JP2011249742A - Magnesium-silicon based thermoelectric conversion material and method of producing the same - Google Patents

Magnesium-silicon based thermoelectric conversion material and method of producing the same Download PDF

Info

Publication number
JP2011249742A
JP2011249742A JP2010136571A JP2010136571A JP2011249742A JP 2011249742 A JP2011249742 A JP 2011249742A JP 2010136571 A JP2010136571 A JP 2010136571A JP 2010136571 A JP2010136571 A JP 2010136571A JP 2011249742 A JP2011249742 A JP 2011249742A
Authority
JP
Japan
Prior art keywords
metal
magnesium
thermoelectric conversion
conversion material
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010136571A
Other languages
Japanese (ja)
Other versions
JP5598792B2 (en
JP2011249742A5 (en
Inventor
Takehiko Kitsukawa
武彦 橘川
Shinsuke Yagi
伸介 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2010136571A priority Critical patent/JP5598792B2/en
Publication of JP2011249742A publication Critical patent/JP2011249742A/en
Publication of JP2011249742A5 publication Critical patent/JP2011249742A5/ja
Application granted granted Critical
Publication of JP5598792B2 publication Critical patent/JP5598792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium-silicon based thermoelectric conversion material having high strength and a method of producing the same.SOLUTION: In the method of producing a magnesium-silicon based thermoelectric conversion material, at least metal Mg and metal Si and SiOare used as a material, and they are heat treated at 450-1000°C in vacuum or an inert atmosphere in mixed state. For the magnesium-silicon based thermoelectric conversion material, in X-ray diffraction measurement using Cu-Kα-ray as an X-ray source, intensity ratio (Ia/Ib) of strongest peak intensity (Ia) appearing in the range of 2θ=42.0°-44.0° caused by MgO phase and strongest peak intensity (Ib) appearing in the range of 2θ=39.0°-41.0° caused by MgSi phase is 0.6 or less (excluding 0).

Description

本発明は、マグネシウム−シリコン系熱電変換材料およびその製造方法に関し、特に、マグネシウムシリサイド(MgSi)のマトリックス中に少なくともMgO相が分散した複合材料およびその製造方法に関するものである。The present invention relates to a magnesium-silicon thermoelectric conversion material and a method for producing the same, and more particularly to a composite material in which at least a MgO phase is dispersed in a matrix of magnesium silicide (Mg 2 Si) and a method for producing the same.

現在、排熱回収によるエネルギーの有効利用が注目されている。その中で熱電変換材料を用いた熱電変換素子を用い、排熱により発電し、電気エネルギーとして回収する方法が提案されている。熱電変換材料としては、従来よりBi−Te系、Co−Sb系、Zn−Sb系、Pb−Te系、Ag−Sb−Ge−Te系等が約200〜800℃の排熱を利用する用途で開発、一部実用化されている。しかしながら、これらの熱電変換材料に使用する元素は毒性やコストの面で様々な問題を有している。そのため、MgSi等シリサイド系の熱電変換材料は、毒性がないこと、資源が豊富で安価であることから、その活用が検討されている。At present, the effective use of energy by exhaust heat recovery is attracting attention. Among them, a method has been proposed in which a thermoelectric conversion element using a thermoelectric conversion material is used to generate power by exhaust heat and recover it as electric energy. As thermoelectric conversion materials, Bi-Te series, Co-Sb series, Zn-Sb series, Pb-Te series, Ag-Sb-Ge-Te series and the like that use exhaust heat of about 200 to 800 ° C have been used. Developed and partially put into practical use. However, the elements used in these thermoelectric conversion materials have various problems in terms of toxicity and cost. For this reason, utilization of silicide-based thermoelectric conversion materials such as Mg 2 Si has been studied because they are not toxic and are abundant and inexpensive.

MgSiの融点は1085℃であるところ、Mgの沸点は1097℃であり、MgとSiを溶解してMgSiを作製する場合、Mgの蒸発が問題となる。そこで従来より、Mgの融点以上に加熱し、Si粉末と反応させる固相−液相反応を用い、MgSi粉末を得る方法が研究されている。(特許文献1、2)The melting point of Mg 2 Si is 1085 ° C., but the boiling point of Mg is 1097 ° C. When Mg 2 Si is produced by dissolving Mg and Si, the evaporation of Mg becomes a problem. Therefore, conventionally, a method for obtaining Mg 2 Si powder by using a solid-liquid phase reaction in which it is heated above the melting point of Mg and reacted with Si powder has been studied. (Patent Documents 1 and 2)

特開2000−54009号公報JP 2000-54009 A 特開2002−285274号公報JP 2002-285274 A

しかしながら、特許文献1および2で開示された製造方法によると、得られるMgSiは粉末状となり、さらに焼結工程が必要になるか、塊状で得られても熱電変換素子として使用に耐える十分な密度および強度を有していない。However, according to the manufacturing methods disclosed in Patent Documents 1 and 2, the obtained Mg 2 Si is in a powder form, and further requires a sintering process, or is sufficient to withstand use as a thermoelectric conversion element even if obtained in a lump form. Does not have the proper density and strength.

本発明の課題は、高い密度および強度を有するマグネシウム−シリコン系熱電変換材料を提供することにある。
本発明の別の課題は、本発明のマグネシウム−シリコン系熱電変換材料の製造に適した効率的な製造方法を提供することにある。
An object of the present invention is to provide a magnesium-silicon based thermoelectric conversion material having high density and strength.
Another subject of this invention is providing the efficient manufacturing method suitable for manufacture of the magnesium-silicon type thermoelectric conversion material of this invention.

