JP2011249476A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2011249476A
JP2011249476A JP2010119610A JP2010119610A JP2011249476A JP 2011249476 A JP2011249476 A JP 2011249476A JP 2010119610 A JP2010119610 A JP 2010119610A JP 2010119610 A JP2010119610 A JP 2010119610A JP 2011249476 A JP2011249476 A JP 2011249476A
Authority
JP
Japan
Prior art keywords
light
wavelength
semiconductor element
emitting
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010119610A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kaneko
勝弘 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010119610A priority Critical patent/JP2011249476A/en
Publication of JP2011249476A publication Critical patent/JP2011249476A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device that can improve utilization efficiency of light emitted from a surface-emitting type semiconductor element.SOLUTION: A semiconductor light-emitting device comprises: a surface-emitting type semiconductor element 16; a substrate 12 for implementing the surface-emitting type semiconductor element 16; and an underfill resin 18 that is filled between the surface-emitting type semiconductor element 16 and the substrate 12 and contains a first wavelength conversion material that converts light emitted from the surface-emitting type semiconductor element 16 into long wavelength light.

Description

本発明は、面発光型半導体素子を用いる半導体発光装置に関するものである。   The present invention relates to a semiconductor light emitting device using a surface emitting semiconductor element.

近年、面発光型の発光ダイオード(Light Emitting Diode:以下、LEDと略記する)を用いた半導体発光装置を照明用として利用する動きが増加しており、より高照度、高効率の半導体発光装置が要求されている。   In recent years, there has been an increase in the use of semiconductor light-emitting devices using surface-emitting light-emitting diodes (hereinafter abbreviated as LEDs) for illumination, and semiconductor light-emitting devices with higher illuminance and higher efficiency have been used. It is requested.

この種の半導体発光装置は、一般に、紫外から青領域に発光ピークを有するLEDと、その光を吸収して長波長の光を発する1種または複数種の蛍光体とを組み合わせて混色によって白色光を得るように構成されている。例えば、青色光を発するLEDと、その光によって励起されて黄色光を発する蛍光体とを組み合わせて、白色光を得る半導体発光装置が知られている(例えば、特許文献1参照)。また、波長λが300nm≦λ≦370nmの波長領域に発光ピークを有するLEDと、430nm≦λ≦490nmの波長領域に発光ピークを有する青色蛍光体と、520nm≦λ≦570nmの波長領域に発光ピークを有する緑色蛍光体と、590nm≦λ≦630nmの波長領域に発光ピークを有する赤色蛍光体とを組み合わせてなる半導体発光装置が知られている(例えば、特許文献2参照)。   This type of semiconductor light-emitting device generally includes white light by color mixing by combining an LED having an emission peak in the ultraviolet to blue region and one or more phosphors that absorb the light and emit long-wavelength light. Is configured to get. For example, a semiconductor light-emitting device that obtains white light by combining an LED that emits blue light and a phosphor that emits yellow light when excited by the light is known (see, for example, Patent Document 1). In addition, an LED having an emission peak in the wavelength region of 300 nm ≦ λ ≦ 370 nm, a blue phosphor having an emission peak in the wavelength region of 430 nm ≦ λ ≦ 490 nm, and an emission peak in the wavelength region of 520 nm ≦ λ ≦ 570 nm There is known a semiconductor light emitting device in which a green phosphor having a red phosphor and a red phosphor having an emission peak in a wavelength region of 590 nm ≦ λ ≦ 630 nm are combined (see, for example, Patent Document 2).

このような半導体発光装置におけるLEDの実装法としては、回路基板上にLEDをフェースアップで実装して、ワイヤボンディングにより回路基板上の電気配線と電気的に接続するフェースアップ実装法や、LEDを回路基板上にフェースダウンで実装して、金属バンプを介して電気配線と電気的に接続するフリップチップ実装法が知られている。フリップチップ実装法は、フェースアップ実装法と比較して、小型化、高密度集積化が容易であり、また、実装生産性が高い、ワイヤが無いため断線や光の遮蔽が無い、ワイヤよりも太く短いバンプによって高い放熱性が得られる、などの利点がある。さらに、フリップチップ実装法では、半導体素子と基板との間にアンダーフィル樹脂を充填して信頼性の向上が図られている。   As a mounting method of the LED in such a semiconductor light emitting device, a face-up mounting method in which the LED is mounted face-up on the circuit board and electrically connected to the electric wiring on the circuit board by wire bonding, or the LED is mounted. A flip chip mounting method is known in which mounting is performed face down on a circuit board and electrically connected to electrical wiring via metal bumps. Compared with the face-up mounting method, the flip-chip mounting method is easy to downsize and high-density integration, and has high mounting productivity, and there is no wire, so there is no disconnection or light shielding. There are advantages such as high heat dissipation by thick and short bumps. Further, in the flip chip mounting method, an underfill resin is filled between the semiconductor element and the substrate to improve the reliability.

また、近年の半導体発光装置は、LEDの高出力化に伴う電流、発熱増加に対応するために、LEDを実装する回路基板として、セラミック基板が用いられることが多くなっている。   Further, in recent semiconductor light emitting devices, a ceramic substrate is often used as a circuit board on which the LED is mounted in order to cope with an increase in current and heat generation accompanying an increase in the output of the LED.

また、面発光型のLEDは、発光面から放射状に光を発生する。そのため、例えば、所望の領域を照明する照明用として面発光型のLEDを用いる場合は、所望の領域に向かない光の存在によって、光の利用効率が低下し、高輝度の照明光が得られにくくなる。このような不要な方向に放射される光を有効利用して高輝度の出力光を得る発光装置として、例えば、LEDの周辺にリフレクタを形成して、LEDからの放射光を所望の方向に出射させるようにしたものが知られている(例えば、特許文献3参照)。   In addition, the surface emitting LED generates light radially from the light emitting surface. For this reason, for example, when a surface-emitting LED is used for illumination to illuminate a desired area, the use efficiency of light decreases due to the presence of light not directed to the desired area, and high-luminance illumination light is obtained. It becomes difficult. As a light-emitting device that obtains high-luminance output light by effectively using light emitted in such an unnecessary direction, for example, a reflector is formed around the LED, and the emitted light from the LED is emitted in a desired direction. What is made to do is known (for example, refer patent document 3).

