JP2011247615A - Pulse compressor, radar device, pulse compression method, and pulse compression program - Google Patents

Pulse compressor, radar device, pulse compression method, and pulse compression program Download PDF

Info

Publication number
JP2011247615A
JP2011247615A JP2010118107A JP2010118107A JP2011247615A JP 2011247615 A JP2011247615 A JP 2011247615A JP 2010118107 A JP2010118107 A JP 2010118107A JP 2010118107 A JP2010118107 A JP 2010118107A JP 2011247615 A JP2011247615 A JP 2011247615A
Authority
JP
Japan
Prior art keywords
signal
pulse compression
spectrum
transmission signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010118107A
Other languages
Japanese (ja)
Other versions
JP5607424B2 (en
Inventor
Yasunobu Asada
泰暢 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2010118107A priority Critical patent/JP5607424B2/en
Publication of JP2011247615A publication Critical patent/JP2011247615A/en
Application granted granted Critical
Publication of JP5607424B2 publication Critical patent/JP5607424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a signal processor which suppresses a range sidelobe without deteriorating an SN ratio.SOLUTION: A Fourier transform unit 141 transforms an inputted transmission signal on a time axis into a signal on a frequency axis and outputs a spectrum of the transmission signal. A Fourier transform unit 142 transforms an inputted desired signal on the time axis into a signal on the frequency axis and outputs a spectrum of the desired signal. The desired signal is squared to be transformed into an autocorrelation spectrum (power spectrum). A divider 145 divides the autocorrelation spectrum of the desired signal outputted from a multiplier 144 by the transmission signal spectrum, i.e., an output signal of the Fourier transform unit 141. The signal resulting from the division is taken as a reference signal spectrum and is transformed into a signal on the time axis by an inverse Fourier transform unit 146. This reference signal on the time axis is taken as a filter coefficient of an FIR filter 147.

Description

この発明は、受信信号のパルス圧縮を行うパルス圧縮装置に関するものである。   The present invention relates to a pulse compression apparatus that performs pulse compression of a received signal.

従来、レーダ装置等においては、距離方向の分解能を向上させるために受信信号のパルス圧縮を行うものがある(特許文献1を参照)。パルス圧縮は、リニアFM等の方式で周波数変調された送信信号を参照信号として、受信信号と参照信号との相関を求めることで、高レベルの狭いパルス幅と同等の受信信号を得るものである。パルス圧縮では、レンジサイドローブを抑えるために、ガウス関数等の窓関数を掛けた信号を用いる場合や、非直線状に周波数を変化させるノン・リニアFMチャープ方式を用いる場合等がある。   Conventionally, some radar devices perform pulse compression of received signals in order to improve resolution in the distance direction (see Patent Document 1). Pulse compression uses a transmission signal frequency-modulated by a method such as linear FM as a reference signal, and obtains a reception signal equivalent to a high level narrow pulse width by obtaining a correlation between the reception signal and the reference signal. . In pulse compression, there are a case where a signal multiplied by a window function such as a Gaussian function is used in order to suppress a range side lobe, a case where a non-linear FM chirp method that changes a frequency in a non-linear manner, and the like are used.

特開2005−249398号公報JP 2005-249398 A

しかし、窓関数を掛けると、パルス幅を短くしたことと等価になり、SN比が劣化する。一方、ノン・リニアFMチャープ方式ではSN比の劣化はないが、依然としてレンジサイドローブは高く(−40dB程度にとどまる。)、これ以上の目標レベルには達しないという課題がある。   However, multiplying the window function is equivalent to shortening the pulse width, and the SN ratio is degraded. On the other hand, in the non-linear FM chirp method, the SN ratio is not deteriorated, but the range side lobe is still high (remains at about −40 dB), and there is a problem that the target level beyond this is not reached.

そこで、この発明は、SN比を劣化させることなくレンジサイドローブを目標レベルにまで抑制するパルス圧縮装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a pulse compression device that suppresses the range side lobe to a target level without degrading the SN ratio.

本発明のパルス圧縮装置は、信号入力部、信号生成部、およびパルス圧縮部を備えている。信号入力部は、送信信号に対する受信信号を入力する。信号生成部は、送信信号をキャンセルする成分を含む信号を生成する。パルス圧縮部は、送信信号をキャンセルする成分を含む信号と受信信号の相関を求め、前記受信信号のパルス圧縮を行う。   The pulse compression device of the present invention includes a signal input unit, a signal generation unit, and a pulse compression unit. The signal input unit inputs a reception signal for the transmission signal. The signal generation unit generates a signal including a component that cancels the transmission signal. The pulse compression unit obtains a correlation between a signal including a component that cancels the transmission signal and the reception signal, and performs pulse compression of the reception signal.

