JP2011246680A - Addition-curable silicone resin composition for light-emitting diode - Google Patents

Addition-curable silicone resin composition for light-emitting diode Download PDF

Info

Publication number
JP2011246680A
JP2011246680A JP2010124273A JP2010124273A JP2011246680A JP 2011246680 A JP2011246680 A JP 2011246680A JP 2010124273 A JP2010124273 A JP 2010124273A JP 2010124273 A JP2010124273 A JP 2010124273A JP 2011246680 A JP2011246680 A JP 2011246680A
Authority
JP
Japan
Prior art keywords
component
bonded
silicon atom
hydrogen atoms
organohydrogenpolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010124273A
Other languages
Japanese (ja)
Other versions
JP5426482B2 (en
Inventor
Masayuki Ikeno
正行 池野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010124273A priority Critical patent/JP5426482B2/en
Publication of JP2011246680A publication Critical patent/JP2011246680A/en
Application granted granted Critical
Publication of JP5426482B2 publication Critical patent/JP5426482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an addition-curable silicone resin composition for LED having excellent characteristics such as excellent high transparency, high durability to thermal shock and the like.SOLUTION: This silicone resin composition includes at least (A) a branched organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in the molecule, and having a siloxane unit expressed by general formula (1): RSiO; (B) a linear organohydrogenpolysiloxane having hydrogen atoms each bonded to a silicon atom only at both terminals of the molecular chain, not containing aliphatic unsaturated bond in the molecule, and having 0.001-10 Pa s viscosity at 25°C; (C) an organohydrogenpolysiloxane having at least three hydrogen atoms each bonded to a silicon atom, at least one of them existing as a siloxane unit expressed by general formula (2): RHSiO, and having 0.001-10 Pa s viscosity at 25°C; and (D) an addition reactive catalyst in a catalytic amount. The formulation amount of the (B) component and the (C) component is such that: the total number of hydrogen atoms bonded to a silicon atom in the (B) component and the (C) component is 0.3-7 pieces per one alkenyl group bonded to a silicon atom in the (A) component; and the number of hydrogen atoms bonded to a silicon atom in the (B) component is 5-90% of the total number of hydrogen atoms bonded to a silicon atom in the (B) component and the (C) component.

Description

本発明は発光ダイオード(LED)用付加硬化型シリコーン樹脂組成物に関し、特に硬化物が透明で発光ダイオード素子の保護、波長の変更・調整あるいはレンズの構成材料として適し、特に高温/低温の温度サイクル条件下でもクラック耐性が良好な硬化物が得られる付加硬化型シリコーン樹脂材料に関する。   The present invention relates to an addition-curable silicone resin composition for light-emitting diodes (LEDs), and in particular, the cured product is transparent and suitable as a light-emitting diode element protection, wavelength change / adjustment, or lens constituent material. The present invention relates to an addition-curable silicone resin material that can provide a cured product having good crack resistance even under conditions.

LEDへの通電・点灯の際には急激な温度上昇が起こりLED素子は熱衝撃を受けることが知られている。したがって、LED素子の点灯と消灯の繰り返しによりLED素子は過酷な温度サイクルに供されることになる。   It is known that when the LED is energized / lighted, a rapid temperature rise occurs and the LED element receives a thermal shock. Therefore, the LED element is subjected to a severe temperature cycle by repeatedly turning on and off the LED element.

LED素子の封止材料として、一般的にエポキシ樹脂が用いられている。しかし、エポキシ樹脂の弾性率は高いために、ボンディングワイヤーは温度サイクルによるストレスを受け断線したり、エポキシ樹脂にはクラックが発生することがある。またエポキシ樹脂がLEDチップに与えるストレスが原因で、半導体材料の結晶構造が崩れることによる発光効率の低下も懸念される。   Epoxy resin is generally used as a sealing material for LED elements. However, since the elastic modulus of the epoxy resin is high, the bonding wire may be broken due to stress due to the temperature cycle, or the epoxy resin may be cracked. Moreover, due to the stress that the epoxy resin gives to the LED chip, there is a concern that the light emission efficiency is lowered due to the collapse of the crystal structure of the semiconductor material.

その対策として、室温硬化型のシリコーンゴムをバッファー材として使用し、その外側をエポキシ樹脂で封止する方法が定法として定着している。しかしこの方法では、エポキシ樹脂がシリコーン樹脂に接着しないために、やはり温度サイクルによりエポキシ樹脂とシリコーンゴムとの界面で剥離が発生し、光取り出し効率が経時的に極端に低下することが知られている。   As a countermeasure, a method of using room temperature curable silicone rubber as a buffer material and sealing the outside with an epoxy resin has been established as a standard method. However, in this method, since the epoxy resin does not adhere to the silicone resin, it is known that peeling occurs at the interface between the epoxy resin and the silicone rubber due to the temperature cycle, and the light extraction efficiency is extremely lowered with time. Yes.

そこで、エポキシ樹脂に替わる材料として、シリコーン樹脂を使用することが提案されている(例えば特許文献1、2及び3等参照)。シリコーン樹脂は耐熱性、耐候性、耐変色性がエポキシ樹脂に比較して優れており、また特に透明性、光学特性等においてエポキシ樹脂等他の有機材料に比較して優れていることから、近年青色LED、白色LEDを中心に使用される例が増えてきている。   Therefore, it has been proposed to use a silicone resin as a material replacing the epoxy resin (see, for example, Patent Documents 1, 2, and 3). Silicone resins are superior in heat resistance, weather resistance, and discoloration resistance compared to epoxy resins, and in particular, in terms of transparency, optical properties, etc., compared to other organic materials such as epoxy resins, An example in which a blue LED and a white LED are mainly used is increasing.

しかしこれらシリコーン樹脂は、エポキシ樹脂に比較して弾性率は低いものの、曲げ強度等の機械特性も低いことから、LEDへの通電・点灯の際に生じる熱衝撃によりクラックが発生しやすいという問題を有する。   However, these silicone resins have a lower elastic modulus than epoxy resins, but they also have low mechanical properties such as bending strength, so the problem is that cracks are likely to occur due to the thermal shock that occurs when the LED is energized and lit. Have.

特開平11−1619号公報Japanese Patent Laid-Open No. 11-1619 特開2002−265787号公報JP 2002-265787 A 特開2004−186168号公報JP 2004-186168 A 特開2004−140220号公報JP 2004-140220 A

本発明は上記事情に鑑みなされたもので、高透明性に優れ、熱衝撃に対して高い耐性を有し、過酷な温度サイクル下でもクラックが生じ難く、剥離も発生しないLED用付加硬化型シリコーン樹脂組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is an addition-curable silicone for LED that has high transparency, has high resistance to thermal shock, hardly cracks even under severe temperature cycles, and does not cause peeling. It aims at providing a resin composition.

