JP2011251243A - Gas separator - Google Patents

Gas separator Download PDF

Info

Publication number
JP2011251243A
JP2011251243A JP2010126439A JP2010126439A JP2011251243A JP 2011251243 A JP2011251243 A JP 2011251243A JP 2010126439 A JP2010126439 A JP 2010126439A JP 2010126439 A JP2010126439 A JP 2010126439A JP 2011251243 A JP2011251243 A JP 2011251243A
Authority
JP
Japan
Prior art keywords
tank
adsorption
storage tank
adsorption tank
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010126439A
Other languages
Japanese (ja)
Inventor
Haruhiko Shinoda
治彦 信田
Takeshi Katsumoto
武 勝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2010126439A priority Critical patent/JP2011251243A/en
Publication of JP2011251243A publication Critical patent/JP2011251243A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas separator which includes an adsorption tank and a product gas storage tank and, moreover, achieves the space-saving thereof.SOLUTION: The gas separator includes: the substantially cylindrical adsorption tank in which an adsorbent for separating a specified gas from fed gas to produce a product gas is filled; and the substantially cylindrical product gas storage tank for storing the product gas, wherein the adsorption tank is arranged above or under the product gas storage tank.

Description

本発明は吸着槽を備える気体分離装置に関するものである。 The present invention relates to a gas separation device including an adsorption tank.

特許文献1に記載のガス発生装置は、二つの吸着槽と、それら二つの吸着槽に挟まれた中央に製品ガス貯留タンクを設けていた。   The gas generator described in Patent Document 1 has two adsorption tanks and a product gas storage tank at the center between the two adsorption tanks.

また、特許文献2に記載の酸素を分離するための装置は、筐体内部に上下方向に並列配置された吸着槽と、製品ガスを貯留するバッファタンクが筐体外部に別設置されていた。   In the apparatus for separating oxygen described in Patent Document 2, an adsorption tank arranged in parallel in the vertical direction inside the casing and a buffer tank for storing product gas are separately installed outside the casing.

特開昭63−166413JP-A 63-166413 特開平11−21108JP-A-11-21108

ガス発生装置は、複数の吸着槽と製品ガス槽から構成されているが、吸着槽は円筒状の筐体内に格納された吸着剤が粉砕されることと、設置スペースが大きくなってしまう等の理由で横置きには適さなかった。   The gas generator is composed of a plurality of adsorption tanks and product gas tanks, but the adsorption tank is crushed by the adsorbent stored in the cylindrical casing, and the installation space becomes large. It was not suitable for horizontal placement.

ここで、特許文献1のように、吸着槽を縦置きで並列配置し、さらに製品ガス貯留タンクを中央に設けた場合は、設置面積の省スペース化は実現できない。   Here, as in Patent Document 1, when the adsorption tanks are arranged vertically in parallel and the product gas storage tank is provided in the center, space saving of the installation area cannot be realized.

また、特許文献2のように製品ガス貯留タンクを外部へ別設置した場合は、ガス発生装置単体での設置面積は小さいが、貯留タンクを含む総設置面積は大きくなる。   Moreover, when the product gas storage tank is separately installed outside as in Patent Document 2, the installation area of the gas generator alone is small, but the total installation area including the storage tank is large.

本発明は、吸着槽と製品ガス貯留タンクを有した気体分離装置の省スペース化を実現できる気体分離装置を提供することを目的とする。   An object of this invention is to provide the gas separation apparatus which can implement | achieve space saving of the gas separation apparatus which has an adsorption tank and a product gas storage tank.

上述した課題を解決するため本発明における気体分離装置は、供給された気体から所定の気体を分離して製品ガスとして生成する吸着剤が充填された略円筒状の吸着槽と、前記製品ガスを貯留する略円筒状の製品ガス貯留タンクとを備え、前記吸着槽を前記製品ガス貯留タンクよりも上または下に配置することを特徴とする。   In order to solve the above-described problems, a gas separation device according to the present invention includes a substantially cylindrical adsorption tank filled with an adsorbent that separates a predetermined gas from a supplied gas and generates a product gas, and the product gas. And a substantially cylindrical product gas storage tank for storage, wherein the adsorption tank is disposed above or below the product gas storage tank.

本発明の他の観点における気体分離装置は、空気を貯留する略円筒状の空気貯留タンクと、前記空気貯留タンクから供給された空気から所定の気体を分離して製品ガスとして生成する吸着剤が充填され、略円筒状の吸着槽と、前記製品ガスを貯留する略円筒状の製品ガス貯留タンクとを備え、前記吸着槽は、前記空気貯留タンクよりも下で前記製品ガス貯留タンクよりも上の位置または、前記空気貯留タンクよりも上で前記製品ガス貯留タンクよりも下の位置に配置されることを特徴とする。   The gas separation device according to another aspect of the present invention includes a substantially cylindrical air storage tank that stores air, and an adsorbent that generates a product gas by separating a predetermined gas from the air supplied from the air storage tank. And a substantially cylindrical adsorption tank filled with a substantially cylindrical product gas storage tank for storing the product gas, wherein the adsorption tank is below the air storage tank and above the product gas storage tank. Or a position above the air storage tank and below the product gas storage tank.

本発明によれば、吸着槽と製品ガス貯留タンクを有した気体分離装置の省スペース化を実現できる気体分離装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the gas separation apparatus which can implement | achieve space saving of the gas separation apparatus which has the adsorption tank and the product gas storage tank can be provided.

本発明の実施例1に係る気体分離装置の概略構成図1 is a schematic configuration diagram of a gas separation device according to Embodiment 1 of the present invention. 本発明の実施例1に係る気体分離装置のフロー詳細図Detailed flow diagram of gas separation apparatus according to Embodiment 1 of the present invention 本発明の実施例2に係るPSAユニットの概略構成図Schematic configuration diagram of a PSA unit according to Embodiment 2 of the present invention. 本発明の実施例1の比較例に係る吸着槽と窒素槽の配置図Arrangement diagram of adsorption tank and nitrogen tank according to comparative example of embodiment 1 of the present invention 本発明の実施例1の比較例に係る吸着槽と窒素槽の配置図Arrangement diagram of adsorption tank and nitrogen tank according to comparative example of embodiment 1 of the present invention 本発明の実施例1に係る吸着槽と窒素槽の配置図Arrangement diagram of adsorption tank and nitrogen tank according to embodiment 1 of the present invention 本発明の実施例1に係る吸着槽と窒素槽の配置図Arrangement diagram of adsorption tank and nitrogen tank according to embodiment 1 of the present invention 本発明の実施例1の比較例に係る吸着槽と窒素槽の配置図Arrangement diagram of adsorption tank and nitrogen tank according to comparative example of embodiment 1 of the present invention 本発明の実施例1の比較例に係る吸着槽と窒素槽の配置図Arrangement diagram of adsorption tank and nitrogen tank according to comparative example of embodiment 1 of the present invention 本発明の実施例1に係る吸着槽と窒素槽の配置図Arrangement diagram of adsorption tank and nitrogen tank according to embodiment 1 of the present invention

以下、本発明に係る各実施例について図面に基づいて説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

本発明の実施例1について図1、2、4−10を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1、2に示す本実施例における気体分離装置1はPSA式の気体分離装置である。気体分離装置1は、空気を供給する空気供給ユニット2と、製品ガスを生成するPSAユニット3で構成される。この空気供給ユニット2は、空気を圧縮する圧縮機4と、圧縮空気を貯留させる空気槽(空気貯留タンク)5、圧縮空気を除湿するドライヤー6と、析出したドレン水を回収しながら不純物を除去するドレンフィルター7を有している。本実施例では、一例として、これら圧縮機4と、空気槽5と、ドライヤー6とドレンフィルター7とは筐体に格納されている。一方、PSAユニット3は、空気供給ユニット2から供給される圧縮空気から所定の気体を分離することにより、製品ガスを生成する吸着槽19と、製品ガス(窒素)を貯留する窒素槽(製品ガス貯留タンク)41を有している。これら吸着槽19と窒素槽41は筐体に格納されている。これにより、外気からの温度的な影響を受けにくくなるため、吸着槽19の周りの温度を安定化させることができ、周囲温度により吸着効率が変動する特性を持つ吸着剤が充填された吸着槽19の吸着効率の低下を防止することができる。また、吸着槽19からの排気による騒音を低減させることができる。   1 and 2 is a PSA type gas separation apparatus. The gas separation device 1 includes an air supply unit 2 that supplies air and a PSA unit 3 that generates product gas. This air supply unit 2 removes impurities while recovering the drain water that is collected, and a compressor 4 that compresses air, an air tank (air storage tank) 5 that stores compressed air, a dryer 6 that dehumidifies compressed air, and A drain filter 7 is provided. In the present embodiment, as an example, the compressor 4, the air tank 5, the dryer 6, and the drain filter 7 are stored in a casing. On the other hand, the PSA unit 3 separates a predetermined gas from the compressed air supplied from the air supply unit 2, thereby generating a product gas, and a nitrogen tank (product gas) for storing the product gas (nitrogen). Storage tank) 41. These adsorption tank 19 and nitrogen tank 41 are stored in a housing. As a result, the temperature around the adsorption tank 19 can be stabilized because it is less susceptible to temperature influence from the outside air, and the adsorption tank filled with an adsorbent having a characteristic that the adsorption efficiency varies depending on the ambient temperature. The decrease in the adsorption efficiency of 19 can be prevented. In addition, noise due to exhaust from the adsorption tank 19 can be reduced.

