JP2011252227A - Cr-Ti ALLOY TARGET MATERIAL - Google Patents

Cr-Ti ALLOY TARGET MATERIAL Download PDF

Info

Publication number
JP2011252227A
JP2011252227A JP2011102721A JP2011102721A JP2011252227A JP 2011252227 A JP2011252227 A JP 2011252227A JP 2011102721 A JP2011102721 A JP 2011102721A JP 2011102721 A JP2011102721 A JP 2011102721A JP 2011252227 A JP2011252227 A JP 2011252227A
Authority
JP
Japan
Prior art keywords
target material
phase
powder
alloy target
ticr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011102721A
Other languages
Japanese (ja)
Other versions
JP5854308B2 (en
Inventor
Kazuya Saito
和也 斉藤
Mitsuharu Fujimoto
光晴 藤本
Hiroshi Takashima
洋 高島
Koichi Sakamaki
功一 坂巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011102721A priority Critical patent/JP5854308B2/en
Publication of JP2011252227A publication Critical patent/JP2011252227A/en
Application granted granted Critical
Publication of JP5854308B2 publication Critical patent/JP5854308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cr-Ti alloy target material capable of suppressing particle generation in sputtering.SOLUTION: The Cr-Ti alloy target material includes 40-60 atom% of Ti and includes a residual part Cr and unavoidable impurities. In the Cr-Ti alloy target material, when it is assumed that diffraction peak intensity of the (110) plane of a Cr phase in X-ray diffraction on a sputtering surface and diffraction peak intensity of the (311) plane of a TiClcompound phase are A and B, respectively, a relative intensity ratio B/A is ≤10%.

Description

本発明は、磁気記録媒体の下地層およびシード層として使用されるCr−Ti層を形成するためのCr−Ti合金ターゲット材に関するものである。   The present invention relates to a Cr—Ti alloy target material for forming a Cr—Ti layer used as an underlayer and a seed layer of a magnetic recording medium.

近年、磁気記録技術の進歩は著しく、ドライブの小型化と大容量化のため、磁気記録媒体の高密度化の検討が盛んに行われている。しかしながら、現在、世の中に広く普及している面内磁気記録方式の磁気記録媒体でドライブの小型化と高記録密度化を同時に実現しようとすると、1ビットの記録に用いる領域が小さくなり、周囲の磁区と打ち消しあって磁力を失ってしまう。そこで、更なる高記録密度化を実現できる方式として、垂直磁気記録方式が実用化され、現在、主流となっている。また、さらなる高記録密度を目指し、パターンドメディア、熱アシスト記録方式などの新しい記録方式の開発が進められている。   2. Description of the Related Art In recent years, magnetic recording technology has been remarkably advanced, and studies on increasing the density of magnetic recording media have been actively conducted in order to reduce the size and increase the capacity of drives. However, if an attempt is made to simultaneously realize downsizing and high recording density of a magnetic recording medium of the in-plane magnetic recording system that is widely used in the world, the area used for 1-bit recording becomes small, It cancels out the magnetic domain and loses its magnetic force. Therefore, a perpendicular magnetic recording method has been put into practical use as a method capable of realizing further higher recording density, and is now mainstream. In addition, with the aim of higher recording density, new recording methods such as patterned media and heat-assisted recording are being developed.

垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜を媒体面に対して磁化容易軸が垂直に配向するように形成したものであり、記録密度を上げてもビット内の反磁界が小さく、記録再生特性の低下が少ない高記録密度化に適した方式である。垂直磁気記録媒体は、基板/下地層/軟磁性裏打ち層/シード層/Ru中間層/CoPtCr−SiO磁性層/保護層からなる多層構造が一般的である。前記の下地層およびシード層の一部にはCr−Ti層が形成されている。 The perpendicular magnetic recording system is a magnetic film of a perpendicular magnetic recording medium formed so that the easy axis of magnetization is oriented perpendicular to the medium surface, and even if the recording density is increased, the demagnetizing field in the bit is small, This method is suitable for increasing the recording density with little deterioration in recording / reproducing characteristics. A perpendicular magnetic recording medium generally has a multilayer structure including a substrate / underlayer / soft magnetic backing layer / seed layer / Ru intermediate layer / CoPtCr—SiO 2 magnetic layer / protective layer. A Cr—Ti layer is formed on part of the underlayer and seed layer.

磁気記録媒体の成膜はマグネトロンスパッタリング法により行われる。マグネトロンスパッタリング法とは、ターゲット材と呼ばれる母材の背面に永久磁石を配置し、ターゲット材の表面に磁束を漏洩させて、漏洩磁束領域にグロー放電プラズマを収束し、高速成膜を可能とする方法である。磁気記録媒体は各層ごとに独立した成膜室を備えたスパッタ装置を用いて製造される。   The magnetic recording medium is formed by magnetron sputtering. With magnetron sputtering, a permanent magnet is placed on the back of a base material called a target material, magnetic flux is leaked to the surface of the target material, glow discharge plasma is focused on the leakage magnetic flux region, and high-speed film formation is possible. Is the method. The magnetic recording medium is manufactured using a sputtering apparatus provided with an independent film forming chamber for each layer.

