JP2011252708A - Method and apparatus for estimating thinning depth of long member - Google Patents
Method and apparatus for estimating thinning depth of long member Download PDFInfo
- Publication number
- JP2011252708A JP2011252708A JP2010124525A JP2010124525A JP2011252708A JP 2011252708 A JP2011252708 A JP 2011252708A JP 2010124525 A JP2010124525 A JP 2010124525A JP 2010124525 A JP2010124525 A JP 2010124525A JP 2011252708 A JP2011252708 A JP 2011252708A
- Authority
- JP
- Japan
- Prior art keywords
- line segment
- long member
- thinning
- probe
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
本発明は、長尺部材の減肉深さ推定方法及び減肉深さ推定装置に関する。さらに詳しくは、長尺部材の端面に探触子を載置して超音波を送信し、長尺部材からの受信信号により減肉の深さを推定する長尺部材の減肉深さ推定方法及び減肉深さ推定装置に関する。 The present invention relates to a thinning depth estimation method and a thinning depth estimation device for a long member. More specifically, a thinning depth estimation method for a long member, in which a probe is placed on the end face of the long member, ultrasonic waves are transmitted, and the depth of thinning is estimated by a received signal from the long member. And a thinning depth estimation apparatus.
従来、例えば特許文献1に記載の如き、長尺部材の減肉評価方法が知られている。文献1段落0035には、減肉幅W、減肉長さL、減肉深さDとして測定する点が記載されている。しかし、当該記載は、減肉部からの直接の反射信号が得られた場合に、同文献図7の如く生成した複数種の画像から各寸法を測定するものであり、減肉部からの直接の反射信号が得られない場合に減肉深さを測定することはできなかった。 Conventionally, for example, a thinning evaluation method for a long member as described in Patent Document 1 is known. Reference 1 paragraph 0035 describes a point to be measured as a thinning width W, a thinning length L, and a thinning depth D. However, in the description, when a direct reflection signal from the thinned portion is obtained, each dimension is measured from a plurality of types of images generated as shown in FIG. The thickness reduction could not be measured when no reflected signal was obtained.
また、特許文献2に記載の超音波探傷装置も、欠陥からの反射エコーにより欠陥を検出するものであり、直接の反射信号が得られない場合を想定していない。 The ultrasonic flaw detector described in Patent Document 2 also detects a defect by a reflected echo from the defect, and does not assume a case where a direct reflection signal cannot be obtained.
かかる従来の実情に鑑みて、本発明は、減肉部からの直接の反射信号が得られない場合であっても減肉深さを推定することの可能な長尺部材の減肉深さ推定方法及び減肉深さ推定装置を提供することを目的とする。 In view of such a conventional situation, the present invention estimates the thinning depth of a long member capable of estimating the thinning depth even when a direct reflection signal from the thinning portion cannot be obtained. It is an object to provide a method and a thinning depth estimation apparatus.
上記目的を達成するため、本発明に係る長尺部材の減肉深さ推定方法の特徴は、長尺部材の端面に探触子を載置して超音波を送信し、長尺部材からの受信信号により減肉の深さを推定する方法において、前記端面上を走査して得られた受信信号から画像を生成し、この画像において、表示される遅れ信号から短線分を求め、前記長尺部材の側面からの反射信号が欠落する欠落部の上端を画像を用いて、又は、前記短線分の外側端を通る探触子の走査線と前記長尺部材の外側線との交点により特定し、前記短線分の延長線と前記側面に対向する他面とが交差する他面側交点を求め、この他面側交点と前記欠落部の上端とを結ぶ第一の線分を求め、前記短線分の内側端と探触子の走査位置とを結び及び/又は前記短線分の内側端を通り前記超音波の送信角度で傾斜する第二の線分を求め、前記第一の線分と前記第二の線分とが交差する交点を求め、この交点により前記減肉の深さを推定することにある。 In order to achieve the above object, the feature of the thinning depth estimation method for a long member according to the present invention is that an ultrasonic wave is transmitted by placing a probe on the end surface of the long member, In the method for estimating the depth of thinning by the received signal, an image is generated from the received signal obtained by scanning the end face, and in this image, a short line segment is obtained from the displayed delay signal, and the long The upper end of the missing portion where the reflected signal from the side surface of the member is missing is specified by using an image or by the intersection of the scanning line of the probe passing through the outer end of the short line and the outer line of the long member. The other surface side intersection where the extension line of the short line segment and the other surface opposite to the side surface intersect is obtained, a first line segment connecting the other surface side intersection point and the upper end of the missing portion is obtained, and the short line The inner end of the minute and the scanning position of the probe and / or the ultrasonic wave passing through the inner end of the short line Obtains a second segment inclined at transmission angles, to obtain the intersection of said first segment and said second segment intersects, is to estimate the depth of the thinning this intersection.
ここで、長尺部材に入射した超音波の一部は、減肉部で反射する。図8に示すように、生成した画像上において、当該画像を用いて、又は、短線分Xの外側端E’を通る探触子の走査線SE’と長尺部材の外側線R1との交点により特定される欠落部Zの上端Qは、減肉Bの上端を示す。表示される遅れ信号Fから求めた短線分Xの延長線と長尺部材の側面R1に対向する他面R2とが交差する他面側交点Pと欠落部Zの上端Qとを結ぶ第一の線分PQは、超音波の反射源となる減肉Bの傾きを示す。そして、短線分Xの内側端Eと探触子の走査位置Sとを結び及び/又は短線分Xの内側端Eを通り超音波の送信角度で傾斜する第二の線分SEは、第一の線分PQと交差する。この第一の線分PQと第二の線分SEとの交点Uは、長尺部材の側面R1からの最も離れた点であり、減肉Bにおける最深部の反射位置を示す。従って、この交点Uを求めることにより、減肉深さDを推定することが可能となる。 Here, a part of the ultrasonic wave incident on the long member is reflected by the thinned portion. As shown in FIG. 8, on the generated image, the intersection of the scanning line SE ′ of the probe using the image or the outer end E ′ of the short line segment X and the outer line R1 of the long member. The upper end Q of the missing part Z specified by the above indicates the upper end of the thinning B. The first connecting the other surface side intersection P where the extended line of the short line segment X obtained from the displayed delay signal F and the other surface R2 facing the side surface R1 of the long member intersect the upper end Q of the missing portion Z. The line segment PQ indicates the inclination of the thinning B that becomes the ultrasonic wave reflection source. Then, the second line segment SE connecting the inner end E of the short line segment X and the scanning position S of the probe and / or passing through the inner end E of the short line segment X and inclined at the transmission angle of the ultrasonic wave is the first line segment SE. Intersects the line segment PQ. The intersection U between the first line segment PQ and the second line segment SE is the farthest point from the side surface R1 of the long member, and indicates the reflection position of the deepest portion in the thinning B. Therefore, it is possible to estimate the thinning depth D by obtaining this intersection point U.
前記長尺部材の一端に前記探触子を回転可能に取り付け、前記探触子を前記端面上で回転させると共に、各回転位置において前記端面上を走査するとよい。これにより、長尺部材の全周にわたって減肉深さを推定することができる。 The probe is rotatably attached to one end of the elongate member, the probe is rotated on the end face, and the end face is scanned at each rotation position. Thereby, the thickness reduction thickness can be estimated over the perimeter of a long member.