上記実施例では、2つの筐体にそれぞれ機器を格納する場合を説明したが、これに限らず、変形例として、1つの筐体内にすべての機器を格納してもよい。この1の筐体は、空気供給ユニット2を格納する1のブロックと、PSAユニット3を格納する他のブロックとに仕切板等で内部を2ブロックに区画する構成とすることも可能である。   In the above embodiment, the case where the devices are stored in the two housings has been described. However, the present invention is not limited to this, and as a modification, all devices may be stored in one housing. The one housing may be configured such that the interior is partitioned into two blocks by a partition plate or the like in one block for storing the air supply unit 2 and another block for storing the PSA unit 3.

空気槽5で貯留された圧縮空気は後述の吸着槽19に供給され、空気槽5で貯留された圧縮空気から所定の気体が分離される。本実施例では、吸着槽19で酸素を吸着することにより、窒素を分離する場合について説明するが、窒素を吸着することにより酸素を分離してもよいし、大気以外の圧縮空気から他の気体を分離するものであってもよい。   The compressed air stored in the air tank 5 is supplied to an adsorption tank 19 described later, and a predetermined gas is separated from the compressed air stored in the air tank 5. In this embodiment, a case where nitrogen is separated by adsorbing oxygen in the adsorption tank 19 will be described. However, oxygen may be separated by adsorbing nitrogen, or other gases may be separated from compressed air other than the atmosphere. May be separated.

圧縮機4として、往復動式、スクリュー式あるいはスクロール式等の圧縮機や、外部から1次圧を供給され再圧縮する所謂ブースタ圧縮機等が用いられている。   As the compressor 4, a reciprocating type, screw type or scroll type compressor, a so-called booster compressor which is supplied with primary pressure from the outside and is recompressed, or the like is used.

空気槽5には、空気槽5からの圧縮空気を流す配管16が接続されており、この配管16の端末位置には2系列に分岐した配管17が接続されている。配管17には、それぞれ流路を開閉する供給弁18が途中に設けられており、端末には酸素分子を吸着して窒素ガスを製品ガスとして取り出すための吸着槽19がそれぞれ接続されている。また、配管17には、それぞれ供給弁18と吸着槽19との間位置に配管21が接続されており、これら配管21には、途中に流路を開閉する排気弁22が、端末に消音用のフィルタ付きの排気サイレンサ23が設けられている。また、配管17には、互いの配管21と吸着槽19との間位置を結ぶように配管25が接続されており、この配管25には流路を開閉する下均圧弁26が設けられている。   A pipe 16 for flowing compressed air from the air tank 5 is connected to the air tank 5, and a pipe 17 branched in two lines is connected to a terminal position of the pipe 16. A supply valve 18 for opening and closing the flow path is provided in the pipe 17 in the middle, and an adsorption tank 19 for adsorbing oxygen molecules and taking out nitrogen gas as product gas is connected to the terminal. Further, pipes 21 are connected to the pipes 17 at positions between the supply valve 18 and the adsorption tank 19, respectively, and an exhaust valve 22 that opens and closes the flow path on the way is connected to the pipes 21 for noise reduction. An exhaust silencer 23 with a filter is provided. Further, a pipe 25 is connected to the pipe 17 so as to connect a position between the pipe 21 and the adsorption tank 19, and a lower pressure equalizing valve 26 for opening and closing the flow path is provided in the pipe 25. .

吸着槽19には、例えば、酸素分子を吸着する吸着手段である吸着剤が充填されている。吸着剤は、具体的には分子ふるいカーボンやゼオライト等を用いている。本実施例では、最小限の構成部品にして簡素化を図ることと、吸着工程と脱着工程とを交互に行い、効率良く製品ガスを取り出すために、2槽の吸着槽で構成しているが、2つに限らず、1つであってもよいし3つ以上であってもよい。   For example, the adsorption tank 19 is filled with an adsorbent which is an adsorbing means for adsorbing oxygen molecules. Specifically, molecular sieve carbon or zeolite is used as the adsorbent. In the present embodiment, it is composed of two adsorption tanks in order to simplify the design with the minimum number of components and alternately perform the adsorption process and the desorption process, and efficiently extract the product gas. The number is not limited to two, and may be one or three or more.

吸着槽19には、端末位置で互いに合流する配管31がそれぞれ接続されている。これら配管31には、互いの吸着槽19側同士を結ぶように配管32が接続されており、この配管32には絞り33が設けられている。また、配管31には、互いの配管32よりも吸着槽19とは反対側同士を結ぶように配管35が接続されており、この配管35には流路を開閉する上均圧弁36が設けられている。また、配管31には、それぞれの配管35よりも吸着槽19とは反対側に流路を開閉する取出弁38がそれぞれ設けられている。   Pipes 31 that merge with each other at the terminal position are respectively connected to the adsorption tank 19. These pipes 31 are connected with pipes 32 so as to connect the adsorption tanks 19 to each other, and the pipes 32 are provided with a throttle 33. A pipe 35 is connected to the pipe 31 so as to connect the opposite sides of the adsorption tank 19 with respect to the pipe 32. The pipe 35 is provided with an upper pressure equalizing valve 36 for opening and closing the flow path. ing. The pipes 31 are each provided with an extraction valve 38 for opening and closing the flow path on the opposite side of the adsorption tank 19 from the respective pipes 35.

配管31の合流位置には配管40が接続されており、この配管40の端末位置には窒素ガスを貯留させる製品ガス貯留タンクとしての窒素槽41が接続されている。この窒素槽41を吸着槽19の下部の空間に配置し、設置スペースの省スペース化を図った。この窒素槽41には、端末位置が吐出口42とされた配管43が接続されており、この配管43の途中位置には窒素槽41側から順に、塵埃等を除去するとともにガスの流量を調整するフィルターレギュレーター44、流路を開閉する吐出弁45、ガスの流量を調整する流量調整弁46が設けられている。   A pipe 40 is connected to the joining position of the pipe 31, and a nitrogen tank 41 as a product gas storage tank for storing nitrogen gas is connected to a terminal position of the pipe 40. This nitrogen tank 41 was arranged in the space below the adsorption tank 19 to save the installation space. The nitrogen tank 41 is connected to a pipe 43 whose terminal position is the discharge port 42. In the middle of the pipe 43, dust and the like are sequentially removed from the nitrogen tank 41 side, and the gas flow rate is adjusted. There are provided a filter regulator 44, a discharge valve 45 for opening and closing the flow path, and a flow rate adjusting valve 46 for adjusting the flow rate of gas.

配管43のフィルターレギュレーター44と吐出弁45との間位置には配管48および配管49が接続されており、配管48には、配管43側から順に、流路を開閉する開閉弁50と、ガスの流量を調整する流量調整弁51と、サイレンサ52とが設けられている。配管49には、配管43側から順に、流路を開閉する開閉弁54と、ガスの流量を調整する流量調整弁55と、酸素濃度を検出する酸素センサー56とが設けられている。   A pipe 48 and a pipe 49 are connected between the filter regulator 44 and the discharge valve 45 of the pipe 43. The pipe 48 has an opening / closing valve 50 for opening and closing the flow path in order from the pipe 43 side, A flow rate adjusting valve 51 for adjusting the flow rate and a silencer 52 are provided. The pipe 49 is provided with an open / close valve 54 that opens and closes the flow path, a flow rate adjustment valve 55 that adjusts the flow rate of gas, and an oxygen sensor 56 that detects the oxygen concentration in order from the pipe 43 side.