図4は、かかるリフレクタを有する従来の半導体発光装置の構成を示す図である。この半導体発光装置100は、特許文献3に開示されたものである。面発光型のLED102は、セラミック基板104の一方の表面に形成された配線層106a,106bにバンプ108a,108bを介してフリップチップ実装されている。また、セラミック基板104の一方の表面上で、LED102の周囲には、リフレクタ110が配置されており、このリフレクタ110とセラミック基板104とで形成される凹部には、LED102を覆うように、蛍光体を含有した封止部材112が充填されている。なお、配線層106a,106bは、それぞれスルーホール114a,114bを介して、セラミック基板104の他方の表面に形成された配線層116a,116bに電気的に接続されている。   FIG. 4 is a diagram showing a configuration of a conventional semiconductor light emitting device having such a reflector. This semiconductor light emitting device 100 is disclosed in Patent Document 3. The surface emitting LED 102 is flip-chip mounted on wiring layers 106a and 106b formed on one surface of the ceramic substrate 104 via bumps 108a and 108b. Further, a reflector 110 is disposed around the LED 102 on one surface of the ceramic substrate 104, and a phosphor formed so as to cover the LED 102 in a recess formed by the reflector 110 and the ceramic substrate 104. The sealing member 112 containing is filled. The wiring layers 106a and 106b are electrically connected to the wiring layers 116a and 116b formed on the other surface of the ceramic substrate 104 through the through holes 114a and 114b, respectively.

図4に示した半導体発光装置によると、LED102のセラミック基板104とは反対側のチップ裏面102aから放射された光のうち、リフレクタ110とセラミック基板104とで形成された凹部の射出開口に向かわない光は、リフレクタ110で反射されて射出開口から放出される。したがって、LED102のチップ裏面102aから放射された光の利用効率を向上でき、高輝度の出力光を得ることが可能となる。   According to the semiconductor light emitting device shown in FIG. 4, the light emitted from the chip back surface 102 a opposite to the ceramic substrate 104 of the LED 102 does not go to the exit opening of the recess formed by the reflector 110 and the ceramic substrate 104. The light is reflected by the reflector 110 and emitted from the exit opening. Therefore, it is possible to improve the utilization efficiency of light emitted from the chip back surface 102a of the LED 102, and to obtain high-luminance output light.

特許第3993854号公報Japanese Patent No. 3993854 特表2000−509912号公報JP 2000-509912 A 特開2005−166937号公報JP 2005-166937 A

しかしながら、本発明者による種々の実験検討によると、従来提案されている半導体発光装置には、さらに改良すべき点があることが判明した。すなわち、面発光型のLEDは、チップ両面から光を放射する。このため、例えば、図5に側面図を示すように、面発光型のLED120を、バンプ122を介して回路基板124の配線層126にフリップチップ実装すると、LED120の回路基板124とは反対側のチップ裏面120aと、回路基板124側のチップ表面120bとから光が放射されることになる。   However, according to various experimental studies by the present inventors, it has been found that the conventionally proposed semiconductor light emitting device has further points to be improved. That is, the surface emitting LED emits light from both sides of the chip. Therefore, for example, as shown in a side view in FIG. 5, when the surface-emitting LED 120 is flip-chip mounted on the wiring layer 126 of the circuit board 124 via the bumps 122, the LED 120 on the side opposite to the circuit board 124 is mounted. Light is emitted from the chip back surface 120a and the chip surface 120b on the circuit board 124 side.

ところが、LED120のチップ表面120bから放射された光は、チップ表面120bと回路基板124との間で多重反射される。その結果、一部の光は、LED120のチップ裏面120a側の出射方向に向かうが、大部分の光は、回路基板124、配線層126、LED120等に吸収されて減衰されてしまう。特に、バンプ122や配線層126等を構成する金属や、回路基板124を構成するセラミック材料は、図6に示すような反射スペクトルを有する。そのため、特に、LED120が紫外や紫等の短波長の光を発する場合は、チップ表面120bから放射された光の殆どが吸収されて利用できないことになる。   However, the light emitted from the chip surface 120 b of the LED 120 is multiple-reflected between the chip surface 120 b and the circuit board 124. As a result, some of the light travels in the emission direction on the chip back surface 120a side of the LED 120, but most of the light is absorbed and attenuated by the circuit board 124, the wiring layer 126, the LED 120, and the like. In particular, the metal constituting the bump 122 and the wiring layer 126 and the ceramic material constituting the circuit board 124 have a reflection spectrum as shown in FIG. Therefore, particularly when the LED 120 emits light of a short wavelength such as ultraviolet or purple, most of the light emitted from the chip surface 120b is absorbed and cannot be used.

したがって、かかる観点に鑑みてなされた本発明の目的は、面発光型半導体素子から発せられた光の利用効率を向上できる半導体発光装置を提供することにある。   Accordingly, an object of the present invention made in view of such a viewpoint is to provide a semiconductor light emitting device capable of improving the utilization efficiency of light emitted from a surface emitting semiconductor element.

上記目的を達成する第1の観点に係る半導体発光装置の発明は、
面発光型半導体素子と、
該面発光型半導体素子を実装する基板と、
前記面発光型半導体素子と前記基板との間に充填され、前記面発光型半導体素子から発せられる光を長波長の光に波長変換する第1の波長変換材料を含有するアンダーフィル樹脂と、
を備えることを特徴とするものである。
The invention of the semiconductor light emitting device according to the first aspect to achieve the above object is as follows:
A surface emitting semiconductor element;
A substrate on which the surface emitting semiconductor element is mounted;
An underfill resin containing a first wavelength conversion material that is filled between the surface-emitting semiconductor element and the substrate and converts the light emitted from the surface-emitting semiconductor element into light having a long wavelength;
It is characterized by providing.

第2の観点に係る発明は、第1の観点に係る半導体発光装置において、
前記面発光型半導体素子の前記基板への取り付け面とは反対面の少なくとも一部を被覆し、前記面発光型半導体素子から発せられる光を長波長の光に波長変換する第2の波長変換材料を含有する第1の被覆樹脂を、さらに備えることを特徴とするものである。
The invention according to a second aspect is the semiconductor light emitting device according to the first aspect,
A second wavelength conversion material that covers at least a part of the surface of the surface-emitting type semiconductor element opposite to the surface attached to the substrate and converts the wavelength of light emitted from the surface-emitting type semiconductor element into long-wavelength light. Further comprising a first coating resin containing

第3の観点に係る発明は、第2の観点に係る半導体発光装置において、
前記第2の波長変換材料は、前記面発光型半導体素子から発せられる光を、前記第1の波長変換材料が波長変換する光よりも短波長の光に波長変換することを特徴とするものである。
The invention according to a third aspect is the semiconductor light emitting device according to the second aspect,
The second wavelength conversion material is characterized in that the light emitted from the surface-emitting type semiconductor element is wavelength-converted into light having a shorter wavelength than the light that is wavelength-converted by the first wavelength conversion material. is there.