前記探触子がフェーズドアレイ探触子であり、前記超音波を所定の送信角度範囲で送受信し、得られた受信信号から画像を生成するとよい。係る場合、前記フェーズドアレイ探触子における送受信の中心と前記端面の中心を一致させて前記フェーズドアレイ探触子を前記一端に取り付けると共に、これら一致した中心を基準に前記フェーズドアレイ探触子を回転させるとよい。これにより、長尺部材の周面に均等に超音波を送信することができ、より高精度に減肉深さを推定することができる。 The probe may be a phased array probe, and the ultrasonic wave may be transmitted and received within a predetermined transmission angle range, and an image may be generated from the obtained reception signal. In such a case, the phased array probe is attached to the one end with the center of transmission / reception in the phased array probe coincident with the center of the end face, and the phased array probe is rotated with reference to the coincident center. It is good to let them. Thereby, an ultrasonic wave can be transmitted uniformly to the circumferential surface of the long member, and the thinning depth can be estimated with higher accuracy.
上記いずれかに記載の方法において、前記超音波の送信角度を一定にして走査してもよく、前記超音波の送信角度を所定の送信角度範囲で変化させて走査してもよい。 In the method according to any one of the above, scanning may be performed with a constant transmission angle of the ultrasonic wave, or may be performed by changing the transmission angle of the ultrasonic wave within a predetermined transmission angle range.
前記長尺部材は前記端面が外部に露出した基礎ボルトであり、この基礎ボルトはネジ部と円筒部とを有するものであってもよい。このような構成の長尺部材においても減肉深さを推定することが可能である。 The long member is a foundation bolt with the end face exposed to the outside, and the foundation bolt may have a threaded portion and a cylindrical portion. It is possible to estimate the thinning depth even in the long member having such a configuration.
上記目的を達成するため、本発明に係る長尺部材の減肉深さ推定装置の特徴は、長尺部材の端面に探触子を載置して超音波を送信し、長尺部材からの受信信号により減肉の深さを推定する構成において、前記探触子を前記端面上に取り付けると共に回転走査させるスキャナと、前記超音波の送受信を制御する制御装置と、得られた受信信号から画像を生成すると共に生成した画像を解析する画像処理装置と、前記画像を表示する表示装置とを備え、画像処理装置は、前記受信信号から画像を生成し、この画像において、表示される遅れ信号から短線分を求め、前記長尺部材の側面からの反射信号が欠落する欠落部の上端を画像を用いて、又は、前記短線分の外側端を通る探触子の走査線と前記長尺部材の外側線との交点により特定し、前記短線分の延長線と前記側面に対向する他面とが交差する他面側交点を求め、この他面側交点と前記欠落部の上端とを結ぶ第一の線分を求め、前記短線分の内側端と探触子の走査位置とを結び及び/又は前記短線分の内側端を通り前記超音波の送信角度で傾斜する第二の線分を求め、前記第一の線分と前記第二の線分とが交差する交点を求め、この交点により前記減肉の深さを推定することにある。 In order to achieve the above object, the feature of the thinning depth estimation device for a long member according to the present invention is that an ultrasonic wave is transmitted by placing a probe on the end surface of the long member, In the configuration in which the depth of thinning is estimated based on a received signal, a scanner that attaches the probe onto the end face and rotates and scans, a control device that controls transmission / reception of the ultrasonic wave, and an image obtained from the obtained received signal And an image processing device that analyzes the generated image and a display device that displays the image. The image processing device generates an image from the received signal, and in this image, from the displayed delay signal The short line is obtained, and the upper end of the missing portion where the reflection signal from the side surface of the long member is missing is used for the image, or the scanning line of the probe passing through the outer end of the short line and the long member Specified by the intersection with the outside line, The other line side intersection where the extension line of the minute and the other surface opposite to the side surface intersect is obtained, a first line segment connecting the other surface side intersection and the upper end of the missing part is obtained, and the inside of the short line segment A second line segment connecting the end and the scanning position of the probe and / or passing through the inner end of the short line segment and tilting at the transmission angle of the ultrasonic wave, and determining the first line segment and the second line segment It is to obtain an intersection where the line segment intersects and to estimate the depth of the thinning by this intersection.
上記本発明に係る長尺部材の減肉深さ推定方法及び減肉深さ推定装置の特徴によれば、減肉部からの直接の反射信号が得られない場合であっても減肉深さを推定することが可能となった。 According to the characteristics of the thinning depth estimation method and thinning depth estimation device for a long member according to the present invention, the thinning depth is obtained even when a direct reflection signal from the thinning portion cannot be obtained. It became possible to estimate.
本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。 Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.
次に、図1〜8を参照しながら、本発明の第一実施形態について詳しく説明する。
本発明に係る減肉深さ推定方法の対象となる長尺部材としては、例えば、図1に示す如き化学プラント、石油プラントや発電プラント等の構造体100における基礎ボルト101が該当する。この基礎ボルト101の構造を例に以下説明する。
Next, the first embodiment of the present invention will be described in detail with reference to FIGS.
As a long member which is an object of the thickness reduction estimation method according to the present invention, for example, a foundation bolt 101 in a structure 100 such as a chemical plant, a petroleum plant, or a power plant as shown in FIG. The structure of the foundation bolt 101 will be described below as an example.
この基礎ボルト101は、図1,2に示すように、略円柱形を呈し、ネジ山を有するネジ部101bとネジ山を有しない円筒部101cとからなる。基礎ボルト101は、基礎台102に設けたスリーブ103を貫通し、グラウト104を介して基礎ボルト101の一端が露出するように設置される。そして、ベースプレート105及び座板106を取り付け、ナット107によりグラウト104に固定する。本発明は、外部に露出した基礎ボルト101の端面101aより超音波を送受信し、グラウト104に埋設したネジ部101b及び円筒部101cに形成された減肉部B1,B2の深さD1,D2を推定する。 As shown in FIGS. 1 and 2, the foundation bolt 101 has a substantially cylindrical shape and includes a screw portion 101 b having a screw thread and a cylindrical portion 101 c having no screw thread. The foundation bolt 101 is installed so that one end of the foundation bolt 101 is exposed through the grout 104 through the sleeve 103 provided on the foundation table 102. Then, the base plate 105 and the seat plate 106 are attached and fixed to the grout 104 by the nut 107. In the present invention, ultrasonic waves are transmitted and received from the end face 101a of the foundation bolt 101 exposed to the outside, and the depths D1 and D2 of the thinned portions B1 and B2 formed in the screw portion 101b and the cylindrical portion 101c embedded in the grout 104 are set. presume.