ターゲット材は、所望の薄膜組成に調整された板材で、一般的に、溶解法や粉末焼結法によって製造されている。前記のCr−Ti層の形成に用いられるCr−Ti合金ターゲット材は粉末焼結法によって製造されている。
しかし、Cr−Ti合金ターゲット材は機械的性質において脆く、割れが発生しやすいため、組織の改良が試みられている。例えば、Tiを5〜36原子%含有するCr−Ti合金ターゲット材において、抗折力を250N/mm以上とすることで、スパッタリングの際の熱応力による破断やターゲット加工中のチッピングを防止可能であることが提案されている(特許文献1参照)。
The target material is a plate material adjusted to a desired thin film composition, and is generally manufactured by a melting method or a powder sintering method. The Cr—Ti alloy target material used for forming the Cr—Ti layer is manufactured by a powder sintering method.
However, since the Cr—Ti alloy target material is brittle in mechanical properties and easily cracks, attempts have been made to improve the structure. For example, in a Cr-Ti alloy target material containing 5 to 36 atomic percent of Ti, fracture strength due to thermal stress during sputtering and chipping during target processing can be prevented by setting the bending strength to 250 N / mm 2 or more. Has been proposed (see Patent Document 1).

特開平10−298742号公報JP-A-10-298742

上述した特許文献1に開示されたCr−Ti合金ターゲット材は、ターゲット組織中に抗折力の高い金属Ti相を存在させることで、ターゲット材の抗折力の低下を防止するもので、加工中やスパッタリングの際に破断を抑制する上で有効である。
しかしながら、本発明者が、粉末焼結法によるCr−Ti合金ターゲット材をスパッタリングしたところ、ターゲット材から多量のパーティクルと呼ばれる異物が発生する問題があることを確認した。そして、その主原因として、ターゲット材のスパッタ面にノジュールと呼ばれる突起物が多量に発生する現象を確認した。
本発明の目的は、上記課題を解決し、スパッタリング時にパーティクル発生を抑制可能なCr−Ti合金ターゲット材を提供することである。
The Cr—Ti alloy target material disclosed in Patent Document 1 described above prevents a decrease in the bending strength of the target material by causing a metal Ti phase having a high bending strength to exist in the target structure. This is effective in suppressing breakage during and during sputtering.
However, when the present inventors sputtered a Cr—Ti alloy target material by a powder sintering method, it was confirmed that there was a problem that a large amount of foreign matters called particles were generated from the target material. As a main cause, a phenomenon that a large amount of protrusions called nodules are generated on the sputtering surface of the target material was confirmed.
An object of the present invention is to provide a Cr—Ti alloy target material that can solve the above-described problems and can suppress generation of particles during sputtering.

本発明者は、スパッタリング時のパーティクル発生原因を調査した結果、ターゲット組織中のCr−Ti金属間化合物相がノジュール発生の主原因であることを確認した。そして、ターゲット組織中に存在するCr−Ti金属間化合物相(TiCr相)を極限まで低減することが有効であることを見いだし本発明に到達した。
すなわち本発明は、Tiを40〜60原子%含有し、残部Crおよび不可避的不純物からなるCr−Ti合金ターゲット材であって、スパッタ面のX線回折におけるCr相の(110)面の回折ピーク強度をA、TiCr化合物相の(311)面の回折ピーク強度をBとするとき、相対強度比B/Aが10%以下であるCr−Ti合金ターゲット材である。
As a result of investigating the cause of particle generation during sputtering, the present inventor has confirmed that the Cr—Ti intermetallic compound phase in the target structure is the main cause of nodule generation. The inventors have found that it is effective to reduce the Cr—Ti intermetallic compound phase (TiCr 2 phase) present in the target structure to the limit, and have reached the present invention.
That is, the present invention is a Cr—Ti alloy target material containing 40 to 60 atomic% of Ti, the balance being Cr and inevitable impurities, and a diffraction peak of the (110) plane of the Cr phase in the X-ray diffraction of the sputter surface. When the intensity is A and the diffraction peak intensity of the (311) plane of the TiCr 2 compound phase is B, the relative intensity ratio B / A is a Cr—Ti alloy target material of 10% or less.

本発明により、スパッタリングの際のノジュールを抑制したCr−Ti合金ターゲット材が実現でき、磁気記録媒体用のCr−Ti膜を安定的に成膜することが可能となる。   According to the present invention, a Cr—Ti alloy target material in which nodules during sputtering are suppressed can be realized, and a Cr—Ti film for a magnetic recording medium can be stably formed.

