yc,zcおよびa,b,cの値を求めるために行われる。複数得られる座標点データDi(xi,yi,zi)にばらつきが無く、それぞれの座標点データDiが同じ非球面座標Ga上に現れるのであれば、複数得られるxi,yi,zi(i=1,2,3,4,・・・)のそれぞれの値を数3のx,y,zに代入して、連立方程式を解くと、xc,yc,zcおよびa,b,cの値を求めることができる。   The calibration process is performed in order to obtain the values of xc, yc, zc and a, b, c in Equation 3. If a plurality of obtained coordinate point data Di (xi, yi, zi) are not varied and each coordinate point data Di appears on the same aspherical coordinate Ga, a plurality of obtained xi, yi, zi (i = 1). , 2, 3, 4,...) Are substituted for x, y, z in Equation 3, and the simultaneous equations are solved to obtain the values of xc, yc, zc and a, b, c. be able to.

しかし、実際にはそれぞれの座標点データDi(xi,yi,zi)にばらつきが存在し、同じ非球面座標Gaの表面に現れるとは限らない。そこで、数3の方程式のx,y,zに複数の座標点データDiのxi,yi,ziを代入し、最小二乗法により、複数の座標点データDiとの誤差が最も小さくなる楕円球を求めることで、数3に示す方程式のxc,yc,zcおよびa,b,cを求める。しかし、この演算手法では、xc,yc,zcおよびa,b,cの6個の未知数を求めなくてはならないため、演算量が非常に大きくなる。   However, actually, there is a variation in each coordinate point data Di (xi, yi, zi), and it does not always appear on the surface of the same aspherical coordinate Ga. Therefore, by substituting xi, yi, zi of the plurality of coordinate point data Di into x, y, z of the equation (3), an elliptic sphere having the smallest error from the plurality of coordinate point data Di is obtained by the least square method. By determining, xc, yc, zc and a, b, c of the equation shown in Equation 3 are determined. However, in this calculation method, since six unknowns xc, yc, zc and a, b, c must be obtained, the amount of calculation becomes very large.

そこで、以下のキャリブレーション処理では、最小二乗法によりxc,yc,zcの3個の未知数のみを演算で求める。a,b,cについては、予め複数の数字の組み合わせを用意しておき、実際の座標点データDi(xi,yi,zi)のばらつきに最も近似した非球面の形状(a,b,cの値)を演算で求めるのではなく、予め決められたa,b,cの数字の組み合わせの中から選択するという手法を用いる。   Therefore, in the following calibration process, only three unknowns xc, yc, and zc are obtained by calculation using the least square method. For a, b, and c, a combination of a plurality of numbers is prepared in advance, and the shape of the aspheric surface (a, b, c) that is most approximate to the variation of the actual coordinate point data Di (xi, yi, zi) is prepared. Instead of calculating the value), a method of selecting from a predetermined combination of numbers a, b, and c is used.

まず、オフセット量であるxc,yc,zcの未知数を演算するために、図4に示すように、非球面座標Gaと同じ中心Ocを共有する半径がRの幾何学的に正確な球である仮球面座標G1を想定し、複数の座標点データDi(xi,yi,zi)との誤差が最も小さい仮球面座標G1を演算で求める。仮球面座標G1の方程式は、以下の数4に示す通りであり、演算で求めるべき未知数はxc,yc,zcと半径Rの4個のみであり、検知誤差係数a,b,cが含まれない。検知誤差係数a,b,cを演算で求める必要がないため、演算量を少なくできる。   First, in order to calculate an unknown amount of offset amounts xc, yc, zc, as shown in FIG. 4, a geometrically accurate sphere having a radius R sharing the same center Oc as the aspherical coordinates Ga is used. Assuming the provisional spherical coordinate G1, the provisional spherical coordinate G1 having the smallest error from a plurality of coordinate point data Di (xi, yi, zi) is obtained by calculation. The equation of the provisional spherical coordinate G1 is as shown in Equation 4 below, and there are only four unknowns xc, yc, zc and radius R to be obtained by calculation, and include detection error coefficients a, b, c. Absent. Since it is not necessary to calculate the detection error coefficients a, b, and c, the amount of calculation can be reduced.