図3に示すように、本発明に係る減肉深さ推定装置1は、大略、探触子としてフェーズドアレイ探触子2、制御装置3、画像処理装置4、表示装置5及び入力装置6を備える。フェーズドアレイ探触子2は、図4に示すスキャナ10により超音波の送受信の中心O1と端面101aの中心O2とを一致させて、基礎ボルト101の端面101aに対し回転可能に取り付けられる。これにより、基礎ボルト101の周面に対して均一に超音波を伝搬させることができ、基礎ボルト101の全周にわたって減肉部Bの減肉深さDを推定することができる。 As shown in FIG. 3, a thinning depth estimation device 1 according to the present invention generally includes a phased array probe 2, a control device 3, an image processing device 4, a display device 5, and an input device 6 as probes. Prepare. The phased array probe 2 is rotatably attached to the end surface 101a of the foundation bolt 101 by aligning the center O1 of ultrasonic transmission / reception with the center O2 of the end surface 101a by the scanner 10 shown in FIG. Thereby, an ultrasonic wave can be uniformly propagated with respect to the surrounding surface of the foundation bolt 101, and the thinning depth D of the thinned portion B can be estimated over the entire circumference of the foundation bolt 101.
フェーズドアレイ探触子2は、図5に示すように、探触子の各回転位置において、所定の送信角度、例えば軸心Aに対し+θ°〜−θ°の角度範囲内で基礎ボルトに対し電子的走査を行うことが可能である。このフェーズドアレイ探触子2を用いることで、超音波の送信角度を一定とするリニアスキャンと、超音波の送信角度を任意の角度範囲内で変化させるセクタスキャンとを選択して行うことができる。図6(a)に示すように、フェーズドアレイ探触子2は、所定位置から後述のスキャナ10により、例えばφ°の間隔で基礎ボルト101の軸心Aを基準に回転され、基礎ボルト101に対し360°回転走査を行う。 As shown in FIG. 5, the phased array probe 2 has a predetermined transmission angle, for example, within the angle range of + θ ° to −θ ° with respect to the axis A at each rotational position of the probe. Electronic scanning can be performed. By using this phased array probe 2, it is possible to select and perform a linear scan that makes the ultrasonic transmission angle constant and a sector scan that changes the ultrasonic transmission angle within an arbitrary angle range. . As shown in FIG. 6A, the phased array probe 2 is rotated from a predetermined position by a scanner 10 to be described later on the basis of the axis A of the foundation bolt 101 at intervals of φ °, for example. A 360 ° rotational scan is performed.
制御装置3は、図3に示すように、制御部3aとパルサーレシーバー3b及びカウンタ3cよりなる。制御部3aは、パルサーレシーバー3bを制御し、パルサーレシーバー3bを介してフェーズドアレイ探触子2から所定の送信角度で超音波を送受信する。また、カウンタ3cはフェーズドアレイ探触子2の回転位置情報をエンコーダ13aより受信する。 As shown in FIG. 3, the control device 3 includes a control unit 3a, a pulsar receiver 3b, and a counter 3c. The control unit 3a controls the pulsar receiver 3b, and transmits and receives ultrasonic waves from the phased array probe 2 at a predetermined transmission angle via the pulsar receiver 3b. The counter 3c receives the rotational position information of the phased array probe 2 from the encoder 13a.
電子的走査及び回転走査により得られた受信信号は、制御装置3を介して画像処理装置4に出力される。画像処理装置4は、パルサーレシーバー3b及びカウンタ3cから入力される受信信号を処理し、B−scan(Bearing scan)画像やS−scan(Sectorial scan)画像を生成して、表示装置5に表示する。B−scan画像は、探触子の回転位置における走査位置毎の受信信号の振幅をカラースケールに置き換えて、走査位置と伝搬時間により表示した断面画像である。この画像は、リニアスキャンの場合に生成される。S−scan画像は、探触子の回転位置における角度毎の受信信号の振幅をカラースケールに置き換えて扇状に並べて表示した断面画像である。この画像は、セクタスキャンの場合に生成される。また、画像処理装置4は、生成した画像において、後述の手順により遅れ信号Fから減肉部Bの深さDを推定する。 A reception signal obtained by electronic scanning and rotational scanning is output to the image processing device 4 via the control device 3. The image processing device 4 processes reception signals input from the pulsar receiver 3 b and the counter 3 c, generates a B-scan (Bearing scan) image and an S-scan (Sectorial scan) image, and displays them on the display device 5. . The B-scan image is a cross-sectional image displayed by the scanning position and the propagation time by replacing the amplitude of the received signal for each scanning position at the rotational position of the probe with a color scale. This image is generated in the case of linear scanning. The S-scan image is a cross-sectional image displayed in a fan shape by replacing the amplitude of the received signal for each angle at the rotational position of the probe with a color scale. This image is generated in the case of sector scanning. Further, the image processing device 4 estimates the depth D of the thinned portion B from the delay signal F in the generated image by a procedure described later.
図4に示すように、スキャナ10は、大略、第一フレーム11、第二フレーム12、回転抽出機構13及び保持機構14よりなる。第一、第二フレーム11,12は、略円筒形を呈し、互いに相対回転可能に嵌め合わされる。第一フレーム11には貫通孔15aが設けられてあり、この貫通孔15aを介して一対の固定用ノブ15,15をナット107側面に押し当てて第一フレーム11を回転不能に固定する。また、第二フレーム12には長孔16bが軸方向に設けられてあり、長孔16bを介して一対の調整用ノブ16,16により第二フレーム12の内側に保持フレーム14aが固定される。 As shown in FIG. 4, the scanner 10 generally includes a first frame 11, a second frame 12, a rotation extraction mechanism 13 and a holding mechanism 14. The first and second frames 11 and 12 have a substantially cylindrical shape and are fitted to each other so as to be relatively rotatable. The first frame 11 is provided with a through hole 15a, and the pair of fixing knobs 15 and 15 are pressed against the side surface of the nut 107 through the through hole 15a to fix the first frame 11 so as not to rotate. The second frame 12 is provided with a long hole 16b in the axial direction, and the holding frame 14a is fixed inside the second frame 12 by a pair of adjusting knobs 16 and 16 through the long hole 16b.
回転抽出機構13は、エンコーダ13aとピニオンギア13b及び円環状のラック13cよりなる。エンコーダ13aは、第一フレーム11の側面に取り付けてあり、ピニオンギア13bが接続されている。円環状のラック13cは、第二フレーム12の下端に歯列を外面に向けて設けてあり、ピニオンギア13bと噛合する。第二フレーム12の回転はラック13cからピニオンギア13bに伝達し、エンコーダ13aに回転を与える。これにより、探触子の回転位置情報が得られる。 The rotation extraction mechanism 13 includes an encoder 13a, a pinion gear 13b, and an annular rack 13c. The encoder 13a is attached to the side surface of the first frame 11, and is connected to a pinion gear 13b. The annular rack 13c is provided at the lower end of the second frame 12 with the tooth row facing the outer surface, and meshes with the pinion gear 13b. The rotation of the second frame 12 is transmitted from the rack 13c to the pinion gear 13b and gives rotation to the encoder 13a. Thereby, rotational position information of the probe is obtained.