第4の観点に係る発明は、第2または3の観点に係る半導体発光装置において、
前記第1の被覆樹脂は、前記面発光型半導体素子の周辺部を被覆し、
さらに、前記面発光型半導体素子の周囲に配置された反射体と、
前記面発光型半導体素子の前記基板への取り付け面とは反対面の中央部と前記第1の被覆樹脂の一部を被覆し、前記面発光型半導体素子から発せられる光を長波長の光に波長変換する第3の波長変換材料を含有する第2の被覆樹脂と、
を備えることを特徴とするものである。
The invention according to a fourth aspect is the semiconductor light-emitting device according to the second or third aspect.
The first coating resin covers a peripheral portion of the surface-emitting type semiconductor element;
And a reflector disposed around the surface-emitting semiconductor element;
Covering the central portion of the surface opposite to the surface of the surface-emitting semiconductor element that is attached to the substrate and a part of the first coating resin, the light emitted from the surface-emitting semiconductor element is converted into long-wavelength light. A second coating resin containing a third wavelength conversion material for wavelength conversion;
It is characterized by providing.

第5の観点に係る発明は、第4の観点に係る半導体発光装置において、
前記第3の波長変換材料は、前記面発光型半導体素子から発せられる光を、前記第2の波長変換材料が波長変換する光よりも短波長の光に波長変換することを特徴とするものである。
The invention according to a fifth aspect is the semiconductor light-emitting device according to the fourth aspect,
The third wavelength conversion material is characterized in that the light emitted from the surface-emitting type semiconductor element is wavelength-converted into light having a shorter wavelength than the light that is converted in wavelength by the second wavelength conversion material. is there.

第6の観点に係る発明は、第1乃至5のいずれか一の観点に係る半導体発光装置において、
前記面発光型半導体素子は、青色光の波長以下の短波長の光を発することを特徴とするものである。
The invention according to a sixth aspect is the semiconductor light-emitting device according to any one of the first to fifth aspects,
The surface-emitting semiconductor element emits light having a short wavelength equal to or shorter than the wavelength of blue light.

本発明に係る半導体発光装置によれば、面発光型半導体素子から発せられた光の利用効率を向上することができる。   According to the semiconductor light emitting device of the present invention, the utilization efficiency of light emitted from the surface emitting semiconductor element can be improved.

本発明の第1実施の形態に係る半導体発光装置の要部の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the principal part of the semiconductor light-emitting device concerning 1st Embodiment of this invention. 本発明の第2実施の形態に係る半導体発光装置の要部の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the principal part of the semiconductor light-emitting device concerning 2nd Embodiment of this invention. 本発明の第3実施の形態に係る半導体発光装置の要部の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the principal part of the semiconductor light-emitting device concerning 3rd Embodiment of this invention. 従来の半導体発光装置の構成を示す図である。It is a figure which shows the structure of the conventional semiconductor light-emitting device. 本発明が解決しようとする課題を説明するための図である。It is a figure for demonstrating the subject which this invention tends to solve. 金属およびセラミック材料の反射スペクトルを示す図である。It is a figure which shows the reflection spectrum of a metal and a ceramic material.

以下、本発明の実施の形態について、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施の形態)
図1は、本発明の第1実施の形態に係る半導体発光装置の要部の概略構成を示す断面図である。この半導体発光装置10は、回路基板12と、回路基板12上にバンプ14を介してフリップチップ実装された面発光型半導体素子16と、回路基板12と面発光型半導体素子16との間に充填されたアンダーフィル樹脂18とを備える。アンダーフィル樹脂18は、面発光型半導体素子16から発せられる光を長波長の光に波長変換する第1の波長変換材料を含有する。
(First embodiment)
FIG. 1 is a sectional view showing a schematic configuration of a main part of the semiconductor light emitting device according to the first embodiment of the invention. The semiconductor light emitting device 10 is filled between a circuit board 12, a surface light emitting semiconductor element 16 flip-chip mounted on the circuit board 12 via bumps 14, and a space between the circuit board 12 and the surface light emitting semiconductor element 16. The underfill resin 18 is provided. The underfill resin 18 contains a first wavelength conversion material that converts the wavelength of light emitted from the surface-emitting type semiconductor element 16 into long-wavelength light.

回路基板12は、例えば、アルミナや窒化アルミ、ムライト、ガラスなどの焼結体からなるセラミック基板が用いられる。この回路基板12の表面には、W、Mo、Cu、Ag、Au等からなる配線層20が形成される。配線層20は、W、Mo、Cu、Ag、Au等を含んだ金属ペーストをスクリーン印刷法等により回路基板12上に配線状に塗布し、その後、加熱焼成して形成される。あるいは、電鋳法や金属蒸着法等の金属成膜手法と、アディティブ法やサブトラクト法によるパターン加工手法を用いて形成される。   As the circuit board 12, for example, a ceramic substrate made of a sintered body such as alumina, aluminum nitride, mullite, glass or the like is used. A wiring layer 20 made of W, Mo, Cu, Ag, Au, or the like is formed on the surface of the circuit board 12. The wiring layer 20 is formed by applying a metal paste containing W, Mo, Cu, Ag, Au or the like on the circuit board 12 by a screen printing method or the like, and then heating and baking. Alternatively, it is formed using a metal film forming method such as an electroforming method or a metal vapor deposition method, and a pattern processing method using an additive method or a subtractive method.

面発光型半導体素子16は、ZnSeやGaN、InGaN、InAlGaN、AlGaNなどの種々の半導体を用いた青色光の波長以下の短波長の光である紫外から青領域の光を発する面発光型のLEDを用いる。面発光型半導体素子16は、バンプ14を介して回路基板上の配線層20に搭載固定されて電気的に接続される。バンプ14は、Au、AuSn等で形成される。   The surface-emitting semiconductor element 16 is a surface-emitting LED that emits light in the ultraviolet to blue region, which is light having a short wavelength equal to or shorter than the wavelength of blue light using various semiconductors such as ZnSe, GaN, InGaN, InAlGaN, and AlGaN. Is used. The surface-emitting type semiconductor element 16 is mounted and fixed on the wiring layer 20 on the circuit board via the bumps 14 and is electrically connected. The bump 14 is formed of Au, AuSn, or the like.

アンダーフィル樹脂18に含有させる第1の波長変換材料は、周知の蛍光体を用いることができる。また、第1の波長変換材料は、波長変換作用のある顔料、染料、半導体材料を用いることができる。   As the first wavelength conversion material to be contained in the underfill resin 18, a known phosphor can be used. Moreover, the 1st wavelength conversion material can use the pigment, dye, and semiconductor material which have a wavelength conversion effect | action.

例えば、蛍光体としては、430nmから490nm付近の波長の光、すなわち青色の発光が得られるものとして、Sr5(PO4)3Cl:Eu、Re10(PO4)6Q2:Eu(ReはSr、Ca、Ba、Mg、Zn。QはF、Cl、Br、I)、BaMg2Al16O27:Eu、BaMgAl10O17:Eu、ZnS:Ag、ZnS:Ag,Al、ZnS:Ag,Cu,Ga,Cl、ZnS:Ag+In2O3、BaMg2Al16O25:Eu等が挙げられる。 For example, as a phosphor, light having a wavelength in the vicinity of 430 nm to 490 nm, that is, blue light emission can be obtained. Sr 5 (PO 4 ) 3 Cl: Eu, Re 10 (PO 4 ) 6 Q 2 : Eu (Re Is Sr, Ca, Ba, Mg, Zn, Q is F, Cl, Br, I), BaMg 2 Al 16 O 27 : Eu, BaMgAl 10 O 17 : Eu, ZnS: Ag, ZnS: Ag, Al, ZnS: Examples thereof include Ag, Cu, Ga, Cl, ZnS: Ag + In 2 O 3 , BaMg 2 Al 16 O 25 : Eu, and the like.