この様にして相関を求めると、受信信号のうち送信信号の成分はキャンセルされることになる。例えば、信号生成部の生成する信号が、基準となる信号(所望信号)の自己相関に基づいて生成された信号であるとすると、所望信号の自己相関結果が出力されることになる。したがって、受信信号は、所望信号によってパルス圧縮されることになる。   When the correlation is obtained in this way, the component of the transmission signal in the reception signal is canceled. For example, if the signal generated by the signal generation unit is a signal generated based on the autocorrelation of a reference signal (desired signal), the autocorrelation result of the desired signal is output. Therefore, the received signal is pulse-compressed with the desired signal.

これにより、周波数変調された送信信号、特に、SN比を劣化させることのない送信信号(例えばノン・リニアFMチャープ方式)を用いた場合であっても、レンジサイドローブを目標レベルにまで抑制するパルス圧縮を実現することができる。   This suppresses the range side lobe to the target level even when a frequency-modulated transmission signal, particularly a transmission signal that does not degrade the SN ratio (for example, non-linear FM chirp method) is used. Pulse compression can be realized.

また、本発明のパルス圧縮装置は、窓関数を掛けた所望信号を用いることで、パルス圧縮の結果を窓関数の特性に応じた多種多様な特性に制御することができる。   In addition, the pulse compression apparatus of the present invention can control the result of pulse compression to various characteristics according to the characteristics of the window function by using the desired signal multiplied by the window function.

なお、上述の様な参照信号は、具体的には以下の様にして生成することができる。   Specifically, the reference signal as described above can be generated as follows.

(1)所望信号の自己相関スペクトルを送信信号のスペクトルで除算し、逆フーリエ変換する。   (1) The autocorrelation spectrum of the desired signal is divided by the spectrum of the transmission signal, and inverse Fourier transform is performed.

(2)所望信号のスペクトルの振幅成分を、送信信号のスペクトルの振幅成分で除算した後に自乗し、送信信号の複素共役成分を乗算し、逆フーリエ変換する。   (2) The amplitude component of the spectrum of the desired signal is divided by the amplitude component of the spectrum of the transmission signal, then squared, multiplied by the complex conjugate component of the transmission signal, and inverse Fourier transformed.

(3)所望信号の自己相関スペクトルの振幅成分を、送信信号の自己相関スペクトルの振幅成分で除算し、送信信号の複素共役成分を乗算し、逆フーリエ変換する。   (3) The amplitude component of the autocorrelation spectrum of the desired signal is divided by the amplitude component of the autocorrelation spectrum of the transmission signal, multiplied by the complex conjugate component of the transmission signal, and inverse Fourier transformed.

この発明の信号処理装置によれば、SN比を劣化させることなくレンジサイドローブを抑制することができる。   According to the signal processing device of the present invention, the range side lobe can be suppressed without deteriorating the SN ratio.

本実施形態のレーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radar apparatus of this embodiment. パルス圧縮部の構成を示すブロック図である。It is a block diagram which shows the structure of a pulse compression part. 同図(A)はリニアFMチャープ方式の周波数変化を示す図であり、同図(B)はノン・リニアFMチャープ方式の周波数変化を示す図である。FIG. 4A is a diagram showing a frequency change of the linear FM chirp method, and FIG. 4B is a diagram showing a frequency change of the non-linear FM chirp method. 同図(A)はリニアFMチャープ方式の自己相関結果を示す図であり、同図(B)はノン・リニアFMチャープ方式の自己相関結果を示す図である。FIG. 4A is a diagram showing the autocorrelation result of the linear FM chirp method, and FIG. 4B is a diagram showing the autocorrelation result of the non-linear FM chirp method. パルス圧縮部の構成の他の例を示した図である。It is the figure which showed the other example of the structure of the pulse compression part. パルス圧縮部の構成のさらに他の例を示した図である。It is the figure which showed the further another example of the structure of the pulse compression part.

図1は、本発明のパルス圧縮装置(パルス圧縮部)を内蔵したレーダ装置の構成を示すブロック図である。レーダ装置は、例えば船舶に設置され、自船の周囲に電磁波を送受信し、他船等の物標を探知する装置である。本実施形態においては、レーダ装置について説明するが、本発明のパルス圧縮装置は、魚群探知機等、パルス状の信号を送受信する他の装置にも適用可能である。   FIG. 1 is a block diagram showing a configuration of a radar apparatus incorporating a pulse compression device (pulse compression unit) according to the present invention. The radar device is a device that is installed on a ship, for example, and transmits and receives electromagnetic waves around the ship to detect targets such as other ships. In the present embodiment, a radar apparatus will be described. However, the pulse compression apparatus of the present invention can also be applied to other apparatuses that transmit and receive pulse signals, such as fish detectors.

同図において、レーダ装置は、アンテナ11、送信部12、切替部13、パルス圧縮部14、および表示処理部15を備えている。   In the figure, the radar apparatus includes an antenna 11, a transmission unit 12, a switching unit 13, a pulse compression unit 14, and a display processing unit 15.