本発明例のCr−Tiターゲット材の光学顕微鏡像である。It is an optical microscope image of the Cr-Ti target material of the example of the present invention. 本発明例のX線回折法による各回折ピークを同定した結果である。It is the result of identifying each diffraction peak by the X-ray diffraction method of the example of the present invention. 本発明例のCr−Tiターゲット材の光学顕微鏡像である。It is an optical microscope image of the Cr-Ti target material of the example of the present invention. 本発明例のX線回折法による各回折ピークを同定した結果である。It is the result of identifying each diffraction peak by the X-ray diffraction method of the example of the present invention.

上述したように、本発明の重要な特徴は、スパッタリングの際のパーティクルを抑制すべく、ターゲット組織中に存在するCr−Ti金属間化合物相(TiCr相)を極微量に制御する点にある。 As described above, an important feature of the present invention is that the Cr—Ti intermetallic compound phase (TiCr 2 phase) present in the target structure is controlled in an extremely small amount so as to suppress particles during sputtering. .

本発明のCr−Ti合金ターゲット材は、Tiを40〜60原子%含有し、残部Crおよび不可避的不純物からなるものである。
Ti含有量を上記の範囲に規定した理由は、薄膜の密着性が高く、下地層やシード層の一部とした際に、結晶性に優れた薄膜を形成でき、高い記録再生特性を備えた磁気記録媒体を製造できるためである。なお、この組成範囲においては、TiCr相に起因したパーティクルの問題が顕在化しやすいため、本発明のTiCr相を極微量に制御したターゲット材が極めて有効な解決手段となる。
The Cr—Ti alloy target material of the present invention contains 40 to 60 atomic% of Ti, and consists of the balance Cr and inevitable impurities.
The reason why the Ti content is defined in the above range is that the adhesion of the thin film is high, and when it is used as a part of the underlayer or seed layer, a thin film with excellent crystallinity can be formed, and high recording / reproducing characteristics are provided. This is because a magnetic recording medium can be manufactured. In this composition range, the problem of particles caused by the TiCr 2 phase is likely to be manifested, so that the target material in which the TiCr 2 phase of the present invention is controlled in an extremely small amount is an extremely effective solution.

本発明のCr−Ti合金ターゲット材は、Cr−Ti金属間化合物相(TiCr相)を極微量に制御する観点から、スパッタ面のX線回折におけるCr相の(110)面の回折ピーク強度をA、TiCr相の(311)面の回折ピーク強度をBとするとき、相対強度比B/Aが10%以下とする。
焼結組織であるCr−Ti合金ターゲット材の組織中には、Cr相、Ti相、CrとTiとの拡散相としてTiCr相が形成される。ターゲット材組織中に拡散相として形成されるTiCr相を低減することは、ターゲット材の組織中に存在するCr相の最密充填面である(110)面とTiCr相の(311)面とのX線回折ピーク強度の相対強度比をより小さくすることで評価可能である。
スパッタ面のX線回折におけるCr相の(110)面の回折ピーク強度をA、TiCr相の(311)面の回折ピーク強度をBとするときの相対強度比を10%以下に定めた理由は、ノジュール化しやすいTiCr相の存在比率をスパッタリング時に問題にならない範囲まで低減するためである。なお、TiCr相がノジュール化する原因は、金属間化合物であるため純Cr相や純Ti相よりも原子間の結合力が強く、スパッタ率が低いためと考えられる。相対強度比B/Aは好ましくは5%以下であり、さらに好ましくは3%以下である。
From the viewpoint of controlling the Cr—Ti intermetallic compound phase (TiCr 2 phase) in a very small amount, the Cr—Ti alloy target material of the present invention has a diffraction peak intensity of the (110) plane of the Cr phase in the X-ray diffraction of the sputtering surface. Where A and the diffraction peak intensity of the (311) plane of the TiCr 2- phase are B, the relative intensity ratio B / A is 10% or less.
In the structure of the Cr—Ti alloy target material that is a sintered structure, a Cr phase, a Ti phase, and a TiCr 2 phase are formed as a diffusion phase of Cr and Ti. Reducing the TiCr 2 phase formed as a diffusion phase in the target material structure is the (110) plane which is the closest packed surface of the Cr phase existing in the target material structure and the (311) plane of the TiCr 2 phase. It can be evaluated by making the relative intensity ratio of the X-ray diffraction peak intensities smaller.
Reason for setting the relative intensity ratio to 10% or less when the diffraction peak intensity of the (110) plane of the Cr phase in the X-ray diffraction of the sputter surface is A and the diffraction peak intensity of the (311) plane of the TiCr 2 phase is B This is because the abundance ratio of the TiCr 2 phase that is likely to be nodulated is reduced to a range that does not cause a problem during sputtering. The reason why the TiCr 2 phase is converted into a nodule is considered to be because the intermetallic compound has a stronger bonding force between atoms than the pure Cr phase or the pure Ti phase, and the sputtering rate is low. The relative intensity ratio B / A is preferably 5% or less, more preferably 3% or less.