また、500nmから560nm付近の波長の光、すなわち緑色の発光が得られるものとして、(SrEu)O・Al2O3、ZnS:Cu、ZnS:Cu,Al、ZnS:Cu,Au,Al、Y3Al5O12:Tb、Y3(Al,Ga)5O12:Tb、Y2SiO5:Tb、Y2O2S:Tb、Cd2O2S:Tb、Zn2SiO4:Mn、ZnS:Cu、(Zn,Cd)S:Cu、3(Ba,Mg,Eu,Mn)O・8Al2O3、CeMgAl11O19:Tb、LaPO4:Ce,Tb,BaAl12O19:Mn、BaMgAl10O17Eu,Mn等が挙げられる。 In addition, light with a wavelength in the vicinity of 500 nm to 560 nm, that is, green light emission can be obtained, (SrEu) O.Al 2 O 3 , ZnS: Cu, ZnS: Cu, Al, ZnS: Cu, Au, Al, Y 3 Al 5 O 12 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, Y 2 SiO 5 : Tb, Y 2 O 2 S: Tb, Cd 2 O 2 S: Tb, Zn 2 SiO 4 : Mn , ZnS: Cu, (Zn, Cd) S: Cu, 3 (Ba, Mg, Eu, Mn) O.8Al 2 O 3 , CeMgAl 11 O 19 : Tb, LaPO 4 : Ce, Tb, BaAl 12 O 19 : Mn, BaMgAl 10 O 17 Eu, Mn and the like can be mentioned.

また、590nmから700nm付近の波長の光、すなわち赤色の発光が得られるものとして、Y2O2S:Eu、Y2O3:Eu、3.5MgO・0.5MgF2・GeO2:Mn、Mg6As2O11:Mn、Gd2O2:Eu、LaO2S:Eu、 LaO2S:Eu,Sm、YVO4:Eu、YNbO4:Eu、YTaO4:Eu、Zn3(PO4)2:Mn、(Zn,Cd)S:Ag+In2O3、(Y,Gd,Eu)BO3、(Y,Gd,Eu)2O3等が挙げられる。 In addition, light having a wavelength in the vicinity of 590 nm to 700 nm, that is, red light emission is obtained, Y 2 O 2 S: Eu, Y 2 O 3 : Eu, 3.5 MgO · 0.5 MgF 2 · GeO 2 : Mn, Mg 6 As 2 O 11 : Mn, Gd2O2: Eu, LaO 2 S: Eu, LaO 2 S: Eu, Sm, YVO 4 : Eu, YNbO 4 : Eu, YTaO 4 : Eu, Zn 3 (PO 4 ) 2 : Mn, (Zn, Cd) S: Ag + In 2 O 3 , (Y, Gd, Eu) BO 3 , (Y, Gd, Eu) 2 O 3 and the like.

また、黄色の発光が得られるものとして、YAlO3:Ce、Y3Al5O12:Ce、Y4Al12O9:Ce等が挙げられる。 Moreover, as the yellow light emission can be obtained, YAlO 3: Ce, Y 3 Al 5 O 12: Ce, Y 4 Al 12 O 9: Ce , and the like.

第1の波長変換材料は、上記のような波長変換材料の中から、面発光型半導体素子16から発せられた光の波長を、回路基板12、バンプ14、面発光型半導体素子16、配線層20に対して高い反射率が得られる長波長の光に変換できる波長変換材料を用いる。例えば、図6に示した反射スペクトルから明らかなように、回路基板12は、アルミナからなる場合、波長420nm程度より短い波長の光に対する反射率が極端に低くなる。また、バンプ14は、AuやAuSn等からなる場合、波長550nm程度より短い波長の光に対して著しく反射率が低くなる。また、配線層20は、CuやAu、Ag等からなる場合、紫外から可視領域に吸収端があり、吸収端よりも短波長で反射率が極端に低くなる。   The first wavelength conversion material uses the wavelength of light emitted from the surface-emitting semiconductor element 16 among the wavelength conversion materials as described above, and the circuit board 12, the bump 14, the surface-emitting semiconductor element 16, and the wiring layer. A wavelength conversion material that can be converted into long-wavelength light that provides a high reflectivity to 20 is used. For example, as apparent from the reflection spectrum shown in FIG. 6, when the circuit board 12 is made of alumina, the reflectance with respect to light having a wavelength shorter than about 420 nm becomes extremely low. Further, when the bump 14 is made of Au, AuSn, or the like, the reflectance is remarkably lowered with respect to light having a wavelength shorter than about 550 nm. In addition, when the wiring layer 20 is made of Cu, Au, Ag, or the like, the wiring layer 20 has an absorption edge from the ultraviolet to the visible region, and the reflectance is extremely low at a shorter wavelength than the absorption edge.

以上のことを考慮し、面発光型半導体素子16が紫外から青領域の光を発する面発光型のLEDからなる場合は、アンダーフィル樹脂18に含有させる第1の波長変換材料として、例えば、上記の赤色の発光が得られる蛍光体の中から任意の蛍光体を選択する。   In consideration of the above, when the surface-emitting type semiconductor element 16 is made of a surface-emitting type LED that emits light in the ultraviolet to blue region, as the first wavelength conversion material to be contained in the underfill resin 18, for example, An arbitrary phosphor is selected from among the phosphors that can emit red light.

アンダーフィル樹脂18は、上記の選択された蛍光体等の第1の波長変換材料を、加熱や紫外線照射によって硬化する液状の透明樹脂に混合し、これをディスペンサーなどで所望の位置に塗布し、加熱または紫外線により硬化させて形成される。これらの透明樹脂としては、シリコーン樹脂やエポキシ樹脂、アクリル樹脂、ポリカーボネート樹脂、フッ素樹脂などが用いられる。   The underfill resin 18 is a mixture of the first wavelength conversion material such as the selected phosphor described above and a liquid transparent resin that is cured by heating or ultraviolet irradiation, and this is applied to a desired position with a dispenser or the like. It is formed by being cured by heating or ultraviolet rays. As these transparent resins, silicone resins, epoxy resins, acrylic resins, polycarbonate resins, fluororesins, and the like are used.