酸素センサー56は制御部60に通信可能に接続されており、検出信号を制御部60に出力する。また、供給弁18、排気弁22、下均圧弁26、上均圧弁36、取出弁38、吐出弁45、流量調整弁46、開閉弁50、流量調整弁51、および開閉弁54、制御部60に通信可能に接続されており、制御部60からの指令で作動する。   The oxygen sensor 56 is communicably connected to the control unit 60 and outputs a detection signal to the control unit 60. The supply valve 18, the exhaust valve 22, the lower pressure equalizing valve 26, the upper pressure equalizing valve 36, the take-off valve 38, the discharge valve 45, the flow rate adjusting valve 46, the on / off valve 50, the flow rate adjusting valve 51, the on / off valve 54, and the control unit 60. Are communicably connected to each other and operate in response to a command from the control unit 60.

本実施例における空気供給ユニット2とPSAユニット3の配置について説明する。   The arrangement of the air supply unit 2 and the PSA unit 3 in this embodiment will be described.

本実施例では、空気供給ユニット2とPSAユニット3とを横に並べて配置した。空気ユニット2には、振動源である圧縮機4がある。一方、PSAユニット3の吸着槽19は、振動により吸着剤が壊れるおそれがあり、配管17、21、25、31、35や制御部60、振動に弱い部材が多く設けられている。従って、空気供給ユニット2とPSAユニット3を上下に並べて配置すると、振動源である空気供給ユニット2から振動に弱い部材を多く有するPSAユニット3へ振動が伝わりやすくなる。そこで、本実施例では、振動源である空気供給ユニット2と振動に弱い部材を多く有するPSAユニット3とを横に並べて配置することで、空気供給ユニット2からの振動がPSAユニット3に伝わりにくくした。   In this embodiment, the air supply unit 2 and the PSA unit 3 are arranged side by side. The air unit 2 includes a compressor 4 that is a vibration source. On the other hand, the adsorption tank 19 of the PSA unit 3 may break the adsorbent due to vibration, and the pipes 17, 21, 25, 31, 35, the control unit 60, and many members vulnerable to vibration are provided. Therefore, when the air supply unit 2 and the PSA unit 3 are arranged side by side, vibration is easily transmitted from the air supply unit 2 as a vibration source to the PSA unit 3 having many members that are vulnerable to vibration. Therefore, in this embodiment, the air supply unit 2 that is a vibration source and the PSA unit 3 having many vibration-sensitive members are arranged side by side so that vibration from the air supply unit 2 is not easily transmitted to the PSA unit 3. did.

本実施例では、図1に示すとおり、吸着槽19が配置された空間と窒素槽41が配置された空間とを仕切り板で区切り、吸着槽19を仕切り板の上に配置することで、吸着槽19を窒素槽41よりも上に配置した。上述の通り、空気供給ユニット2とPSAユニット3とは横に並べて配置する必要があるため、設置スペースの省スペース化を図るためには、水平方向の設置スペースを小さくする必要がある。そこで、上記のように吸着槽19を配置することで、気体分離装置1全体としての省スペース化を図ることができる。なお、吸着槽19と窒素槽41との上下関係は必ずしも上記の通りである必要はなく、吸着槽19が窒素槽41よりも下に配置されていてもよい。ただし、吸着槽19を窒素槽41よりも上に配置することにより、吸着槽19の上下にそれぞれ配置された配管17、31やそれらの開閉を制御する弁18、38などは、窒素槽41の高さ方向分で設置面(床等)より上部に配置することができる。これにより、製造およびメンテナンス作業時に、各部品が作業者の目や手の高さの近くまで高くすることができるため、作業時に手が届きやすく、各部品を目視しながら作業ができる。従って、製造作業やメンテナンス作業を容易に行うことができるため、本実施例では上記のように吸着槽19を配置した。   In this embodiment, as shown in FIG. 1, the space in which the adsorption tank 19 is arranged and the space in which the nitrogen tank 41 is arranged are separated by a partition plate, and the adsorption tank 19 is arranged on the partition plate, thereby The tank 19 was disposed above the nitrogen tank 41. As described above, since the air supply unit 2 and the PSA unit 3 need to be arranged side by side, it is necessary to reduce the horizontal installation space in order to save the installation space. Therefore, by arranging the adsorption tank 19 as described above, it is possible to save the space of the gas separation device 1 as a whole. The vertical relationship between the adsorption tank 19 and the nitrogen tank 41 is not necessarily as described above, and the adsorption tank 19 may be disposed below the nitrogen tank 41. However, by arranging the adsorption tank 19 above the nitrogen tank 41, the pipes 17, 31 arranged above and below the adsorption tank 19 and the valves 18, 38 for controlling the opening and closing of the pipes 17, 31, etc. It can be arranged above the installation surface (floor, etc.) in the height direction. Thereby, at the time of manufacturing and maintenance work, each part can be raised to the height of the operator's eyes and hands, so that it is easy to reach during the work and the work can be performed while visually checking each part. Therefore, since the manufacturing operation and the maintenance operation can be easily performed, the adsorption tank 19 is arranged as described above in the present embodiment.

本実施例の図1では、吸着槽19の下端が窒素槽41の上端よりも上に配置され、吸着槽19の設置スペースと窒素槽41の設置スペースとが上から見てほぼ重なっているが、吸着槽19と窒素槽41との少なくとも一部が重なって配置されていれば、設置スペースの省スペース化が図れるので、吸着槽19の下端が窒素槽41の下端よりも上または下に配置され、上から見て吸着槽19と窒素槽41との少なくとも一部が重なって配置されていればよい。   In FIG. 1 of the present embodiment, the lower end of the adsorption tank 19 is disposed above the upper end of the nitrogen tank 41, and the installation space of the adsorption tank 19 and the installation space of the nitrogen tank 41 are substantially overlapped when viewed from above. If the adsorption tank 19 and the nitrogen tank 41 are arranged so as to overlap each other, the installation space can be saved. Therefore, the lower end of the adsorption tank 19 is arranged above or below the lower end of the nitrogen tank 41. It is only necessary that at least a part of the adsorption tank 19 and the nitrogen tank 41 overlap each other when viewed from above.

また、本実施例では、吸着槽19が配置された空間と窒素槽41が配置された空間とを仕切る仕切り板を設けたが、吸着槽19が窒素槽41よりも上または下に配置(吸着槽19の下端が窒素槽41の下端よりも上または下に配置され、上から見て吸着槽19と窒素槽41との少なくとも一部が重なって配置)されていればよく、吸着槽19と窒素槽41とが配置される空間を仕切る仕切り板は必ずしも必要ない。ただし、仕切り板を設けることにより、吸着剤の充填により重量の大きくなった吸着槽19を安定して支持することができる。また、仕切り板を設け、仕切り板の上に吸着槽19を配置することにより、仕切り板の下に配管17または配管31を設置するスペースを設けることができるので、配管を吸着槽19や窒素槽41の横に配置する必要がなくなり、設置スペースのさらなる省スペース化を図ることができる。仕切り板を設けない場合は、例えば、窒素槽41の上にフレームを設け、フレーム上に吸着槽19が支持されて窒素槽41、吸着槽19が配置されてもよい。また、筐体側面に取付ステーを設けて吸着槽19を直接支持し、窒素槽41の上に吸着槽19が配置されてもよい。   In this embodiment, a partition plate is provided to partition the space in which the adsorption tank 19 is disposed and the space in which the nitrogen tank 41 is disposed. However, the adsorption tank 19 is disposed above or below the nitrogen tank 41 (adsorption). The lower end of the tank 19 is disposed above or below the lower end of the nitrogen tank 41 and at least a part of the adsorption tank 19 and the nitrogen tank 41 is disposed so as to be seen from above. A partition plate that partitions the space in which the nitrogen tank 41 is disposed is not necessarily required. However, by providing the partition plate, it is possible to stably support the adsorption tank 19 whose weight is increased by filling the adsorbent. Further, by providing a partition plate and disposing the adsorption tank 19 on the partition plate, a space for installing the pipe 17 or the pipe 31 can be provided under the partition plate. Therefore, it is not necessary to arrange it next to 41, and the installation space can be further reduced. When the partition plate is not provided, for example, a frame may be provided on the nitrogen tank 41, and the adsorption tank 19 may be supported on the frame so that the nitrogen tank 41 and the adsorption tank 19 are disposed. In addition, an attachment stay may be provided on the side surface of the housing to directly support the adsorption tank 19, and the adsorption tank 19 may be disposed on the nitrogen tank 41.