Figure 2011252808
Figure 2011252808

演算部10の演算処理では、数4の仮球面座標G1の方程式を以下の数5に記載のようにFiで表し、さらに、複数の座標点データDi(xi,yi,zi)のそれぞれについて得られるFiを2乗して累積加算した値を1/2としたJを求める。Jが最小となるxc,yc,zcおよびRを求めることは、複数得られている座標点データDi(xi,yi,zi)との誤差が最小となる仮球面座標G1の方程式を最小二乗法で求めることに等しい。   In the calculation process of the calculation unit 10, the equation of the provisional spherical coordinate G1 of Expression 4 is represented by Fi as described in Expression 5 below, and further obtained for each of a plurality of coordinate point data Di (xi, yi, zi). J is obtained by squaring Fi to be squared and a value obtained by cumulative addition. Obtaining xc, yc, zc, and R that minimizes J is obtained by calculating the equation of provisional spherical coordinate G1 that minimizes an error from a plurality of obtained coordinate point data Di (xi, yi, zi). Is equivalent to

Figure 2011252808
Figure 2011252808

上記Jが最小となるときのxc,yc,zcおよびRを求めるために、以下の数6に示すように、Jをxc,yc,zcおよびRのそれぞれの未知数で偏微分した値を0とする連立方程式を求める。この連立方程式を解くことで、Jが最小となるときのxc,yc,zcおよびRを求めることができる。   In order to obtain xc, yc, zc and R when J is minimum, as shown in the following Equation 6, a value obtained by partially differentiating J by the unknowns of xc, yc, zc and R is 0. Find simultaneous equations. By solving these simultaneous equations, xc, yc, zc and R when J is minimized can be obtained.

Figure 2011252808
ただし、
Figure 2011252808
However,

Figure 2011252808
である。
Figure 2011252808
It is.

前記数6は非線形連立方程式であるため、一般的な解法で解くことができないが、Gauss-Newton法などの数値解法による反復計算を行うことで解くことができる。   Since Equation 6 is a nonlinear simultaneous equation, it cannot be solved by a general solution, but can be solved by performing iterative calculation by a numerical solution method such as the Gauss-Newton method.

ただし、上記反復計算によらずに、数5のFiを以下の数8に示す線形方程式に変形してから、xc,yc,zcおよびRの値を求めることも可能である。   However, it is also possible to obtain the values of xc, yc, zc, and R after transforming Fi in Formula 5 into the linear equation shown in Formula 8 below without using the above iterative calculation.

Figure 2011252808
Figure 2011252808

数8における各未知数a1,a2,a3および未知数の方程式a4は、以下の数9に示す通りである。   The unknown numbers a1, a2, and a3 and the unknown number equation a4 in Formula 8 are as shown in Formula 9 below.

Figure 2011252808
Figure 2011252808

よって、数6に示す連立方程式と同等の連立方程式を数8の方程式を用いて表わすと、以下の数10の連立方程式となる。   Therefore, when the simultaneous equations equivalent to the simultaneous equations shown in Equation 6 are expressed using Equation 8, the following Equations 10 are obtained.

Figure 2011252808
Figure 2011252808

数10を行列式で表わすと以下の数11となる。   When Expression 10 is expressed by a determinant, the following Expression 11 is obtained.

Figure 2011252808
Figure 2011252808

上記行列式は未知数a1,a2,a3,a4を含む線形連立方程式であるため、ガウスの消去法などの数値解析で解くことができる。この数値解析は、数6に示す非線形方程式を解く場合のような反復計算が不要になるため、CPUなどにおいて比較的短時間で解を得ることができる。   Since the determinant is a linear simultaneous equation including unknown numbers a1, a2, a3, and a4, it can be solved by numerical analysis such as Gaussian elimination. In this numerical analysis, it is not necessary to perform iterative calculation as in the case of solving the nonlinear equation shown in Equation 6, so that a solution can be obtained in a relatively short time in a CPU or the like.

未知数a1,a2,a3,a4を解くことで、以下の数12に示すように、xc,yc,zcとRを求めることができる。   By solving the unknown numbers a1, a2, a3, and a4, xc, yc, zc, and R can be obtained as shown in the following formula 12.