上記課題を解決するため、本発明は、少なくとも、
(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、下記一般式(1)で表されるシロキサン単位を有する分岐鎖状オルガノポリシロキサン、
RSiO3/2 (1)
(式中、Rは置換又は非置換の一価炭化水素基である)
(B)分子鎖両末端のみにケイ素原子に結合した水素原子を有し、分子中に脂肪族不飽和結合を有しない、25℃における粘度が0.001〜10Pa・sである直鎖状のオルガノハイドロジェンポリシロキサン、
(C)ケイ素原子に結合した水素原子を1分子中に少なくとも3個有し、その内の少なくとも1個は下記一般式(2)で表されるシロキサン単位として存在する、25℃における粘度が0.001〜10Pa・sであるオルガノハイドロジェンポリシロキサン、
HSiO2/2 (2)
(式中、Rは脂肪族不飽和結合を有しない非置換又は置換の一価炭化水素基である)
(D)付加反応触媒 触媒量、
を含有するシリコーン樹脂組成物であって、
前記(B)成分及び(C)成分の配合量は、前記(B)成分及び(C)成分中のケイ素原子に結合した水素原子の合計個数が、前記(A)成分中のケイ素原子に結合したアルケニル基1個当たり0.3〜7個となり、かつ前記(B)成分中のケイ素原子に結合した水素原子の個数が、前記(B)成分及び(C)成分のケイ素原子に結合した水素原子の合計個数の5〜90%となる量であることを特徴とする発光ダイオード用付加硬化型シリコーン樹脂組成物を提供する。
In order to solve the above problems, the present invention provides at least
(A) a branched organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule and having a siloxane unit represented by the following general formula (1):
RSiO 3/2 (1)
(Wherein R is a substituted or unsubstituted monovalent hydrocarbon group)
(B) a linear chain having a hydrogen atom bonded to a silicon atom only at both ends of the molecular chain, having no aliphatic unsaturated bond in the molecule, and a viscosity at 25 ° C. of 0.001 to 10 Pa · s Organohydrogenpolysiloxane,
(C) It has at least three hydrogen atoms bonded to silicon atoms in one molecule, and at least one of them is present as a siloxane unit represented by the following general formula (2), and the viscosity at 25 ° C. is 0 An organohydrogenpolysiloxane of 0.001 to 10 Pa · s,
R 1 HSiO 2/2 (2)
(Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond)
(D) addition reaction catalyst catalyst amount,
A silicone resin composition comprising:
The blending amount of the component (B) and the component (C) is such that the total number of hydrogen atoms bonded to the silicon atoms in the components (B) and (C) is bonded to the silicon atoms in the component (A). The number of hydrogen atoms bonded to the silicon atom in the component (B) is 0.3 to 7 per alkenyl group and the hydrogen bonded to the silicon atoms in the component (B) and the component (C) An addition-curable silicone resin composition for light-emitting diodes, characterized in that the amount is 5 to 90% of the total number of atoms.

このような本発明の付加硬化型シリコーン樹脂組成物は、耐変色性に優れているため高透明性を有しており、熱衝撃に対して高い耐性を有しているため過酷な温度サイクル下でもクラックや剥離が生じ難いものとなる。   Such an addition-curable silicone resin composition of the present invention has high transparency because of its excellent resistance to discoloration, and has high resistance to thermal shock. However, cracks and peeling are unlikely to occur.

この場合、前記(A)成分の前記一般式(1)で表されるシロキサン単位の含有量を、50〜100モル%とすることもできる。
このように、(A)成分のRSiO3/2で表されるシロキサン単位の含有量を、50〜100モル%と、高い割合としてもよい。
In this case, the content of the siloxane unit represented by the general formula (1) of the component (A) can be 50 to 100 mol%.
Thus, it is good also considering the content of the siloxane unit represented by RSiO3 / 2 of (A) component as a high ratio with 50-100 mol%.

以上説明したように、本発明の付加硬化型シリコーン樹脂組成物は、硬化物の耐熱衝撃性が高いため、クラックや剥離が生じ難く、また、高透明性に優れる。よって、発光ダイオード素子用の材料として有用である。   As described above, the addition-curable silicone resin composition of the present invention has high thermal shock resistance of the cured product, so that it is difficult for cracks and peeling to occur and is excellent in high transparency. Therefore, it is useful as a material for a light emitting diode element.

本発明の付加硬化型シリコーン樹脂組成物が好適に用いられる発光半導体装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the light-emitting semiconductor device with which the addition-curable silicone resin composition of this invention is used suitably.

以下、本発明につき更に詳しく説明する。
上述のように、従来用いられてきたLED素子用の封止材料は、特にLEDへの通電・点灯の際に生じる熱衝撃によりクラックが発生しやすいという問題を有しており、過酷な温度サイクル下でもクラックや剥離が生じ難い封止材料が求められていた。
Hereinafter, the present invention will be described in more detail.
As described above, the conventionally used sealing materials for LED elements have the problem that cracks are likely to occur due to thermal shocks that occur particularly during energization / lighting of the LED, and severe temperature cycling is required. There has been a demand for a sealing material that does not easily crack or peel off.

そこで、本発明者が鋭意研究を行った結果、ベースポリマーとしてケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、RSiO3/2で表されるシロキサン単位を有する分岐鎖状オルガノポリシロキサンを用い、架橋剤としてケイ素原子に結合した水素原子を分子鎖両末端のみに有するオルガノハイドロジェンポリシロキサンと、分子中にケイ素原子に結合した水素原子を少なくとも3個有するオルガノハイドロジェンポリシロキサンを特定の比率で組合せることにより、上記課題を達成できることを見出し、LED素子用材料として好適な付加硬化型シリコーン樹脂組成物を完成させるに至った。 Therefore, as a result of intensive studies by the present inventors, as a base polymer, at least two alkenyl groups bonded to silicon atoms are contained in one molecule, and branched organoorganisms having a siloxane unit represented by RSiO 3/2. Organohydrogenpolysiloxane using polysiloxane and having hydrogen atoms bonded to silicon atoms only at both ends of the molecular chain as a crosslinking agent, and organohydrogenpolysiloxane having at least three hydrogen atoms bonded to silicon atoms in the molecule It was found that the above-mentioned problems can be achieved by combining these at a specific ratio, and an addition-curable silicone resin composition suitable as an LED element material has been completed.

即ち、本発明の発光ダイオード用付加硬化型シリコーン樹脂組成物は、少なくとも、
(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、下記一般式(1)で表されるシロキサン単位を有する分岐鎖状オルガノポリシロキサン、
RSiO3/2 (1)
(式中、Rは置換又は非置換の一価炭化水素基である)
(B)分子鎖両末端のみにケイ素原子に結合した水素原子を有し、分子中に脂肪族不飽和結合を有しない、25℃における粘度が0.001〜10Pa・sである直鎖状のオルガノハイドロジェンポリシロキサン、
(C)ケイ素原子に結合した水素原子を1分子中に少なくとも3個有し、その内の少なくとも1個は下記一般式(2)で表されるシロキサン単位として存在する、25℃における粘度が0.001〜10Pa・sであるオルガノハイドロジェンポリシロキサン、
HSiO2/2 (2)
(式中、Rは脂肪族不飽和結合を有しない非置換又は置換の一価炭化水素基である)
(D)付加反応触媒 触媒量、
を含有するシリコーン樹脂組成物であって、
前記(B)成分及び(C)成分の配合量は、前記(B)成分及び(C)成分中のケイ素原子に結合した水素原子の合計個数が、前記(A)成分中のケイ素原子に結合したアルケニル基1個当たり0.3〜7個となり、かつ前記(B)成分中のケイ素原子に結合した水素原子の個数が、前記(B)成分及び(C)成分のケイ素原子に結合した水素原子の合計個数の5〜90%となる量であることを特徴とする。
That is, the addition-curable silicone resin composition for light-emitting diodes of the present invention is at least
(A) a branched organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule and having a siloxane unit represented by the following general formula (1):
RSiO 3/2 (1)
(Wherein R is a substituted or unsubstituted monovalent hydrocarbon group)
(B) a linear chain having a hydrogen atom bonded to a silicon atom only at both ends of the molecular chain, having no aliphatic unsaturated bond in the molecule, and a viscosity at 25 ° C. of 0.001 to 10 Pa · s Organohydrogenpolysiloxane,
(C) It has at least three hydrogen atoms bonded to silicon atoms in one molecule, and at least one of them is present as a siloxane unit represented by the following general formula (2), and the viscosity at 25 ° C. is 0 An organohydrogenpolysiloxane of 0.001 to 10 Pa · s,
R 1 HSiO 2/2 (2)
(Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond)
(D) addition reaction catalyst catalyst amount,
A silicone resin composition comprising:
The blending amount of the component (B) and the component (C) is such that the total number of hydrogen atoms bonded to the silicon atoms in the components (B) and (C) is bonded to the silicon atoms in the component (A). The number of hydrogen atoms bonded to the silicon atom in the component (B) is 0.3 to 7 per alkenyl group and the hydrogen bonded to the silicon atoms in the component (B) and the component (C) The amount is 5 to 90% of the total number of atoms.

以下、本発明の各成分につき、詳細に説明する。
<(A)成分>
(A)成分は、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、下記一般式(1)で表されるシロキサン単位を有する分岐鎖状オルガノポリシロキサンである。
RSiO3/2 (1)
(式中、Rは置換又は非置換の一価炭化水素基である。)
Hereinafter, each component of the present invention will be described in detail.
<(A) component>
The component (A) is a branched organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule and having a siloxane unit represented by the following general formula (1).
RSiO 3/2 (1)
(In the formula, R is a substituted or unsubstituted monovalent hydrocarbon group.)