また、Cr−Ti合金ターゲット材においては、スパッタ時の異常放電を抑制する観点から、不可避的に含まれる不純物の中で、特に酸素およびFeの含有量をより低減することが望ましい。
不可避的不純物として含まれる酸素は、典型的にはターゲット組織中に酸化物として存在し、この酸化物は絶縁体であるため、異常放電の基点になりやすい。そのため、異常放電の発生を抑制するため酸素含有量は800質量ppm以下に低減することが好ましい。
また、不可避的不純物として含まれるFeも、異常放電の基点になりやすいため、200質量ppm以下まで低減することが好ましい。
In addition, in the Cr—Ti alloy target material, it is desirable to further reduce the contents of oxygen and Fe, among impurities inevitably contained, from the viewpoint of suppressing abnormal discharge during sputtering.
Oxygen contained as an unavoidable impurity typically exists as an oxide in the target structure, and since this oxide is an insulator, it is likely to become a starting point for abnormal discharge. Therefore, it is preferable to reduce the oxygen content to 800 mass ppm or less in order to suppress the occurrence of abnormal discharge.
Moreover, since Fe contained as an unavoidable impurity tends to be a base point of abnormal discharge, it is preferably reduced to 200 mass ppm or less.

本発明のCr−Ti合金ターゲット材の製造方法としては、原料粉末にCr粉末とTi粉末を用い、加圧焼結を適用することで前述した組織を実現することができる。加圧焼結法としては、熱間静水圧プレス法、ホットプレス法、通電焼結法などを適用することができる。
特に、焼結温度を950℃以下とすることで、Cr相とTi相の界面に生成されるTiCr相の厚さを極限まで低減することができる。この際、加圧圧力を20MPa以上とすることで焼結密度の低下を伴うことなく健全な焼結体が得られる。なお、十分な焼結密度を得るためには焼結温度は750℃以上であることが望ましい。
As a method for producing the Cr—Ti alloy target material of the present invention, the above-described structure can be realized by using Cr powder and Ti powder as raw material powder and applying pressure sintering. As the pressure sintering method, a hot isostatic pressing method, a hot pressing method, an electric current sintering method, or the like can be applied.
In particular, by setting the sintering temperature to 950 ° C. or less, the thickness of the TiCr 2 phase generated at the interface between the Cr phase and the Ti phase can be reduced to the limit. At this time, a sound sintered body can be obtained without reducing the sintered density by setting the pressure to 20 MPa or more. In order to obtain a sufficient sintered density, the sintering temperature is desirably 750 ° C. or higher.

本発明のターゲット材の製造に用いる原料粉末としては、加圧焼結の際にCrとTiとの拡散相として形成されるTiCr相を抑制するため、Cr粉末を粗粒に制御することが望ましく、粒径としては、32メッシュ以下、かつ325メッシュ以上とすることが好ましい。それは、32メッシュを超えたCr粉末を使用する場合にはターゲット材の組織中に粗大なCr相を残存させることがあるためであり、325メッシュ未満の微細なCr粉末を使用する場合にはTi粉末との拡散が進みやすくTiCr相の形成を十分に抑制できないためである。
また、予め酸素を低減した粉末を用いることでターゲット材の酸素含有量を低減することができるため、例えば、高純度電解Cr粉砕粉末を、水素雰囲気中で還元熱処理を施したものを使用することが好ましい。Cr粉末の粒径を325メッシュ以上とすることは比表面積が大きく酸素含有量が高い微細な粉末を除去するためにも望ましい。
As the raw material powder used for the production of the target material of the present invention, it is possible to control the Cr powder to coarse particles in order to suppress the TiCr 2 phase formed as a diffusion phase of Cr and Ti during pressure sintering. Desirably, the particle size is preferably 32 mesh or less and 325 mesh or more. This is because when a Cr powder exceeding 32 mesh is used, a coarse Cr phase may remain in the structure of the target material. When a fine Cr powder less than 325 mesh is used, Ti is used. This is because diffusion with the powder easily proceeds and the formation of the TiCr 2 phase cannot be sufficiently suppressed.
Moreover, since the oxygen content of the target material can be reduced by using a powder in which oxygen is reduced in advance, for example, a high-purity electrolytic Cr pulverized powder that has been subjected to a reduction heat treatment in a hydrogen atmosphere should be used. Is preferred. Setting the particle size of the Cr powder to 325 mesh or more is also desirable for removing fine powder having a large specific surface area and a high oxygen content.