Figure 2011252808
Figure 2011252808

次に、検知誤差係数a,b,cは、演算部10内のメモリに、複数の数字の組み合わせのデータとして保持されている。前記演算により求められたxc,yc,zcを、数3に示す楕円球の方程式に代入し、さらに、予め定数として決められている検知誤差係数a,b,cの複数の組み合わせのうちのいずれかを、数3の方程式に代入することで、図4に示す座標点(xc,yc,zc)に中心Ocを有する多種の形状の楕円球を設定することができる。   Next, the detection error coefficients a, b, and c are held in the memory in the calculation unit 10 as data of a combination of a plurality of numbers. Xc, yc, zc obtained by the above calculation is substituted into an elliptic sphere equation shown in Equation 3, and any one of a plurality of combinations of detection error coefficients a, b, c determined as constants in advance is used. By substituting this into the equation of Equation 3, various shapes of elliptic spheres having the center Oc at the coordinate point (xc, yc, zc) shown in FIG. 4 can be set.

検知誤差係数a,b,cの数字の複数の組み合わせは、X軸センサ3、Y軸センサ4、Z軸センサ5の特性の測定値に基づいたり、磁気検知装置1が搭載される電子機器の筐体の内部に配置され他の電子回路や、磁気シールドなどに応じて、予め生じるであろう球面座標の歪みの範囲を想定し、その範囲に入る多数の形状の楕円球の形状を予測して決められる。   A plurality of combinations of numbers of the detection error coefficients a, b, and c are based on measured values of characteristics of the X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5, or of an electronic device in which the magnetic detection device 1 is mounted. Assuming the range of distortion of spherical coordinates that will occur in advance according to other electronic circuits and magnetic shields arranged inside the case, predict the shape of many elliptical spheres that fall within that range. Can be decided.

そして、それまでに得られている複数の座標点データDi(xi,yi,zi)と、複数の形状の楕円球の誤差を最小二乗法などで求め、この誤差が最も小さい楕円球を、座標点データDi(xi,yi,zi)が現れている非球面座標Gaとして選択し特定する。   Then, the errors of the plurality of coordinate point data Di (xi, yi, zi) obtained so far and the ellipsoidal spheres having a plurality of shapes are obtained by the least square method, etc. The point data Di (xi, yi, zi) is selected and specified as the aspherical coordinate Ga on which the point data Di (xi, yi, zi) appears.

上記キャリブレーション処理は、電源が投入されて磁気検知装置1が始動し、その後に所定数の座標点データDi(xi,yi,zi)が得られたときに行われる。あるいは、定期的に行われる。   The calibration process is performed when the power is turned on and the magnetic detection apparatus 1 is started, and then a predetermined number of coordinate point data Di (xi, yi, zi) is obtained. Or it is performed regularly.

上記キャリブレーション処理によって、図4に示す座標点(xc,yc,zc)に中心Ocを有する楕円球が非球面座標Gaとして特定されると、特定された座標値xc,yc,zcおよび特定された検知誤差係数a,b,cが演算部10のメモリに定数として保持される。そして、キャリブレーション処理後に得られる座標点データDi(xi,yi,zi)が、数13の式に代入されることで、補正座標点データDi´(xi´,yi´,zi´)が得られる。   When the elliptical sphere having the center Oc at the coordinate point (xc, yc, zc) shown in FIG. 4 is specified as the aspherical coordinate Ga by the calibration process, the specified coordinate value xc, yc, zc and the specified coordinate value are specified. The detected error coefficients a, b, and c are held as constants in the memory of the arithmetic unit 10. Then, the coordinate point data Di (xi, yi, zi) obtained after the calibration process is substituted into the equation 13 to obtain corrected coordinate point data Di ′ (xi ′, yi ′, zi ′). It is done.

すなわち、座標点データDi(xi,yi,zi)を、図6に示すように、三次元検知座標の原点Oに中心を有し、検知誤差係数a,b,cによる歪みを補正した真の球形状である補正球面座標G0上の補正座標点データDi´(xi´,yi´,zi´)に変換することができる。   That is, as shown in FIG. 6, the coordinate point data Di (xi, yi, zi) has a center at the origin O of the three-dimensional detection coordinates, and a true value obtained by correcting distortion caused by the detection error coefficients a, b, c. It can be converted into corrected coordinate point data Di ′ (xi ′, yi ′, zi ′) on the corrected spherical coordinate G0 having a spherical shape.