送信部12は、半導体等の発振素子を有し、所定のタイミングでパルス状の送信信号を出力する。送信信号は、周波数変調された信号であり、例えば、図3(A)に示すように、時間経過とともに直線上に周波数が変化するリニアFMチャープ方式のパルス状信号や、図3(B)に示すように、ガウス窓関数に従って周波数が変化するノン・リニアFMチャープ方式のパルス状信号を用いる。なお、送信信号は、ドップラーシフトの影響を抑えるために、余弦成分による振幅重み付けを行ってもよい。   The transmission unit 12 includes an oscillation element such as a semiconductor and outputs a pulsed transmission signal at a predetermined timing. The transmission signal is a frequency-modulated signal. For example, as shown in FIG. 3A, a linear FM chirp pulse signal whose frequency changes linearly with time, or a signal shown in FIG. As shown, a non-linear FM chirped pulse signal whose frequency changes according to a Gaussian window function is used. Note that the transmission signal may be subjected to amplitude weighting with a cosine component in order to suppress the influence of the Doppler shift.

送信部12から出力された送信信号は、切替部13を介してアンテナ11に伝送される。アンテナ11は、自船の周囲(所定領域)に送信信号を発射し、物標で反射したエコー信号を受信する。受信したエコー信号は、切替部13を介してパルス圧縮部14に出力される。なお、エコー信号は、A/D変換器(不図示)により、アンテナ11の受信強度に応じたデジタル信号(受信信号)に変換されて出力される。   The transmission signal output from the transmission unit 12 is transmitted to the antenna 11 via the switching unit 13. The antenna 11 emits a transmission signal around the ship (predetermined area) and receives an echo signal reflected by the target. The received echo signal is output to the pulse compression unit 14 via the switching unit 13. The echo signal is converted into a digital signal (reception signal) corresponding to the reception intensity of the antenna 11 by an A / D converter (not shown) and output.

パルス圧縮部14は、受信信号と所定の参照信号との相関を求め、受信信号をパルス圧縮する。パルス圧縮された受信信号は、表示処理部15に出力され、受信信号のレベルや送信からの時間差に応じたレーダ画像として表示される。   The pulse compression unit 14 obtains a correlation between the received signal and a predetermined reference signal and performs pulse compression on the received signal. The pulse-compressed received signal is output to the display processing unit 15 and displayed as a radar image corresponding to the level of the received signal and the time difference from the transmission.

図2は、パルス圧縮部14の構成の一例を示した図である。パルス圧縮部14は、フーリエ変換部141、フーリエ変換部142、複素共役部143、乗算器144、除算器145、逆フーリエ変換部146、およびFIRフィルタ147を備えている。   FIG. 2 is a diagram illustrating an example of the configuration of the pulse compression unit 14. The pulse compression unit 14 includes a Fourier transform unit 141, a Fourier transform unit 142, a complex conjugate unit 143, a multiplier 144, a divider 145, an inverse Fourier transform unit 146, and an FIR filter 147.

FIRフィルタ147は、受信信号のパルス圧縮を行う構成部である。従来のパルス圧縮では、FIRフィルタ147のフィルタ係数として送信信号を設定し、マッチドフィルタを実現することでパルス圧縮を行っていたが、本実施形態では、以下のようにしてフィルタ係数を設定し、パルス圧縮を行う。   The FIR filter 147 is a component that performs pulse compression of the received signal. In the conventional pulse compression, the transmission signal is set as the filter coefficient of the FIR filter 147, and the pulse compression is performed by realizing the matched filter. However, in the present embodiment, the filter coefficient is set as follows, Perform pulse compression.

まず、フーリエ変換部141には、送信信号が入力される。送信信号は、上述した様に、リニアFMチャープ方式やノン・リニアFMチャープ方式のパルス状信号を用いる。この例では、ノン・リニアFMチャープ方式のパルス状信号を用いるものとして説明する。フーリエ変換部141は、入力された時間軸上の送信信号を周波数軸上の信号に変換し、送信信号のスペクトルを出力する。   First, a transmission signal is input to the Fourier transform unit 141. As described above, a pulse signal of a linear FM chirp method or a non-linear FM chirp method is used as the transmission signal. In this example, it is assumed that a non-linear FM chirped pulse signal is used. The Fourier transform unit 141 converts the input transmission signal on the time axis into a signal on the frequency axis, and outputs the spectrum of the transmission signal.