また、Ti粉末についても、例えば、Ti原料を水素雰囲気で熱処理して得られたTi水素化物を粉砕した後、脱水素処理を施した水素化粉砕脱水素のTi粉末を用いることでターゲット材の酸素含有量を低減することができる。さらに、ガスアトマイズ法により製造されたTi粉末を使用することもターゲット材の酸素含有量を低減する上で有効である。それは、ガスアトマイズのTi粉末は球状に近く比表面積が小さく粉末表面に吸着する酸素含有量が低いため、さらにターゲット材中の酸素含有量を低減することができるためである。Ti粉末の粒径は100メッシュ以下が好ましい。   In addition, for Ti powder, for example, after pulverizing Ti hydride obtained by heat-treating Ti raw material in a hydrogen atmosphere, dehydrogenation-treated hydrogen pulverized dehydrogenated Ti powder is used to obtain the target material. The oxygen content can be reduced. Furthermore, using Ti powder produced by the gas atomization method is also effective in reducing the oxygen content of the target material. This is because the gas atomized Ti powder is spherical and has a small specific surface area and a low oxygen content adsorbed on the powder surface, so that the oxygen content in the target material can be further reduced. The particle size of the Ti powder is preferably 100 mesh or less.

まず、水素雰囲気で還元処理を施した市販の純度99.99%のCr粉末を表1に示す篩で篩別した粉末を準備した。また、Ti粉末として、純度99.9%の水素化粉砕脱水素Ti粉末、ガスアトマイズTi粉末をそれぞれ100メッシュの篩で篩別した粉末を準備した。
上記で準備した粉末を、Cr−50Ti(原子%)となるように粉末を混合し、軟鋼製のカプセルに充填し脱気封止した後、温度950℃、圧力120MPa、保持時間1時間の条件で熱間静水圧プレス(HIP)によって加圧焼結し、焼結体を作製した。得られた各焼結体を直径180mm×厚さ10mmに機械加工してCr−Ti合金ターゲット材を作製した。
また、従来例として粉末焼結法により製造された市販のCr−50Ti(原子%)のターゲット材も準備した。
なお、得られた各ターゲット材に関して、酸素含有量を不活性ガス融解赤外線吸収法により、Fe含有量を誘導結合プラズマ発行分光分析法により分析した。また、上記の各ターゲット材をアルキメデス法により測定した密度からの相対密度を算出し、以上の分析、測定結果を表1に示す。
First, a powder obtained by screening a commercially available Cr powder with a purity of 99.99% subjected to reduction treatment in a hydrogen atmosphere with a sieve shown in Table 1 was prepared. Further, as the Ti powder, a powder obtained by sieving the hydrogenated pulverized dehydrogenated Ti powder having a purity of 99.9% and the gas atomized Ti powder with a 100 mesh sieve was prepared.
The powder prepared above is mixed with powder so as to be Cr-50Ti (atomic%), filled in a mild steel capsule and deaerated and sealed, and then the temperature is 950 ° C., the pressure is 120 MPa, and the holding time is 1 hour. And sintered under pressure by hot isostatic pressing (HIP) to produce a sintered body. Each obtained sintered body was machined into a diameter of 180 mm and a thickness of 10 mm to prepare a Cr—Ti alloy target material.
In addition, a commercially available Cr-50Ti (atomic%) target material manufactured by a powder sintering method was also prepared as a conventional example.
In addition, regarding each obtained target material, the oxygen content was analyzed by the inert gas fusion infrared absorption method, and the Fe content was analyzed by inductively coupled plasma emission spectroscopy. Moreover, the relative density from the density which measured said each target material by the Archimedes method was computed, and the above analysis and a measurement result are shown in Table 1.

上記で作製した各ターゲット材を株式会社リガク製 X線回折装置RINT2000を使用し、線源にCoを用いて、X線回折法により回折ピーク強度を測定した。測定結果からCr相の(110)面の回折ピーク強度(A)とTiCr化合物相の(311)面の回折ピーク強度(B)の相対強度比(B/A)を算出して表1に示す。
具体的な測定例として、図1に本発明例2のCr−Ti合金ターゲット材の光学顕微鏡像を示し、図2に本発明例2のX線回折法による各回折ピークを同定した結果を示す。図1において、白色部は金属Cr相、黒色部は金属Ti相であり、焼結による金属間拡散により金属Cr相と金属Ti相の境界部にTiCr化合物相がわずかに形成されたことがわかる。
The diffraction peak intensity was measured by the X-ray diffraction method for each of the target materials prepared above using an X-ray diffractometer RINT2000 manufactured by Rigaku Corporation, using Co as a radiation source. From the measurement results, the relative intensity ratio (B / A) of the diffraction peak intensity (A) of the (110) plane of the Cr phase and the diffraction peak intensity (B) of the (311) plane of the TiCr 2 compound phase is calculated and shown in Table 1. Show.
As a specific measurement example, FIG. 1 shows an optical microscope image of the Cr—Ti alloy target material of Invention Example 2, and FIG. 2 shows the result of identifying each diffraction peak by the X-ray diffraction method of Invention Example 2. . In FIG. 1, the white portion is the metallic Cr phase and the black portion is the metallic Ti phase, and a slight TiCr 2 compound phase is formed at the boundary between the metallic Cr phase and the metallic Ti phase due to intermetallic diffusion caused by sintering. Recognize.