ここで、アンダーフィル樹脂18に含有させる上記の第1の波長変換材料は、その粒子径を従来から用いられている1μm程度以上とすることができるが、好ましくはnmサイズ、より好ましくは平均粒子径が10nm以下とする。このように、第1の波長変換材料を平均粒子径10nm以下のナノ粒子とすれば、そのサイズを変えることで、赤(長波長)から青(短波長)まで様々な色(波長)で発光させることが可能となる。また、励起光がバンドギャップより高エネルギーであれば、励起波長に制限がなく、発光寿命が希土類の10万倍程度と短く、吸収と発光のサイクルを素早く繰り返すことができる。しかも、飽和レベルが高いために、非常に高い輝度を実現することができる。また、粒子サイズを小さくすることで、アンダーフィル樹脂18を形成する際の液状樹脂中での分散性が良く、沈降による濃度ばらつきを小さくできるので、第1の波長変換材料が均一に含有されたアンダーフィル樹脂18を得ることができる。   Here, the particle diameter of the first wavelength conversion material contained in the underfill resin 18 can be about 1 μm or more, which is conventionally used, but is preferably nm size, more preferably average particle size. The diameter is 10 nm or less. In this way, if the first wavelength conversion material is a nanoparticle having an average particle diameter of 10 nm or less, light can be emitted in various colors (wavelengths) from red (long wavelength) to blue (short wavelength) by changing its size. It becomes possible to make it. If the excitation light has energy higher than the band gap, the excitation wavelength is not limited, the emission lifetime is as short as about 100,000 times that of the rare earth, and the absorption and emission cycles can be repeated quickly. Moreover, since the saturation level is high, very high luminance can be realized. In addition, by reducing the particle size, the dispersibility in the liquid resin when forming the underfill resin 18 is good, and the concentration variation due to sedimentation can be reduced, so the first wavelength conversion material is uniformly contained. Underfill resin 18 can be obtained.

このように、本実施の形態に係る半導体発光装置10は、回路基板12上にバンプ14を介して紫外から青領域の光を発する面発光型のLEDからなる面発光型半導体素子16がフリップチップ実装されている。そして、この面発光型半導体素子16と回路基板12との間に、面発光型半導体素子16から発せられる光を、回路基板12、バンプ14、面発光型半導体素子16、配線層20に対して高い反射率が得られる長波長の光に波長変換する第1の波長変換材料を含有するアンダーフィル樹脂18が充填されている。したがって、面発光型半導体素子16の回路基板12側のチップ表面から発した光は、第1の波長変換材料により吸収されて長波長の光に変換され、回路基板12と面発光型半導体素子16との間で殆ど減衰されることなく高反射率で多重反射されて外部に放出されることになる。これにより、面発光型半導体素子から発せられた光の利用効率を向上した半導体発光装置が得られる。   As described above, in the semiconductor light emitting device 10 according to the present embodiment, the surface emitting semiconductor element 16 composed of a surface emitting LED that emits light in the ultraviolet to blue region via the bumps 14 on the circuit board 12 is flip-chip. Has been implemented. Then, light emitted from the surface light emitting semiconductor element 16 between the surface light emitting semiconductor element 16 and the circuit board 12 is applied to the circuit board 12, the bump 14, the surface light emitting semiconductor element 16, and the wiring layer 20. An underfill resin 18 containing a first wavelength conversion material that converts the wavelength of light into a long wavelength light that provides a high reflectance is filled. Accordingly, light emitted from the surface of the surface-emitting semiconductor element 16 on the circuit board 12 side is absorbed by the first wavelength conversion material and converted into long-wavelength light, so that the circuit board 12 and the surface-emitting semiconductor element 16 are converted. The light is multiple-reflected with high reflectivity and is emitted to the outside without being attenuated. As a result, a semiconductor light emitting device with improved utilization efficiency of light emitted from the surface emitting semiconductor element can be obtained.

(第2実施の形態)
図2は、本発明の第2実施の形態に係る半導体発光装置の要部の概略構成を示す断面図である。この半導体発光装置30は、図1に示した半導体発光装置10において、面発光型半導体素子16およびアンダーフィル樹脂18の露出部分を、面発光型半導体素子16から発せられる光を吸収して長波長の光に波長変換する第2の波長変換材料を含有する第1の被覆樹脂32で被覆したものである。
(Second Embodiment)
FIG. 2 is a cross-sectional view showing a schematic configuration of a main part of a semiconductor light emitting device according to the second embodiment of the present invention. This semiconductor light emitting device 30 is the same as the semiconductor light emitting device 10 shown in FIG. 1 except that the exposed portions of the surface emitting semiconductor element 16 and the underfill resin 18 absorb light emitted from the surface emitting semiconductor element 16 and have a long wavelength. It coat | covers with the 1st coating resin 32 containing the 2nd wavelength conversion material wavelength-converted into the light of this.

第2の波長変換材料は、例えば第1実施の形態で説明した周知の蛍光体、波長変換作用のある顔料、染料、半導体材料から、アンダーフィル樹脂18が含有する第1の波長変換材料と異なる材料を選択する。また、第1の被覆樹脂32は、アンダーフィル樹脂18と同様に、第2の波長変換材料を、加熱や紫外線照射によって硬化する液状の透明樹脂に混合し、これをディスペンサーなどで面発光型半導体素子16およびアンダーフィル樹脂18の露出部分全体に塗布し、加熱または紫外線により硬化させて形成される。透明樹脂は、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリカーボネート樹脂、フッ素樹脂などが用いられる。   The second wavelength conversion material is different from the first wavelength conversion material contained in the underfill resin 18 from, for example, the well-known phosphor described in the first embodiment, a pigment, a dye having a wavelength conversion action, and a semiconductor material. Select material. In the same way as the underfill resin 18, the first coating resin 32 is obtained by mixing the second wavelength conversion material with a liquid transparent resin that is cured by heating or ultraviolet irradiation, and using a dispenser or the like to mix the surface emitting semiconductor. It is formed on the entire exposed portion of the element 16 and the underfill resin 18 and cured by heating or ultraviolet rays. As the transparent resin, silicone resin, epoxy resin, acrylic resin, polycarbonate resin, fluorine resin, or the like is used.

本実施の形態に係る半導体発光装置30によれば、第1の波長変換材料で波長変換された光と、第2の波長変換材料で波長変換された光との混色によって、所望の色の光を得ることが可能となる。例えば、面発光型半導体素子16から青領域の光、第1の波長変換材料によって赤領域の光、第2の波長変換材料によって緑領域の光を放出させるようにすれば、それらの光の混色によって白色光を得ることが可能となる。また、第1の波長変換材料および第2の波長変換材料の量や濃度を調整することにより、それぞれ波長変換する光の強度を調整して、所望の色を得ることが可能となる。   According to the semiconductor light emitting device 30 according to the present embodiment, light of a desired color is obtained by color mixing of the light wavelength-converted by the first wavelength conversion material and the light wavelength-converted by the second wavelength conversion material. Can be obtained. For example, if the surface light emitting semiconductor element 16 emits light in the blue region, light in the red region by the first wavelength conversion material, and light in the green region by the second wavelength conversion material, the light is mixed. Thus, white light can be obtained. In addition, by adjusting the amounts and concentrations of the first wavelength conversion material and the second wavelength conversion material, it is possible to adjust the intensity of light for wavelength conversion and obtain a desired color.