本実施例において、吸着槽19は、昇圧・減圧を繰り返した時に、吸着工程・脱着工程を行うが、吸着槽内部に充填された吸着剤(図示しない)は、縦方向上側から下側に向けて付勢力を与えられて押さえられているので、内部で上下に動いても動きを吸収してくれる。一方、吸着槽19の長手方向を横に向けた(横置きにした)場合、吸着槽内部に充填された吸着剤は自重で偏るため、吸着槽19の短手方向(胴回り)上部には小さな隙間ができる。そのため、吸着・脱着工程で吸着槽内に気体の流れが生じると、隙間内で吸着剤の粒が飛散して粒同士が衝突することで粉砕してしまう。粉砕された吸着剤は、吸着できる表面積が減ってしまうことで、吸着効率が低下する。また、この粉砕された吸着剤が、バルブ等のエアー機器に目詰まり等の不具合を起こす原因となる場合がある。   In the present embodiment, the adsorption tank 19 performs an adsorption process and a desorption process when pressure increase and depressurization are repeated. The adsorbent (not shown) filled in the adsorption tank is directed from the upper side to the lower side in the vertical direction. Because it is pressed with a biasing force, it will absorb the movement even if it moves up and down inside. On the other hand, when the longitudinal direction of the adsorption tank 19 is turned sideways (sideways), the adsorbent filled inside the adsorption tank is biased by its own weight, so that the adsorbent tank 19 has a small upper portion in the short direction (trunk). There is a gap. Therefore, when a gas flow is generated in the adsorption tank in the adsorption / desorption process, the particles of the adsorbent are scattered in the gap and the particles collide with each other. The pulverized adsorbent reduces the adsorption efficiency by reducing the surface area that can be adsorbed. In addition, the pulverized adsorbent may cause problems such as clogging in air devices such as valves.

上記理由により、吸着槽19は、内部に吸着剤を充填しているため、横置きには適さない。そのため、吸着槽19は長手方向が水平方向と交差するように配置した。即ち縦置きにした。これにより、水平方向の省スペース化を図ることができる。吸着槽19を複数備える場合には、複数の吸着槽を並列に配置すれば、水平方向の省スペース化を図りつつ、鉛直方向の長さが大きくなりすぎないようにした。   For the above reasons, the adsorption tank 19 is not suitable for horizontal placement because the adsorbent is filled inside. Therefore, the adsorption tank 19 was arranged so that the longitudinal direction intersected the horizontal direction. That is, it was placed vertically. Thereby, space saving in the horizontal direction can be achieved. When a plurality of adsorption tanks 19 are provided, if a plurality of adsorption tanks are arranged in parallel, the horizontal length is saved and the vertical length is prevented from becoming too large.

窒素槽41は、図1に示すように長手方向が吸着槽19の長手方向と交差する方向、即ち水平方向となるように配置した。これにより、吸着槽19を縦置きにしたため、鉛直方向の長さが大きくなりすぎないようにした。   As shown in FIG. 1, the nitrogen tank 41 was arranged so that the longitudinal direction intersected the longitudinal direction of the adsorption tank 19, that is, the horizontal direction. Thereby, since the adsorption tank 19 was placed vertically, the length in the vertical direction was prevented from becoming too large.

空気供給ユニット2においては、PSAユニット3と同様に水平方向の省スペース化を図るため、圧縮機4、空気槽5、ドライヤー6をそれぞれ上下に並べて配置した。特に、圧縮機4はメンテナンス作業が必要な部材が多いため、空気槽5の上に配置することでメンテナンス作業を容易に行うことができるようにした。   In the air supply unit 2, similarly to the PSA unit 3, the compressor 4, the air tank 5, and the dryer 6 are arranged side by side in order to save space in the horizontal direction. In particular, since the compressor 4 has many members that require maintenance work, the maintenance work can be easily performed by arranging the compressor 4 on the air tank 5.

ここで、本実施例の配置におけるPSAユニットの省スペース効果について図4−10を用いて説明する。図4−10は、本実施例または本実施例の比較例における吸着槽19と窒素槽41の配置を示した図である。図4−10を用いて、略円筒状の2つの吸着槽19と1つの窒素槽41とを特許文献1のように長手方向を上下方向(水平方向と交差する方向)に向けて縦置きで並列に配置した場合と、本実施例のように上下に並べて配置した場合とで設置面積を比較して説明する。   Here, the space saving effect of the PSA unit in the arrangement of the present embodiment will be described with reference to FIGS. FIG. 4-10 is a diagram showing the arrangement of the adsorption tank 19 and the nitrogen tank 41 in this example or a comparative example of this example. 4-10, two substantially cylindrical adsorption tanks 19 and one nitrogen tank 41 are placed vertically with the longitudinal direction directed in the vertical direction (direction intersecting the horizontal direction) as in Patent Document 1. A description will be given by comparing the installation area between the case where they are arranged in parallel and the case where they are arranged side by side as in this embodiment.

図4−10では、略円筒状の吸着槽19と窒素槽41とについて、長手方向の長さがHで直径をDと仮定して設置面積の計算を行った。また、窒素槽41の長手方向の長さHを直径Dの1倍から4倍までのそれぞれの場合について設置面積の計算を行った。   In FIG. 4-10, about the substantially cylindrical adsorption tank 19 and the nitrogen tank 41, the installation area was calculated on the assumption that the length of the longitudinal direction was H and the diameter was D. In FIG. In addition, the installation area was calculated for each case where the length H of the nitrogen tank 41 in the longitudinal direction was 1 to 4 times the diameter D.

図4、図5は本実施例の比較例における吸着槽19と窒素槽41の配置を示した図である。それぞれ、H=Dであり、2つの吸着槽19と窒素槽41を縦置きに並列に配置している。図4、図5の場合における設置面積A1、A2は、

Figure 2011251243

Figure 2011251243
4 and 5 are diagrams showing the arrangement of the adsorption tank 19 and the nitrogen tank 41 in a comparative example of the present embodiment. In each case, H = D, and two adsorption tanks 19 and nitrogen tanks 41 are arranged in parallel in a vertical arrangement. The installation areas A1 and A2 in the case of FIG. 4 and FIG.
Figure 2011251243

Figure 2011251243

ここで、図4、図5のように配置した場合を基準として、本実施例のように吸着槽19と窒素槽41とを配置した場合における設置面積について説明する。   Here, the installation area in the case where the adsorption tank 19 and the nitrogen tank 41 are arranged as in the present embodiment will be described with reference to the case where they are arranged as shown in FIGS.

図6、図7は本実施例における吸着槽19と窒素槽41の配置を示した図である。窒素槽41の長手方向の長さHは、それぞれ、H=D,2Dであり、2つの吸着槽19を縦置きにして並列に配置し、窒素槽41を横置きにして吸着槽19の下に配置している。図4、図5の場合における設置面積A3、A4は、

Figure 2011251243

Figure 2011251243
6 and 7 are diagrams showing the arrangement of the adsorption tank 19 and the nitrogen tank 41 in this embodiment. The lengths H in the longitudinal direction of the nitrogen tank 41 are H = D and 2D, respectively, the two adsorption tanks 19 are arranged vertically and arranged in parallel, and the nitrogen tank 41 is placed horizontally and below the adsorption tank 19. Is arranged. The installation areas A3 and A4 in the case of FIG. 4 and FIG.
Figure 2011251243

Figure 2011251243

式(3)(4)を式(1)(2)と比較すると、本実施例のように配置した場合は、図4、5のように配置した場合に比べてそれぞれ、45.9%、33.3%の設置面積を減らすことができる。   Comparing Equations (3) and (4) with Equations (1) and (2), the arrangement as in this example is 45.9% and 33.3%, respectively, compared to the arrangement as shown in FIGS. The installation area can be reduced.