一方、フーリエ変換部142には、基準となる信号として自己相関結果(パルス圧縮結果)のレンジサイドローブが目標レベルとなる所望信号が入力される。例えば、目標レベルを−60dBとする場合、図3(A)に示すようなリニアFMチャープ方式のパルス状信号にガウス窓関数に従った振幅重み付けを行ったもの(図3(C)を参照)を用いる。図4(A)に示すように、ガウス窓関数に従った振幅重み付けを行ったリニアFMチャープ方式のパルス状信号は、自己相関結果のレンジサイドローブが−60dB未満の目標レベルを満たす信号である。   On the other hand, a desired signal whose range side lobe of the autocorrelation result (pulse compression result) is a target level is input to the Fourier transform unit 142 as a reference signal. For example, when the target level is set to −60 dB, amplitude weighting according to a Gaussian window function is performed on a linear FM chirp pulse signal as shown in FIG. 3A (see FIG. 3C). Is used. As shown in FIG. 4A, a linear FM chirped pulse signal that has been subjected to amplitude weighting in accordance with a Gaussian window function is a signal that satisfies a target level in which the range side lobe of the autocorrelation result is less than −60 dB. .

フーリエ変換部142は、上記の様な所望信号(時間軸上の信号)を周波数軸上の信号に変換し、所望信号のスペクトルを出力する。   The Fourier transform unit 142 converts the desired signal (signal on the time axis) as described above into a signal on the frequency axis, and outputs a spectrum of the desired signal.

フーリエ変換部142から出力された所望信号スペクトルは、複素共役部143および乗算器144に入力される。所望信号スペクトルは、乗算器144で複素共役部143の出力信号(所望信号の複素共役)と乗算される。これにより、所望信号は、自己相関スペクトルに変換されることになり、周波数軸上でパルス圧縮されたことになる。すなわち、乗算器144の出力信号は、時間軸上の所望信号をパルス圧縮した後にフーリエ変換した信号と等価となる。   The desired signal spectrum output from Fourier transform section 142 is input to complex conjugate section 143 and multiplier 144. The desired signal spectrum is multiplied by the output signal (complex conjugate of the desired signal) of the complex conjugate unit 143 by the multiplier 144. As a result, the desired signal is converted into an autocorrelation spectrum and is pulse-compressed on the frequency axis. That is, the output signal of the multiplier 144 is equivalent to a signal obtained by subjecting the desired signal on the time axis to pulse compression and then Fourier transform.

除算器145は、乗算器144の出力信号である所望信号の自己相関スペクトルを、フーリエ変換部141の出力信号である送信信号スペクトルで除算する。この除算後の信号を参照信号スペクトルとし、逆フーリエ変換部146で時間軸上の参照信号に変換する。この時間軸上の参照信号をFIRフィルタ147のフィルタ係数とする。これにより、FIRフィルタ147では、受信信号と参照信号の相関が求められる。   The divider 145 divides the autocorrelation spectrum of the desired signal that is the output signal of the multiplier 144 by the transmission signal spectrum that is the output signal of the Fourier transform unit 141. The signal after the division is used as a reference signal spectrum, and is converted into a reference signal on the time axis by the inverse Fourier transform unit 146. This reference signal on the time axis is used as the filter coefficient of the FIR filter 147. As a result, the FIR filter 147 obtains the correlation between the received signal and the reference signal.

ここで、参照信号は、所望信号の自己相関を送信信号で除算したものであるから、送信信号をキャンセルする成分を含んだ信号である。つまり、FIRフィルタ147は、送信信号をキャンセルする逆フィルタの機能を有することになる。したがって、受信信号と参照信号の相関を求めると、受信信号のうち送信信号の成分がキャンセルされ、所望信号の自己相関が出力されることになる。したがって、受信信号は、所望信号によってパルス圧縮されることになり、レンジサイドローブを目標レベルにまで抑制するパルス圧縮を実現することができる。   Here, since the reference signal is obtained by dividing the autocorrelation of the desired signal by the transmission signal, it is a signal including a component for canceling the transmission signal. That is, the FIR filter 147 has a function of an inverse filter that cancels the transmission signal. Therefore, when the correlation between the received signal and the reference signal is obtained, the component of the transmitted signal in the received signal is canceled and the autocorrelation of the desired signal is output. Therefore, the received signal is pulse-compressed by the desired signal, and pulse compression that suppresses the range side lobe to the target level can be realized.

これにより、どの様な変調方式の送信信号を用いた場合であっても、レンジサイドローブを目標レベルにまで抑制するパルス圧縮を実現することができる。例えば、図4(B)に示すように、SN比の劣化は少ないが、自己相関結果のレンジサイドローブのレベルが−40dB程度であるノン・リニアFMチャープ方式の送信信号を用いた場合であっても、パルス圧縮後のレンジサイドローブを−60dB程度にまで抑制することができる。無論、リニアFMチャープ方式の送信信号を用いた場合であっても同様に、レンジサイドローブを目標レベルにまで抑制することができる。例えば、ドップラーシフトの影響が大きい魚群探知機等では、リニアFMチャープ方式の送信信号を用い、レーダ装置ではノン・リニアFMチャープ方式の送信信号を用いる、という態様を実現することが可能である。   Thus, pulse compression that suppresses the range side lobe to the target level can be realized regardless of the transmission signal of any modulation method. For example, as shown in FIG. 4B, there is a case where a non-linear FM chirp transmission signal in which the level of the side-side lobe of the autocorrelation result is about −40 dB, although the SN ratio is little deteriorated. However, the range side lobe after pulse compression can be suppressed to about -60 dB. Of course, even when a linear FM chirp transmission signal is used, the range side lobe can be similarly suppressed to the target level. For example, it is possible to realize a mode in which a linear FM chirp transmission signal is used in a fish detector or the like having a large influence of Doppler shift, and a non-linear FM chirp transmission signal is used in a radar apparatus.