保持機構14は、大略、保持フレーム14aと弾性部材14b及び保持部材14cよりなる。保持フレーム14aは円板状を呈し、弾性部材としてバネ14bを巻設した保持部材14cが適宜間隔をおいて環状に設けられている。保持部材14cの下端には、フェーズドアレイ探触子2周部を押圧するリング状の押圧部14dが設けられている。第二フレーム12の長孔16bにより、保持フレーム14aは高さ調整が可能であり、基礎ボルト101の端面101aにフェーズドアレイ探触子2を確実に接触させることができる。 The holding mechanism 14 generally includes a holding frame 14a, an elastic member 14b, and a holding member 14c. The holding frame 14a has a disk shape, and holding members 14c around which springs 14b are wound as elastic members are provided in an annular shape at appropriate intervals. At the lower end of the holding member 14c, a ring-shaped pressing portion 14d that presses the peripheral portion of the phased array probe 2 is provided. The height of the holding frame 14 a can be adjusted by the long hole 16 b of the second frame 12, and the phased array probe 2 can be reliably brought into contact with the end surface 101 a of the foundation bolt 101.
次に、図7,8を参照しながら、減肉部Bの深さ推定の原理について説明する。
図7に、斜角リニアスキャンにおける減肉部Bから得られる遅れ信号Fを模式的に示す。同図(b)に示す減肉部B’は、(a)に示す減肉部Bより浅い例を示す。遅れ信号とは、同一原因(減肉部)からの信号のうち伝搬経路が異なるため又は縦波から横波にモード変換して通常の伝搬時間から遅れて得られる信号をいう。
Next, the principle of estimating the depth of the thinned portion B will be described with reference to FIGS.
FIG. 7 schematically shows a delay signal F obtained from the thinned portion B in the oblique linear scan. A thinned portion B ′ shown in FIG. 4B is an example shallower than the thinned portion B shown in FIG. The delayed signal refers to a signal obtained by delaying from the normal propagation time because the propagation path is different among signals from the same cause (thinning part) or mode conversion from longitudinal wave to transverse wave is performed.
図7の符号S1〜S10に例示する如く、基礎ボルト101の端面101aから一定の送信角度で電子的に走査(リニアスキャン)すると、基礎ボルト101に入射した超音波の一部は側面R1の減肉部Bで反射し、基礎ボルト101の他面R2に反射し、往路と同じ経路で探触子へ伝搬する。このとき、断面画像上では、符号M1,M2の位置に遅れ信号F1,F2が現れる。遅れ信号F1は他面R2へ縦波で伝搬した場合の遅れ信号を示し、遅れ信号F2は他面R2へ縦波からモード変換した横波で伝搬した場合の遅れ信号を示す。同図に示すように、探触子の各走査位置Sと遅れ信号Fとを結び且つ超音波の送信角度で傾斜する各線分SFは、遅れ信号Fが生じる超音波の伝搬時間を距離に換算して示したものであり、その線分SF上に減肉部Bが存在することが分かる。 As exemplified by reference numerals S1 to S10 in FIG. 7, when electronic scanning (linear scanning) is performed from the end face 101a of the foundation bolt 101 at a fixed transmission angle, a part of the ultrasonic wave incident on the foundation bolt 101 is reduced on the side face R1. Reflected by the meat part B, reflected by the other surface R2 of the foundation bolt 101, and propagated to the probe through the same path as the forward path. At this time, on the cross-sectional image, delay signals F1 and F2 appear at the positions of symbols M1 and M2. The delay signal F1 indicates a delay signal when propagating to the other surface R2 by a longitudinal wave, and the delay signal F2 indicates a delay signal when propagating to the other surface R2 by a transverse wave mode-converted from the longitudinal wave. As shown in the figure, each line segment SF that connects each scanning position S of the probe and the delay signal F and is inclined at the transmission angle of the ultrasonic wave converts the propagation time of the ultrasonic wave in which the delay signal F is generated into a distance. It can be seen that the thinned portion B exists on the line segment SF.
減肉部Bが一定の傾きを有しているとすると、図7(a)(b)に示すように、遅れ信号Fの傾きは、減肉が深くなるに従い減肉部Bに接近するように変化する。また、減肉部Bが他面R2まで達した場合(貫通)を仮定すると、基礎ボルト101を横切る超音波の伝搬時間は0となる。これらの考察から、減肉部Bの傾きを有する線分を他面R2まで延長した線L1と、遅れ信号Fの表示される傾きを有する線分を他面R2まで延長した線L2とは、他面R2上の点Pで交わる。この幾何学的位置関係により、遅れ信号Fから減肉深さDを推定することができる。 Assuming that the thinned portion B has a certain inclination, as shown in FIGS. 7A and 7B, the inclination of the delay signal F approaches the thinned portion B as the thinning becomes deeper. To change. Further, assuming that the thinned portion B reaches the other surface R2 (penetration), the propagation time of the ultrasonic wave crossing the foundation bolt 101 becomes zero. From these considerations, the line L1 that extends the line segment having the inclination of the thinned portion B to the other surface R2, and the line L2 that extends the line segment having the inclination that the delay signal F is displayed to the other surface R2 are: Intersects at point P on the other surface R2. Based on this geometric positional relationship, the thinning depth D can be estimated from the delay signal F.
ここで、画像上において遅れ信号Fから減肉深さDを推定する手順について説明する。図8に、生成した画像における遅れ信号F等の受信信号を模式的に示す。
まず、画像に表示される遅れ信号Fから短線分Xを求めると共に、側面R1からの反射信号としてのネジ部101bからの反射信号Yが基礎ボルト101の減肉部Bにより欠落した画像上の反射信号Yの欠落部Zの上端Qを特定する。上端Qの特定は、生成された画像を用いて、例えば信号強度により行う。また、入力装置6を介して手動で設定することも可能である。この上端Qは、側面R1における減肉部Bの上端部を示す。次に、求めた短線分Xを延長した延長線が基礎ボルト101の他面R2と交わる他面側交点Pを求める。そして、この他面側交点Pと欠落部Zの上端Qとを結ぶ第一の線分PQを求める。この第一線分PQは、送信した超音波の反射源、すなわち減肉部の壁部(傾き)を示す。
Here, a procedure for estimating the thinning depth D from the delay signal F on the image will be described. FIG. 8 schematically shows a received signal such as a delay signal F in the generated image.
First, the short line segment X is obtained from the delay signal F displayed in the image, and the reflection signal Y from the screw portion 101b as a reflection signal from the side surface R1 is lost due to the thinned portion B of the foundation bolt 101. The upper end Q of the missing portion Z of the signal Y is specified. The upper end Q is specified by using, for example, signal strength using the generated image. It is also possible to manually set via the input device 6. This upper end Q shows the upper end part of the thinning part B in side surface R1. Next, the other surface side intersection P where the extended line obtained by extending the obtained short line segment X intersects the other surface R2 of the foundation bolt 101 is obtained. And the 1st line segment PQ which connects this other surface side intersection P and the upper end Q of the missing part Z is calculated | required. The first line segment PQ indicates the reflection source of the transmitted ultrasonic wave, that is, the wall portion (inclination) of the thinned portion.