図6、図7より、吸着槽19を2つ配置した場合は窒素槽41の直径が吸着槽19の直径以下であり、窒素槽41の長手方向の長さが吸着槽41の直径の2倍以下である場合において、設置面積を2つの吸着槽19を縦置きにした場合の設置面積以下に抑えることができる。同様に考えて、吸着槽19をn個配置した場合は、窒素槽41の直径が吸着槽19の直径以下であり、窒素槽41の長手方向の長さが吸着槽41の直径のn倍以下である場合において、設置面積をn個の吸着槽19を縦置きにした場合の設置面積以下に抑えることができる。   6 and 7, when two adsorption tanks 19 are arranged, the diameter of the nitrogen tank 41 is equal to or smaller than the diameter of the adsorption tank 19, and the length in the longitudinal direction of the nitrogen tank 41 is twice the diameter of the adsorption tank 41. In the following cases, the installation area can be kept below the installation area when the two adsorption tanks 19 are placed vertically. Similarly, when n adsorption tanks 19 are arranged, the diameter of the nitrogen tank 41 is equal to or less than the diameter of the adsorption tank 19, and the length in the longitudinal direction of the nitrogen tank 41 is equal to or less than n times the diameter of the adsorption tank 41. In this case, the installation area can be suppressed to be equal to or less than the installation area when the n adsorption tanks 19 are placed vertically.

図8、図9は本実施例の比較例における吸着槽19と窒素槽41の配置を示した図である。窒素槽41の長手方向の長さHは、それぞれ、H=3D,4Dであり、2つの吸着槽19を縦置きにして並列に配置し、窒素槽41を横置きにして吸着槽19の下に配置している。図8、図9の場合における設置面積A5、A6は、

Figure 2011251243

Figure 2011251243
8 and 9 are diagrams showing the arrangement of the adsorption tank 19 and the nitrogen tank 41 in the comparative example of this embodiment. The lengths H in the longitudinal direction of the nitrogen tank 41 are H = 3D and 4D, respectively, the two adsorption tanks 19 are vertically arranged in parallel, and the nitrogen tank 41 is horizontally placed below the adsorption tank 19. Is arranged. The installation areas A5 and A6 in the case of FIG. 8 and FIG.
Figure 2011251243

Figure 2011251243

式(5)を式(1)(2)と比較すると、図8のように配置した場合は、図4のように配置した場合と比較して18.9%設置面積を減らすことができるが、図5のように配置した場合と比較すると設置面積は同じである。   Comparing equation (5) with equations (1) and (2), the arrangement as shown in FIG. 8 can reduce the installation area by 18.9% compared to the arrangement as shown in FIG. The installation area is the same as in the case of the arrangement as shown in FIG.

式(6)を式(1)(2)と比較すると、図9のように配置した場合は、図5、6のように配置した場合と比較して、それぞれ8.1%、23%設置面積が増加している。   Comparing equation (6) with equations (1) and (2), the arrangement as shown in FIG. 9 is 8.1% and 23% as compared with the arrangement as shown in FIGS. It has increased.

以上より、図6、図7のように吸着槽19をn個配置した場合は、窒素槽41の直径が吸着槽19の直径以下であり、窒素槽41の長手方向の長さが吸着槽19の直径のn倍以下である場合において、設置面積をn個の吸着槽19を縦置きにした場合の設置面積に抑えることができる。一方、窒素槽41の直径が吸着槽19の直径以下であるか、窒素槽41の長手方向の長さが吸着槽41の直径のn倍以上である場合において、n個の吸着槽19を縦置きにした場合の設置面積を超えてしまう。しかし、n個の吸着槽19と窒素槽41を図5のように縦置きに配置した場合の設置面積以下に抑えることができれば本実施例のように配置して省スペース化を実現することができる。   From the above, when n adsorption tanks 19 are arranged as shown in FIGS. 6 and 7, the diameter of the nitrogen tank 41 is equal to or smaller than the diameter of the adsorption tank 19, and the length in the longitudinal direction of the nitrogen tank 41 is the adsorption tank 19. In the case where the diameter is n times or less, the installation area can be reduced to the installation area when the n adsorption tanks 19 are placed vertically. On the other hand, when the diameter of the nitrogen tank 41 is equal to or less than the diameter of the adsorption tank 19 or the length in the longitudinal direction of the nitrogen tank 41 is n times or more than the diameter of the adsorption tank 41, the n adsorption tanks 19 are arranged vertically. It will exceed the installation area when placed. However, if the n adsorption tanks 19 and the nitrogen tanks 41 can be kept below the installation area when arranged vertically as shown in FIG. 5, it can be arranged as in this embodiment to realize space saving. it can.

ここで、式(1)−(6)をさらに一般化して、直径D1、長手方向の長さがH1の吸着槽19をn個配置し、直径D2、長手方向の長さがH2の窒素槽41をより設置面積が小さくなる図6のように縦置きにして並列に配置した場合の設置面積A7と、直径D1、長手方向の長さがH1の吸着槽19をn個配置し、直径D2、長手方向の長さがH2の窒素槽41を本実施例のように配置した場合の設置面積A8について計算する。   Here, the formulas (1) to (6) are further generalized to arrange n adsorption tanks 19 having a diameter D1 and a longitudinal length H1, and a nitrogen tank having a diameter D2 and a longitudinal length H2. As shown in FIG. 6, the installation area A7 is arranged in a vertical arrangement as shown in FIG. 6, and n adsorption tanks 19 having a diameter D1 and a longitudinal length H1 are arranged, and the diameter D2 The installation area A8 in the case where the nitrogen tank 41 having a longitudinal length of H2 is arranged as in the present embodiment is calculated.

直径D1、長手方向の長さがH1の吸着槽19をn個配置し、直径D2、長手方向の長さがH2の窒素槽41を図6のように縦置きにして並列に配置した場合の設置面積A7は、
A7=(D1×n+D2)×D1 (D1>D2の場合) ・・・(7)
A7=(D1×n+D2)×D2 (D1<D2の場合) ・・・(8)
In the case where n adsorption tanks 19 having a diameter D1 and a longitudinal length H1 are arranged, and nitrogen tanks 41 having a diameter D2 and a longitudinal length H2 are vertically arranged as shown in FIG. Installation area A7 is
A7 = (D1 × n + D2) × D1 (when D1> D2) (7)
A7 = (D1 × n + D2) × D2 (when D1 <D2) (8)

直径D1、長手方向の長さがH1の吸着槽19をn個配置し、直径D2、長手方向の長さがH2の窒素槽41を本実施例のように配置した場合の設置面積A8は、
A8=D1×H2 (D1>D2 かつ D1×n<H2の場合)・・・(9)
A8=D2×D1×n (D1<D2 かつ D1×n>H2の場合)・・・(10)
A8=D2×H2 (D1<D2 かつ D1×n<H2の場合)・・・(11)
A8=D1×D1×n (D1>D2 かつ D1×n>H2の場合)・・・(12)
The installation area A8 when n adsorption tanks 19 having a diameter D1 and a length in the longitudinal direction H are arranged, and a nitrogen tank 41 having a diameter D2 and a length in the longitudinal direction H2 is arranged as in the present embodiment,
A8 = D1 × H2 (when D1> D2 and D1 × n <H2) (9)
A8 = D2 × D1 × n (when D1 <D2 and D1 × n> H2) (10)
A8 = D2 × H2 (when D1 <D2 and D1 × n <H2) (11)
A8 = D1 × D1 × n (when D1> D2 and D1 × n> H2) (12)

式(7)−(12)より、本実施例のように配置した場合の設置面積A8が図5のように配置した場合の設置面積A7よりも小さくなるのは
H2<D1×n+D2 ・・・(13)
上記式(13)が成立するときである。
From Expressions (7) to (12), the installation area A8 when arranged as in the present embodiment is smaller than the installation area A7 when arranged as shown in FIG. 5 as H2 <D1 × n + D2. (13)
This is when the above equation (13) holds.

なお、特にD1<D2かつD1×n>H2の場合(窒素槽41の直径が吸着槽19の直径以下であり、窒素槽41の長手方向の長さが吸着槽19の直径のn倍以下である場合)は、設置面積をn個の吸着槽19を縦置きにした場合の設置面積(D1×D1×n)に抑えることができるので設置面積をさらに効果的に減らすことができる。   In particular, in the case of D1 <D2 and D1 × n> H2 (the diameter of the nitrogen tank 41 is not more than the diameter of the adsorption tank 19, and the length in the longitudinal direction of the nitrogen tank 41 is not more than n times the diameter of the adsorption tank 19. In some cases, the installation area can be reduced to the installation area (D1 × D1 × n) when the n adsorption tanks 19 are placed vertically, so that the installation area can be further effectively reduced.