(数13)
xi´=a・(xi−xc)
yi´=b・(yi−yc)
zi´=c・(zi−zc)
(Equation 13)
xi ′ = a · (xi−xc)
yi '= b. (yi-yc)
zi ′ = c · (zi−zc)

補正球面座標G0の中心は、X1−Y1−Z1軸の三次元検知座標の原点Oに一致しているため、この補正球面座標G0に現れる補正座標点データDi´(xi´,yi´,zi´)と、図1に示す3軸加速度センサ8の検知出力とから、地磁気ベクトルの伏角Iを求めることができる。   Since the center of the corrected spherical coordinate G0 coincides with the origin O of the three-dimensional detection coordinates of the X1-Y1-Z1 axes, the corrected coordinate point data Di ′ (xi ′, yi ′, zi) appearing in the corrected spherical coordinate G0. ′) And the detection output of the triaxial acceleration sensor 8 shown in FIG. 1, the dip angle I of the geomagnetic vector can be obtained.

図5には、3軸加速度センサ8で検知された重力加速度ベクトルAが示されている。また、磁気検知装置1が空間上で同じ姿勢で停止しているときに補正座標点データDi´(xi´,yi´,zi´)から得られる地磁気ベクトルをMで示している。   FIG. 5 shows a gravitational acceleration vector A detected by the triaxial acceleration sensor 8. In addition, M represents the geomagnetic vector obtained from the corrected coordinate point data Di ′ (xi ′, yi ′, zi ′) when the magnetic detection device 1 is stopped in the same posture in space.

以下の数13に示すように、重力加速度ベクトルAと静止時の地磁気ベクトルMとの内積から、両ベクトルの相対角度αを求めることができ、αから90度を減算することで地磁気ベクトルMの伏角Iを求めることができる。   As shown in the following Equation 13, the relative angle α of both vectors can be obtained from the inner product of the gravitational acceleration vector A and the geomagnetic vector M at rest, and by subtracting 90 degrees from α, the geomagnetic vector M The dip angle I can be obtained.

Figure 2011252808
Figure 2011252808

図6は、重力加速度ベクトルAがZ軸のマイナスに向くように補正したX0−Y0−Z0軸の三次元補正座標を示している。三次元補正座標は、X0−Y0平面が水平面の向きに一致する。測定場所が北半球のとき、地磁気ベクトルMは、X0−Y0平面からプラス側の角度(伏角)Iを有する向きで示される。   FIG. 6 shows the three-dimensional correction coordinates of the X0-Y0-Z0 axis corrected so that the gravitational acceleration vector A is directed to the negative of the Z axis. In the three-dimensional correction coordinates, the X0-Y0 plane coincides with the direction of the horizontal plane. When the measurement location is the northern hemisphere, the geomagnetic vector M is shown in an orientation having an angle I (positive angle) I on the plus side from the X0-Y0 plane.

また、三次元補正座標の赤道を通る基準水平面H0に、地磁気ベクトルMを投影することで、地磁気検知装置1の地球上での姿勢を示す方位角βを求めることができる。   Further, by projecting the geomagnetic vector M onto the reference horizontal plane H0 passing through the equator of the three-dimensional correction coordinates, the azimuth angle β indicating the attitude of the geomagnetic detection device 1 on the earth can be obtained.

この磁気検知装置1が携帯機器に搭載されているとき、磁気検知装置1を回転させると、補正球面座標G0上で、補正座標点データDi´(xi´,yi´,zi´)が移動する。その移動軌跡を測定することで、携帯機器の回転方向と回転角度を知ることができる。また、原点Oに対する複数の補正座標点データDi´(xi´,yi´,zi´)の開き角度と、そのデータが得られたサンプリング時間とから携帯機器の角速度を求めることもできる。   When the magnetic detection device 1 is mounted on a portable device, when the magnetic detection device 1 is rotated, the corrected coordinate point data Di ′ (xi ′, yi ′, zi ′) moves on the corrected spherical coordinate G0. . By measuring the movement trajectory, the rotation direction and rotation angle of the portable device can be known. Further, the angular velocity of the portable device can be obtained from the opening angle of the plurality of correction coordinate point data Di ′ (xi ′, yi ′, zi ′) with respect to the origin O and the sampling time when the data is obtained.