また、上記で作製したターゲット材をDCマグネトロンスパッタ装置のチャンバ内に配置し、チャンバ内を1×10−6Pa以下となるまで減圧した後、Arガス圧0.3Pa、投入電力1500Wの条件にて5時間のスパッタを行った。次いで、各ターゲット材のスパッタ面のエロージョン部について、走査型電子顕微鏡を用いて観察した945μm×1270μmの視野で確認された短径5μm以上のノジュール数を測定した。測定結果を表1に示す。 Further, the target material prepared above is placed in the chamber of the DC magnetron sputtering apparatus, and after reducing the pressure in the chamber to 1 × 10 −6 Pa or less, the Ar gas pressure is 0.3 Pa and the input power is 1500 W. For 5 hours. Next, for the erosion portion of the sputtering surface of each target material, the number of nodules having a minor axis of 5 μm or more, which was confirmed with a field of view of 945 μm × 1270 μm observed using a scanning electron microscope, was measured. The measurement results are shown in Table 1.

表1から、相対強度比B/Aが10%以下である本発明例1〜本発明例3では、従来例の相対強度比B/A=15.8%よりも、スパッタリングの際に発生する短径5μm以上のノジュール発生を大きく低減できたことが確認できた。   From Table 1, in the present invention example 1 to the present invention example 3 in which the relative intensity ratio B / A is 10% or less, the relative intensity ratio B / A of the conventional example is 15.8%, which occurs during sputtering. It was confirmed that the generation of nodules having a minor axis of 5 μm or more could be greatly reduced.

次に実施例2として、水素雰囲気で還元処理を施した市販の純度99.99%のCr粉末を表2に示す篩で篩別した粉末を準備した。また、Ti粉末として、純度99.9%の水素化粉砕脱水素Ti粉末、ガスアトマイズTi粉末をそれぞれ100メッシュの篩で篩別した粉末を準備した。   Next, as Example 2, a powder obtained by screening a commercially available Cr powder with a purity of 99.99% subjected to reduction treatment in a hydrogen atmosphere with a sieve shown in Table 2 was prepared. Further, as the Ti powder, a powder obtained by sieving the hydrogenated pulverized dehydrogenated Ti powder having a purity of 99.9% and the gas atomized Ti powder with a 100-mesh sieve was prepared.

上記で準備した粉末を、表2の組成となるように混合し、軟鋼製のカプセルに充填し脱気封止した後、表2に示すHIP温度で、圧力120MPa、保持時間1時間の条件で熱間静水圧プレス(HIP)によって加圧焼結し、焼結体を作製した。得られた各焼結体を直径180mm×厚さ10mmに機械加工してCr−Ti合金ターゲット材を作製した。
なお、得られた各ターゲット材に関して評価をした結果を表2に示す。
The powder prepared above was mixed so as to have the composition shown in Table 2, filled in a mild steel capsule and degassed and sealed, then at the HIP temperature shown in Table 2 under the conditions of a pressure of 120 MPa and a holding time of 1 hour. The sintered compact was produced by pressure sintering by hot isostatic pressing (HIP). Each obtained sintered body was machined into a diameter of 180 mm and a thickness of 10 mm to prepare a Cr—Ti alloy target material.
In addition, Table 2 shows the results of evaluation on the obtained target materials.

具体的な測定例として、図3に本発明例11のCr−Ti合金ターゲット材の光学顕微鏡像を示し、図4に本発明例11のX線回折法により存在する相を同定した結果を示す。図3において、白色部は金属Cr相、黒色部は金属Ti相、金属Cr相と金属Ti相の界面部はTiCr化合物相である。本発明例によると、金属Cr相と金属Ti相の境界部に形成されるTiCr化合物相の存在比率を示す回折ピーク強度がより低減されていることがわかる。 As a specific measurement example, FIG. 3 shows an optical microscope image of the Cr—Ti alloy target material of Example 11 of the present invention, and FIG. 4 shows the result of identifying phases existing by the X-ray diffraction method of Example 11 of the present invention. . In FIG. 3, the white portion is a metallic Cr phase, the black portion is a metallic Ti phase, and the interface portion between the metallic Cr phase and the metallic Ti phase is a TiCr 2 compound phase. According to the example of the present invention, it can be seen that the diffraction peak intensity indicating the abundance ratio of the TiCr 2 compound phase formed at the boundary between the metal Cr phase and the metal Ti phase is further reduced.