上記一般式(1)において、Rで示される、ケイ素原子に結合した置換又は非置換の一価炭化水素基としては、通常、炭素数1〜20、特に好ましくは1〜10の非置換又は置換の一価炭化水素基であり、このような炭化水素基としては具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等のアルケニル基等の不飽和炭化水素基;クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等が挙げられ、メチル基、フェニル基、アルケニル基が好ましい。アルケニル基としては、ビニル基が好ましい。   In the general formula (1), the substituted or unsubstituted monovalent hydrocarbon group bonded to the silicon atom represented by R is usually an unsubstituted or substituted group having 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms. Specific examples of such hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl and heptyl groups; Aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group; aralkyl groups such as benzyl group and phenethyl group; Saturated hydrocarbon group; halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, and the like; Eniru group, an alkenyl group is preferred. As the alkenyl group, a vinyl group is preferable.

上記一般式(1)で表されるシロキサン単位(T単位)は、分子中に少なくとも1個有すればよいが、50〜100モル%含有することが好ましく、特に60〜100モル%含有することが好ましい。   The siloxane unit (T unit) represented by the general formula (1) may be at least one in the molecule, but is preferably contained in an amount of 50 to 100 mol%, particularly 60 to 100 mol%. Is preferred.

(A)成分は、上記一般式(1)で表されるシロキサン単位の他に、RSiO1/2単位(M単位)、RSiO2/2単位(D単位)、SiO4/2単位(Q単位)から選ばれる1種又は2種以上の単位を含有してもよい(式中、Rはそれぞれ独立に置換又は非置換の一価炭化水素基である)。M単位の含有量は0〜50モル%、特に0〜40モル%であることが好ましく、D単位の含有量は0〜50モル%、特に0〜40モル%であることが好ましく、Q単位の含有量は0〜20モル%、特に0〜10モル%であることが好ましい(但し、M、D、T、Q単位の合計は100モル%である)。これらの中で、T単位のみからなるもの、M単位とT単位からなるもの、M単位、D単位及びT単位からなるものが好ましい。 In addition to the siloxane unit represented by the general formula (1), the component (A) includes R 3 SiO 1/2 unit (M unit), R 2 SiO 2/2 unit (D unit), and SiO 4/2. One or two or more units selected from the unit (Q unit) may be contained (wherein R is independently a substituted or unsubstituted monovalent hydrocarbon group). The content of M units is preferably 0 to 50 mol%, particularly preferably 0 to 40 mol%, the content of D units is preferably 0 to 50 mol%, particularly preferably 0 to 40 mol%, and Q units Is preferably 0 to 20 mol%, particularly preferably 0 to 10 mol% (provided that the total of M, D, T and Q units is 100 mol%). Among these, those consisting only of T units, those consisting of M units and T units, those consisting of M units, D units and T units are preferred.

これら全Rのうち少なくとも2個はアルケニル基であり、好ましくは0.1〜30モル%、特に好ましくは0.5〜20モル%がアルケニル基であるものである。
アルケニル基の含有量が少なすぎると、組成物の硬化性が低下することがあり、多すぎると、硬化したシリコーン樹脂が脆くことがある。
At least two of these Rs are alkenyl groups, preferably 0.1 to 30 mol%, particularly preferably 0.5 to 20 mol% are alkenyl groups.
If the alkenyl group content is too small, the curability of the composition may be lowered, and if it is too much, the cured silicone resin may be brittle.

(A)成分は、室温で液状であっても固体であってもよいが、室温で固体である場合、溶剤に可溶であるか融点を有することが必要である。
(A)成分は、1種でも、構造の異なる2種以上を併用してもよい。
The component (A) may be liquid or solid at room temperature, but if it is solid at room temperature, it must be soluble in a solvent or have a melting point.
As the component (A), one type may be used, or two or more types having different structures may be used in combination.

<(B)成分>
(B)成分のオルガノハイドロジェンポリシロキサンは、鎖長延長材として作用するものである。その結果、熱衝撃に対して高い耐性を有し過酷な温度サイクル下でもクラックの成長が回避されるのである。このオルガノハイドロジェンポリシロキサンは、分子鎖両末端の各々にのみケイ素原子に結合した水素原子(即ち、SiH基)を1個有し、25℃における粘度が0.001〜10Pa・s、好ましくは0.01〜1Pa・sである直鎖状のものである(粘度は回転粘度計による測定値である)。
尚、この(B)成分のオルガノハイドロジェンポリシロキサンは、分子中に脂肪族不飽和結合を有しないものである。
<(B) component>
The (B) component organohydrogenpolysiloxane functions as a chain extender. As a result, it has high resistance to thermal shock, and crack growth is avoided even under severe temperature cycles. This organohydrogenpolysiloxane has one hydrogen atom (that is, SiH group) bonded to a silicon atom only at both ends of the molecular chain, and a viscosity at 25 ° C. of 0.001 to 10 Pa · s, preferably It is a linear one of 0.01 to 1 Pa · s (viscosity is a value measured by a rotational viscometer).
The organohydrogenpolysiloxane of component (B) does not have an aliphatic unsaturated bond in the molecule.

この直鎖状のオルガノハイドロジェンポリシロキサンの分子構造は、実質的に直鎖状であればよい。ここで、(B)成分における「実質的に直鎖状」とは、分子鎖両末端を除く主鎖部分を構成するシロキサン単位のうち、通常、99〜100モル%、好ましくは99.5〜100モル%が、R SiO2/2単位(式中、Rはそれぞれ独立に脂肪族不飽和結合を有しない非置換又は置換の一価炭化水素基である)であることを意味する。尚、分子鎖両末端は、R (H)SiO1/2単位(式中、Rは前記と同様である)で表されるジオルガノハイドロジェンシロキシ基で封鎖されていることが好ましい。 The molecular structure of the linear organohydrogenpolysiloxane may be substantially linear. Here, “substantially linear” in component (B) is usually 99 to 100 mol%, preferably 99.5 to siloxane units constituting the main chain portion excluding both ends of the molecular chain. 100 mol% means R 1 2 SiO 2/2 units (wherein R 1 is each independently an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond) . Both ends of the molecular chain are preferably blocked with a diorganohydrogensiloxy group represented by R 1 2 (H) SiO 1/2 unit (wherein R 1 is the same as described above). .

上記式中、Rで表される脂肪族不飽和結合を有しない非置換又は置換の一価炭化水素基は、通常、炭素原子数1〜10、好ましくは1〜8である。その具体例としては、前記(A)成分中のケイ素原子に結合したアルケニル基以外の、ケイ素原子に結合した有機基として例示したものが挙げられ、メチル基、フェニル基が好ましい。 In the above formula, the unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond represented by R 1 usually has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms. Specific examples thereof include those exemplified as the organic group bonded to the silicon atom other than the alkenyl group bonded to the silicon atom in the component (A), and a methyl group and a phenyl group are preferable.

(B)成分のオルガノハイドロジェンポリシロキサンは、好ましくは、下記一般式(3)で表される。

Figure 2011246680
(式中、Rは前記と同様であり、nは(B)成分のオルガノハイドロジェンポリシロキサンの25℃における粘度が0.001〜10Pa・s、好ましくは0.01〜1Pa・sとなる整数である。) The organohydrogenpolysiloxane of component (B) is preferably represented by the following general formula (3).
Figure 2011246680
(In the formula, R 1 is the same as above, and n is the viscosity of the organohydrogenpolysiloxane of component (B) at 25 ° C. of 0.001 to 10 Pa · s, preferably 0.01 to 1 Pa · s. (It is an integer.)

(B)成分のオルガノハイドロジェンポリシロキサンの配合量は、後述の(C)成分の項に記載のとおりである。
尚、(B)成分のオルガノハイドロジェンポリシロキサンは、一種単独で用いても二種以上を併用してもよい。
(B) The compounding quantity of the organohydrogenpolysiloxane of a component is as having described in the term of the (C) component mentioned later.
The (B) component organohydrogenpolysiloxane may be used alone or in combination of two or more.