また、上記実施形態では、所望信号はガウス窓関数に従った振幅重み付けを行う例を示したが、他の窓関数を用いてもよい。本実施形態におけるパルス圧縮後の受信信号は、所望信号の自己相関結果に準じたものとなるため、パルス圧縮の結果を窓関数の特性に応じた多種多様な特性に制御することができる。   In the above-described embodiment, an example in which the desired signal is subjected to amplitude weighting according to the Gaussian window function is shown, but other window functions may be used. Since the received signal after pulse compression in the present embodiment conforms to the autocorrelation result of the desired signal, the result of pulse compression can be controlled to various characteristics according to the characteristics of the window function.

なお、参照信号(送信信号をキャンセルする成分を含んだ信号)は、以下のようにして生成することも可能である。   The reference signal (a signal including a component that cancels the transmission signal) can be generated as follows.

図5は、パルス圧縮部14の構成の他の例を示した図である。この例におけるパルス圧縮部14は、フーリエ変換部141の出力信号(送信信号スペクトル)が複素共役部153および乗算器154に入力され、自己相関スペクトルに変換される。   FIG. 5 is a diagram showing another example of the configuration of the pulse compression unit 14. In the pulse compression unit 14 in this example, the output signal (transmission signal spectrum) of the Fourier transform unit 141 is input to the complex conjugate unit 153 and the multiplier 154 and converted into an autocorrelation spectrum.

そして、検波器156は、送信信号の自己相関スペクトルを入力し、振幅成分を抽出する。また、検波器155は、所望信号の自己相関スペクトルを入力し、振幅成分を抽出する。   Then, the detector 156 receives the autocorrelation spectrum of the transmission signal and extracts the amplitude component. The detector 155 receives the autocorrelation spectrum of the desired signal and extracts an amplitude component.

除算器145は、検波器155の出力信号(所望信号の自己相関スペクトルの振幅成分)を、検波器156の出力信号(送信信号の自己相関スペクトルの振幅成分)で除算する。乗算部157は、この除算後の信号に送信信号スペクトルの複素共役成分(位相情報が含まれた複素信号)を乗算し、参照信号スペクトルを生成する。そして、逆フーリエ変換部146で時間軸上の参照信号に変換し、FIRフィルタ147のフィルタ係数とする。この様に、各信号を振幅成分と位相成分に分け、送信信号の自己相関スペクトルの振幅成分だけを用いて逆特性を算出し、最後に位相成分を乗算することでも、図2に示した例と同様の参照信号を生成することができる。   Divider 145 divides the output signal of detector 155 (the amplitude component of the autocorrelation spectrum of the desired signal) by the output signal of detector 156 (the amplitude component of the autocorrelation spectrum of the transmission signal). The multiplier 157 multiplies the signal after the division by a complex conjugate component of the transmission signal spectrum (a complex signal including phase information) to generate a reference signal spectrum. Then, the inverse Fourier transform unit 146 converts the signal into a reference signal on the time axis and sets it as the filter coefficient of the FIR filter 147. As shown in FIG. 2, each signal is divided into an amplitude component and a phase component, the inverse characteristic is calculated using only the amplitude component of the autocorrelation spectrum of the transmission signal, and finally the phase component is multiplied. A reference signal similar to the above can be generated.

次に、図6は、パルス圧縮部14の構成のさらに他の例を示した図である。この例におけるパルス圧縮部14は、フーリエ変換部141の出力信号(送信信号スペクトル)が検波器156に入力され、フーリエ変換部142の出力信号(所望信号スペクトル)が検波器155に入力される。そして、除算器145は、所望信号のスペクトルの振幅成分を、送信信号のスペクトルの振幅成分で除算し、乗算器158は、除算器145の出力信号を自乗する。乗算器157は、この自乗後の信号に送信信号スペクトルの複素共役成分(位相情報が含まれた複素信号)を乗算し、参照信号スペクトルを生成する。そして、逆フーリエ変換部146で時間軸上の参照信号に変換し、FIRフィルタ147のフィルタ係数とする。   Next, FIG. 6 is a diagram showing still another example of the configuration of the pulse compression unit 14. In the pulse compression unit 14 in this example, the output signal (transmission signal spectrum) of the Fourier transform unit 141 is input to the detector 156, and the output signal (desired signal spectrum) of the Fourier transform unit 142 is input to the detector 155. Then, the divider 145 divides the amplitude component of the spectrum of the desired signal by the amplitude component of the spectrum of the transmission signal, and the multiplier 158 squares the output signal of the divider 145. The multiplier 157 multiplies the squared signal by a complex conjugate component of the transmission signal spectrum (a complex signal including phase information) to generate a reference signal spectrum. Then, the inverse Fourier transform unit 146 converts the signal into a reference signal on the time axis and sets it as the filter coefficient of the FIR filter 147.