1 磁気検知装置
2 地磁気検知部
3 X軸センサ
4 Y軸センサ
5 Z軸センサ
6 磁場データ検知部
7 メモリ
10 演算部
8 3軸加速度センサ
11 データバッファ
Ga 非球面座標
G1 仮球面座標
G0 補正球面座標
X1−Y1−Z1 三次元検知座標
X0−Y0−Z0 三次元補正座標
Di 座標点データ
Di´ 補正座標点データ
a,b,c 検知誤差係数
xc,yc,zc 非球面座標の中心座標
DESCRIPTION OF SYMBOLS 1 Magnetic detection apparatus 2 Geomagnetic detection part 3 X-axis sensor 4 Y-axis sensor 5 Z-axis sensor 6 Magnetic field data detection part 7 Memory 10 Calculation part 8 3-axis acceleration sensor 11 Data buffer Ga Aspherical coordinate G1 Provisional spherical coordinate G0 Correction spherical coordinate X1-Y1-Z1 Three-dimensional detection coordinates X0-Y0-Z0 Three-dimensional correction coordinates Di Coordinate point data Di 'Correction coordinate point data a, b, c Detection error coefficients xc, yc, zc Center coordinates of aspherical coordinates

Claims (7)

直交する3軸方向の磁界強度を検知する磁気センサを有する磁気検知部および演算部とを有し、前記演算部は、
(a)3軸方向の磁界強度の検出値から、磁気ベクトルの向きを三次元検知座標上の座標点データとして求め、
(b)複数の座標点データを得たときに、複数の座標点データとの誤差が最小となる仮球面座標と、三次元検知座標上における前記仮球面座標の中心の座標を求め、
(c)それぞれが定数である3軸方向の検知誤差係数a,b,cの組み合わせを予め複数組設定しておき、前記仮球面座標の中心と一致し且つ複数組の検知誤差係数a,b,cのいずれかを当てはめて得られる複数の非球面座標のうち、複数の座標点データとの誤差が最も少ないものを、座標点データが位置する非球面座標として特定する、
ことを特徴とする磁気検知装置。
A magnetic detection unit and a calculation unit having a magnetic sensor for detecting magnetic field strength in three orthogonal directions perpendicular to each other;
(A) From the detected value of the magnetic field strength in the three axis directions, the direction of the magnetic vector is obtained as coordinate point data on the three-dimensional detection coordinates,
(B) When a plurality of coordinate point data is obtained, a provisional spherical coordinate that minimizes an error from the plurality of coordinate point data and a coordinate of the center of the provisional spherical coordinate on the three-dimensional detection coordinates are obtained,
(C) A plurality of combinations of detection error coefficients a, b, and c in the three-axis directions, each of which is a constant, are set in advance, and coincide with the center of the provisional spherical coordinate and have a plurality of sets of detection error coefficients a, b. Among the plurality of aspherical coordinates obtained by applying any of c, c, the one having the smallest error from the plurality of coordinate point data is specified as the aspherical coordinate where the coordinate point data is located.
A magnetic detection device characterized by that.
(d)複数の座標点データとの誤差が最も少ない非球面座標の検知誤差係数a,b,cと、前記仮球面座標の中心の座標とから、座標点データを、補正球面座標上の補正座標点データに換算する請求項1記載の磁気検知装置。 (D) The correction of the coordinate point data on the corrected spherical coordinate from the detection error coefficients a, b, c of the aspherical coordinate with the least error from a plurality of coordinate point data and the coordinates of the center of the provisional spherical coordinate. The magnetic detection device according to claim 1, wherein the magnetic detection device is converted into coordinate point data. 前記(b)における仮球面座標の方程式は、以下の数1で表わされる請求項1または2記載の磁気検知装置。
Figure 2011252808
ただし、xc,yc,zcは、三次元検知座標上における前記仮球面座標の中心の座標である。
3. The magnetic sensing device according to claim 1, wherein the provisional spherical coordinate equation in (b) is expressed by the following equation (1).
Figure 2011252808
However, xc, yc, zc are the coordinates of the center of the provisional spherical coordinates on the three-dimensional detection coordinates.
前記(c)の非球面座標の方程式は、以下の数2で表わされる請求項1ないし3のいずれかに記載の磁気検知装置。
Figure 2011252808
ただし、xc,yc,zcは、三次元検知座標上における前記仮球面座標の中心の座標である。
The magnetic sensing device according to any one of claims 1 to 3, wherein the equation of the aspherical coordinate in (c) is expressed by the following equation (2).
Figure 2011252808
However, xc, yc, zc are the coordinates of the center of the provisional spherical coordinates on the three-dimensional detection coordinates.
前記補正球面座標上の補正座標点データから、磁気ベクトルの方位を求める請求項1ないし4のいずれかに記載の磁気検知装置。   The magnetic detection device according to claim 1, wherein an orientation of a magnetic vector is obtained from corrected coordinate point data on the corrected spherical coordinate. 前記補正球面座標の中心に対する複数の補正座標点データの開き角度から、磁気検知部の回動角度を求める請求項1ないし4のいずれかに記載の磁気検知装置。   The magnetic detection device according to claim 1, wherein a rotation angle of the magnetic detection unit is obtained from an opening angle of a plurality of correction coordinate point data with respect to the center of the correction spherical coordinate. 前記補正球面座標の中心に対する複数の補正座標点データの開き角度および複数の前記補正座標データが得られた時間とから、磁気検知部の角速度を求める請求項1ないし4のいずれかに記載の磁気検知装置。   5. The magnetism according to claim 1, wherein an angular velocity of the magnetic detection unit is obtained from an opening angle of a plurality of correction coordinate point data with respect to a center of the correction spherical coordinate and a time when the plurality of correction coordinate data are obtained. Detection device.
JP2010127177A 2010-06-02 2010-06-02 Magnetic detector Active JP5643547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127177A JP5643547B2 (en) 2010-06-02 2010-06-02 Magnetic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127177A JP5643547B2 (en) 2010-06-02 2010-06-02 Magnetic detector