また本発明によれば、原料として少なくとも金属Mgと金属SiとSiOを使用し、これらを混合した状態で、真空もしくは不活性雰囲気中、450〜1000℃で熱処理するマグネシウム−シリコン系熱電変換材料の製造方法が提供される。
さらに本発明によれば、Cu−Kα線をX線源とするX線回折測定において、MgO相に起因する2θ=42.0°〜44.0°の範囲に現れる最強ピーク強度(Ia)とMgSi相に起因する2θ=39.0°〜41.0°の範囲に現れる最強ピーク強度(Ib)との強度比(Ia/Ib)が0.6以下(0を含まない)であるマグネシウム−シリコン系熱電変換材料が提供される。
Further, according to the present invention, at least metal Mg, metal Si, and SiO 2 are used as raw materials, and the magnesium-silicon thermoelectric conversion material is heat-treated at 450 to 1000 ° C. in a vacuum or an inert atmosphere in a mixed state. A manufacturing method is provided.
Furthermore, according to the present invention, in the X-ray diffraction measurement using Cu—Kα rays as an X-ray source, the strongest peak intensity (Ia) appearing in the range of 2θ = 42.0 ° to 44.0 ° due to the MgO phase The intensity ratio (Ia / Ib) to the strongest peak intensity (Ib) appearing in the range of 2θ = 39.0 ° to 41.0 ° due to the Mg 2 Si phase is 0.6 or less (not including 0) A magnesium-silicon thermoelectric conversion material is provided.

本発明のマグネシウム−シリコン系熱電変換材料は高い密度および強度を有する。本発明のマグネシウム−シリコン系熱電変換材料の製造方法は、本発明のマグネシウム−シリコン系熱電変換材料の製造に適した効率的な製造方法であって、MgSiの合成と同時に密度の大きいマグネシウム−シリコン系熱電変換材料を得ることができる。The magnesium-silicon based thermoelectric conversion material of the present invention has high density and strength. The method for producing a magnesium-silicon thermoelectric conversion material of the present invention is an efficient production method suitable for the production of the magnesium-silicon thermoelectric conversion material of the present invention, and magnesium having a high density simultaneously with the synthesis of Mg 2 Si. -A silicon-based thermoelectric conversion material can be obtained.

実施例1のマグネシウム−シリコン系熱電変換材料のSEM像の写しである。(200倍)2 is a copy of an SEM image of the magnesium-silicon thermoelectric conversion material of Example 1. (200 times) 実施例1のマグネシウム−シリコン系熱電変換材料のSEM像の写しである。(1000倍)2 is a copy of an SEM image of the magnesium-silicon thermoelectric conversion material of Example 1. (1000 times) 実施例1のマグネシウム−シリコン系熱電変換材料の断面組織のMgマッピング像の写しである。2 is a copy of an Mg mapping image of a cross-sectional structure of the magnesium-silicon thermoelectric conversion material of Example 1. 実施例1のマグネシウム−シリコン系熱電変換材料の断面組織のSiマッピング像の写しである。2 is a copy of a Si mapping image of a cross-sectional structure of the magnesium-silicon based thermoelectric conversion material of Example 1. 実施例1のマグネシウム−シリコン系熱電変換材料の断面組織の酸素マッピング像の写しである。2 is a copy of an oxygen mapping image of a cross-sectional structure of the magnesium-silicon based thermoelectric conversion material of Example 1. 実施例3のマグネシウム−シリコン系熱電変換材料のSEM像の写しである。(200倍)4 is a copy of an SEM image of a magnesium-silicon based thermoelectric conversion material of Example 3. (200 times) 実施例3のマグネシウム−シリコン系熱電変換材料のSEM像の写しである。(1000倍)4 is a copy of an SEM image of a magnesium-silicon based thermoelectric conversion material of Example 3. (1000 times) 実施例3のマグネシウム−シリコン系熱電変換材料の断面組織のMgマッピング像の写しである。4 is a copy of an Mg mapping image of a cross-sectional structure of a magnesium-silicon thermoelectric conversion material of Example 3. 実施例3のマグネシウム−シリコン系熱電変換材料の断面組織のSiマッピング像の写しである。4 is a copy of a Si mapping image of a cross-sectional structure of a magnesium-silicon thermoelectric conversion material of Example 3. 実施例3のマグネシウム−シリコン系熱電変換材料の断面組織の酸素マッピング像の写しである。4 is a copy of an oxygen mapping image of a cross-sectional structure of a magnesium-silicon thermoelectric conversion material of Example 3.

本発明のマグネシウム−シリコン系熱電変換材料の製造方法は、原料として少なくとも金属Mgと金属SiとSiOを使用し、これらを混合した状態で、真空もしくは不活性雰囲気中、450〜1000℃で熱処理する。450℃以上に加熱することにより金属Mgは金属Siと反応し、MgSiを生成する。また、金属MgはSiOを還元し、自身は酸化され、金属SiとMgOを生成する。還元されて生成した金属Siも金属Mgと反応しMgSiを生成する。SiOと金属Mgの反応を利用することで、生成するMgSiとMgOの粒子間に強固な結合が生じることから、密度および強度の高いマグネシウム−シリコン系熱電変換材料を得ることができる。金属Mgの蒸発を防ぐためには、なるべく低い温度で熱処理を行うことが好ましいが、十分に反応を進行するために500〜750℃程度で行うことが好ましい。未反応の金属Mgが残留すると耐酸化性が著しく低下する。熱処理時間は通常1分〜3時間程度で行う。The method for producing a magnesium-silicon thermoelectric conversion material of the present invention uses at least metal Mg, metal Si, and SiO 2 as raw materials, and heat treatment at 450 to 1000 ° C. in a vacuum or an inert atmosphere in a mixed state. To do. When heated to 450 ° C. or higher, the metal Mg reacts with the metal Si to produce Mg 2 Si. Further, the metal Mg reduces SiO 2 and oxidizes itself to generate metal Si and MgO. Metal Si produced by reduction also reacts with metal Mg to produce Mg 2 Si. By utilizing the reaction of SiO 2 and metal Mg, a strong bond is generated between the generated particles of Mg 2 Si and MgO, so that a magnesium-silicon thermoelectric conversion material with high density and strength can be obtained. In order to prevent the metal Mg from evaporating, it is preferable to perform the heat treatment at a temperature as low as possible, but it is preferable to perform the heat treatment at about 500 to 750 ° C. in order to sufficiently proceed the reaction. If unreacted metal Mg remains, the oxidation resistance is significantly reduced. The heat treatment time is usually about 1 minute to 3 hours.