表2から、本発明例5〜本発明例12は、表1に記載する従来例のTiCr化合物相の相対強度比B/A=15.8%に比べ、相対強度比B/Aが全て10%以下に抑制されていることがわかる。
また、本発明例5〜本発明例12のCr−Ti合金ターゲット材を用いて同様のスパッタリングを行なったところ、問題となるパーティクルの発生が確認されず、本発明の有効性が確認できた。
From Table 2, the present invention example 5 to the present invention example 12 have all the relative strength ratio B / A compared to the relative strength ratio B / A = 15.8% of the conventional TiCr 2 compound phase described in Table 1. It turns out that it is suppressed to 10% or less.
Moreover, when similar sputtering was performed using the Cr—Ti alloy target material of Invention Example 5 to Invention Example 12, generation of problematic particles was not confirmed, and the effectiveness of the present invention was confirmed.

Claims (1)

Tiを40〜60原子%含有し、残部Crおよび不可避的不純物からなるCr−Ti合金ターゲット材であって、スパッタ面のX線回折におけるCr相の(110)面の回折ピーク強度をA、TiCr化合物相の(311)面の回折ピーク強度をBとするとき、相対強度比B/Aが10%以下であることを特徴とするCr−Ti合金ターゲット材。 A Cr—Ti alloy target material containing 40 to 60 atomic% of Ti, the balance being Cr and unavoidable impurities, wherein the diffraction peak intensity of the (110) plane of the Cr phase in the X-ray diffraction of the sputter surface is A, TiCr A Cr—Ti alloy target material, wherein the relative intensity ratio B / A is 10% or less, where B is the diffraction peak intensity of the (311) plane of the two compound phase.
JP2011102721A 2010-05-06 2011-05-02 Cr-Ti alloy target material Active JP5854308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102721A JP5854308B2 (en) 2010-05-06 2011-05-02 Cr-Ti alloy target material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010106446 2010-05-06
JP2010106446 2010-05-06
JP2011102721A JP5854308B2 (en) 2010-05-06 2011-05-02 Cr-Ti alloy target material

Publications (2)

Publication Number Publication Date
JP2011252227A true JP2011252227A (en) 2011-12-15
JP5854308B2 JP5854308B2 (en) 2016-02-09

Family

ID=45416364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102721A Active JP5854308B2 (en) 2010-05-06 2011-05-02 Cr-Ti alloy target material

Country Status (1)