<(C)成分>
(C)成分のオルガノハイドロジェンポリシロキサンは、1分子中に少なくとも3個、好ましくは3〜100個、より好ましくは3〜50個のケイ素原子に結合した水素原子(即ち、SiH基)を有し、その内の少なくとも1個、好ましくは該SiH基の20〜100%、より好ましくは30〜80%(個数基準)は、下記一般式(2)で表されるオルガノハイドロジェンシロキサン単位として存在する、25℃における粘度が0.001〜10Pa・s、好ましくは0.01〜5Pa・sであるものである(粘度は回転粘度計による測定値である)。
HSiO2/2 (2)
(式中、Rは脂肪族不飽和結合を有しない非置換又は置換の一価炭化水素基である。)
尚、この(C)成分のオルガノハイドロジェンポリシロキサンも、分子中に脂肪族不飽和結合を有しないものである。
<(C) component>
The organohydrogenpolysiloxane of component (C) has at least 3, preferably 3 to 100, more preferably 3 to 50, hydrogen atoms bonded to silicon atoms (that is, SiH groups) in one molecule. And at least one of them, preferably 20 to 100%, more preferably 30 to 80% (number basis) of the SiH group, is present as an organohydrogensiloxane unit represented by the following general formula (2). The viscosity at 25 ° C. is 0.001 to 10 Pa · s, preferably 0.01 to 5 Pa · s (the viscosity is a value measured by a rotational viscometer).
R 1 HSiO 2/2 (2)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond.)
The organohydrogenpolysiloxane of component (C) also has no aliphatic unsaturated bond in the molecule.

(C)成分のオルガノハイドロジェンポリシロキサンの分子構造は、特に限定されず、例えば、直鎖状、環状、分岐鎖状、三次元網状等のいずれであってもよいが、好ましくは、実質的に直鎖状である。また、その分子鎖末端には環状シロキサンが結合していてもよい。ここで、(C)成分における「実質的に直鎖状」とは、分子鎖両末端(環状シロキサンが結合する場合には該環状シロキサン)を除く主鎖部分を構成するシロキサン単位のうち、通常、99〜100モル%、好ましくは99.5〜100モル%が、R SiO2/2単位(式中、Rはそれぞれ独立に水素原子又はRである)であることを意味する。 The molecular structure of the organohydrogenpolysiloxane of component (C) is not particularly limited, and may be any of linear, cyclic, branched, three-dimensional network, etc., preferably substantially Is linear. In addition, cyclic siloxane may be bonded to the molecular chain terminal. Here, “substantially linear” in component (C) is usually a siloxane unit constituting the main chain portion excluding both ends of the molecular chain (the cyclic siloxane when a cyclic siloxane is bonded). 99-100 mol%, preferably 99.5-100 mol%, means that R 2 2 SiO 2/2 units (wherein R 2 is independently a hydrogen atom or R 1 ). .

前記ケイ素原子に結合した水素原子は、(C)成分のオルガノハイドロジェンポリシロキサン分子中、分子鎖末端に位置しても分子鎖非末端に位置してもよく、それらの両方に位置してもよい。また、分子鎖末端に環状シロキサンが結合している場合には、該環状シロキサン中に位置していてもよい。   The hydrogen atom bonded to the silicon atom may be located at the end of the molecular chain or at the non-end of the molecular chain in the organohydrogenpolysiloxane molecule of the component (C). Good. Moreover, when the cyclic siloxane has couple | bonded with the molecular chain terminal, you may be located in this cyclic siloxane.

上記一般式(2)中、Rで表される脂肪族不飽和結合を有しない非置換又は置換の一価炭化水素基は、通常、炭素原子数1〜10、好ましくは1〜8である。その具体例としては、前記(A)成分中のケイ素原子に結合したアルケニル基以外の、ケイ素原子に結合した有機基として例示したものが挙げられ、メチル基、フェニル基が好ましい。 In the general formula (2), the unsubstituted or substituted monovalent hydrocarbon group not having an aliphatic unsaturated bond represented by R 1 is usually 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms. . Specific examples thereof include those exemplified as the organic group bonded to the silicon atom other than the alkenyl group bonded to the silicon atom in the component (A), and a methyl group and a phenyl group are preferable.

(C)成分のオルガノハイドロジェンポリシロキサンに含まれる、上記一般式(2)以外の単位としては、好ましくは下記一般式(4)で表されるものが挙げられる。
SiO(4−e−f)/2 (4)
(式中、Rは前記と同様であり、eは0.7〜2.1、fは0.001〜1.0、e+fは0.8〜2.7の数であり、好ましくは、eは1.0〜2.0、fは0.01〜1.0、e+fは1.1〜2.5の数である。)
As the unit other than the general formula (2) contained in the organohydrogenpolysiloxane of the component (C), a unit represented by the following general formula (4) is preferably exemplified.
R 1 e H f SiO (4-ef) / 2 (4)
(Wherein R 1 is the same as above, e is 0.7 to 2.1, f is 0.001 to 1.0, and e + f is a number from 0.8 to 2.7, preferably, e is a number from 1.0 to 2.0, f is a number from 0.01 to 1.0, and e + f is a number from 1.1 to 2.5.)

このような(C)成分のオルガノハイドロジェンポリシロキサンとしては、RHSiO2/2単位を分子中に含有し、さらにR SiO1/2単位及び/又はR SiO2/2単位を任意に含有するものが挙げられる(式中、R及びRは前記と同様である)。 As the organohydrogenpolysiloxane of component (C), R 1 HSiO 2/2 units are contained in the molecule, and R 1 2 R 2 SiO 1/2 units and / or R 1 2 SiO 2 / Examples thereof optionally contain 2 units (wherein R 1 and R 2 are the same as described above).

具体的には、例えば、1,3,5,7−テトラメチルシクロテトラシロキサン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CH)(H)SiO2/2単位と(CHSiO1/2単位とSiO4/2単位とからなる共重合体、(CH)(H)SiO2/2単位と(CHSiO2/2単位と(CHSiO1/2単位とSiO4/2単位とからなる共重合体、(CH)(H)SiO2/2単位と(CH(H)SiO1/2単位と(CHSiO1/2単位とSiO4/2単位とからなる共重合体、(CH)(H)SiO2/2単位と(CH(H)SiO1/2単位と(CHSiO2/2単位と(CHSiO1/2単位とSiO4/2単位とからなる共重合体等が挙げられるほか、より好ましくは、例えば、以下のものが挙げられる。

Figure 2011246680
(式中、Rは前記と同様であり、pは3以上、pは1以上、p、qは共に1以上、pは3以上、qは1以上の整数である。但し、p〜p及びq〜qは、(C)成分のオルガノハイドロジェンポリシロキサンの25℃における粘度が0.001〜10Pa・s、好ましくは0.01〜5Pa・sとなる整数である。) Specifically, for example, 1,3,5,7-tetramethylcyclotetrasiloxane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane / dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogen poly Siloxane, Trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, both end dimethylhydrogensiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, Trimethylsiloxy group-capped methylhydrogensiloxane / diphenyl Siloxane copolymer, trimethylsiloxy group blocked at both ends, methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer, trimethylsiloxy group at both ends Chain methylhydrogensiloxane / methylphenylsiloxane / dimethylsiloxane copolymer, both ends dimethylhydrogensiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane / diphenylsiloxane copolymer, both ends dimethylhydrogensiloxy group-blocked methylhydrogensiloxane A dimethylsiloxane-methylphenylsiloxane copolymer, a copolymer comprising (CH 3 ) (H) SiO 2/2 units, (CH 3 ) 3 SiO 1/2 units and SiO 4/2 units, (CH 3 ) (H) a copolymer comprising SiO 2/2 units, (CH 3 ) 2 SiO 2/2 units, (CH 3 ) 3 SiO 1/2 units and SiO 4/2 units, (CH 3 ) (H ) and SiO 2/2 units (CH 3) 2 (H) and SiO 1/2 units (C 3) 3 SiO 1/2 units and SiO 4/2 units, copolymers composed of the (CH 3) (H) SiO 2/2 units and (CH 3) 2 (H) SiO 1/2 units (CH 3 ) A copolymer composed of 2 SiO 2/2 units, (CH 3 ) 3 SiO 1/2 units, and SiO 4/2 units may be mentioned, and more preferably, for example, the following may be mentioned.
Figure 2011246680
(In the formula, R 1 is the same as above, p 1 is 3 or more, p 2 is 1 or more, p 3 and q 3 are both 1 or more, p 4 is 3 or more, and q 4 is an integer of 1 or more. . However, p 1 ~p 4 and q 3 to q 4 is, (C) organohydrogenpolysiloxane of the component of 25 ° C. · viscosity 0.001~10Pa in s, preferably a 0.01~5Pa · s Is an integer.)