また、このように第2の波長変換材料により波長変換される光の波長を、第1の波長変換材料により波長変換される光よりも短波長の光とすれば、第1の波長変換材料と第2の波長変換材料との間での光の吸収、再放出などの複雑な相互作用を抑えることができる。これにより、面発光型半導体素子16から発する光、第1の波長変換材料で波長変換される光、第2の波長変換材料で波長変換される光のそれぞれの強度調整が容易となる。   Further, if the wavelength of the light that is wavelength-converted by the second wavelength conversion material is light shorter than the light that is wavelength-converted by the first wavelength conversion material, the first wavelength conversion material and Complex interactions such as light absorption and re-emission with the second wavelength conversion material can be suppressed. Thereby, it is easy to adjust the intensity of light emitted from the surface-emitting type semiconductor element 16, light that is wavelength-converted by the first wavelength conversion material, and light that is wavelength-converted by the second wavelength conversion material.

(第3実施の形態)
図3は、本発明の第3実施の形態に係る半導体発光装置の要部の概略構成を示す断面図である。この半導体発光装置40は、図1に示した半導体発光装置10と同様に、回路基板12上にバンプ14を介してフリップチップ実装された面発光型半導体素子16を備える。また、回路基板12上には、面発光型半導体素子16を取り囲むように配置された反射体42を備える。
(Third embodiment)
FIG. 3 is a cross-sectional view showing a schematic configuration of a main part of a semiconductor light emitting device according to the third embodiment of the present invention. Similar to the semiconductor light emitting device 10 shown in FIG. 1, the semiconductor light emitting device 40 includes a surface emitting semiconductor element 16 that is flip-chip mounted on the circuit board 12 via bumps 14. In addition, a reflector 42 is provided on the circuit board 12 so as to surround the surface-emitting type semiconductor element 16.

反射体42は、アルミナや窒化アルミ、ムライト、ガラスなどの焼結体からなるセラミックや、その他、樹脂、金属を用いて、所望の配光が得られる形状に形成されている。また、必要に応じて、反射体42の反射面には、Ag、Auなどの反射率の高い金属材料や、高反射率の誘電体積層膜が形成される。反射体42は、回路基板12上に樹脂接着材や半田で所望の位置に固定される。   The reflector 42 is formed in a shape capable of obtaining a desired light distribution by using a ceramic made of a sintered body such as alumina, aluminum nitride, mullite, glass, resin, or metal. Further, if necessary, a highly reflective metal material such as Ag or Au, or a highly reflective dielectric laminated film is formed on the reflecting surface of the reflector 42. The reflector 42 is fixed to a desired position on the circuit board 12 with a resin adhesive or solder.

反射体42で囲まれた凹部には、回路基板12と面発光型半導体素子16との間を充填するように、第1実施の形態で説明した第1の波長変換材料を含有したアンダーフィル樹脂18が設けられている。また、面発光型半導体素子16のチップ裏面の中央部を除く周辺部からアンダーフィル樹脂18の一部にオーバーラップして、第2実施の形態で説明した第2の波長変換材料を含有した第1の被覆樹脂32が設けられている。さらに、面発光型半導体素子16のチップ裏面の中央部を覆うように、面発光型半導体素子16から発せられる光を吸収して長波長の光に波長変換する第3の波長変換材料を含有した第2の被覆樹脂44が設けられている。   The underfill resin containing the first wavelength conversion material described in the first embodiment so that the recess surrounded by the reflector 42 is filled between the circuit board 12 and the surface-emitting type semiconductor element 16. 18 is provided. In addition, the second wavelength conversion material containing the second wavelength conversion material described in the second embodiment is overlapped from the peripheral portion except the central portion of the chip back surface of the surface emitting semiconductor element 16 to a part of the underfill resin 18. One coating resin 32 is provided. In addition, a third wavelength conversion material that absorbs light emitted from the surface light emitting semiconductor element 16 and converts it into long wavelength light so as to cover the central portion of the back surface of the chip of the surface light emitting semiconductor element 16 is contained. A second coating resin 44 is provided.

第3の波長変換材料は、例えば第1実施の形態で説明した周知の蛍光体、波長変換作用のある顔料、染料、半導体材料から、第1の被覆樹脂32が含有する第2の波長変換材料と異なる材料を選択する。また、第2の被覆樹脂44は、第1の被覆樹脂32と同様に形成される。   The third wavelength conversion material is, for example, the second wavelength conversion material contained in the first coating resin 32 from the well-known phosphor described in the first embodiment, a pigment, a dye having a wavelength conversion action, and a semiconductor material. Choose a different material. The second coating resin 44 is formed in the same manner as the first coating resin 32.

本実施の形態に係る半導体発光装置40によれば、面発光型半導体素子16の周囲に反射体42を設けたので、面発光型半導体素子16から放射されて第1の波長変換材料、第2の波長変換材料、第3の波長変換材料でそれぞれ波長変換された光、および、面発光型半導体素子16から放射されて波長変換されることなく、アンダーフィル樹脂18、第1の被覆樹脂32、第2の被覆樹脂44を透過した光を、所望の方向に放出することができる。また、反射体42の形状を調整することにより、所望の配光とすることができる。   According to the semiconductor light emitting device 40 according to the present embodiment, since the reflector 42 is provided around the surface emitting semiconductor element 16, the first wavelength conversion material and the second wavelength radiated from the surface emitting semiconductor element 16 are emitted. The wavelength-converting material, the light wavelength-converted by the third wavelength-converting material, and the light emitted from the surface-emitting semiconductor element 16 and wavelength-converted, the underfill resin 18, the first coating resin 32, The light transmitted through the second coating resin 44 can be emitted in a desired direction. Further, by adjusting the shape of the reflector 42, a desired light distribution can be obtained.

また、面発光型半導体素子16のチップ裏面の周辺部を第2の波長変換材料を含む第1の被覆樹脂32で被覆し、チップ裏面の残りの中央部を第3の波長変換材料を含む第2の被覆樹脂44で被覆するので、第1の被覆樹脂32と第2の被覆樹脂44とのオーバーラップを小さくすることができる。これにより、第1の被覆樹脂32からの光放出領域と第2の被覆樹脂44からの光放出領域とを概ね分離することができる。したがって、それぞれの波長変換材料間での光の吸収や再放出などの複雑な相互作用を抑制することができ、それぞれの光の強度調整が容易となる。つまり、所望の色や、スペクトル分布の調整が容易となる。   Further, the peripheral portion of the back surface of the surface-emitting type semiconductor element 16 is covered with the first coating resin 32 containing the second wavelength conversion material, and the remaining central portion of the back surface of the chip is covered with the third wavelength conversion material containing the third wavelength conversion material. Since it coat | covers with the 2 coating resin 44, the overlap with the 1st coating resin 32 and the 2nd coating resin 44 can be made small. Thereby, the light emission region from the first coating resin 32 and the light emission region from the second coating resin 44 can be substantially separated. Therefore, complicated interactions such as light absorption and re-emission between the respective wavelength conversion materials can be suppressed, and the intensity adjustment of each light becomes easy. That is, it becomes easy to adjust a desired color and spectral distribution.