金属Mgは酸化しやすいため、熱処理を行う雰囲気は真空または不活性雰囲気で行うことが好ましい。さらに好ましくは不活性雰囲気で加圧した雰囲気にする。この場合、金属Mgの酸化を防ぐと同時に蒸発も抑制できる。  Since metal Mg is easily oxidized, it is preferable that the atmosphere for the heat treatment be a vacuum or an inert atmosphere. More preferably, the atmosphere is pressurized in an inert atmosphere. In this case, evaporation of metal Mg can be prevented and at the same time evaporation can be suppressed.

金属Mgと金属Si、SiOの反応は、いわゆる液相−固相反応で進行する。したがって、金属Mgと金属Si、SiOは密に接触した状態であることが好ましい。さらに好ましくは予めボールミル等を使用して均一な混合状態としておく。また、原料を混合した後、プレス成形を行い、原料の密度を高くしておくことも有効である。金属Mg、金属Si、SiOは粉末形態のものを用いることが好ましい。また、生成するMgO相は原料のSiOの形態を継承する。得られるマグネシウム−シリコン系熱電変換材料中のMgO相の粒径が小さく、分散している場合、電子伝導率を低下させることなく、熱伝導率を小さくできる傾向にある。したがって、原料に使用するSiOの平均粉末粒径は可能な限り小さい方が好ましく、工業生産上は0.1〜100μmであることが好ましい。さらに好ましくは0.1〜10μmである。一方、生成するMgSi相は、主に原料の金属Siの形態を承継する。MgSi相の粒径は小さい方が熱伝導率を小さくできる傾向にある。したがって原料に使用する金属Siの平均粉末粒径は可能な限り小さい方が好ましく、工業生産上は0.1〜50μmであることが好ましい。さらに好ましくは0.1〜10μmである。ここでの平均粉末粒径とは、SEMによる観察像でランダムに選択した粉末の最長径とその最長径に垂直な線分で定められる短径との平均値を算出し、50個以上について同様にして算出した値の平均値とした。The reaction between metal Mg, metal Si, and SiO 2 proceeds by a so-called liquid-solid reaction. Therefore, it is preferable that the metal Mg and the metal Si, SiO 2 are in close contact with each other. More preferably, a uniform mixing state is previously obtained using a ball mill or the like. It is also effective to perform press molding after mixing the raw materials to increase the density of the raw materials. Metal Mg, metal Si, and SiO 2 are preferably used in powder form. The generated MgO phase inherits the form of the raw material SiO 2 . When the particle diameter of the MgO phase in the obtained magnesium-silicon-based thermoelectric conversion material is small and dispersed, the thermal conductivity tends to be reduced without decreasing the electronic conductivity. Therefore, the average powder particle diameter of SiO 2 used for the raw material is preferably as small as possible, and is preferably 0.1 to 100 μm for industrial production. More preferably, it is 0.1-10 micrometers. On the other hand, the resulting Mg 2 Si phase, mainly succeed the form of a metal Si raw material. The smaller the particle size of the Mg 2 Si phase, the smaller the thermal conductivity tends to be. Therefore, the average powder particle size of the metal Si used as a raw material is preferably as small as possible, and is preferably 0.1 to 50 μm for industrial production. More preferably, it is 0.1-10 micrometers. The average powder particle size here is the average value of the longest diameter of the powder randomly selected from the observation image by SEM and the short diameter defined by the line segment perpendicular to the longest diameter. It was set as the average of the values calculated in this way.

原料に使用する金属Mg、金属Si、SiOの純度は高い方が好ましい。通常は99.9%以上の純度のものが使用できる。また、n型またはp型の特性を改善するため、ドーパントとしてB、Al、Ga、In、P、As、Sb、Bi、Li、Na、K、Ag、Cu、等から選択される少なくとも1種の元素を添加することができる。当然ながらドーパントもなるべく高純度の原料を使用することが好ましく、その添加量は通常5原子%以下である。The purity of metal Mg, metal Si, and SiO 2 used for the raw material is preferably higher. Usually, the purity of 99.9% or more can be used. In order to improve the n-type or p-type characteristics, at least one dopant selected from B, Al, Ga, In, P, As, Sb, Bi, Li, Na, K, Ag, Cu, etc. is used as a dopant. These elements can be added. Of course, it is preferable to use as high a purity raw material as possible for the dopant, and the addition amount is usually 5 atomic% or less.