また、基礎ボルト101の中心側に位置する短線分Xの内側端Eと探触子の走査位置Sとを結び且つ超音波の送信角度で傾斜する第二の線分SEを求める。この第二線分SEは、遅れ信号Fが生じる超音波の伝搬時間を距離に換算した線分SFの内、基礎ボルト101の中心側に位置する線分を示す。よって、第一線分PQと第二線分SEとの交点Uは、基礎ボルト101の側面R1から最も離隔した点となり、減肉の最深位置を示す。従って、この交点Uにより減肉部Bの深さDを求めることができる。 Further, a second line segment SE that connects the inner end E of the short line segment X located on the center side of the foundation bolt 101 and the scanning position S of the probe and is inclined at an ultrasonic transmission angle is obtained. The second line segment SE indicates a line segment located on the center side of the foundation bolt 101 in the line segment SF obtained by converting the propagation time of the ultrasonic wave in which the delay signal F is generated into a distance. Therefore, the intersection U between the first line segment PQ and the second line segment SE is the point farthest from the side surface R1 of the foundation bolt 101 and indicates the deepest position of the thinning. Therefore, the depth D of the thinned portion B can be obtained from this intersection point U.
基礎ボルト101における減肉深さを推定する作業手順について、図4を参照しながら説明する。
まず、スキャナ10をナット107に嵌合させて固定用ノブ15により第一フレーム11を回転不能に固定し、フェーズドアレイ探触子2を基礎ボルト101の端面101aに取り付ける。この際、あらかじめ基礎ボルト101の端面101aをグラインダーなどで平滑にしておき、超音波をフェーズドアレイ探触子2から基礎ボルトに伝搬させるための接触媒質(グリセリンペースト等)を塗布しておく。調整用ノブ16によりバネ14bの押圧力を調整し、押圧部14dによりフェーズドアレイ探触子2を端面101aに接触させる。
An operation procedure for estimating the thickness of the foundation bolt 101 will be described with reference to FIG.
First, the scanner 10 is fitted to the nut 107, the first frame 11 is fixed to be non-rotatable by the fixing knob 15, and the phased array probe 2 is attached to the end face 101 a of the foundation bolt 101. At this time, the end surface 101a of the foundation bolt 101 is smoothed in advance with a grinder or the like, and a contact medium (glycerin paste or the like) for propagating ultrasonic waves from the phased array probe 2 to the foundation bolt is applied. The pressing force of the spring 14b is adjusted by the adjusting knob 16, and the phased array probe 2 is brought into contact with the end surface 101a by the pressing portion 14d.
次に、フェーズドアレイ探触子2より超音波を所定角度範囲内で送信して電子的に走査し、その位置における受信信号を得ると共に、図3に示す画像処理装置4がS−scan画像又はB−scan画像を生成する。そして、スキャナ10によりフェーズドアレイ探触子2を適宜角度で機械的に360°回転走査し、探触子の各回転位置での画像を順次生成する。この回転走査による探触子の位置情報は、エンコーダ13aの信号をカウンタ3cによりカウントすることで得られる。このエンコーダ13aの信号は、スキャナ10の回転がその探触子の位置情報を伝えるためにピニオンギア13b、円環状のラック13cを介してエンコーダ13aに回転を与えることで生じる。このようにして生成した画像から、上述の如く減肉部Bの深さDを推定する。 Next, an ultrasonic wave is transmitted from the phased array probe 2 within a predetermined angle range and electronically scanned to obtain a reception signal at that position, and the image processing device 4 shown in FIG. A B-scan image is generated. Then, the phased array probe 2 is mechanically rotated and rotated 360 ° at an appropriate angle by the scanner 10 to sequentially generate images at each rotation position of the probe. The position information of the probe by this rotational scanning is obtained by counting the signal of the encoder 13a by the counter 3c. The signal of the encoder 13a is generated when the rotation of the scanner 10 gives rotation to the encoder 13a via the pinion gear 13b and the annular rack 13c in order to transmit the position information of the probe. From the image thus generated, the depth D of the thinned portion B is estimated as described above.
次に、本発明の第二の実施形態について説明する。なお、以下の実施形態において、上述の実施形態と同様の部材には同一の符号を附してある。
第一実施形態では、超音波の送信角度を一定としてリニアスキャンを行ったが、第二実施形態では、超音波の送信角度を所定の角度範囲内で変化させるセクタスキャンを行う。
Next, a second embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the same members as those in the above-described embodiments.
In the first embodiment, the linear scan is performed with the ultrasonic transmission angle constant, but in the second embodiment, the sector scan is performed to change the ultrasonic transmission angle within a predetermined angle range.
セクタスキャンの場合、図9に示すように、超音波の送信位置Sは1点となる。また、超音波の送信角度は、例えば図5に示すように、軸心Aに対し+θ°〜−θ°の角度範囲内で可変とする。そのため、符号P’及びP’’で示す他面側交点は、他面R2上で異なる点となる。これにより、第一線分としての線分P’Q及び線分P’’Qは、減肉部Bの傾きを有する線分PQに対しズレが生じる。この点、送信角度を一定とするリニアスキャンと相違する。 In the case of sector scanning, as shown in FIG. 9, the ultrasonic wave transmission position S is one point. In addition, the transmission angle of the ultrasonic wave is variable within an angle range of + θ ° to −θ ° with respect to the axis A as shown in FIG. Therefore, the other surface side intersections indicated by reference numerals P ′ and P ″ are different points on the other surface R2. Thereby, the line segment P′Q and the line segment P ″ Q as the first line segment are displaced from the line segment PQ having the inclination of the thinned portion B. This is different from linear scanning in which the transmission angle is constant.
しかし、線分P’Q及び線分P’’Qは、いずれも上端Qを基点とするので、上端Qに近接するほど線分PQに対するズレは小さくなる。そして、第二線分SEとの交点Uは、通常上端Q側(側面R1側)に位置する。よって、このズレによる減肉深さDの推定に与える影響は小さい。従って、セクタスキャンの場合も、上記と同様の手順で、交点Uにより減肉部Bの深さDを推定することができる。 However, since the line segment P′Q and the line segment P ″ Q are both based on the upper end Q, the closer to the upper end Q, the smaller the deviation from the line segment PQ. And the intersection U with 2nd line segment SE is normally located in the upper end Q side (side surface R1 side). Therefore, the influence on the estimation of the thinning depth D due to this shift is small. Therefore, also in the case of sector scanning, the depth D of the thinned portion B can be estimated from the intersection point U in the same procedure as described above.
また、セクタスキャンの場合、上述の如く所定の角度範囲内で超音波を扇状に送信する。そのため、探触子の各回転位置において、基礎ボルト101の周面に対し超音波を送信させることができ、一度のセクタ走査で基礎ボルト101の側面R1及び他面R2双方の減肉を検出し、減肉深さDを推定することができる。また、生成されるS−scan画像は、減肉Bの深さDや位置等を視覚的に把握しやすい。これらの点で第二実施形態が優れている。 In the case of sector scanning, ultrasonic waves are transmitted in a fan shape within a predetermined angle range as described above. Therefore, ultrasonic waves can be transmitted to the peripheral surface of the foundation bolt 101 at each rotational position of the probe, and the thinning of both the side surface R1 and the other surface R2 of the foundation bolt 101 is detected by one sector scan. The thinning depth D can be estimated. Further, the generated S-scan image makes it easy to visually grasp the depth D and position of the thinning B. In these respects, the second embodiment is superior.