以上より、(13)のように吸着槽19をn個配置する場合は、吸着槽19の直径をD1、窒素槽41の直径をD2、長手方向の長さをH2としたとき、H2<D1×n+D2とすることで、n個の吸着槽19と窒素槽41を図5のように縦置きにした場合の設置面積以下に抑えることができる。さらに、窒素槽41の直径を吸着槽19の直径以下とし、窒素槽41の長手方向の長さを吸着槽41の直径のn倍以下(D1>D2かつD1×n>H2)とすることで、n個の吸着槽19を縦置きにした場合の設置面積以下に抑えることができ、設置面積をさらに効果的に減らすことができる。   From the above, when n adsorption tanks 19 are arranged as in (13), when the diameter of the adsorption tank 19 is D1, the diameter of the nitrogen tank 41 is D2, and the length in the longitudinal direction is H2, H2 <D1 By setting it as xn + D2, it is possible to suppress the number of the adsorption tanks 19 and the nitrogen tanks 41 to be less than the installation area when they are placed vertically as shown in FIG. Further, the diameter of the nitrogen tank 41 is set to be equal to or smaller than the diameter of the adsorption tank 19 and the length in the longitudinal direction of the nitrogen tank 41 is set to n times or less of the diameter of the adsorption tank 41 (D1> D2 and D1 × n> H2). , The number of the adsorption tanks 19 can be reduced to be less than or equal to the installation area in the case of being placed vertically, and the installation area can be further effectively reduced.

ここで、容量の大きな窒素槽41が必要である場合について説明する。上述の通り、吸着槽19をn個配置する場合において、吸着槽19の直径をD1、窒素槽41の直径をD2、長手方向の長さをH2としたとき、H2>D1×n+D2となる窒素槽41を用いた場合、n個の吸着槽19と窒素槽41を図5のように縦置きにした場合の設置面積以下に抑えることはできない。ここで、本実施例では、容量の大きな窒素槽41が必要である場合、図10に示すように、H2<D1×n+D2となる複数の窒素槽41を上下に並べて配置した。これにより、n個の吸着槽19と窒素槽41を図5のように縦置きにした場合の設置面積以下に抑えることができ、大きな容量の窒素ガスを貯留することができる。   Here, the case where the nitrogen tank 41 with a large capacity is required will be described. As described above, when n adsorption tanks 19 are arranged, when the diameter of the adsorption tank 19 is D1, the diameter of the nitrogen tank 41 is D2, and the length in the longitudinal direction is H2, nitrogen that satisfies H2> D1 × n + D2 When the tank 41 is used, the n adsorption tanks 19 and the nitrogen tanks 41 cannot be kept below the installation area when the tanks are placed vertically as shown in FIG. Here, in this example, when the nitrogen tank 41 having a large capacity is necessary, as shown in FIG. 10, a plurality of nitrogen tanks 41 satisfying H2 <D1 × n + D2 are arranged side by side. Thereby, the n adsorption tanks 19 and the nitrogen tanks 41 can be suppressed to the installation area or less when they are placed vertically as shown in FIG. 5, and a large volume of nitrogen gas can be stored.

ここまで、気体分離装置1の構成を説明してきたが、ここで気体分離装置において行われる気体分離方法について説明する。   Up to now, the configuration of the gas separation device 1 has been described. Here, a gas separation method performed in the gas separation device will be described.

気体分離装置1では、圧縮機4によって空気を圧縮する圧縮工程、圧縮工程により圧縮された空気をアフタークーラー2により冷却する冷却工程、冷却工程により冷却された空気をエアードライヤー5により除湿する除湿工程、除湿工程により除湿された空気を空気槽7に貯留する貯蔵工程、貯蔵工程により貯留された空気から所定の気体を分離する分離工程が行わる。   In the gas separation device 1, a compression process of compressing air by the compressor 4, a cooling process of cooling the air compressed by the compression process by the after cooler 2, and a dehumidification process of dehumidifying the air cooled by the cooling process by the air dryer 5 A storage step of storing the air dehumidified in the dehumidification step in the air tank 7 and a separation step of separating a predetermined gas from the air stored in the storage step are performed.

気体分離装置1の分離工程では、以下の(a)〜(d)の工程を順次行われる。   In the separation step of the gas separation device 1, the following steps (a) to (d) are sequentially performed.

(a)吸着工程:圧縮機4により圧縮され空気槽7に貯留された圧縮空気を、供給弁18を開くことで、吸着剤が充填された吸着槽19に導入するとともに、窒素槽41内に残存する窒素ガスを、取出弁38を開くことで吸着槽19に還流して吸着槽19内を昇圧させ、圧力を利用して吸着剤に酸素分子を吸着させる工程。   (A) Adsorption process: Compressed air compressed by the compressor 4 and stored in the air tank 7 is introduced into the adsorption tank 19 filled with the adsorbent by opening the supply valve 18, and in the nitrogen tank 41. The step of refluxing the remaining nitrogen gas to the adsorption tank 19 by opening the extraction valve 38 to increase the pressure inside the adsorption tank 19 and adsorbing oxygen molecules to the adsorbent using the pressure.

(b)取出工程:吸着工程から引き続いて、空気槽7から圧縮空気を吸着槽19に導入し続けると同時に、吸着剤により分離生成された窒素ガスを吸着槽19より取り出して窒素槽41に貯留させる工程。   (B) Extraction process: Continuing from the adsorption process, the compressed air is continuously introduced from the air tank 7 into the adsorption tank 19, and at the same time, the nitrogen gas separated and generated by the adsorbent is extracted from the adsorption tank 19 and stored in the nitrogen tank 41. Process.

(c)均圧工程:上均圧弁36および下均圧弁26の開閉により取出工程終了後の一対の吸着槽19の均圧化を図り、次回の吸着工程の吸着効率を高めて、より高純度の窒素ガスを生成するための工程。なお、ここでは吸着槽19が複数ある場合について説明したが、吸着槽19は1つであってもよく、その場合は均圧工程は不要である。   (C) Pressure equalization step: The upper pressure equalization valve 36 and the lower pressure equalization valve 26 are opened and closed to equalize the pressure in the pair of adsorption tanks 19 after completion of the take-out step, thereby increasing the adsorption efficiency of the next adsorption step and increasing the purity. For generating nitrogen gas. In addition, although the case where there are a plurality of adsorption tanks 19 has been described here, the number of adsorption tanks 19 may be one, and in that case, the pressure equalization step is unnecessary.

(d)再生工程:均圧工程終了後の吸着槽19内を、排気弁22を開くことにより配管21を介して、吸着剤に吸着された酸素分子を脱着することにより吸着剤を再生する工程。なお、この再生工程において、排気弁22以外の吸着槽19に関連する供給弁18、下均圧弁26、上均圧弁36および取出弁38は、閉状態とする。   (D) Regeneration step: A step of regenerating the adsorbent by desorbing oxygen molecules adsorbed by the adsorbent through the pipe 21 by opening the exhaust valve 22 in the adsorption tank 19 after the pressure equalization step is completed. . In this regeneration step, the supply valve 18, the lower pressure equalizing valve 26, the upper pressure equalizing valve 36 and the take-off valve 38 related to the adsorption tank 19 other than the exhaust valve 22 are closed.

本発明の実施例2について図3を用いて説明する。本実施例では実施例1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   A second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図3に本実施例の気体分離装置1におけるPSAユニット3を示す。本実施例におけるPSAユニット3は、吸着槽19を空気槽5と窒素槽41との間に配置し、空気槽5、吸着槽19、窒素槽41の配置されているそれぞれの空間を区切る仕切り板を設けた。本実施例では、窒素槽41が配置されている空間と吸着槽19が配置されている空間とを区切る第1の仕切り板の上面に吸着槽19を配置し、吸着槽19が配置されている空間と空気槽5が配置されている空間とを区切る第2の仕切り板の上面に空気槽5を配置した。即ち、本実施例では、吸着槽19より上に空気槽5を配置し、吸着槽19より下に窒素槽41を配置したが、吸着槽19よりも下に空気槽5を配置し、吸着槽19よりも上に窒素槽41に配置してもよい。   FIG. 3 shows the PSA unit 3 in the gas separation device 1 of the present embodiment. The PSA unit 3 in the present embodiment is a partition plate in which the adsorption tank 19 is disposed between the air tank 5 and the nitrogen tank 41, and each space in which the air tank 5, the adsorption tank 19, and the nitrogen tank 41 are disposed is partitioned. Was provided. In this embodiment, the adsorption tank 19 is arranged on the upper surface of the first partition plate that divides the space in which the nitrogen tank 41 is arranged and the space in which the adsorption tank 19 is arranged, and the adsorption tank 19 is arranged. The air tank 5 was arrange | positioned on the upper surface of the 2nd partition plate which divides space and the space where the air tank 5 is arrange | positioned. That is, in this embodiment, the air tank 5 is disposed above the adsorption tank 19 and the nitrogen tank 41 is disposed below the adsorption tank 19, but the air tank 5 is disposed below the adsorption tank 19 and the adsorption tank. You may arrange | position in the nitrogen tank 41 above 19. FIG.