熱処理は、雰囲気制御が可能な通常の熱処理炉で行うことができる。金属Mgの蒸発を抑制し、金属Mgと金属SiおよびSiOとの反応を進行させ、密度および強度の高いマグネシウム−シリコン系熱電変換材料を得るために、炉内を大気圧以上に加圧して行うことが好ましい。さらに好ましくは、ホットプレス法、熱間等方圧プレス法(HIP)、放電プラズマ焼結法(SPS)、熱間圧延法、熱間押出法等加圧もしくは塑性加工を行いながら熱処理する。これらの方法で行うと、前述したSiOの反応を利用した効果とあいまって、密度および強度の高いマグネシウム−シリコン系熱電変換材料を得ることができる。The heat treatment can be performed in a normal heat treatment furnace capable of controlling the atmosphere. In order to suppress the evaporation of metal Mg, advance the reaction of metal Mg with metal Si and SiO 2, and obtain a magnesium-silicon thermoelectric conversion material with high density and strength, the inside of the furnace was pressurized above atmospheric pressure. Preferably it is done. More preferably, heat treatment is performed while performing pressurization or plastic working such as hot pressing, hot isostatic pressing (HIP), spark plasma sintering (SPS), hot rolling, hot extrusion or the like. When these methods are used, a magnesium-silicon thermoelectric conversion material having a high density and strength can be obtained in combination with the above-described effect of utilizing the reaction of SiO 2 .

原料の金属SiとSiOの混合比は、(金属Siのモル数)/(SiOのモル数)が1以上であることが好ましい。さらに好ましくは混合比が2以上、最も好ましくは3以上である。混合比を1以上とすることで生成するMgO相または残留するSiOの量を適当な範囲に制御することで、熱電特性と強度を有するマグネシウム−シリコン系熱電変換材料が得られる。The mixing ratio of the raw material metal Si and SiO 2 is preferably such that (number of moles of metal Si) / (number of moles of SiO 2 ) is 1 or more. More preferably, the mixing ratio is 2 or more, and most preferably 3 or more. A magnesium-silicon thermoelectric conversion material having thermoelectric characteristics and strength can be obtained by controlling the amount of MgO phase produced or residual SiO 2 by adjusting the mixing ratio to 1 or more within an appropriate range.

原料の金属Mgと金属SiおよびSiOの混合比は、(金属Mgのモル数)/((金属Siのモル数)+2×(SiOのモル数))が1.8〜2.2であることが好ましい。熱処理時に溶融した金属MgとSiOとの反応は、2Mg+SiO→2MgO+Siである。したがって、SiO1モルの還元に金属Mgは2モル消費される。この混合比が2.0の場合、原料中のMgとSi(金属SiおよびSiO中のSiの合計量)がすべてMgSiの合成に消費される場合の理論量である。この場合、金属Mgが残留しにくいため好ましい。ただし、金属Mgの蒸発を完全に抑えることは困難であるため、予め蒸発量に相当する金属Mgを増量しておくことが好ましい。したがって、この混合比は、2.0〜2.2の間で適宜調整することが最も好ましい。The mixing ratio of the raw material metal Mg, metal Si and SiO 2 is (metal Mg mole number) / ((metal Si mole number) + 2 × (SiO 2 mole number)) is 1.8 to 2.2. Preferably there is. The reaction between the metal Mg melted during the heat treatment and SiO 2 is 2Mg + SiO 2 → 2MgO + Si. Therefore, 2 mol of metal Mg is consumed for reducing 1 mol of SiO 2 . When the mixing ratio is 2.0, this is a theoretical amount when all of Mg and Si (total amount of metal Si and Si in SiO 2 ) in the raw material are consumed for the synthesis of Mg 2 Si. In this case, metal Mg is preferable because it does not easily remain. However, since it is difficult to completely suppress the evaporation of metal Mg, it is preferable to increase the amount of metal Mg corresponding to the evaporation amount in advance. Therefore, this mixing ratio is most preferably adjusted appropriately between 2.0 and 2.2.

本発明のマグネシウム−シリコン系熱電変換材料は、Cu−Kα線をX線源とするX線回折測定において、MgO相に起因する2θ=42.0°〜44.0°の範囲に現れる最強ピーク強度(Ia)とMgSi相に起因する2θ=39.0°〜41.0°の範囲に現れる最強ピーク強度(Ib)との強度比(Ia/Ib)が0.6以下(0を含まない)である。本発明のマグネシウム−シリコン系熱電変換材料は、MgSi相を主相とし、副相として少なくともMgO相を含有する。Ia/Ibが0.6以下の場合、熱電特性と強度を両立できる。Ia/Ibは、0.2以下であることが好ましく、さらに好ましくは0.1以下である。The magnesium-silicon thermoelectric conversion material of the present invention has the strongest peak that appears in the range of 2θ = 42.0 ° to 44.0 ° due to the MgO phase in X-ray diffraction measurement using Cu—Kα rays as an X-ray source. The intensity ratio (Ia / Ib) between the intensity (Ia) and the strongest peak intensity (Ib) appearing in the range of 2θ = 39.0 ° to 41.0 ° due to the Mg 2 Si phase is 0.6 or less (0 Not included). The magnesium-silicon-based thermoelectric conversion material of the present invention contains an Mg 2 Si phase as a main phase and at least an MgO phase as a sub phase. When Ia / Ib is 0.6 or less, both thermoelectric characteristics and strength can be achieved. Ia / Ib is preferably 0.2 or less, and more preferably 0.1 or less.