前記(B)成分及び(C)成分の配合量は、前記(B)成分及び(C)成分中のケイ素原子に結合した水素原子の合計個数が、前記(A)成分中のケイ素原子に結合したアルケニル基1個当たり0.3〜7個(即ち、該モル比が0.3〜7)、好ましくは0.5〜5個であり、かつ前記(B)成分中のケイ素原子に結合した水素原子の個数(モル数)が、前記(B)成分及び(C)成分のケイ素原子に結合した水素原子の合計個数(モル数)の5〜90%、好ましくは10〜70%となる量である。これらの個数(配合量)がかかる範囲を満たさない場合には、クラック耐性に劣る。
尚、(C)成分のオルガノハイドロジェンポリシロキサンも、一種単独で用いても二種以上を併用してもよい。
The blending amount of the component (B) and the component (C) is such that the total number of hydrogen atoms bonded to the silicon atoms in the components (B) and (C) is bonded to the silicon atoms in the component (A). 0.3 to 7 per alkenyl group (that is, the molar ratio is 0.3 to 7), preferably 0.5 to 5 and bonded to the silicon atom in the component (B) An amount in which the number of hydrogen atoms (number of moles) is 5 to 90%, preferably 10 to 70% of the total number (number of moles) of hydrogen atoms bonded to the silicon atoms of the components (B) and (C). It is. When these numbers (blending amounts) do not satisfy such a range, the crack resistance is poor.
The organohydrogenpolysiloxane of component (C) may be used alone or in combination of two or more.

<(D)成分>
(D)成分の付加反応触媒は、(A)成分、(B)成分、及び(C)成分の付加反応による架橋の触媒となるもので、その例としては、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸のオレフィン錯体、塩化白金酸とビニルシロキサンの配位化合物、白金黒等の白金系触媒、更にパラジウム系触媒、ロジウム系触媒等が挙げられ、触媒効率の高さの面から通常白金触媒が使用される。また特に本用途においては、エレクトロニクス分野である封止型LEDの作製に用いられることから、金属を腐食させる恐れのない低塩素触媒が好ましく、中でも塩素成分を含有しないジビニルテトラメチルジシロキサン、ジビニルジフェニルジメチルジシロキサン等で変性されたものが好ましい。これらの付加反応触媒は、一種単独で用いても二種以上を併用してもよい。
<(D) component>
The addition reaction catalyst of component (D) is a catalyst for crosslinking by addition reaction of component (A), component (B), and component (C). Examples thereof include chloroplatinic acid, chloroplatinic acid, Reactions with monohydric alcohols, olefin complexes of chloroplatinic acid, coordination compounds of chloroplatinic acid and vinylsiloxane, platinum-based catalysts such as platinum black, palladium-based catalysts, rhodium-based catalysts, etc. A platinum catalyst is usually used in terms of height. Particularly in this application, low chlorine catalysts that do not corrode metals are preferable because they are used for the production of sealed LEDs in the electronics field. Among them, divinyltetramethyldisiloxane and divinyldiphenyl that do not contain a chlorine component are preferred. Those modified with dimethyldisiloxane or the like are preferable. These addition reaction catalysts may be used alone or in combination of two or more.

尚、この付加反応触媒の配合量は触媒として作用する有効量(触媒量)であり、好ましくは(A)成分〜(C)成分の合計量に対して、1〜1000ppmである。1ppm以上であれば適度な速さで硬化が進み、1000ppm以下であれば作業可能な時間が短くなり過ぎることもなく、また硬化物が黄変し難いため経済的である。特に好ましくは5〜100ppmである。   In addition, the compounding quantity of this addition reaction catalyst is an effective quantity (catalyst quantity) which acts as a catalyst, Preferably it is 1-1000 ppm with respect to the total amount of (A) component-(C) component. If it is 1 ppm or more, curing proceeds at an appropriate speed, and if it is 1000 ppm or less, the workable time does not become too short, and the cured product is not easily yellowed, which is economical. Most preferably, it is 5-100 ppm.

<任意成分>
本発明の組成物において、上記の(A)〜(D)成分以外の任意の成分、(E)成分として、下記一般式(5)で表される直鎖状の反応性オルガノポリシロキサンを本発明の効果を損なわない範囲で添加してもよい。(E)成分は、組成物の硬化性や硬化物の硬度を調整したりする場合に有効な添加成分である。

Figure 2011246680
(式中、Rは前記と同様であり、mは(E)成分のオルガノポリシロキサンの25℃における粘度が0.001〜10Pa・s、好ましくは0.01〜1Pa・sとなる整数である。)
その使用量は(A)成分100質量部に対して、0〜100質量部、好ましくは0〜50質量部である。 <Optional component>
In the composition of the present invention, a linear reactive organopolysiloxane represented by the following general formula (5) is used as an optional component other than the components (A) to (D) and the component (E). You may add in the range which does not impair the effect of invention. The component (E) is an additive component effective for adjusting the curability of the composition and the hardness of the cured product.
Figure 2011246680
(In the formula, R 1 is the same as described above, and m is an integer at which the viscosity of the organopolysiloxane of component (E) at 25 ° C. is 0.001 to 10 Pa · s, preferably 0.01 to 1 Pa · s. is there.)
The usage-amount is 0-100 mass parts with respect to 100 mass parts of (A) component, Preferably it is 0-50 mass parts.

その他の任意成分としては、例えば、付加反応触媒に対して硬化抑制効果を持つ化合物とされている従来公知の制御剤化合物はすべて使用することができる。このような化合物としては、トリフェニルホスフィン等のリン含有化合物、トリブチルアミンやテトラメチルエチレンジアミン、ベンゾトリアゾール等の窒素含有化合物、硫黄含有化合物、アセチレン系化合物、アルケニル基を2個以上含む化合物、ハイドロパーオキシ化合物、マレイン酸誘導体等が例示される。制御剤化合物による硬化遅延効果の度合は、制御剤化合物の化学構造によって大きく異なるため、制御剤化合物の添加量は、使用する制御剤化合物の個々について最適な量に調整することが好ましく、一般的には、室温での長期貯蔵安定性が得られ、かつ硬化が阻害されない範囲程度の量、通常、(A)成分100質量部に対して、0.5質量部以下、好ましくは0.01〜0.3質量部の量で使用される。   As other optional components, for example, all conventionally known control agent compounds which are compounds having a curing inhibitory effect on the addition reaction catalyst can be used. Such compounds include phosphorus-containing compounds such as triphenylphosphine, nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole, sulfur-containing compounds, acetylenic compounds, compounds containing two or more alkenyl groups, hydropar Examples include oxy compounds and maleic acid derivatives. Since the degree of cure retarding effect by the control agent compound varies greatly depending on the chemical structure of the control agent compound, it is preferable to adjust the addition amount of the control agent compound to an optimum amount for each of the control agent compounds used. Is an amount in such a range that long-term storage stability at room temperature is obtained and curing is not inhibited, usually 0.5 parts by mass or less, preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of component (A). Used in an amount of 0.3 parts by weight.