また、本実施例では、吸着槽19が配置された空間と窒素槽41が配置された空間とを仕切る第1の仕切り板とを吸着槽19が配置されている空間と空気槽5が配置されている空間とを区切る第2の仕切り板を設けたが、吸着槽19は、空気槽5よりも下で窒素槽41よりも上の位置または、空気槽5よりも上で窒素槽41よりも下の位置に配置(吸着槽19の下端が空気槽5の下端と窒素槽41の下端との間に配置され、上から見て吸着槽19、空気槽5、窒素槽41のそれぞれの少なくとも一部が重なって配置)されていればよく、第1の仕切り板、第2の仕切り板は必ずしも必要ない。この場合、例えば、窒素槽41の上にフレームを設け、フレーム上に吸着槽19、空気槽5が支持されて窒素槽41、吸着槽19、空気槽5が配置されてもよい。   In this embodiment, the space in which the adsorption tank 19 is arranged and the air tank 5 are arranged in a first partition plate that partitions the space in which the adsorption tank 19 is arranged and the space in which the nitrogen tank 41 is arranged. The second partition plate is provided to divide the space, but the adsorption tank 19 is located below the air tank 5 and above the nitrogen tank 41 or above the air tank 5 and above the nitrogen tank 41. Arranged in a lower position (the lower end of the adsorption tank 19 is arranged between the lower end of the air tank 5 and the lower end of the nitrogen tank 41, and at least one of each of the adsorption tank 19, the air tank 5, and the nitrogen tank 41 when viewed from above. The first partition plate and the second partition plate are not necessarily required as long as the portions overlap each other. In this case, for example, a frame may be provided on the nitrogen tank 41, and the adsorption tank 19 and the air tank 5 may be supported on the frame, and the nitrogen tank 41, the adsorption tank 19, and the air tank 5 may be disposed.

吸着槽19を空気槽5と窒素槽41との間に配置することにより、空気槽5と吸着槽19とを接続する配管17、吸着槽19と窒素槽41とを接続する配管31、40等を長く複雑な形状にすることなく配置することができ、スペース、コストを低減することができる。   By disposing the adsorption tank 19 between the air tank 5 and the nitrogen tank 41, a pipe 17 for connecting the air tank 5 and the adsorption tank 19, a pipe 31, 40 for connecting the adsorption tank 19 and the nitrogen tank 41, etc. Can be arranged without a long and complicated shape, and space and cost can be reduced.

なお、空気槽5、吸着槽19、窒素槽41は1つの筐体に格納される。   The air tank 5, the adsorption tank 19, and the nitrogen tank 41 are stored in one housing.

本実施例は、空気槽5をPSAユニット3に配置した点で実施例1と異なる。空気槽5をPSAユニット3に配置することにより、PSAユニット3に空気を供給する空気供給ユニット2において空気槽がない場合や空気槽の容量が少ない場合であっても十分な容量の圧縮空気を吸着槽19に供給することができる。従って、実施例1と異なり、空気供給ユニット2は必ずしも空気槽5を備えていなくてもよく、空気槽5の容量が小さくてもよい。そのため、例えば、空気供給ユニット2における圧縮機4が大きく、空気供給ユニット2における省スペース化を図る必要がある場合に本実施例におけるPSAユニット3を用いることが有効となる。   The present embodiment is different from the first embodiment in that the air tank 5 is arranged in the PSA unit 3. By disposing the air tank 5 in the PSA unit 3, even if the air supply unit 2 for supplying air to the PSA unit 3 has no air tank or the capacity of the air tank is small, sufficient compressed air is supplied. It can be supplied to the adsorption tank 19. Therefore, unlike the first embodiment, the air supply unit 2 does not necessarily include the air tank 5, and the capacity of the air tank 5 may be small. Therefore, for example, when the compressor 4 in the air supply unit 2 is large and it is necessary to save the space in the air supply unit 2, it is effective to use the PSA unit 3 in this embodiment.

なお、本実施例でも実施例1と同様に、容量の大きな空気槽5または窒素槽41が必要である場合、複数の空気槽5または複数の窒素槽41を上下に並べて配置すればよい。これにより、設置面積の省スペース化を実現しつつ、大きな容量の窒素ガスを貯留することができる。   In the present embodiment, similarly to the first embodiment, when the air tank 5 or the nitrogen tank 41 having a large capacity is necessary, the plurality of air tanks 5 or the plurality of nitrogen tanks 41 may be arranged one above the other. Thereby, it is possible to store a large amount of nitrogen gas while realizing space saving of the installation area.

これまで説明してきた実施例は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されない。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。また、実施例1、2を組み合わせることにより本発明を実施してもよい。   The embodiments described so far are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention is not limitedly interpreted by these. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof. Further, the present invention may be implemented by combining the first and second embodiments.

1・・・気体分離装置
2・・・空気供給ユニット
3・・・PSAユニット
4・・・圧縮機
5・・・空気槽(空気貯留タンク)
6・・・エアードライヤー
7・・・ドレンフィルター
18・・・供給弁
19・・・吸着槽
22・・・排気弁
23・・・排気口
26・・・下均圧弁
33・・・オリフィス
36・・・上均圧弁
38・・・取出弁
41・・・窒素槽(製品ガス貯留タンク)
42・・・吐出口
44・・・フィルターレギュレーター
45・・・吐出弁
46・・・流量調整弁
50・・・開閉弁(排気用)
51・・・流量調整弁(排気用)
52・・・サイレンサ
54・・・開閉弁(センサー用)
55・・・流量調整弁(センサー用)
56・・・酸素センサー
60・・・制御部
DESCRIPTION OF SYMBOLS 1 ... Gas separation apparatus 2 ... Air supply unit 3 ... PSA unit 4 ... Compressor 5 ... Air tank (air storage tank)
6 ... Air dryer 7 ... Drain filter 18 ... Supply valve 19 ... Adsorption tank 22 ... Exhaust valve 23 ... Exhaust port 26 ... Lower pressure equalizing valve 33 ... Orifice 36・ ・ Upper pressure equalizing valve 38 ・ ・ ・ Taking valve 41 ・ ・ ・ Nitrogen tank (product gas storage tank)
42 ... Discharge port 44 ... Filter regulator 45 ... Discharge valve 46 ... Flow control valve 50 ... Open / close valve (for exhaust)
51 ... Flow rate adjustment valve (for exhaust)
52 ... Silencer 54 ... Open / close valve (for sensor)
55 ... Flow control valve (for sensor)
56 ... Oxygen sensor 60 ... Control unit

Claims (10)