前述の通り、マグネシウム−シリコン系熱電変換材料中のMgO相の粒径が小さく、分散している場合、電子伝導率を低下させることなく、熱伝導率を小さくできる傾向にある。したがって、本発明のマグネシウム−シリコン系熱電変換材料中のMgO相の平均粒径は可能な限り小さい方が好ましく、工業生産上は0.1〜100μmであることが好ましい。さらに好ましくは0.1〜10μmである。また、マグネシウム−シリコン系熱電変換材料中のMgSi相の粒径は小さい方が熱伝導率を小さくできる傾向にある。したがって、本発明のマグネシウム−シリコン系熱電変換材料中のMgSi相の平均粒径は可能な限り小さい方が好ましく、工業生産上は0.1〜50μmであることが好ましい。さらに好ましくは0.1〜10μmである。ここでの平均粒径とは、EPMAでMgO相、MgSi相を確認後、SEMによる観察像でランダムに選択したMgO相、MgSi相の最長径とその最長径に垂直な線分で定められる短径との平均値を算出し、50個以上について同様にして算出した値の平均値とした。As described above, when the particle diameter of the MgO phase in the magnesium-silicon-based thermoelectric conversion material is small and dispersed, the thermal conductivity tends to be reduced without reducing the electronic conductivity. Therefore, the average particle diameter of the MgO phase in the magnesium-silicon thermoelectric conversion material of the present invention is preferably as small as possible, and is preferably 0.1 to 100 μm for industrial production. More preferably, it is 0.1-10 micrometers. Moreover, the smaller the particle size of the Mg 2 Si phase in the magnesium-silicon based thermoelectric conversion material, the smaller the thermal conductivity tends to be. Therefore, the average particle size of the Mg 2 Si phase in the magnesium-silicon thermoelectric conversion material of the present invention is preferably as small as possible, and is preferably 0.1 to 50 μm for industrial production. More preferably, it is 0.1-10 micrometers. The average particle size here, MgO phase EPMA, after checking the Mg 2 Si phase, randomly selected MgO phase observation image by SEM, the largest diameter perpendicular line to the longest diameter of the Mg 2 Si phase The average value with the minor axis determined in (1) was calculated, and the average value of the values calculated in the same manner for 50 or more.

前述の通り、本発明のマグネシウム−シリコン系熱電変換材料はn型またはp型の特性を改善するため、ドーパントとしてB、Al、Ga、In、P、As、Sb、Bi、Li、Na、K、Ag、Cu、等から選択される少なくとも1種の元素を含有することができる。その含有量は通常5原子%以下である。  As described above, the magnesium-silicon-based thermoelectric conversion material of the present invention improves the n-type or p-type characteristics, so that B, Al, Ga, In, P, As, Sb, Bi, Li, Na, K are used as dopants. And at least one element selected from Ag, Cu, and the like. Its content is usually 5 atomic% or less.

以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらに限定されない。
実施例1
原料として、金属Mg粉末(平均粉末粒径125μm)、金属Si粉末(平均粉末粒径43μm)、SiO2粉末(平均粉末粒径49μm)をそれぞれ2.62g(0.108mol)、0.51g(0.018mol)、1.08g(0.018mol)((金属Siのモル数)/(SiO2のモル数)=1、(金属Mgのモル数)/((金属Siのモル数)+2×(SiOのモル数))=2)秤量し、乳鉢にて5分間混合した。混合した原料をΦ20のダイスに入れて、10tの圧力でプレスし、ペレット形状とした。得られたペレットを熱処理炉にてアルゴン雰囲気下、700℃で1時間熱処理した。その後室温まで炉冷し、ペレットを回収した。ペレットはMgSiに特有の青紫色であった。ペレットをマイクロカッターで切断して、ペレットの断面をCu−Kα線をX線源に使用し、X線解回折測定を行ったところMgSiとMgOの回折パターンによく一致した。MgO相に起因する2θ=42.0°〜44.0°の範囲に現れる最強ピーク強度(Ia)とMgSi相に起因する2θ=39.0°〜41.0°の範囲に現れる最強ピーク強度(Ib)との強度比(Ia/Ib)は、0.53であった。
次いで、ペレットの断面をEPMAにて観察した。図1〜5に、それぞれ100倍のSEM像、1000倍のSEM像、Mgのマッピング像、Siのマッピング像、酸素のマッピング像を示した。これらから、MgSi相をマトリックスとし、MgO相が存在する組織を有することがわかった。MgO相の形状は、原料のSiO粉末と同様であった。SEM像よりランダムに50個のMgO相とMgSi相をそれぞれ選択し、平均結晶粒径を測定したところ、MgO相は53μm、MgSi相は43μmであった。また、ペレットの断面をSEMで観察した際のボイドの量を◎(なし)、○(少ない)、△(多い)の三段階で評価したところ○であった。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these.
Example 1
As raw materials, metal Mg powder (average powder particle size 125 μm), metal Si powder (average powder particle size 43 μm), and SiO 2 powder (average powder particle size 49 μm) were 2.62 g (0.108 mol) and 0.51 g (0 .018 mol), 1.08 g (0.018 mol) ((number of moles of metal Si) / (number of moles of SiO 2) = 1, (number of moles of metal Mg) / ((number of moles of metal Si) + 2 × (SiO 2 )) = 2) Weighed and mixed for 5 minutes in a mortar. The mixed raw material was put into a Φ20 die and pressed at a pressure of 10 t to form a pellet. The obtained pellets were heat-treated at 700 ° C. for 1 hour in an argon atmosphere in a heat treatment furnace. Thereafter, the furnace was cooled to room temperature, and the pellets were collected. The pellets were a bluish violet color characteristic of Mg 2 Si. The pellet was cut with a microcutter, and when the cross section of the pellet was subjected to X-ray diffraction analysis using Cu-Kα rays as an X-ray source, it was in good agreement with the diffraction patterns of Mg 2 Si and MgO. Strongest peak intensity (Ia) appearing in the range of 2θ = 42.0 ° to 44.0 ° due to the MgO phase and strongest appearing in the range of 2θ = 39.0 ° to 41.0 ° due to the Mg 2 Si phase The intensity ratio (Ia / Ib) to the peak intensity (Ib) was 0.53.
Subsequently, the cross section of the pellet was observed with EPMA. 1 to 5 show a 100 times SEM image, a 1000 times SEM image, a Mg mapping image, a Si mapping image, and an oxygen mapping image, respectively. From these, it was found that the Mg 2 Si phase was used as a matrix and the MgO phase was present. The shape of the MgO phase was the same as that of the raw material SiO 2 powder. From the SEM image, 50 MgO phases and Mg 2 Si phases were selected at random, and the average crystal grain size was measured. As a result, the MgO phase was 53 μm and the Mg 2 Si phase was 43 μm. In addition, when the cross section of the pellet was observed with an SEM, the amount of void was evaluated in three stages: ◎ (none), ○ (small), and Δ (large).