また、本組成物には、その接着性を向上させるための接着付与剤を含有してもよい。この接着付与剤としては、シランカップリング剤やその加水分解縮合物等が例示される。シランカップリング剤としては、エポキシ基含有シランカップリング剤、(メタ)アクリル基含有シランカップリング剤、イソシアネート基含有シランカップリング剤、イソシアヌレート基含有シランカップリング剤、アミノ基含有シランカップリング剤、メルカプト基含有シランカップリング剤等公知のものが例示され、(A)成分と(B)成分の合計100質量部に対して好ましくは0.1〜20質量部、更に好ましくは、0.3〜10質量部である。   Moreover, you may contain the adhesion imparting agent for improving the adhesiveness in this composition. Examples of the adhesion-imparting agent include silane coupling agents and hydrolysis condensates thereof. As silane coupling agents, epoxy group-containing silane coupling agents, (meth) acrylic group-containing silane coupling agents, isocyanate group-containing silane coupling agents, isocyanurate group-containing silane coupling agents, amino group-containing silane coupling agents , And known ones such as a mercapto group-containing silane coupling agent are exemplified, and preferably 0.1 to 20 parts by mass, more preferably 0.3 to 100 parts by mass in total of the component (A) and the component (B). -10 parts by mass.

このような本発明の組成物の硬化物は、高透明性に優れ、過酷な温度サイクル下でもクラックや剥離が発生することがないため、発光ダイオードの封止材料として有用であり、更に、このような発光ダイオードは、例えばスイッチング素子や、照明、液晶ディスプレイのバックライト等、様々な分野において有用なものとなる。   Such a cured product of the composition of the present invention is excellent in high transparency and does not generate cracks or peeling even under severe temperature cycles, and is therefore useful as a sealing material for light-emitting diodes. Such a light emitting diode is useful in various fields such as a switching element, illumination, and backlight of a liquid crystal display.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例等に制限されるものではない。
[実施例1]
(PhSiO3/20.8[(CH=CH)MeSiO0.50.2で表される分岐鎖状オルガノポリシロキサン[ケイ素原子結合ビニル基の含有率=14.3モル%、ケイ素原子結合全有機基中のケイ素原子結合フェニル基の含有率=57モル%、標準スチレン換算の重量平均分子量=2350]100質量部、HMeSiO(PhSiO)SiMeHの構造を有する、粘度が4mPasのオルガノハイドロジェンポリシロキサン6.8質量部、ケイ素原子に結合した水素原子、フェニル基及びメチル基の合計に対してフェニル基を30モル%有し、水素ガス発生量が140ml/gである、粘度が20mPasのオルガノハイドロジェンポリシロキサン19.8質量部、塩化白金酸/1,3−ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するトルエン溶液0.06質量部、エチニルシクロヘキサノール0.05質量部、及びγ−グリシドキシプロピルトリメトキシシラン3質量部を均一混合して、シリコーン組成物(a)を調製した。このシリコーン組成物(a)を150℃で4時間加熱し硬化させたところ、硬さはShore Dで69であった。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example etc.
[Example 1]
(PhSiO 3/2 ) 0.8 [(CH 2 ═CH) Me 2 SiO 0.5 ] Branched organopolysiloxane represented by 0.2 [content of silicon atom-bonded vinyl group = 14.3 mol %, Silicon atom-bonded phenyl group content in all silicon-bonded organic groups = 57 mol%, weight average molecular weight in terms of standard styrene = 2350] 100 parts by mass, HMe 2 SiO (Ph 2 SiO) 1 SiMe 2 H 6.8 parts by mass of an organohydrogenpolysiloxane having a viscosity of 4 mPas having a structure, 30 mol% of phenyl groups based on the total of hydrogen atoms, phenyl groups and methyl groups bonded to silicon atoms, and hydrogen gas generation amount Is 19.8 parts by weight of an organohydrogenpolysiloxane having a viscosity of 20 mPas, chloroplatinic acid / 1,3-divinyltetate 0.06 parts by mass of a toluene solution containing 1% by mass of a platinum atom content of a lamethyldisiloxane complex, 0.05 parts by mass of ethynylcyclohexanol, and 3 parts by mass of γ-glycidoxypropyltrimethoxysilane were uniformly mixed. Thus, a silicone composition (a) was prepared. When this silicone composition (a) was cured by heating at 150 ° C. for 4 hours, the hardness was 69 in Shore D.

[実施例2]
HMeSiO(PhSiO)SiMeHの構造を有する、粘度が4mPasのオルガノハイドロジェンポリシロキサン24.6質量部、ケイ素原子に結合した水素原子、フェニル基及びメチル基の合計に対してフェニル基を30モル%有する水素ガス発生量が140ml/gである粘度が20mPasのオルガノハイドロジェンポリシロキサン2.6質量部を使用し、(B)成分の使用量の比率を変更した以外は、実施例1にしたがってシリコーン組成物(b)を調製した。このシリコーン組成物(b)を150℃で4時間加熱し硬化させたところ、硬さはShore Dで66であった。
[Example 2]
24.6 parts by mass of an organohydrogenpolysiloxane having a structure of HMe 2 SiO (Ph 2 SiO) 1 SiMe 2 H and a viscosity of 4 mPas, based on the total of hydrogen atoms, phenyl groups and methyl groups bonded to silicon atoms Except for using 2.6 parts by mass of an organohydrogenpolysiloxane having a viscosity of 20 mPas with a hydrogen gas generation amount of 140 mol / g having 30 mol% of phenyl groups, and changing the ratio of the amount of component (B) used, A silicone composition (b) was prepared according to Example 1. When the silicone composition (b) was cured by heating at 150 ° C. for 4 hours, the hardness was 66 in Shore D.

[実施例3]
HMeSiO(PhSiO)SiMeHの構造を有する、粘度が4mPasのオルガノハイドロジェンポリシロキサン2.7質量部、ケイ素原子に結合した水素原子、フェニル基及びメチル基の合計に対してフェニル基を30モル%有する水素ガス発生量が140ml/gである粘度が20mPasのオルガノハイドロジェンポリシロキサン23.8質量部を使用し、(B)成分の使用量の比率を変更した以外は、実施例1にしたがってシリコーン組成物(c)を調製した。このシリコーン組成物(c)を150℃で4時間加熱し硬化させたところ、硬さはShore Dで70であった。
[Example 3]
HMe 2 SiO (Ph 2 SiO) 1 SiMe 2 H structure, 2.7 parts by mass of an organohydrogenpolysiloxane having a viscosity of 4 mPas, based on the sum of hydrogen atoms, phenyl groups and methyl groups bonded to silicon atoms Except for using 23.8 parts by mass of an organohydrogenpolysiloxane having a viscosity of 20 mPas with a hydrogen gas generation rate of 140 ml / g having 30 mol% of phenyl groups, and changing the ratio of the amount of component (B) used, A silicone composition (c) was prepared according to Example 1. When the silicone composition (c) was cured by heating at 150 ° C. for 4 hours, the hardness was 70 in Shore D.

[比較例1]
HMeSiO(PhSiO)SiMeHの構造を有するオルガノハイドロジェンポリシロキサンを使用せず、ケイ素原子に結合した水素原子、フェニル基及びメチル基の合計に対してフェニル基を30モル%有する水素ガス発生量が140ml/gである粘度が20mPasのオルガノハイドロジェンポリシロキサン26質量部を使用した以外は、実施例1にしたがってシリコーン組成物(d)を調製した。このシリコーン組成物(d)を150℃で4時間加熱し硬化させたところ、硬さはShore Dで70であった。
[Comparative Example 1]
Without using an organohydrogenpolysiloxane having a structure of HMe 2 SiO (Ph 2 SiO) 1 SiMe 2 H, 30 mol% of the phenyl group is based on the total of hydrogen atoms, phenyl groups and methyl groups bonded to silicon atoms. A silicone composition (d) was prepared according to Example 1 except that 26 parts by mass of an organohydrogenpolysiloxane having a hydrogen gas generation amount of 140 ml / g and a viscosity of 20 mPas was used. When the silicone composition (d) was cured by heating at 150 ° C. for 4 hours, the hardness was 70 in Shore D.