供給された気体から所定の気体を分離して製品ガスとして生成する吸着剤が充填された略円筒状の吸着槽と、
前記製品ガスを貯留する略円筒状の製品ガス貯留タンクとを備え、
前記吸着槽は前記製品ガス貯留タンクよりも上または下に配置されることを特徴とする気体分離装置。
A substantially cylindrical adsorption tank filled with an adsorbent that separates a predetermined gas from the supplied gas and generates a product gas;
A substantially cylindrical product gas storage tank for storing the product gas;
The gas separation apparatus, wherein the adsorption tank is disposed above or below the product gas storage tank.
前記吸着槽は長手方向が水平方向と交差するように配置され、前記製品ガス貯留タンクは長手方向が前記吸着槽の長手方向と交差するように配置されることを特徴とする請求項1に記載の気体分離装置。   The said adsorption tank is arrange | positioned so that a longitudinal direction may cross | intersect a horizontal direction, and the said product gas storage tank is arrange | positioned so that a longitudinal direction may cross | intersect the longitudinal direction of the said adsorption tank. Gas separation device. 前記吸着槽を前記貯留タンクよりも上に配置し、前記吸着槽よりも上または下のいずれか一方に前記吸着槽に気体を供給する第1の配管を配置し、他方に前記吸着槽と前記製品ガス貯留タンクとを接続する第2の配管を配置することを特徴とする請求項2に記載の気体分離装置。   The adsorption tank is disposed above the storage tank, a first pipe for supplying gas to the adsorption tank is disposed either above or below the adsorption tank, and the adsorption tank and the above are disposed on the other side. The gas separation device according to claim 2, wherein a second pipe connecting the product gas storage tank is disposed. 前記第1の配管及び前記第2の配管はそれぞれ流路を開閉する弁を設けることを特徴とする請求項3に記載の気体分離装置。   The gas separation device according to claim 3, wherein each of the first pipe and the second pipe is provided with a valve for opening and closing a flow path. 前記吸着槽に供給する気体を圧縮する圧縮機と、前記吸着槽に供給する気体を貯留する空気貯留タンクとを有する空気供給ユニットを備えることを特徴とする請求項1乃至4に記載の気体分離装置。   5. The gas separation according to claim 1, comprising an air supply unit having a compressor that compresses the gas supplied to the adsorption tank and an air storage tank that stores the gas supplied to the adsorption tank. apparatus. 前記吸着槽と前記製品ガス貯留タンクとを有するPSAユニットと前記空気供給ユニットとを横に並べて配置することを特徴とする請求項5に記載の気体分離装置。   The gas separation device according to claim 5, wherein the PSA unit having the adsorption tank and the product gas storage tank and the air supply unit are arranged side by side. 前記吸着槽と前記製品ガス貯留タンクとは上から見て少なくとも一部が重なって配置されることを特徴とする請求項1に記載の気体分離装置。   The gas separation device according to claim 1, wherein the adsorption tank and the product gas storage tank are arranged so as to overlap at least partially when viewed from above. 前記吸着槽をn個配置した場合において、前記吸着槽の直径をD1、前記製品ガス貯留タンクの直径をD2、長手方向の長さをH2としたとき、H2<D1×n+D2とすることを特徴とする請求項1乃至7のいずれかに記載の気体分離装置。   When n adsorption tanks are arranged, the diameter of the adsorption tank is D1, the diameter of the product gas storage tank is D2, and the length in the longitudinal direction is H2. H2 <D1 × n + D2. The gas separation device according to any one of claims 1 to 7. 前記吸着槽をn個配置した場合において、前記製品ガス貯留タンクの直径を前記吸着槽の直径以下の寸法とし、前記製品ガス貯留タンクの長手方向の長さを前記吸着槽の直径のn倍以下の寸法とすることを特徴とする請求項8に記載の気体分離装置。   When n adsorption tanks are arranged, the diameter of the product gas storage tank is set to a dimension equal to or smaller than the diameter of the adsorption tank, and the length in the longitudinal direction of the product gas storage tank is equal to or less than n times the diameter of the adsorption tank. The gas separation device according to claim 8, wherein the gas separation device has a size of. 空気を貯留する略円筒状の空気貯留タンクと、
前記空気貯留タンクから供給された空気から所定の気体を分離して製品ガスとして生成する吸着剤が充填され、略円筒状の吸着槽と、
前記製品ガスを貯留する略円筒状の製品ガス貯留タンクとを備え、
前記吸着槽は、前記空気貯留タンクよりも下で前記製品ガス貯留タンクよりも上の位置または、前記空気貯留タンクよりも上で前記製品ガス貯留タンクよりも下の位置に配置されることを特徴とする気体分離装置。
A substantially cylindrical air storage tank for storing air;
Filled with an adsorbent that separates a predetermined gas from the air supplied from the air storage tank and generates a product gas, and a substantially cylindrical adsorption tank;
A substantially cylindrical product gas storage tank for storing the product gas;
The adsorption tank is disposed at a position below the air storage tank and above the product gas storage tank, or at a position above the air storage tank and below the product gas storage tank. Gas separation device.
JP2010126439A 2010-06-02 2010-06-02 Gas separator Pending JP2011251243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126439A JP2011251243A (en) 2010-06-02 2010-06-02 Gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126439A JP2011251243A (en) 2010-06-02 2010-06-02 Gas separator

Publications (1)

Publication Number Publication Date
JP2011251243A true JP2011251243A (en) 2011-12-15

Family

ID=45415628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126439A Pending JP2011251243A (en) 2010-06-02 2010-06-02 Gas separator

Country Status (1)

Country Link
JP (1) JP2011251243A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203345A (en) * 2014-04-14 2015-11-16 株式会社日立産機システム Compression device and gas separation device using the same
JP2016215088A (en) * 2015-05-15 2016-12-22 株式会社日立産機システム Gas separator and method for cooling compressor used therefor
JP2017087089A (en) * 2015-11-02 2017-05-25 栗田工業株式会社 Coagulating-settling device
JP2020081929A (en) * 2018-11-19 2020-06-04 大陽日酸株式会社 Pressure fluctuation adsorption device
CN112850663A (en) * 2021-02-18 2021-05-28 杭州京旺科技有限公司 Nitrogen making machine for making high-purity nitrogen from waste nitrogen
JP2022048233A (en) * 2018-05-16 2022-03-25 株式会社アドバン理研 Gas manufacturing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119446A (en) * 1997-06-30 1999-01-26 Sanyo Electric Co Ltd Air quality activation device
JP2006166998A (en) * 2004-12-13 2006-06-29 Fukuda Denshi Co Ltd Adsorption type gas generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119446A (en) * 1997-06-30 1999-01-26 Sanyo Electric Co Ltd Air quality activation device
JP2006166998A (en) * 2004-12-13 2006-06-29 Fukuda Denshi Co Ltd Adsorption type gas generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203345A (en) * 2014-04-14 2015-11-16 株式会社日立産機システム Compression device and gas separation device using the same
JP2016215088A (en) * 2015-05-15 2016-12-22 株式会社日立産機システム Gas separator and method for cooling compressor used therefor
JP2017087089A (en) * 2015-11-02 2017-05-25 栗田工業株式会社 Coagulating-settling device
JP2022048233A (en) * 2018-05-16 2022-03-25 株式会社アドバン理研 Gas manufacturing apparatus
JP7235901B2 (en) 2018-05-16 2023-03-08 株式会社アドバン理研 gas production equipment
JP2020081929A (en) * 2018-11-19 2020-06-04 大陽日酸株式会社 Pressure fluctuation adsorption device
JP7195887B2 (en) 2018-11-19 2022-12-26 大陽日酸株式会社 Pressure fluctuation adsorption device
CN112850663A (en) * 2021-02-18 2021-05-28 杭州京旺科技有限公司 Nitrogen making machine for making high-purity nitrogen from waste nitrogen

Similar Documents

Publication Publication Date Title
JP2011251243A (en) Gas separator
KR101681543B1 (en) Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus
JP2006232632A (en) Oxygen concentrator
WO2013069768A1 (en) Method for producing nitrogen gas, method for separating gas and device for producing nitrogen gas
KR101773437B1 (en) Absorbing tower having complex absorption structure for oxygen generator
CN106512646B (en) Method for oxygen concentration and device with function of removing condensed water
JP6568396B2 (en) Gas separation device and compressor cooling method used therefor
JP5864994B2 (en) Gas separation apparatus and method
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JP5814145B2 (en) Gas separation device
JP7064835B2 (en) Gas separator
JP5537208B2 (en) Flammable gas concentration method
JP5518503B2 (en) High pressure and high purity nitrogen gas supply device and supply method
JP6313638B2 (en) Compressor and gas separation device using the same
JP7374925B2 (en) Gas separation equipment and gas separation method
JP6595639B2 (en) Gas production equipment
JP2011183256A (en) Gas separator and gas separation method
JP7407609B2 (en) Gas separation equipment using PSA method
JP7195887B2 (en) Pressure fluctuation adsorption device
JP6823979B2 (en) Gas separator
JP2005052757A (en) Gas supply apparatus
KR102616452B1 (en) Moisture and Nitrogen Adsorption Integrated PSA Oxygen Generator
JP2010234345A (en) Gas separator
KR20170108089A (en) Gas boosting compressors and gas compressors
JP2020001017A (en) Pressure fluctuation adsorption device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140918

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141128