次に、本発明の第三の実施形態について説明する。本実施形態では、主に基礎ボルト101の円筒部101cに形成された減肉の減肉深さを推定する。円筒部101cでは、側面からの反射信号が微弱な場合があり、係る場合、微弱な反射信号と減肉により反射信号が欠落した欠落部Zとの差異が画像上で不明瞭となる。 Next, a third embodiment of the present invention will be described. In this embodiment, the thinning depth of the thinning formed mainly in the cylindrical portion 101c of the foundation bolt 101 is estimated. In the cylindrical portion 101c, the reflected signal from the side surface may be weak. In such a case, the difference between the weak reflected signal and the missing portion Z in which the reflected signal is lost due to thinning becomes unclear on the image.
そこで、本実施形態では、図7〜9に示すように、短線分Xの外側端E’を通る探触子の走査線SE’と基礎ボルト101の側面R1を示す外側線との交点により欠落部Zの上端Qを特定する。上述したように、各線分SFは減肉部Bにより遅れ信号Fが生じる超音波の伝搬時間を距離に換算した線分(走査線)であり、短線分Xの外側端E’を通る走査線SE’は、線分SFの内、基礎ボルト101の中心側から最も離隔した走査線を示す。すなわち、外側線としての側面R1との交点は減肉部Bの上端を示し、この交点が欠落部Zの上端Qとなる。従って、円筒部101cからの反射信号が微弱又は検出困難な場合であっても、画像上で減肉部Bの上端を特定することができ、減肉深さDの推定が可能となる。なお、この上端Qの特定は、上記各実施形態にも適用可能であり、欠落部Zの明瞭さに応じて適宜行うとよい。 Therefore, in this embodiment, as shown in FIGS. 7 to 9, the missing line is caused by the intersection of the scanning line SE ′ of the probe passing through the outer end E ′ of the short line segment X and the outer line indicating the side surface R 1 of the foundation bolt 101. The upper end Q of the part Z is specified. As described above, each line segment SF is a line segment (scan line) obtained by converting the propagation time of the ultrasonic wave in which the delay signal F is generated by the thinned portion B into a distance, and the scan line passing through the outer end E ′ of the short line segment X. SE ′ represents a scanning line farthest from the center side of the foundation bolt 101 in the line segment SF. That is, the intersection with the side surface R1 as the outer line indicates the upper end of the thinned portion B, and this intersection is the upper end Q of the missing portion Z. Therefore, even if the reflected signal from the cylindrical portion 101c is weak or difficult to detect, the upper end of the thinned portion B can be specified on the image, and the thinning depth D can be estimated. The specification of the upper end Q is also applicable to each of the above embodiments, and may be appropriately performed according to the clarity of the missing portion Z.
ここで、発明者らは、図10(a)〜(c)に示す第一〜第三試験体T1〜T3を製作し、これら試験体T1〜T3を用いてセクタスキャンを行いS−scan画像にて本手法の有効性を確認した。 Here, the inventors manufactured first to third specimens T1 to T3 shown in FIGS. 10A to 10C, and performed a sector scan using these specimens T1 to T3 to obtain an S-scan image. We confirmed the effectiveness of this method.
図10(a)は、長尺部材101’の端面101’aから模擬減肉中心(最深部)までの距離(深さ)70mm、模擬減肉の最深部の深さ5mmとした部分減肉Bt1をネジ部101’bに形成した第一試験体T1を示す。同図(b)は、同距離(深さ)70mm、同深さ10mmの第一部分減肉Bt2及び同距離(深さ)100mm、同深さ5mmの第二部分減肉Bt3をネジ部101’bに形成した第二試験体T2を示す。同図(c)は、同距離(深さ)140mm、同深さ5mmの全周減肉Bt4を円筒部101’cに形成した第三試験体T3を示す。なお、模擬部分減肉は、同図(d)に示す如く、グラインダにより長尺部材101’の半周分を加工して形成した。 FIG. 10 (a) shows a partial thinning with a distance (depth) of 70 mm from the end face 101′a of the long member 101 ′ to the simulated thinning center (deepest part) and a depth of 5 mm at the deepest part of the simulated thinning. The 1st test body T1 which formed Bt1 in screw part 101'b is shown. FIG. 4B shows a screw portion 101 ′ having a first partial thickness reduction Bt2 having the same distance (depth) of 70 mm and the same depth of 10 mm and a second partial thickness reduction Bt3 having the same distance (depth) of 100 mm and the same depth of 5 mm. The 2nd test body T2 formed in b is shown. FIG. 4C shows a third test body T3 in which the entire circumference thinning Bt4 having the same distance (depth) 140 mm and the same depth 5 mm is formed in the cylindrical portion 101 ′ c. The simulated partial thickness reduction was formed by processing a half circumference of the long member 101 ′ with a grinder, as shown in FIG.
図11は、第一試験体T1の部分減肉Bt1の減肉深さ推定結果を示す。図12は、第二試験体T2の第一部分減肉Bt2の深さ推定結果を示す。図13は、第二試験体T2の第二部分減肉Bt3の減肉深さ推定結果を示す。図14は、第三試験体T3の全周減肉Bt4の減肉深さ推定結果を示す。なお、各S−scan画像右側の画像は、試験体の模擬減肉近傍を示す。各図に示すように、いずれの試験体T1〜T3においても、模擬減肉Bt1〜Bt4の減肉深さD及び減肉位置(端面からの距離)を推定することが可能であることが確認できた。 FIG. 11 shows the estimation result of the thinning depth of the partial thinning Bt1 of the first specimen T1. FIG. 12 shows the depth estimation result of the first partial thinning Bt2 of the second specimen T2. FIG. 13 shows the estimation result of the thinning depth of the second partial thinning Bt3 of the second specimen T2. FIG. 14 shows the estimation result of the thinning depth of the entire circumference thinning Bt4 of the third specimen T3. In addition, the image on the right side of each S-scan image shows the vicinity of the simulated thinning of the specimen. As shown in each figure, it is confirmed that the thinning depth D and the thinning position (distance from the end face) of the simulated thinning Bt1 to Bt4 can be estimated in any of the test bodies T1 to T3. did it.
最後に、本発明の他の実施形態の可能性について言及する。
上記各実施形態において、探触子としてフェーズドアレイ探触子2を用いて電子的走査を行ったが、これに限られるものではない。例えば、図15(a)に示すように、リニアスキャンに代えて、斜角超音波探触子2’を端面101a上で水平移動させる移動機構により機械的に移動させて走査してもよい。また、セクタスキャンに代えて、例えば同図(b)の如く、送信角度(屈折角度)を調整可能な可変角探触子2’’により機械的に扇状に走査することも可能である。また、スイッチ装置等により電気的に扇状に走査してもよい。
Finally, reference is made to the possibilities of other embodiments of the invention.
In each of the above embodiments, electronic scanning is performed using the phased array probe 2 as a probe, but the present invention is not limited to this. For example, as shown in FIG. 15A, instead of linear scanning, scanning may be performed by mechanically moving the oblique ultrasonic probe 2 ′ by a moving mechanism that horizontally moves on the end surface 101a. Further, instead of sector scanning, for example, as shown in FIG. 6B, it is also possible to mechanically scan in a fan shape with a variable angle probe 2 ″ whose transmission angle (refraction angle) can be adjusted. Further, it may be scanned electrically like a fan by a switch device or the like.