所望信号のスペクトルの振幅成分を送信信号のスペクトルの振幅成分で除算した後に自乗すると、所望信号のスペクトルの振幅成分を自乗したものを送信信号のスペクトルの振幅成分の自乗したもので除算したことになり、所望信号の自己相関スペクトルの振幅成分を送信信号の自己相関スペクトルの振幅成分で除算したことと等価となる。したがって、この場合においても、図2に示した例と同様の参照信号を生成することができる。   When squared after dividing the amplitude component of the spectrum of the desired signal by the amplitude component of the spectrum of the transmission signal, the result of dividing the square of the amplitude component of the spectrum of the desired signal by the square of the amplitude component of the spectrum of the transmission signal This is equivalent to dividing the amplitude component of the autocorrelation spectrum of the desired signal by the amplitude component of the autocorrelation spectrum of the transmission signal. Therefore, also in this case, a reference signal similar to the example shown in FIG. 2 can be generated.

11…アンテナ
12…送信部
13…切替部
14…パルス圧縮部
15…表示処理部
141…フーリエ変換部
142…フーリエ変換部
143…複素共役部
144…乗算器
145…除算器
146…逆フーリエ変換部
147…FIRフィルタ
DESCRIPTION OF SYMBOLS 11 ... Antenna 12 ... Transmission part 13 ... Switching part 14 ... Pulse compression part 15 ... Display processing part 141 ... Fourier transform part 142 ... Fourier transform part 143 ... Complex conjugate part 144 ... Multiplier 145 ... Divider 146 ... Inverse Fourier transform part 147 ... FIR filter

Claims (11)