実施例2〜4
原料の金属Mg粉末、金属Si粉末、SiO粉末の配合を表1のように変更した以外は実施例1と同様にして行った。結果を表1に示した。図6〜10に、それぞれ実施例3で熱処理後に回収したペレットの断面の100倍のSEM像、1000倍のSEM像、Mgのマッピング像、Siのマッピング像、酸素のマッピング像を示した。
Examples 2-4
The same procedure as in Example 1 was performed except that the composition of the raw material metal Mg powder, metal Si powder, and SiO 2 powder was changed as shown in Table 1. The results are shown in Table 1. 6 to 10 show a 100-fold SEM image, a 1000-fold SEM image, a Mg mapping image, a Si mapping image, and an oxygen mapping image, respectively, of the cross section of the pellet recovered after the heat treatment in Example 3.

実施例5
原料として、金属Si粉末(平均粉末粒径2μm)、SiO粉末(平均粉末粒径3μm)を使用し、ペレットをホットプレスにてアルゴン雰囲気下、10MPaの圧力で700℃、30分間熱処理した以外は、実施例1と同様にして行った。結果を表1に示す。
Example 5
Metal Si powder (average powder particle size 2 μm) and SiO 2 powder (average powder particle size 3 μm) were used as raw materials, and the pellets were heat-treated at 700 ° C. for 30 minutes at 10 MPa pressure in an argon atmosphere by hot pressing. Was carried out in the same manner as in Example 1. The results are shown in Table 1.

比較例1
原料として、SiO粉末を用いず、金属Mg粉末、金属Si粉末の配合を表1のように変更した以外は実施例1と同様にして行った。熱処理後、ペレットは粉末化した。
結果を表1に示す。
比較例2
原料の金属Mg粉末、金属Si粉末、SiO粉末の配合を表1のように変更した以外は実施例1と同様にして行った。結果を表1に示した。
Comparative Example 1
As the raw material, SiO 2 powder was not used, and the same procedure as in Example 1 was performed except that the composition of metal Mg powder and metal Si powder was changed as shown in Table 1. After the heat treatment, the pellets were pulverized.
The results are shown in Table 1.
Comparative Example 2
The same procedure as in Example 1 was performed except that the composition of the raw material metal Mg powder, metal Si powder, and SiO 2 powder was changed as shown in Table 1. The results are shown in Table 1.

Figure 2011249742
Figure 2011249742

Claims (8)

原料として少なくとも金属Mgと金属SiとSiOを使用し、これらを混合した状態で、真空もしくは不活性雰囲気中、450〜1000℃で熱処理するマグネシウム−シリコン系熱電変換材料の製造方法。A method for producing a magnesium-silicon thermoelectric conversion material, in which at least metal Mg, metal Si, and SiO 2 are used as raw materials and heat-treated at 450 to 1000 ° C. in a vacuum or an inert atmosphere in a mixed state. 原料として粉末形態の金属Si、SiOを使用することを特徴とする請求項1記載のマグネシウム−シリコン系熱電変換材料の製造方法。 2. The method for producing a magnesium-silicon thermoelectric conversion material according to claim 1, wherein metal Si or SiO2 in powder form is used as a raw material. 熱処理をホットプレス法、熱間等方圧プレス法(HIP)、放電プラズマ焼結法(SPS)、熱間圧延法、熱間押出法、熱間鍛造法で行うことを特徴とする請求項1または2記載のマグネシウム−シリコン系熱電変換材料の製造方法。  The heat treatment is performed by a hot pressing method, a hot isostatic pressing method (HIP), a spark plasma sintering method (SPS), a hot rolling method, a hot extrusion method, or a hot forging method. Or the manufacturing method of the magnesium-silicon type thermoelectric conversion material of 2. 原料の金属SiとSiOの混合比は、(金属Siのモル数)/(SiOのモル数)が1以上であることを特徴とする請求項1〜3記載のマグネシウム−シリコン系熱電変換材料の製造方法。The mixing ratio of metal Si and SiO 2 in the starting (the number of moles of metal Si) / Magnesium of claims 1 to 3, wherein the (number of moles of SiO 2) is characterized in that at least one - silicon-based thermoelectric conversion Material manufacturing method. 原料の金属Mgと金属SiおよびSiOの混合比は、(金属Mgのモル数)/((金属Siのモル数)+2×(SiOのモル数))が1.8〜2.2であることを特徴とする請求項1〜4記載のマグネシウム−シリコン系熱電変換材料の製造方法。The mixing ratio of the raw material metal Mg, metal Si and SiO 2 is (metal Mg mole number) / ((metal Si mole number) + 2 × (SiO 2 mole number)) is 1.8 to 2.2. The method for producing a magnesium-silicon based thermoelectric conversion material according to claim 1, wherein: Cu−Kα線をX線源とするX線回折測定において、MgO相に起因する2θ=42.0°〜44.0°の範囲に現れる最強ピーク強度(Ia)とMgSi相に起因する2θ=39.0°〜41.0°の範囲に現れる最強ピーク強度(Ib)との強度比(Ia/Ib)が0.6(0を含まない)であるマグネシウム−シリコン系熱電変換材料。In X-ray diffraction measurement using Cu—Kα ray as an X-ray source, the strongest peak intensity (Ia) appearing in the range of 2θ = 42.0 ° to 44.0 ° due to the MgO phase and the Mg 2 Si phase A magnesium-silicon thermoelectric conversion material having an intensity ratio (Ia / Ib) of 0.6 (excluding 0) to the strongest peak intensity (Ib) appearing in the range of 2θ = 39.0 ° to 41.0 °. MgO相の平均粒径が0.1〜100μmであることを特徴とする請求項6記載のマグネシウム−シリコン系熱電変換材料。  The magnesium-silicon thermoelectric conversion material according to claim 6, wherein the average particle diameter of the MgO phase is 0.1 to 100 µm. MgSi相の平均粒径が0.1〜50μmであることを特徴とする請求項6または7記載のマグネシウム−シリコン系熱電変換材料。Magnesium according to claim 6 or 7, wherein the average particle size of mg 2 Si phase is 0.1 to 50 [mu] m - silicon based thermoelectric conversion material.
JP2010136571A 2010-05-28 2010-05-28 Magnesium-silicon thermoelectric conversion material and method for producing the same Active JP5598792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136571A JP5598792B2 (en) 2010-05-28 2010-05-28 Magnesium-silicon thermoelectric conversion material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136571A JP5598792B2 (en) 2010-05-28 2010-05-28 Magnesium-silicon thermoelectric conversion material and method for producing the same