[比較例2]
HMeSiO(PhSiO)SiMeHの構造を有するオルガノハイドロジェンポリシロキサン27質量部を使用し、ケイ素原子に結合した水素原子、フェニル基及びメチル基の合計に対してフェニル基を30モル%有する水素ガス発生量が140ml/gである粘度が20mPasのオルガノハイドロジェンポリシロキサンは使用しなかった以外は、実施例1にしたがってシリコーン組成物(e)を調製した。このシリコーン組成物(e)を150℃で4時間加熱し硬化させたところ、硬さはShore Dで65であった。
[Comparative Example 2]
Using 27 parts by mass of an organohydrogenpolysiloxane having a structure of HMe 2 SiO (Ph 2 SiO) 1 SiMe 2 H, 30 phenyl groups are added to the total of hydrogen atoms, phenyl groups and methyl groups bonded to silicon atoms. A silicone composition (e) was prepared according to Example 1, except that no organohydrogenpolysiloxane having a viscosity of 20 mPas and a hydrogen gas generation amount of 140% by mole was used. When this silicone composition (e) was cured by heating at 150 ° C. for 4 hours, the hardness was 65 in Shore D.

上記実施例及び比較例で調製したシリコーン組成物(a)〜(e)における評価方法を、下記の要領にて行った。
[評価方法]
発光半導体パッケージ
発光素子として、InGaNからなる発光層を有し、主発光ピークが470nmのLEDチップを搭載した、図1に示すような発光半導体装置を使用した。ここで、1が筐体、2が発光素子、3、4がリード電極、5がダイボンド材、6が金線、7が封止樹脂である。封止樹脂7の硬化条件は150℃、4時間である。
The evaluation methods in the silicone compositions (a) to (e) prepared in the above examples and comparative examples were performed as follows.
[Evaluation methods]
As the light emitting semiconductor package light emitting element, a light emitting semiconductor device as shown in FIG. 1 having a light emitting layer made of InGaN and mounting an LED chip having a main light emission peak of 470 nm was used. Here, 1 is a housing, 2 is a light emitting element, 3 and 4 are lead electrodes, 5 is a die bond material, 6 is a gold wire, and 7 is a sealing resin. The curing conditions for the sealing resin 7 are 150 ° C. and 4 hours.

耐湿及び赤外線リフローの試験方法
作製した発光半導体装置10個を、85℃、85%の恒温恒湿室に24時間入れた後、赤外線リフロー装置(260℃)を3回通し、外観の変化を観察した。結果を表1に示す。尚、樹脂のクラックやLEDパッケージからの剥離が確認されたものをNGとしてカウントした。
Moisture resistance and infrared reflow test method 10 light-emitting semiconductor devices were placed in a constant temperature and humidity chamber at 85 ° C and 85% for 24 hours, and then passed through an infrared reflow device (260 ° C) three times to observe changes in appearance. did. The results are shown in Table 1. In addition, the thing by which the crack of resin and the peeling from an LED package were confirmed was counted as NG.

Figure 2011246680
Figure 2011246680

表1に示されるように、(B)成分の割合((B)/(B)+(C))(モル%)が5〜90%の範囲内である実施例1〜3は、NG数がいずれも0であり、高温/低温の温度サイクル条件下でもクラック耐性が良好で、剥離も発生せず光取り出し効率が高いことがわかる。また、このようなシリコーン樹脂は、高透明性にも優れたものであった。
一方、(B)成分を全く含まない比較例1、及び(B)成分の割合が100%で、(C)成分を含まない比較例2は、半数以上に樹脂のクラックやLEDパッケージからの剥離が発生してしまった。これにより、封止材料として従来のものを用いた場合、LEDの生産性が悪くなってしまうことがわかる。
As shown in Table 1, Examples 1 to 3 in which the ratio of (B) component ((B) / (B) + (C)) (mol%) is within the range of 5 to 90% are NG numbers. Is 0, and the crack resistance is good even under high temperature / low temperature cycle conditions, it is understood that peeling does not occur and the light extraction efficiency is high. Moreover, such a silicone resin was also excellent in high transparency.
On the other hand, Comparative Example 1 containing no component (B) and 100% of component (B) and Comparative Example 2 containing no component (C) are more than half of the resin cracks and peeled off from the LED package. Has occurred. Thereby, when a conventional thing is used as a sealing material, it turns out that productivity of LED will worsen.

以上のことから、本発明の付加硬化型シリコーン樹脂組成物であれば、熱衝撃に対して高い耐性を有するため、クラックが生じ難いうえ光取り出し効率も高く、過酷な温度サイクル下に供されるLED用として有用なものであることが実証された。   From the above, since the addition-curable silicone resin composition of the present invention has high resistance to thermal shock, it is difficult to generate cracks and has high light extraction efficiency, and is subjected to severe temperature cycles. It proved to be useful for LEDs.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…筐体、 2…発光素子、 3、4…リード電極、 5…ダイボンド材、
6…金線、 7…封止樹脂。
DESCRIPTION OF SYMBOLS 1 ... Housing | casing 2 ... Light emitting element 3, 4 ... Lead electrode 5 ... Die-bonding material,
6 ... gold wire, 7 ... sealing resin.

Claims (2)

少なくとも、
(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、下記一般式(1)で表されるシロキサン単位を有する分岐鎖状オルガノポリシロキサン、
RSiO3/2 (1)
(式中、Rは置換又は非置換の一価炭化水素基である)
(B)分子鎖両末端のみにケイ素原子に結合した水素原子を有し、分子中に脂肪族不飽和結合を有しない、25℃における粘度が0.001〜10Pa・sである直鎖状のオルガノハイドロジェンポリシロキサン、
(C)ケイ素原子に結合した水素原子を1分子中に少なくとも3個有し、その内の少なくとも1個は下記一般式(2)で表されるシロキサン単位として存在する、25℃における粘度が0.001〜10Pa・sであるオルガノハイドロジェンポリシロキサン、
HSiO2/2 (2)
(式中、Rは脂肪族不飽和結合を有しない非置換又は置換の一価炭化水素基である)
(D)付加反応触媒 触媒量、
を含有するシリコーン樹脂組成物であって、
前記(B)成分及び(C)成分の配合量は、前記(B)成分及び(C)成分中のケイ素原子に結合した水素原子の合計個数が、前記(A)成分中のケイ素原子に結合したアルケニル基1個当たり0.3〜7個となり、かつ前記(B)成分中のケイ素原子に結合した水素原子の個数が、前記(B)成分及び(C)成分のケイ素原子に結合した水素原子の合計個数の5〜90%となる量であることを特徴とする発光ダイオード用付加硬化型シリコーン樹脂組成物。
at least,
(A) a branched organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule and having a siloxane unit represented by the following general formula (1):
RSiO 3/2 (1)
(Wherein R is a substituted or unsubstituted monovalent hydrocarbon group)
(B) a linear chain having a hydrogen atom bonded to a silicon atom only at both ends of the molecular chain, having no aliphatic unsaturated bond in the molecule, and a viscosity at 25 ° C. of 0.001 to 10 Pa · s Organohydrogenpolysiloxane,
(C) It has at least three hydrogen atoms bonded to silicon atoms in one molecule, and at least one of them is present as a siloxane unit represented by the following general formula (2), and the viscosity at 25 ° C. is 0 An organohydrogenpolysiloxane of 0.001 to 10 Pa · s,
R 1 HSiO 2/2 (2)
(Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond)
(D) addition reaction catalyst catalyst amount,
A silicone resin composition comprising:
The blending amount of the component (B) and the component (C) is such that the total number of hydrogen atoms bonded to the silicon atoms in the components (B) and (C) is bonded to the silicon atoms in the component (A). The number of hydrogen atoms bonded to the silicon atom in the component (B) is 0.3 to 7 per alkenyl group and the hydrogen bonded to the silicon atoms in the component (B) and the component (C) An addition-curable silicone resin composition for light-emitting diodes, characterized in that the amount is 5 to 90% of the total number of atoms.
前記(A)成分の前記一般式(1)で表されるシロキサン単位の含有量が、50〜100モル%であることを特徴とする請求項1に記載の発光ダイオード用付加硬化型シリコーン樹脂組成物。   2. The addition-curable silicone resin composition for a light-emitting diode according to claim 1, wherein the content of the siloxane unit represented by the general formula (1) in the component (A) is 50 to 100 mol%. object.
JP2010124273A 2010-05-31 2010-05-31 Addition-curing silicone resin composition for light-emitting diodes Active JP5426482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010124273A JP5426482B2 (en) 2010-05-31 2010-05-31 Addition-curing silicone resin composition for light-emitting diodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124273A JP5426482B2 (en) 2010-05-31 2010-05-31 Addition-curing silicone resin composition for light-emitting diodes