送信信号に対する受信信号を入力する信号入力部と、
前記送信信号をキャンセルする成分を含む信号を生成する信号生成部と、
前記信号生成部の生成した信号と前記受信信号との相関を求め、前記受信信号のパルス圧縮を行うパルス圧縮部と、
を備えたパルス圧縮装置。
A signal input unit for inputting a reception signal with respect to a transmission signal;
A signal generation unit that generates a signal including a component that cancels the transmission signal;
A pulse compression unit that obtains a correlation between the signal generated by the signal generation unit and the reception signal, and performs pulse compression of the reception signal;
A pulse compression device comprising:
請求項1に記載の信号処理装置において、
前記信号生成部の生成する信号は、基準となる信号の自己相関に基づいて生成された信号であることを特徴とする信号処理装置。
The signal processing device according to claim 1,
A signal processing apparatus, wherein the signal generated by the signal generation unit is a signal generated based on an autocorrelation of a reference signal.
請求項2に記載の信号処理装置において、
前記基準となる信号は、所定の窓関数を乗算した信号であることを特徴とするパルス圧縮装置。
The signal processing device according to claim 2,
The pulse compression apparatus characterized in that the reference signal is a signal multiplied by a predetermined window function.
請求項1乃至請求項3のいずれかに記載のパルス圧縮装置において、
前記送信信号は、周波数変調された信号であることを特徴とするパルス圧縮装置。
In the pulse compression device according to any one of claims 1 to 3,
The pulse compression apparatus, wherein the transmission signal is a frequency-modulated signal.
請求項4に記載のパルス圧縮装置において、
前記送信信号は、ノン・リニアFMチャープ方式のパルス状信号であることを特徴とするパルス圧縮装置。
The pulse compression device according to claim 4, wherein
The pulse compression apparatus according to claim 1, wherein the transmission signal is a non-linear FM chirped pulse signal.
請求項2乃至請求項5のいずれかに記載のパルス圧縮装置において、
前記信号生成部は、前記基準となる信号の自己相関スペクトルを生成するスペクトル生成手段と、
前記送信信号のスペクトルの除算成分を生成する除算手段と、
スペクトルを逆フーリエ変換する逆フーリエ変換手段と、を備えたことを特徴とするパルス圧縮装置。
In the pulse compression device according to any one of claims 2 to 5,
The signal generation unit includes spectrum generation means for generating an autocorrelation spectrum of the reference signal,
Division means for generating a division component of the spectrum of the transmission signal;
A pulse compression apparatus comprising: inverse Fourier transform means for performing inverse Fourier transform on a spectrum.
請求項2乃至請求項5のいずれかに記載のパルス圧縮装置において、
前記信号生成部は、前記基準となる信号のスペクトルの振幅成分、および前記送信信号のスペクトルの振幅成分を生成する振幅成分生成手段と、
前記送信信号のスペクトルの振幅成分の除算成分を生成する除算手段と、
前記基準となる信号のスペクトルの振幅成分を自乗する自乗手段と、
前記送信信号の複素共役成分を乗算する乗算手段と、
スペクトルを逆フーリエ変換する逆フーリエ変換手段と、を備えたことを特徴とするパルス圧縮装置。
In the pulse compression device according to any one of claims 2 to 5,
The signal generation unit generates an amplitude component of a spectrum of the reference signal and an amplitude component generation unit that generates an amplitude component of the spectrum of the transmission signal;
Division means for generating a division component of the amplitude component of the spectrum of the transmission signal;
A square means for squaring the amplitude component of the spectrum of the reference signal;
Multiplication means for multiplying a complex conjugate component of the transmission signal;
A pulse compression apparatus comprising: inverse Fourier transform means for performing inverse Fourier transform on a spectrum.
請求項2乃至請求項5のいずれかに記載のパルス圧縮装置において、
前記信号生成部は、前記基準となる信号の自己相関スペクトルの振幅成分、および前記送信信号の自己相関スペクトルの振幅成分を生成する振幅成分生成手段と
前記送信信号の自己相関スペクトルの振幅成分の除算成分を生成する除算手段と、
前記送信信号の複素共役成分を乗算する乗算手段と、
スペクトルを逆フーリエ変換する逆フーリエ変換手段と、を備えたことを特徴とするパルス圧縮装置。
In the pulse compression device according to any one of claims 2 to 5,
The signal generating unit includes: an amplitude component generating unit that generates an amplitude component of an autocorrelation spectrum of the reference signal; and an amplitude component of an autocorrelation spectrum of the transmission signal; A dividing means for generating components;
Multiplication means for multiplying a complex conjugate component of the transmission signal;
A pulse compression apparatus comprising: inverse Fourier transform means for performing inverse Fourier transform on a spectrum.
請求項1乃至請求項8のいずれかに記載のパルス圧縮装置と、
前記送信信号を方位毎に発射し、物標からのエコー信号を受信して前記受信信号を出力するアンテナと、
前記パルス圧縮された受信信号に基づいて、前記物標の表示を行う表示部と、
を備えたレーダ装置。
A pulse compression device according to any one of claims 1 to 8,
An antenna that emits the transmission signal for each direction, receives an echo signal from a target, and outputs the reception signal;
A display unit that displays the target based on the pulse-compressed received signal;
A radar apparatus comprising:
送信信号に対する受信信号を入力する信号入力ステップと、
前記送信信号をキャンセルする成分を含む信号を生成する信号生成ステップと、
前記信号生成ステップで生成した信号と前記受信信号との相関を求め、前記受信信号のパルス圧縮を行うパルス圧縮ステップと、
を備えたことを特徴とするパルス圧縮方法。
A signal input step for inputting a reception signal with respect to a transmission signal;
A signal generation step of generating a signal including a component for canceling the transmission signal;
A pulse compression step for obtaining a correlation between the signal generated in the signal generation step and the reception signal, and performing pulse compression of the reception signal;
A pulse compression method comprising:
送信信号に対する受信信号を入力する信号入力ステップと、
前記送信信号をキャンセルする成分を含む信号を生成する信号生成ステップと、
前記信号生成ステップで生成した信号と前記受信信号との相関を求め、前記受信信号のパルス圧縮を行うパルス圧縮ステップと、
をコンピュータに実行させることを特徴とするパルス圧縮プログラム。
A signal input step for inputting a reception signal with respect to a transmission signal;
A signal generation step of generating a signal including a component for canceling the transmission signal;
A pulse compression step for obtaining a correlation between the signal generated in the signal generation step and the reception signal, and performing pulse compression of the reception signal;
A pulse compression program for causing a computer to execute.
JP2010118107A 2010-05-24 2010-05-24 Pulse compression device, radar device, pulse compression method, and pulse compression program Active JP5607424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118107A JP5607424B2 (en) 2010-05-24 2010-05-24 Pulse compression device, radar device, pulse compression method, and pulse compression program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118107A JP5607424B2 (en) 2010-05-24 2010-05-24 Pulse compression device, radar device, pulse compression method, and pulse compression program

Publications (2)

Publication Number Publication Date
JP2011247615A true JP2011247615A (en) 2011-12-08
JP5607424B2 JP5607424B2 (en) 2014-10-15

Family

ID=45413072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118107A Active JP5607424B2 (en) 2010-05-24 2010-05-24 Pulse compression device, radar device, pulse compression method, and pulse compression program