Publications (2)

Publication Number Publication Date
JP2011252808A true JP2011252808A (en) 2011-12-15
JP5643547B2 JP5643547B2 (en) 2014-12-17

Family

ID=45416855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127177A Active JP5643547B2 (en) 2010-06-02 2010-06-02 Magnetic detector

Country Status (1)

Country Link
JP (1) JP5643547B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309228A (en) * 2003-04-03 2004-11-04 Asahi Kasei Electronics Co Ltd Azimuth measuring instrument, azimuth measuring program, and azimuth measuring method
WO2007099599A1 (en) * 2006-02-28 2007-09-07 Aichi Micro Intelligent Corporation Magnetic gyroscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309228A (en) * 2003-04-03 2004-11-04 Asahi Kasei Electronics Co Ltd Azimuth measuring instrument, azimuth measuring program, and azimuth measuring method
WO2007099599A1 (en) * 2006-02-28 2007-09-07 Aichi Micro Intelligent Corporation Magnetic gyroscope

Also Published As

Publication number Publication date
JP5643547B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
EP3006896B1 (en) Three-axis digital compass
US20210333129A1 (en) Position sensor system and method, robust against disturbance field
JPWO2006035505A1 (en) Magnetic sensor control method, control device, and portable terminal device
JP4890660B2 (en) Geomagnetic detector
JPWO2013125242A1 (en) Offset estimation apparatus, offset estimation method, offset estimation program, and information processing apparatus
JP2008510159A (en) Method and apparatus for calibrating the rotational relationship of two motion sensors in a sensor system
JP5475873B2 (en) Geomagnetic detector
CN111707974B (en) Signal processing circuit, position detecting device, and magnetic sensor system
JP5374422B2 (en) Magnetic field detector
JP5425671B2 (en) Magnetic field detector
JP5498209B2 (en) Magnetic field detector
JP5457890B2 (en) Orientation detection device
JP5144701B2 (en) Magnetic field detector
KR101352245B1 (en) Apparatus and method for calibrating azimuth mems magnetic sensor
JP5643547B2 (en) Magnetic detector
JP5498208B2 (en) Magnetic field detector
JP5341861B2 (en) Magnetic field detector
KR100674194B1 (en) Method of controlling magnetic sensor, control device therefor, and portable terminal
JP5490576B2 (en) Magnetic field detector
Finch et al. Effectiveness of model-based motion estimation from an inertial measurement unit
Stefanoni et al. Measurement System for the Simulation of Indoor Magnetic Disturbances using a Robotic Arm
JP5498196B2 (en) Magnetic field detector
KR20170092356A (en) System for calibrating azimuth of 3-axis magnetic sensor
Liu et al. Towards better accuracy calibration method for electronic compass based on spatial interpolation algorithm
JP2011185861A (en) Geomagnetism detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350