Publications (2)

Publication Number Publication Date
JP2011246680A true JP2011246680A (en) 2011-12-08
JP5426482B2 JP5426482B2 (en) 2014-02-26

Family

ID=45412344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124273A Active JP5426482B2 (en) 2010-05-31 2010-05-31 Addition-curing silicone resin composition for light-emitting diodes

Country Status (1)

Country Link
JP (1) JP5426482B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070525A1 (en) * 2010-11-25 2012-05-31 株式会社ダイセル Curable resin composition and cured article
WO2014041994A1 (en) * 2012-09-14 2014-03-20 横浜ゴム株式会社 Curable resin composition
JP2014107447A (en) * 2012-11-28 2014-06-09 Nitto Denko Corp Sealing sheet, optical semiconductor device and manufacturing method therefor
WO2015136820A1 (en) * 2014-03-12 2015-09-17 横浜ゴム株式会社 Curable resin composition
WO2016017593A1 (en) * 2014-07-28 2016-02-04 住友化学株式会社 Method for producing semiconductor light-emitting device
WO2020035152A1 (en) * 2018-08-17 2020-02-20 Wacker Chemie Ag Crosslinkable organosiloxane compositions
WO2020035151A1 (en) * 2018-08-17 2020-02-20 Wacker Chemie Ag Crosslinkable organoysiloxane compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084766A (en) * 2005-09-26 2007-04-05 Shin Etsu Chem Co Ltd Addition-curable silicone composition excellent in crack resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084766A (en) * 2005-09-26 2007-04-05 Shin Etsu Chem Co Ltd Addition-curable silicone composition excellent in crack resistance

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111875A (en) * 2010-11-25 2012-06-14 Daicel Corp Curable resin composition and cured article
WO2012070525A1 (en) * 2010-11-25 2012-05-31 株式会社ダイセル Curable resin composition and cured article
US9346954B2 (en) 2012-09-14 2016-05-24 The Yokohama Rubber Co., Ltd. Curable resin composition
WO2014041994A1 (en) * 2012-09-14 2014-03-20 横浜ゴム株式会社 Curable resin composition
JPWO2014041994A1 (en) * 2012-09-14 2016-08-18 横浜ゴム株式会社 Curable resin composition
JP2014107447A (en) * 2012-11-28 2014-06-09 Nitto Denko Corp Sealing sheet, optical semiconductor device and manufacturing method therefor
WO2015136820A1 (en) * 2014-03-12 2015-09-17 横浜ゴム株式会社 Curable resin composition
JPWO2015136820A1 (en) * 2014-03-12 2017-04-06 横浜ゴム株式会社 Curable resin composition
US10100156B2 (en) 2014-03-12 2018-10-16 The Yokohama Rubber Co., Ltd. Curable resin composition
WO2016017593A1 (en) * 2014-07-28 2016-02-04 住友化学株式会社 Method for producing semiconductor light-emitting device
JPWO2016017593A1 (en) * 2014-07-28 2017-04-27 住友化学株式会社 Manufacturing method of semiconductor light emitting device
US20170229622A1 (en) * 2014-07-28 2017-08-10 Sumitomo Chemical Company, Limited Method for producing semiconductor light-emitting device
US9954152B2 (en) 2014-07-28 2018-04-24 Sumitomo Chemical Company, Limited Method for producing semiconductor light-emitting device
TWI666793B (en) * 2014-07-28 2019-07-21 日商住友化學股份有限公司 Method of manufacturing semiconductor luminescent device
WO2020035152A1 (en) * 2018-08-17 2020-02-20 Wacker Chemie Ag Crosslinkable organosiloxane compositions
WO2020035151A1 (en) * 2018-08-17 2020-02-20 Wacker Chemie Ag Crosslinkable organoysiloxane compositions
CN111936556A (en) * 2018-08-17 2020-11-13 瓦克化学股份公司 Crosslinkable organosiloxane compositions
KR20200136444A (en) * 2018-08-17 2020-12-07 와커 헤미 아게 Crosslinkable organosiloxane composition
KR20210003237A (en) * 2018-08-17 2021-01-11 와커 헤미 아게 Crosslinkable organosiloxane composition
CN112996841A (en) * 2018-08-17 2021-06-18 瓦克化学股份公司 Crosslinkable organosiloxane compositions
JP2021534294A (en) * 2018-08-17 2021-12-09 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Crosslinkable organosiloxane composition
JP2021534295A (en) * 2018-08-17 2021-12-09 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Crosslinkable organosiloxane composition
CN111936556B (en) * 2018-08-17 2022-05-03 瓦克化学股份公司 Crosslinkable organosiloxane compositions
KR102435198B1 (en) 2018-08-17 2022-08-22 와커 헤미 아게 Crosslinkable Organosiloxane Composition
KR102471220B1 (en) 2018-08-17 2022-11-25 와커 헤미 아게 Cross-linkable organosiloxane composition
CN112996841B (en) * 2018-08-17 2022-12-27 瓦克化学股份公司 Crosslinkable organosiloxane compositions
JP7203196B2 (en) 2018-08-17 2023-01-12 ワッカー ケミー アクチエンゲゼルシャフト Crosslinkable organosiloxane composition
JP7336509B2 (en) 2018-08-17 2023-08-31 ワッカー ケミー アクチエンゲゼルシャフト Crosslinkable organosiloxane composition

Also Published As

Publication number Publication date
JP5426482B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5751214B2 (en) Curable silicone resin composition, cured product thereof and optical semiconductor device
TWI679244B (en) Addition-curable silicone resin composition, method for producing the same, and optical semiconductor device
KR101722089B1 (en) Curable organopolysiloxane composition and optical semiconductor device
TWI504683B (en) A hardened silicon oxide composition, a hardened product thereof, and an optical semiconductor device
JP6607644B2 (en) Curable silicone composition, curable hot melt silicone, and optical device
JP5426482B2 (en) Addition-curing silicone resin composition for light-emitting diodes
TWI557181B (en) Cross-linkable silicone composition and cross-linked product thereof
JP5524017B2 (en) Addition-curable silicone composition and semiconductor device in which semiconductor element is coated with cured product of the composition
JP2012052035A (en) Addition-curable silicone composition, optical element encapsulating material comprising the composition, and semiconductor device in which optical element is encapsulated with cured product of the optical element encapsulating material
JP2009256400A (en) Silicone adhesive for semiconductor element
JP5377401B2 (en) Curable organopolysiloxane composition
JP6463663B2 (en) Adhesion promoter, addition-curable organopolysiloxane resin composition, and semiconductor device
JP6923475B2 (en) Additive-curable silicone compositions, silicone cured products, and opto-semiconductor devices
KR20140017447A (en) Addition-curable silicone composition, and semiconductor device having semiconductor element coated with cured product of said composition
CN108795049B (en) Addition-curable silicone composition, method for producing same, and optical semiconductor device
EP3587498B1 (en) Curable organopolysiloxane composition and semiconductor device
JP5567865B2 (en) Addition-curing silicone resin composition for light-emitting diode and light-emitting diode
JP5931767B2 (en) Curable resin composition for light reflecting material, cured product of the composition, reflector comprising the cured product of the composition, and optical semiconductor device using the same
JPWO2018061754A1 (en) Crosslinkable organopolysiloxane composition, cured product thereof and LED device
JP5231472B2 (en) Addition-curing silicone resin composition for light-emitting diodes
JP2020070402A (en) Addition-curable silicone resin composition, cured product of the same, and optical semiconductor device
JP2019085464A (en) Addition-curable silicone composition, cured product, and optical device
JP2020122061A (en) Curable silicone resin composition
TW202026362A (en) Addition-curable silicone composition, cured silicone and optical element
JP2013047354A (en) Self-adhesive polyorganosiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150