Country Status (1)

Country Link
JP (1) JP5607424B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220449A (en) * 2011-04-13 2012-11-12 Furuno Electric Co Ltd Range side lobe removal device, signal processor, radar apparatus having signal processor, range side lobe removal method and program
JP2014115095A (en) * 2012-12-06 2014-06-26 Furuno Electric Co Ltd Transmitter-receiver, transmission-reception method, and transmission-reception program
JP6351876B1 (en) * 2017-06-08 2018-07-04 三菱電機株式会社 Radar equipment
GB2566304A (en) * 2017-09-08 2019-03-13 Canon Kk Pulse radar and method of generating a range profile signal
CN113223540A (en) * 2014-04-17 2021-08-06 声代Evs有限公司 Method, apparatus and memory for use in a sound signal encoder and decoder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085167A (en) * 2003-09-10 2005-03-31 Toshiba Corp Correlation processing device and method, and pulse compression processing device and method
JP2006211127A (en) * 2005-01-26 2006-08-10 Toshiba Corp Weight function generating method, reference signal generating method, transmission signal generator, signal processing apparatus, and antenna system
JP2008051523A (en) * 2006-08-22 2008-03-06 Yamatake Corp Radar system and distance measuring method
JP2010043958A (en) * 2008-08-12 2010-02-25 Tokyo Keiki Inc Radar system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085167A (en) * 2003-09-10 2005-03-31 Toshiba Corp Correlation processing device and method, and pulse compression processing device and method
JP2006211127A (en) * 2005-01-26 2006-08-10 Toshiba Corp Weight function generating method, reference signal generating method, transmission signal generator, signal processing apparatus, and antenna system
JP2008051523A (en) * 2006-08-22 2008-03-06 Yamatake Corp Radar system and distance measuring method
JP2010043958A (en) * 2008-08-12 2010-02-25 Tokyo Keiki Inc Radar system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220449A (en) * 2011-04-13 2012-11-12 Furuno Electric Co Ltd Range side lobe removal device, signal processor, radar apparatus having signal processor, range side lobe removal method and program
JP2014115095A (en) * 2012-12-06 2014-06-26 Furuno Electric Co Ltd Transmitter-receiver, transmission-reception method, and transmission-reception program
CN113223540A (en) * 2014-04-17 2021-08-06 声代Evs有限公司 Method, apparatus and memory for use in a sound signal encoder and decoder
CN113223540B (en) * 2014-04-17 2024-01-09 声代Evs有限公司 Method, apparatus and memory for use in a sound signal encoder and decoder
JP6351876B1 (en) * 2017-06-08 2018-07-04 三菱電機株式会社 Radar equipment
WO2018225211A1 (en) 2017-06-08 2018-12-13 三菱電機株式会社 Radar device
EP3617745A4 (en) * 2017-06-08 2020-06-17 Mitsubishi Electric Corporation Radar device
US11415663B2 (en) 2017-06-08 2022-08-16 Mitsubishi Electric Corporation Radar device
GB2566304A (en) * 2017-09-08 2019-03-13 Canon Kk Pulse radar and method of generating a range profile signal
GB2566304B (en) * 2017-09-08 2021-02-24 Canon Kk Pulse radar and method of generating a range profile signal

Also Published As

Publication number Publication date
JP5607424B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US8295393B2 (en) Device and method for transmitting/receiving pulse signal
Babur et al. Nearly orthogonal waveforms for MIMO FMCW radar
JP5871559B2 (en) Radar equipment
JP6391888B2 (en) Radar equipment
JP4834370B2 (en) Correlation reception processing device
WO2011142879A1 (en) High duty cycle radar with near/far pulse compression interference mitigation
JP5607424B2 (en) Pulse compression device, radar device, pulse compression method, and pulse compression program
JP4080977B2 (en) Correlation processing device, correlation processing method, pulse compression processing device, and pulse compression processing method
JP2009288038A (en) Pulse signal transmitter-receiver
JP2011038948A (en) Transmission waveform generation method in pulse compression, transmission waveform generation program, and pulse compression device manufactured by the transmission waveform generation method
JP5460290B2 (en) Radar equipment
JP5249115B2 (en) Pulse compression device and target detection device
JP2006284241A (en) Filter apparatus
JP4444057B2 (en) Pulse compression processor
JP6573748B2 (en) Radar equipment
JP5424572B2 (en) Radar equipment
JP5574907B2 (en) Radar equipment
JP2008241319A (en) Pulse radar system
JP5465148B2 (en) Radar equipment
JP5933330B2 (en) Pulse compressor
JP5197125B2 (en) Pulse radar equipment
JPWO2019082269A1 (en) Radar equipment
JP4451203B2 (en) Pulse radar equipment
JP6351876B1 (en) Radar equipment
JP2007225319A (en) Pulse radar system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5607424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250