Publications (3)

Publication Number Publication Date
JP2011249742A true JP2011249742A (en) 2011-12-08
JP2011249742A5 JP2011249742A5 (en) 2013-08-08
JP5598792B2 JP5598792B2 (en) 2014-10-01

Family

ID=45414588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136571A Active JP5598792B2 (en) 2010-05-28 2010-05-28 Magnesium-silicon thermoelectric conversion material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5598792B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583391A (en) * 2012-01-19 2012-07-18 太原理工大学 Preparation method of high-purity nano-powder Mg2-xSiTMx thermoelectric materials
JP2013197550A (en) * 2012-03-22 2013-09-30 Ngk Insulators Ltd Thermoelectric material and method for manufacturing the same
WO2017146095A1 (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method for manufacturing magnesium-based thermoelectric conversion material, method for manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric conversion device
JP2017152691A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method of manufacturing magnesium-based thermoelectric conversion material, method of manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric converter
WO2017164217A1 (en) 2016-03-24 2017-09-28 三菱マテリアル株式会社 Thermoelectric conversion module
KR20180125962A (en) 2016-03-24 2018-11-26 미쓰비시 마테리알 가부시키가이샤 Thermoelectric conversion module
WO2019035253A1 (en) 2017-08-15 2019-02-21 三菱マテリアル株式会社 Magnesium thermoelectric conversion material, magnesium thermoelectric conversion element, and method for producing magnesium thermoelectric conversion material
JP2019068037A (en) * 2017-05-19 2019-04-25 日東電工株式会社 Semiconductor sintered body, electric/electronic member, and method for manufacturing semiconductor sintered body
JP2019149545A (en) * 2018-02-27 2019-09-05 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and manufacturing method of thermoelectric conversion material
WO2020137205A1 (en) * 2018-12-26 2020-07-02 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
JPWO2019039320A1 (en) * 2017-08-22 2020-12-24 株式会社白山 Thermoelectric materials and thermoelectric modules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069001A1 (en) * 2002-02-15 2003-08-21 Toudai Tlo, Ltd. Magnesium base composite material and method for production thereof
JP2004359995A (en) * 2003-06-03 2004-12-24 Toudai Tlo Ltd Magnesium-alloy sliding member
JP2005325441A (en) * 2001-09-25 2005-11-24 Toudai Tlo Ltd Magnesium-base composite material, green compact for production of magnesium-base composite material, and equipment for production of green compact
JP2008147261A (en) * 2006-12-06 2008-06-26 Toyota Industries Corp P-type thermoelectric material, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325441A (en) * 2001-09-25 2005-11-24 Toudai Tlo Ltd Magnesium-base composite material, green compact for production of magnesium-base composite material, and equipment for production of green compact
WO2003069001A1 (en) * 2002-02-15 2003-08-21 Toudai Tlo, Ltd. Magnesium base composite material and method for production thereof
JP2004359995A (en) * 2003-06-03 2004-12-24 Toudai Tlo Ltd Magnesium-alloy sliding member
JP2008147261A (en) * 2006-12-06 2008-06-26 Toyota Industries Corp P-type thermoelectric material, and its manufacturing method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583391A (en) * 2012-01-19 2012-07-18 太原理工大学 Preparation method of high-purity nano-powder Mg2-xSiTMx thermoelectric materials
CN102583391B (en) * 2012-01-19 2013-10-30 太原理工大学 Preparation method of high-purity nano-powder Mg2-xSiTMx thermoelectric materials
JP2013197550A (en) * 2012-03-22 2013-09-30 Ngk Insulators Ltd Thermoelectric material and method for manufacturing the same
CN108701749B (en) * 2016-02-24 2022-02-01 三菱综合材料株式会社 Method for producing magnesium-based thermoelectric conversion material, method for producing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric conversion device
US10468577B2 (en) 2016-02-24 2019-11-05 Mitsubishi Materials Corporation Method for manufacturing magnesium-based thermoelectric conversion material, method for manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric conversion device
CN108701749A (en) * 2016-02-24 2018-10-23 三菱综合材料株式会社 The manufacturing method of magnesium system thermo-electric converting material, the manufacturing method of magnesium system thermoelectric conversion element, magnesium system thermo-electric converting material, magnesium system thermoelectric conversion element and thermoelectric conversion device
JP2017152691A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method of manufacturing magnesium-based thermoelectric conversion material, method of manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric converter
WO2017146095A1 (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method for manufacturing magnesium-based thermoelectric conversion material, method for manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric conversion device
EP3422428A4 (en) * 2016-02-24 2019-11-06 Mitsubishi Materials Corporation Method for manufacturing magnesium-based thermoelectric conversion material, method for manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric conversion device
WO2017164217A1 (en) 2016-03-24 2017-09-28 三菱マテリアル株式会社 Thermoelectric conversion module
KR20180125962A (en) 2016-03-24 2018-11-26 미쓰비시 마테리알 가부시키가이샤 Thermoelectric conversion module
US10897001B2 (en) 2016-03-24 2021-01-19 Mitsubishi Materials Corporation Thermoelectric conversion module
US11404620B2 (en) 2017-05-19 2022-08-02 Nitto Denko Corporation Method of producing semiconductor sintered body, electrical/electronic member, and semiconductor sintered body
JP2019068037A (en) * 2017-05-19 2019-04-25 日東電工株式会社 Semiconductor sintered body, electric/electronic member, and method for manufacturing semiconductor sintered body
JP2019068038A (en) * 2017-05-19 2019-04-25 日東電工株式会社 Semiconductor sintered body, electric/electronic member, and method for manufacturing semiconductor sintered body
JP2019064899A (en) * 2017-05-19 2019-04-25 日東電工株式会社 Semiconductor sintered body, electrical and electronic member, and method for producing semiconductor sintered body
US11508893B2 (en) 2017-05-19 2022-11-22 Nitto Denko Corporation Method of producing semiconductor sintered body
US11616182B2 (en) 2017-05-19 2023-03-28 Nitto Denko Corporation Method of producing semiconductor sintered body, electrical/electronic member, and semiconductor sintered body
JP7137963B2 (en) 2017-05-19 2022-09-15 日東電工株式会社 Semiconductor sintered body, electric/electronic member, and method for manufacturing semiconductor sintered body
WO2019035253A1 (en) 2017-08-15 2019-02-21 三菱マテリアル株式会社 Magnesium thermoelectric conversion material, magnesium thermoelectric conversion element, and method for producing magnesium thermoelectric conversion material
JP2019036623A (en) * 2017-08-15 2019-03-07 三菱マテリアル株式会社 Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and, manufacturing method of magnesium-based thermoelectric conversion material
US11462671B2 (en) 2017-08-15 2022-10-04 Mitsubishi Materials Corporation Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and method for producing magnesium-based thermoelectric conversion material
KR20200040751A (en) 2017-08-15 2020-04-20 미쓰비시 마테리알 가부시키가이샤 Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and manufacturing method of magnesium-based thermoelectric conversion material
JPWO2019039320A1 (en) * 2017-08-22 2020-12-24 株式会社白山 Thermoelectric materials and thermoelectric modules
JP7228844B2 (en) 2017-08-22 2023-02-27 株式会社白山 Thermoelectric materials and thermoelectric modules
JP7251187B2 (en) 2018-02-27 2023-04-04 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
JP2019149545A (en) * 2018-02-27 2019-09-05 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and manufacturing method of thermoelectric conversion material
WO2020137205A1 (en) * 2018-12-26 2020-07-02 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
JP7159854B2 (en) 2018-12-26 2022-10-25 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
JP2020107650A (en) * 2018-12-26 2020-07-09 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module