上記各実施形態において、フェーズドアレイ探触子2における送受信の中心O1及び端面101aの中心O2を基礎ボルト101の軸心Aと一致させて走査した。しかし、中心O1,O2を一致させる場合の他、例えば中心O1,O2を一致させずに端面101aの中心O2と異なる点を基準に回転走査することも可能である。ただし、基礎ボルト101の周面へ均等に超音波を伝搬させることが困難となり、画像処理が複雑となるため、上記各実施形態が優れている。 In each of the above embodiments, scanning was performed with the transmission / reception center O1 and the center O2 of the end face 101a of the phased array probe 2 aligned with the axis A of the foundation bolt 101. However, in addition to the case where the centers O1 and O2 are made coincident, for example, the center O1 and O2 can be made coincident and rotational scanning can be performed based on a point different from the center O2 of the end face 101a. However, since it becomes difficult to propagate ultrasonic waves uniformly to the peripheral surface of the foundation bolt 101 and the image processing becomes complicated, the above embodiments are excellent.
上記各実施形態において、第二の線分SEは、短線分Xの内側端Eと探触子の走査位置Sとを結び且つ超音波の送信角度で傾斜する線分として求めた。しかし、第二の線分SEは、下記条件1,2の少なくとも一方を満たす線分であればよい。条件1,2の各線分は、いずれも遅れ信号Fを生じる超音波の走査線の内、基礎ボルト101の中心側に位置する走査線を示す。よって、いずれかの条件を満たす当該線分を用いて減肉深さDを推定することができる。
条件1:短線分Xの内側端Eと探触子の走査位置Sとを結ぶ線分
条件2:短線分Xの内側端Eを通り超音波の送信角度で傾斜する線分
In each of the embodiments described above, the second line segment SE is obtained as a line segment that connects the inner end E of the short line segment X and the scanning position S of the probe and is inclined at the ultrasonic transmission angle. However, the second line segment SE may be a line segment that satisfies at least one of the following conditions 1 and 2. Each line segment of conditions 1 and 2 indicates a scanning line located on the center side of the foundation bolt 101 among ultrasonic scanning lines that generate the delay signal F. Therefore, the thinning depth D can be estimated using the line segment that satisfies any one of the conditions.
Condition 1: A line segment connecting the inner end E of the short line segment X and the scanning position S of the probe. 2: A line segment that passes through the inner end E of the short line segment X and is inclined at an ultrasonic transmission angle.
上記各実施形態において、保持機構及び回転抽出機構は一例に過ぎず、探触子を端面に押圧し確実に接触させると共に回転走査可能な構成であれば特に限定されるものではない。また、長尺部材は埋設している基礎ボルトに限られるものではなく、一端側から超音波を入射可能なものであれば適用可能である。 In each of the above-described embodiments, the holding mechanism and the rotation extraction mechanism are merely examples, and are not particularly limited as long as the probe is pressed against the end face to be surely brought into contact with the rotation scanning. Further, the long member is not limited to the embedded foundation bolt, and can be applied as long as an ultrasonic wave can be incident from one end side.
上記各実施形態において、短線分Xを求める遅れ信号は、縦波による遅れ信号F1又はモード変換した横波による遅れ信号F2のいずれであってもよい。例えば、画像上でより明瞭に現れた遅れ信号から短線分Xを求め、減肉深さDを推定するとよい。 In each of the above embodiments, the delay signal for obtaining the short line segment X may be either a delay signal F1 due to a longitudinal wave or a delay signal F2 due to a transverse wave that has undergone mode conversion. For example, the short line segment X may be obtained from the delayed signal that appears more clearly on the image, and the thinning depth D may be estimated.
本発明は、長尺部材の端面に探触子を載置して超音波を送信し、長尺部材からの受信信号により減肉の深さを推定する長尺部材の減肉深さ推定方法及び減肉深さ推定装置として利用することができる。また、略円筒形の基礎ボルトの他、角形や楕円形状等の長尺部材においても適用可能である。 The present invention relates to a method for estimating a thinning depth of a long member, in which a probe is placed on an end face of the long member, ultrasonic waves are transmitted, and a depth of thinning is estimated based on a received signal from the long member. And it can utilize as a thinning depth estimation apparatus. In addition to a substantially cylindrical foundation bolt, the present invention can also be applied to a long member such as a square or an ellipse.
1:減肉深さ推定装置、2:フェーズドアレイ探触子(探触子)、3:制御装置、3a:制御部、3b:パルサーレシーバー、3c:カウンタ、4:画像処理装置(PC)、5:表示装置、6:入力装置、10:スキャナ、11:第一フレーム、12:第二フレーム、13:回転抽出機構、13a:エンコーダ、13b:ピニオンギア、13c:ラック、14:保持機構、14a:保持フレーム、14b:弾性部材、14c:保持部材、14d:押圧部、15:固定用ノブ、15a:貫通孔、16:調整用ノブ、16a:貫通孔、16b:長孔、100:構造体、101:基礎ボルト(長尺部材)、101a:端面、101b:ネジ部、101c:円筒部、102:基礎台、103:スリーブ、104:グラウト、105:ベースプレート、106:座板、107:ナット、A:軸心、B:減肉部、D:減肉深さ、F:遅れ信号、E:内側端、E’:外側端、O1:送受信中心、O2:端面中心、P:他面側交点、PQ:第一の線分、Q:上端、R1:側面(外側線)、R2:他面、S:走査位置、SE:第二の線分、SE’:走査線、U:交点、X:短線分、Y:反射信号、Z:欠落部 1: thinning depth estimation device, 2: phased array probe (probe), 3: control device, 3a: control unit, 3b: pulser receiver, 3c: counter, 4: image processing device (PC), 5: display device, 6: input device, 10: scanner, 11: first frame, 12: second frame, 13: rotation extraction mechanism, 13a: encoder, 13b: pinion gear, 13c: rack, 14: holding mechanism, 14a: holding frame, 14b: elastic member, 14c: holding member, 14d: pressing portion, 15: fixing knob, 15a: through hole, 16: adjusting knob, 16a: through hole, 16b: long hole, 100: structure Body, 101: foundation bolt (long member), 101a: end face, 101b: screw part, 101c: cylindrical part, 102: foundation platform, 103: sleeve, 104: grout, 105: base plate, 06: seat plate, 107: nut, A: axial center, B: thinning portion, D: thinning depth, F: delay signal, E: inner end, E ′: outer end, O1: transmission / reception center, O2: End surface center, P: intersection on the other surface side, PQ: first line segment, Q: upper end, R1: side surface (outer line), R2: other surface, S: scanning position, SE: second line segment, SE ′ : Scan line, U: Intersection, X: Short line segment, Y: Reflected signal, Z: Missing part
Claims (8)
前記端面上を走査して得られた受信信号から画像を生成し、
この画像において、
表示される遅れ信号から短線分を求め、
前記長尺部材の側面からの反射信号が欠落する欠落部の上端を画像を用いて、又は、前記短線分の外側端を通る探触子の走査線と前記長尺部材の外側線との交点により特定し、
前記短線分の延長線と前記側面に対向する他面とが交差する他面側交点を求め、
この他面側交点と前記欠落部の上端とを結ぶ第一の線分を求め、
前記短線分の内側端と探触子の走査位置とを結び及び/又は前記短線分の内側端を通り前記超音波の送信角度で傾斜する第二の線分を求め、
前記第一の線分と前記第二の線分とが交差する交点を求め、
この交点により前記減肉の深さを推定する長尺部材の減肉深さ推定方法。 It is a thinning depth estimation method for a long member that mounts a probe on the end face of a long member, transmits ultrasonic waves, and estimates the depth of thinning by a received signal from the long member,
An image is generated from a received signal obtained by scanning the end face,
In this image,
Find the short line from the displayed delay signal,
Use the image for the upper end of the missing part where the reflected signal from the side surface of the long member is missing, or the intersection of the scanning line of the probe that passes the outer end of the short line and the outer line of the long member Identified by
Finding the other surface side intersection where the extension line of the short line and the other surface facing the side surface intersect,
Find the first line segment connecting this other surface side intersection and the upper end of the missing part,
A second line segment connecting the inner end of the short line segment and the scanning position of the probe and / or passing through the inner end of the short line segment and inclined at the transmission angle of the ultrasonic wave,
Find the intersection where the first line segment and the second line segment intersect,
A method for estimating a thinning depth of a long member, wherein the thinning depth is estimated from the intersection.