また、第3の波長変換材料により波長変換する光の波長を、第2の波長変換材料により波長変換する光よりも短波長の光とすることで、第1の波長変換材料および第2の波長変換材料で波長変換されて反射体42で反射される光の波長を長くでき、反射体42での反射率を高くできる。これにより、所望の方向に効率よく光を放出することができる。例えば、面発光型半導体素子16から青領域の光を発生させる場合は、アンダーフィル樹脂18に含有させる第1の波長変換材料によって赤領域の光を放出させ、第1の被覆樹脂32に含有される第2の波長変換材料によって緑領域の光を放出させる場合、第2の被覆樹脂44に含有される第3の波長変換材料は、青領域の光を放出させるように構成する。   In addition, the wavelength of the light that is wavelength-converted by the third wavelength conversion material is light shorter than the light that is wavelength-converted by the second wavelength conversion material, so that the first wavelength conversion material and the second wavelength The wavelength of light that is wavelength-converted by the conversion material and reflected by the reflector 42 can be increased, and the reflectance at the reflector 42 can be increased. Thereby, light can be efficiently emitted in a desired direction. For example, when light in the blue region is generated from the surface light emitting semiconductor element 16, light in the red region is emitted by the first wavelength conversion material contained in the underfill resin 18 and is contained in the first coating resin 32. In the case where green region light is emitted by the second wavelength conversion material, the third wavelength conversion material contained in the second coating resin 44 is configured to emit blue region light.

なお、第1の波長変換材料、第2の波長変換材料および第3の波長変換材料は、それぞれの波長変換材料から発せられた光の混色により所望の色の光となるように、それぞれの波長変換材料の混合量、波長変換材料を含む樹脂の塗布量を調整する。また、それぞれの波長変換材料の混合量は、面発光型半導体素子16の発光強度、照射エリア、波長変換材料を含む樹脂の膜厚を考慮して決定する。例えば、各波長変換材料は、当該波長変換材料を含有させる樹脂の総量に対して、10質量%〜50質量%添加することが好ましい。また、各波長変換材料を含有する樹脂の厚みは、0.01mmから3mm程度とするのが望ましい。これにより、各樹脂層における波長変換効率を高くでき、かつ、各樹脂層からの光を充分に透過させることができる。   The first wavelength conversion material, the second wavelength conversion material, and the third wavelength conversion material have their respective wavelengths so that light of a desired color is obtained by color mixture of light emitted from the respective wavelength conversion materials. The mixing amount of the conversion material and the coating amount of the resin containing the wavelength conversion material are adjusted. Further, the mixing amount of each wavelength conversion material is determined in consideration of the light emission intensity of the surface light emitting semiconductor element 16, the irradiation area, and the film thickness of the resin containing the wavelength conversion material. For example, each wavelength conversion material is preferably added in an amount of 10% by mass to 50% by mass with respect to the total amount of the resin containing the wavelength conversion material. The thickness of the resin containing each wavelength conversion material is preferably about 0.01 mm to 3 mm. Thereby, the wavelength conversion efficiency in each resin layer can be made high, and the light from each resin layer can fully be permeate | transmitted.

本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、図1において、アンダーフィル樹脂18は、面発光型半導体素子16の周囲全体を被覆するように設けてもよい。また、図2において、第2の波長変換材料を含有する第1の被覆樹脂32は、面発光型半導体素子16のチップ裏面の一部を被覆するように設けてもよい。また、面発光型半導体素子16は、LEDに限らず、例えば複数の半導体レーザを内蔵して両面から発光するように構成された面発光型半導体素子を用いることも可能である。   The present invention is not limited to the above-described embodiment, and many variations or modifications are possible. For example, in FIG. 1, the underfill resin 18 may be provided so as to cover the entire periphery of the surface emitting semiconductor element 16. In FIG. 2, the first coating resin 32 containing the second wavelength conversion material may be provided so as to cover a part of the chip back surface of the surface emitting semiconductor element 16. Further, the surface emitting semiconductor element 16 is not limited to an LED, and for example, a surface emitting semiconductor element configured to emit light from both sides by incorporating a plurality of semiconductor lasers may be used.

10,30,40 半導体発光装置
12 回路基板
14 バンプ
16 面発光型半導体素子
18 第1の波長変換材料を含有するアンダーフィル樹脂
20 配線層
32 第2の波長変換材料を含有する第1の被覆樹脂
42 反射体
44 第3の波長変換材料を含有する第2の被覆樹脂
DESCRIPTION OF SYMBOLS 10, 30, 40 Semiconductor light-emitting device 12 Circuit board 14 Bump 16 Surface emitting semiconductor element 18 Underfill resin containing 1st wavelength conversion material 20 Wiring layer 32 1st coating resin containing 2nd wavelength conversion material 42 reflector 44 2nd coating resin containing 3rd wavelength conversion material

Claims (6)