Also Published As

Publication number Publication date
JP5598792B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5598792B2 (en) Magnesium-silicon thermoelectric conversion material and method for producing the same
US9634219B2 (en) Method for producing a thermoelectric object for a thermoelectric conversion device
JP2013138166A (en) Method for forming multi-element electro-thermal alloy
JP2012190984A (en) Magnesium silicide powder, sintered compact and thermoelectric conversion element using the same, and method for producing the same
US20120114517A1 (en) Thermoelectric material formed of Mg2Si-based compound and production method therefor
US20160190421A1 (en) Method for producing a thermoelectric object for a thermoelectric conversion device
JP2008159680A (en) Yb-ae-fe-co-sb (ae:ca, sr, ba, cu, ag, au)-based thermoelectric conversion material
US20120138843A1 (en) Mechanochemical synthesis and thermoelectric properties of magnesium silicide and related alloys
CN102383023A (en) Preparation method for ferro-silico-manganese alloy thermoelectric material
JP2006086512A (en) Thermoelectric conversion system using filled skutterudite alloy
JP7448259B2 (en) Thermoelectric materials, their manufacturing methods, and thermoelectric power generation elements
US20180269369A1 (en) Thermoelectric conversion material
JP2012256759A (en) Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material
Zhang et al. Energy-Efficient Synthesis and Superior Thermoelectric Performance of Sb-doped Mg2Si0. 3Sn0. 7 Solid Solutions by Rapid Thermal Explosion
JP4123388B2 (en) Zinc antimony compound sintered compact
JP5090939B2 (en) p-type thermoelectric conversion material
JP2004075467A (en) Boron suboxide powder and method for producing sintered compact thereof
JP5482229B2 (en) Thermoelectric material and manufacturing method thereof
JP7159635B2 (en) Silicide-based alloy material and element using the same
Pengfei et al. High temperature dephosphorus behavior of Baotou mixed rare earth concentrate with carbon
JP4373296B2 (en) Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material
JP2665014B2 (en) Manufacturing method of thermoelectric conversion element material
JP6155141B2 (en) Thermoelectric conversion material and method for producing the same
JP3704556B2 (en) Method for producing zinc antimony compound
JP5653654B2 (en) Method for manufacturing thermoelectric material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5598792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250