Country Link
JP (1) JP5854308B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041585A (en) * 2010-08-17 2012-03-01 Sanyo Special Steel Co Ltd CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME
WO2016129449A1 (en) * 2015-02-12 2016-08-18 日立金属株式会社 Cr-Ti ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING SAME
WO2018131328A1 (en) * 2017-01-12 2018-07-19 日立金属株式会社 Cr alloy target material
CN112517917A (en) * 2020-11-25 2021-03-19 河南东微电子材料有限公司 Preparation method of CrTiLa alloy powder for chromium-titanium target material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297568A (en) * 1991-03-27 1992-10-21 Kobe Steel Ltd Surface coated member excellent in wear resistance and formation of film
JPH07254131A (en) * 1994-03-15 1995-10-03 Nippon Sheet Glass Co Ltd Substrate for magnetic recording medium and magnetic recording medium using that
JPH08127862A (en) * 1994-10-28 1996-05-21 Sumitomo Electric Ind Ltd Laminated body
JPH10298742A (en) * 1997-04-23 1998-11-10 Hitachi Metals Ltd Cr-ti series target
JPH11134631A (en) * 1997-10-27 1999-05-21 Hitachi Metals Ltd Magnetic record medium
JP2002212607A (en) * 2001-01-19 2002-07-31 Sanyo Special Steel Co Ltd Method for producing high melting point alloy
US20020179196A1 (en) * 1999-12-17 2002-12-05 Masuo Okada Hydrogen storage alloy
JP2003226963A (en) * 2002-02-04 2003-08-15 Toshiba Corp Sputtering target
JP2005154814A (en) * 2003-11-21 2005-06-16 Tosoh Corp Sputtering target, manufacturing method therefor, and thin film produced with the use of the method
WO2009107763A1 (en) * 2008-02-29 2009-09-03 新日鉄マテリアルズ株式会社 Metallic sputtering target material
JP2012041585A (en) * 2010-08-17 2012-03-01 Sanyo Special Steel Co Ltd CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297568A (en) * 1991-03-27 1992-10-21 Kobe Steel Ltd Surface coated member excellent in wear resistance and formation of film
JPH07254131A (en) * 1994-03-15 1995-10-03 Nippon Sheet Glass Co Ltd Substrate for magnetic recording medium and magnetic recording medium using that
JPH08127862A (en) * 1994-10-28 1996-05-21 Sumitomo Electric Ind Ltd Laminated body
JPH10298742A (en) * 1997-04-23 1998-11-10 Hitachi Metals Ltd Cr-ti series target
JPH11134631A (en) * 1997-10-27 1999-05-21 Hitachi Metals Ltd Magnetic record medium
US20020179196A1 (en) * 1999-12-17 2002-12-05 Masuo Okada Hydrogen storage alloy
JP2002212607A (en) * 2001-01-19 2002-07-31 Sanyo Special Steel Co Ltd Method for producing high melting point alloy
JP2003226963A (en) * 2002-02-04 2003-08-15 Toshiba Corp Sputtering target
JP2005154814A (en) * 2003-11-21 2005-06-16 Tosoh Corp Sputtering target, manufacturing method therefor, and thin film produced with the use of the method
WO2009107763A1 (en) * 2008-02-29 2009-09-03 新日鉄マテリアルズ株式会社 Metallic sputtering target material
JP2012041585A (en) * 2010-08-17 2012-03-01 Sanyo Special Steel Co Ltd CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041585A (en) * 2010-08-17 2012-03-01 Sanyo Special Steel Co Ltd CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME
WO2016129449A1 (en) * 2015-02-12 2016-08-18 日立金属株式会社 Cr-Ti ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING SAME
CN107208259A (en) * 2015-02-12 2017-09-26 日立金属株式会社 Chromium titanium alloy sputtering target material and its manufacture method
JPWO2016129449A1 (en) * 2015-02-12 2017-11-24 日立金属株式会社 Cr-Ti alloy sputtering target material and method for producing the same
CN107208259B (en) * 2015-02-12 2019-08-13 日立金属株式会社 Chromium-titanium alloy sputtering target material and its manufacturing method
WO2018131328A1 (en) * 2017-01-12 2018-07-19 日立金属株式会社 Cr alloy target material
CN110168129A (en) * 2017-01-12 2019-08-23 日立金属株式会社 Evanohm target
JPWO2018131328A1 (en) * 2017-01-12 2019-11-07 日立金属株式会社 Cr alloy target material
US11118248B2 (en) 2017-01-12 2021-09-14 Hitachi Metals, Ltd. Cr alloy target material
JP7103233B2 (en) 2017-01-12 2022-07-20 日立金属株式会社 Cr alloy target material
CN112517917A (en) * 2020-11-25 2021-03-19 河南东微电子材料有限公司 Preparation method of CrTiLa alloy powder for chromium-titanium target material
CN112517917B (en) * 2020-11-25 2023-04-18 河南东微电子材料有限公司 Preparation method of CrTiLa alloy powder for chromium-titanium target material

Also Published As

Publication number Publication date
JP5854308B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP6526837B2 (en) Ferromagnetic sputtering target
JP5009447B1 (en) Sputtering target for magnetic recording film and manufacturing method thereof
JP2005320627A (en) Co ALLOY TARGET AND ITS PRODUCTION METHOD, SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP6312009B2 (en) Cr-Ti alloy sputtering target material and method for producing the same
TW201402850A (en) Fe-Pt-Ag-C-BASED SPUTTERING TARGET HAVING C PARTICLES DISPERSED THEREIN, AND METHOD FOR PRODUCING SAME
JP5041261B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
JP2008189996A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP5854308B2 (en) Cr-Ti alloy target material
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
WO2014097911A1 (en) Sintered sputtering target
JP2008115461A (en) Co-Fe-Zr-BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JP6048651B2 (en) Sputtering target and manufacturing method thereof
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP5734599B2 (en) CrTi alloy sputtering target material and method for producing perpendicular magnetic recording medium using them
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP6213342B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
JP5787274B2 (en) Method for producing Fe-Co-Ta-based sputtering target material and Fe-Co-Ta-based sputtering target material
JP5656104B2 (en) Fe-Co-Ni alloy sputtering target material
JP6575775B2 (en) Soft magnetic film
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP2020027677A (en) Soft magnetic film of heat-assisted magnetic recording medium and sputtering target for forming soft magnetic film of heat-assisted magnetic recording medium
JP2013028841A (en) ALLOY SPUTTERING TARGET BASED ON CoCrPt HAVING COBALT OXIDE AND NONMAGNETIC OXIDE AND PRODUCTION METHOD THEREFOR
JP6156734B2 (en) Fe-Co alloy sputtering target material and method for producing the same
WO2021141043A1 (en) Sputtering target material
JP2021123782A (en) Sputtering target, magnetic film, and mixed powder as raw materials for sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R150 Certificate of patent or registration of utility model

Ref document number: 5854308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350