面発光型半導体素子と、
該面発光型半導体素子を実装する基板と、
前記面発光型半導体素子と前記基板との間に充填され、前記面発光型半導体素子から発せられる光を長波長の光に波長変換する第1の波長変換材料を含有するアンダーフィル樹脂と、
を備える半導体発光装置。
A surface emitting semiconductor element;
A substrate on which the surface emitting semiconductor element is mounted;
An underfill resin containing a first wavelength conversion material that is filled between the surface-emitting semiconductor element and the substrate and converts the light emitted from the surface-emitting semiconductor element into light having a long wavelength;
A semiconductor light emitting device comprising:
前記面発光型半導体素子の前記基板への取り付け面とは反対面の少なくとも一部を被覆し、前記面発光型半導体素子から発せられる光を長波長の光に波長変換する第2の波長変換材料を含有する第1の被覆樹脂を、さらに備える請求項1に記載の半導体発光装置。   A second wavelength conversion material that covers at least a part of the surface of the surface-emitting type semiconductor element opposite to the surface attached to the substrate and converts the wavelength of light emitted from the surface-emitting type semiconductor element into long-wavelength light. The semiconductor light-emitting device according to claim 1, further comprising a first coating resin containing 前記第2の波長変換材料は、前記面発光型半導体素子から発せられる光を、前記第1の波長変換材料が波長変換する光よりも短波長の光に波長変換する請求項2に記載の半導体発光装置。   3. The semiconductor according to claim 2, wherein the second wavelength conversion material wavelength-converts light emitted from the surface-emitting type semiconductor element into light having a shorter wavelength than light that is wavelength-converted by the first wavelength conversion material. Light emitting device. 前記第1の被覆樹脂は、前記面発光型半導体素子の周辺部を被覆し、
さらに、前記面発光型半導体素子の周囲に配置された反射体と、
前記面発光型半導体素子の前記基板への取り付け面とは反対面の中央部と前記第1の被覆樹脂の一部を被覆し、前記面発光型半導体素子から発せられる光を長波長の光に波長変換する第3の波長変換材料を含有する第2の被覆樹脂と、
を備える請求項2または3に記載の半導体発光装置。
The first coating resin covers a peripheral portion of the surface-emitting type semiconductor element;
And a reflector disposed around the surface-emitting semiconductor element;
Covering the central portion of the surface opposite to the surface of the surface-emitting semiconductor element that is attached to the substrate and a part of the first coating resin, the light emitted from the surface-emitting semiconductor element is converted into long-wavelength light. A second coating resin containing a third wavelength conversion material for wavelength conversion;
The semiconductor light-emitting device of Claim 2 or 3 provided.
前記第3の波長変換材料は、前記面発光型半導体素子から発せられる光を、前記第2の波長変換材料が波長変換する光よりも短波長の光に波長変換する請求項4に記載の半導体発光装置。   5. The semiconductor according to claim 4, wherein the third wavelength converting material wavelength-converts light emitted from the surface-emitting type semiconductor element into light having a shorter wavelength than light converted by the second wavelength converting material. Light emitting device. 前記面発光型半導体素子は、青色光の波長以下の短波長の光を発する請求項1乃至5のいずれか一項に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the surface-emitting type semiconductor element emits light having a short wavelength equal to or shorter than a wavelength of blue light.
JP2010119610A 2010-05-25 2010-05-25 Semiconductor light-emitting device Pending JP2011249476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119610A JP2011249476A (en) 2010-05-25 2010-05-25 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119610A JP2011249476A (en) 2010-05-25 2010-05-25 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2011249476A true JP2011249476A (en) 2011-12-08

Family

ID=45414402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119610A Pending JP2011249476A (en) 2010-05-25 2010-05-25 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2011249476A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096539A (en) * 2012-11-12 2014-05-22 Tokuyama Corp Ultraviolet light-emitting element, and light-emitting structure
JP2014160730A (en) * 2013-02-19 2014-09-04 Citizen Holdings Co Ltd Optical element substrate, optical element package, method for manufacturing optical element substrate, and method for manufacturing optical element package
JP2015119013A (en) * 2013-12-18 2015-06-25 日亜化学工業株式会社 Light emitting device
US9455382B2 (en) 2013-07-05 2016-09-27 Nichia Corporation Light emitting device
JP2017069378A (en) * 2015-09-30 2017-04-06 日亜化学工業株式会社 Light-emitting device
JP2018026587A (en) * 2017-10-18 2018-02-15 シチズン時計株式会社 Optical element substrate and optical element package
CN109390458A (en) * 2017-08-02 2019-02-26 欧司朗光电半导体有限公司 Luminous semiconductor chip and photoelectron subassembly
CN110335932A (en) * 2013-07-01 2019-10-15 晶元光电股份有限公司 Light-emitting diode component and production method
JP2020025129A (en) * 2013-06-27 2020-02-13 晶元光電股▲ふん▼有限公司Epistar Corporation Light emitting module and manufacturing method thereof
KR20200018365A (en) * 2014-03-06 2020-02-19 에피스타 코포레이션 Light emitting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096539A (en) * 2012-11-12 2014-05-22 Tokuyama Corp Ultraviolet light-emitting element, and light-emitting structure
JP2014160730A (en) * 2013-02-19 2014-09-04 Citizen Holdings Co Ltd Optical element substrate, optical element package, method for manufacturing optical element substrate, and method for manufacturing optical element package
JP2020025129A (en) * 2013-06-27 2020-02-13 晶元光電股▲ふん▼有限公司Epistar Corporation Light emitting module and manufacturing method thereof
CN110335932A (en) * 2013-07-01 2019-10-15 晶元光电股份有限公司 Light-emitting diode component and production method
US9455382B2 (en) 2013-07-05 2016-09-27 Nichia Corporation Light emitting device
JP2015119013A (en) * 2013-12-18 2015-06-25 日亜化学工業株式会社 Light emitting device
KR102187708B1 (en) * 2014-03-06 2020-12-08 에피스타 코포레이션 Light emitting device
KR20200018365A (en) * 2014-03-06 2020-02-19 에피스타 코포레이션 Light emitting device
JP2017069378A (en) * 2015-09-30 2017-04-06 日亜化学工業株式会社 Light-emitting device
CN109390458A (en) * 2017-08-02 2019-02-26 欧司朗光电半导体有限公司 Luminous semiconductor chip and photoelectron subassembly
US10522718B2 (en) 2017-08-02 2019-12-31 Osram Opto Semicondcutors Gmbh Light-emitting semiconductor chip and optoelectronic component
JP2019050359A (en) * 2017-08-02 2019-03-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Light-emitting semiconductor chip and optoelectronic device
JP2018026587A (en) * 2017-10-18 2018-02-15 シチズン時計株式会社 Optical element substrate and optical element package

Similar Documents

Publication Publication Date Title
US8237350B2 (en) Light-emitting device
JP2011249476A (en) Semiconductor light-emitting device
US9882097B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and a method for producing an optoelectronic semiconductor component
US7910940B2 (en) Semiconductor light-emitting device
JP5557828B2 (en) Light emitting device
US7026663B2 (en) Selective filtering of wavelength-converted semiconductor light emitting devices
US20070045641A1 (en) Light source with UV LED and UV reflector
JP5489456B2 (en) Light emission conversion LED
JP6223479B2 (en) Solid light emitter package, light emitting device, flexible LED strip, and luminaire
JP2007242856A (en) Chip-type semiconductor light emitting device
US11756939B2 (en) Light emitting element with particular phosphors
JP2004071908A (en) Light emitting device
KR20130017031A (en) White light emitting diode and method for producing the same
JP2011114096A (en) Illumination device
JP2017157621A (en) White light-emitting device
JP2010034183A (en) Light-emitting device
JP5082427B2 (en) Light emitting device
JP2011096740A (en) Light-emitting device
JP4591106B2 (en) White light emitting device
JP2008060411A (en) Semiconductor light emitting device
JP5195415B2 (en) Semiconductor light emitting device
JP2023055924A (en) Semiconductor light-emitting device and semiconductor light-emitting module
JP5677371B2 (en) Light emitting device
JP5738257B2 (en) Light emitting device