前記探触子を前記端面上に取り付けると共に回転走査させるスキャナと、
前記超音波の送受信を制御する制御装置と、
得られた受信信号から画像を生成すると共に生成した画像を解析する画像処理装置と、
前記画像を表示する表示装置とを備え、
画像処理装置は、前記受信信号から画像を生成し、
この画像において、
表示される遅れ信号から短線分を求め、
前記長尺部材の側面からの反射信号が欠落する欠落部の上端を画像を用いて、又は、前記短線分の外側端を通る探触子の走査線と前記長尺部材の外側線との交点により特定し、
前記短線分の延長線と前記側面に対向する他面とが交差する他面側交点を求め、
この他面側交点と前記欠落部の上端とを結ぶ第一の線分を求め、
前記短線分の内側端と探触子の走査位置とを結び及び/又は前記短線分の内側端を通り前記超音波の送信角度で傾斜する第二の線分を求め、
前記第一の線分と前記第二の線分とが交差する交点を求め、
この交点により前記減肉の深さを推定する長尺部材の減肉深さ推定装置。 A thinning depth estimation device for a long member that mounts a probe on the end face of a long member, transmits ultrasonic waves, and estimates the depth of thinning by a received signal from the long member,
A scanner that mounts the probe on the end face and rotationally scans;
A control device for controlling transmission and reception of the ultrasonic wave;
An image processing device for generating an image from the obtained received signal and analyzing the generated image;
A display device for displaying the image,
The image processing device generates an image from the received signal,
In this image,
Find the short line from the displayed delay signal,
Use the image for the upper end of the missing part where the reflected signal from the side surface of the long member is missing, or the intersection of the scanning line of the probe that passes the outer end of the short line and the outer line of the long member Identified by
Finding the other surface side intersection where the extension line of the short line and the other surface facing the side surface intersect,
Find the first line segment connecting this other surface side intersection and the upper end of the missing part,
A second line segment connecting the inner end of the short line segment and the scanning position of the probe and / or passing through the inner end of the short line segment and inclined at the transmission angle of the ultrasonic wave,
Find the intersection where the first line segment and the second line segment intersect,
A thinning depth estimation device for a long member that estimates the thickness of the thinning based on this intersection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010124525A JP5286327B2 (en) | 2010-05-31 | 2010-05-31 | Method for estimating thinning depth of long member and thinning depth estimation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010124525A JP5286327B2 (en) | 2010-05-31 | 2010-05-31 | Method for estimating thinning depth of long member and thinning depth estimation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011252708A true JP2011252708A (en) | 2011-12-15 |
JP5286327B2 JP5286327B2 (en) | 2013-09-11 |
Family
ID=45416769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010124525A Active JP5286327B2 (en) | 2010-05-31 | 2010-05-31 | Method for estimating thinning depth of long member and thinning depth estimation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5286327B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002005903A (en) * | 2000-06-20 | 2002-01-09 | Mitsubishi Heavy Ind Ltd | Ultrasonic inspection device and flaw detection method |
JP2009281731A (en) * | 2008-05-19 | 2009-12-03 | Chubu Electric Power Co Inc | Defect evaluation method of long member, and defect evaluation device of long member |
-
2010
- 2010-05-31 JP JP2010124525A patent/JP5286327B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002005903A (en) * | 2000-06-20 | 2002-01-09 | Mitsubishi Heavy Ind Ltd | Ultrasonic inspection device and flaw detection method |
JP2009281731A (en) * | 2008-05-19 | 2009-12-03 | Chubu Electric Power Co Inc | Defect evaluation method of long member, and defect evaluation device of long member |
Also Published As
Publication number | Publication date |
---|---|
JP5286327B2 (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8453509B2 (en) | Method for the non-destructive testing of a test object by way of ultrasound and apparatus therefor | |
US9423380B2 (en) | Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus | |
JP4166222B2 (en) | Ultrasonic flaw detection method and apparatus | |
JP2008039622A5 (en) | ||
JP4999776B2 (en) | Defect evaluation method for long member and defect evaluation apparatus for long member | |
CN106596725B (en) | A kind of composite structure Zone R defect ultrasound method of discrimination | |
JP5127573B2 (en) | Ultrasonic flaw detection apparatus and method | |
TWI699530B (en) | Position control device, position control method, and ultrasonic imaging system | |
JP2007132908A (en) | Method of inspecting bolt screw part during use | |
JP5112942B2 (en) | Ultrasonic flaw detection method and apparatus | |
JP4591850B2 (en) | Ultrasonic inspection method and apparatus | |
JP2007085949A (en) | Method and device for detecting texture change by ultrasonic wave | |
TWI471559B (en) | Ultrasonic sensor, the use of its inspection methods and inspection devices | |
JP7315345B2 (en) | Anchor bolt ultrasonic flaw detection device and anchor bolt ultrasonic flaw detection method | |
JP5286327B2 (en) | Method for estimating thinning depth of long member and thinning depth estimation device | |
KR20150103290A (en) | Ultrasonic probe | |
JP4793636B2 (en) | Array probe device for water immersion | |
JP4682921B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JP5468408B2 (en) | Inspection method of bolt screw part in use | |
JP2019174231A (en) | Anchor-bolt ultrasonic flaw inspection device and inspection method | |
JP2016042043A (en) | Outer shell corrosion inspection apparatus and outer shell corrosion inspection method | |
JP2008298454A (en) | Ultrasonic flaw inspection device and method | |
JP5123644B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JPH01158348A (en) | Ultrasonic flaw detection apparatus | |
JP2010175519A (en) | Ultrasonic inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5286327 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |