JP2011244395A - 無線通信装置及びその制御方法 - Google Patents
無線通信装置及びその制御方法 Download PDFInfo
- Publication number
- JP2011244395A JP2011244395A JP2010117294A JP2010117294A JP2011244395A JP 2011244395 A JP2011244395 A JP 2011244395A JP 2010117294 A JP2010117294 A JP 2010117294A JP 2010117294 A JP2010117294 A JP 2010117294A JP 2011244395 A JP2011244395 A JP 2011244395A
- Authority
- JP
- Japan
- Prior art keywords
- wireless communication
- communication network
- unit
- network
- delay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
【課題】異なる無線通信ネットワークへのハンドオーバを行った際、再生品質の低下を防止可能な無線通信装置を提供する。
【解決手段】第1無線通信ネットワーク121から第2無線通信ネットワーク122へハンドオーバを行うことが決定されると、遅延予測部321は、位置情報取得部330から取得した位置情報に対応付けられたネットワーク遅延値を、遅延値テーブル322から読み出す。遅延予測部321は、第2無線通信遅延時間βと、ハンドオーバ前の第1無線通信遅延時間αとを用いて、最適なジッタバッファサイズを予測し、ジッタバッファ制御部320にこの予測したジッタバッファサイズを供給する。ジッタバッファ制御部320は、遅延予測部321から供給されたジッタバッファサイズに切り替えるように、ジッタバッファ309を制御する。
【選択図】図3
【解決手段】第1無線通信ネットワーク121から第2無線通信ネットワーク122へハンドオーバを行うことが決定されると、遅延予測部321は、位置情報取得部330から取得した位置情報に対応付けられたネットワーク遅延値を、遅延値テーブル322から読み出す。遅延予測部321は、第2無線通信遅延時間βと、ハンドオーバ前の第1無線通信遅延時間αとを用いて、最適なジッタバッファサイズを予測し、ジッタバッファ制御部320にこの予測したジッタバッファサイズを供給する。ジッタバッファ制御部320は、遅延予測部321から供給されたジッタバッファサイズに切り替えるように、ジッタバッファ309を制御する。
【選択図】図3
Description
本発明は、異なる無線通信ネットワーク間でのハンドオーバが可能な無線通信装置及びその制御方法に関する。
IETF(Internet Engineering Task Force)では、ユビキタス環境の実現に向け、例えば携帯電話のネットワークや無線LANといった異なる複数の無線通信ネットワーク間でのハンドオーバが可能で、シームレスな移動を行うことができるIPモビリティ技術が検討されている。このIPモビリティ技術における具体的なプロトコルとしては、通信端末個々の移動をサポートするモバイルIPv4及びモバイルIPv6(以下、これらを総称して「モバイルIP」という。)や、ネットワーク単位での移動をサポートするNEMO(Network Mobility)がある。
ところで、無線通信ネットワークを介して、VoIP等のリアルタイム性を有するアプリケーションを実行する場合、無線通信経路の許容帯域は、フェージング等の伝搬環境に依存して変化し、その許容帯域の変化に応じて通信端末が受信するパケットの到着間隔も変化する。このため、一般には、通信端末にジッタバッファを設け、受信したパケットを一旦ジッタバッファに溜め込み、その後、アプリケーションに応じた間隔でジッタバッファからパケットを読み出して再生することが行われる。これにより、パケットの揺らぎ、すなわち到着間隔のずれ(ジッタ)によるパケットの再生間隔のずれが吸収され、再生音質等の再生品質の低下が防止される。
また、ジッタが大きく、ジッタバッファ内のパケットがなくなって無音等が発生してしまう場合や、短時間で大量にパケットを受信して、パケットがジッタバッファに入りきらない場合には、再生速度を変えたり、受信したパケットを破棄したり、ジッタバッファのサイズを変更することが行われる。
一方、通信端末が受信するパケットの下り絶対遅延時間、すなわち、相手通信端末から送信されたパケットが、無線通信ネットワークを介して受信されるまでに要する時間(遅延時間)は、無線通信ネットワークによって異なる。このため、通信端末が移動する無線通信装置である場合、異なる無線通信ネットワークにハンドオーバした際、例えば、ハンドオーバ先の下り絶対遅延時間がハンドオーバ元の下り絶対遅延時間より長いと、その差の分だけパケットの受信空き時間が生じることになる。
このような場合、例えば、ジッタバッファからのパケットの読み出し間隔を、アプリケーションに応じた一定の間隔として一定の再生速度でパケットを再生すると、つぎのようなことが起こる。ハンドオーバ元の無線通信ネットワークから受信した最後のパケットがジッタバッファから読み出されるまでに要する時間(すなわち、ジッタバッファ標準遅延時間)よりも、上記の受信空き時間が長い場合、その長い分の時間は、ジッタバッファ内でパケットが空となる。この結果、少なくとも、この時間帯はパケットの再生が行われないので、無音等の状態となって再生品質の低下を招くことになる。
この事象について詳述する。ここで、ハンドオーバ元の無線通信ネットワークA及びハンドオーバ先の無線通信ネットワークBの各々において、受信パケットに揺らぎ(到着間隔のずれ)は無いものとする。
ハンドオーバ先の無線通信ネットワークBにおける下り絶対遅延時間TddnBが、ハンドオーバ元の無線通信ネットワークAにおける下り絶対遅延時間TddnAよりも長く、かつ、この時間差(TddnB−TddnA)が、ジッタバッファ内に標準のパケット数が蓄積されているときに受信パケットが受けるジッタバッファ標準遅延時間Taよりも長い場合、式(1)で示される時間Tnはパケットの再生が行われない。
Tn={(TddnB−TddnA)−Ta} …(1)
Tn={(TddnB−TddnA)−Ta} …(1)
しかも、この場合、ハンドオーバ先の無線通信ネットワークBからパケットを受信すると直ちに再生が行われるため、ジッタを吸収することができない。このようなハンドオーバ時の不具合を改善し得るものとして、ハンドオーバを行う際、ハンドオーバまでの準備時間と、ハンドオーバを行う前後のネットワークにおけるそれぞれの遅延時間とを事前に取得し、これらの時間に基づいてパケットの再生速度を制御するジッタバッファの制御方法が提案されている(例えば、特許文献1参照)。
しかし、上記制御方法には、つぎのような問題があった。日本では、第1世代から第2世代移動通信システムの周波数帯には、800MHz帯と1.5GHz帯が使用され、第3世代移動通信システムの周波数帯には、800MHz帯と2.0GHz帯が使用され、モバイルWiMAXでは2.5GHz帯が使用されている。このように、移動通信システムの世代が変わると、使用される周波数帯が高くなる傾向にある。
また、移動通信システムで伝送速度を大きくする場合、この伝送速度を収容人数で分け合うことから、1人に割り当てられる通信速度は下がる。このため、高速通信を実現するためには、個々のセルのエリアを小さくして対応することが一般的な手法である。よって、世代が変わると、ネットワークの基地局及びアクセスポイントがカバーするセル領域は、縮小する傾向にある。
第3世代移動通信システムのセル領域は数kmであるが、次世代の第4世代又は第5世代移動通信システムでは、セル領域が半径数百mといったミクロセル化又は数十mといったピコセル化されていくと予想されている。すなわち、各基地局及び各アクセスポイントが重なる領域も小さくなるので、より高速なハンドオーバが求められる。
例えば、従来よりも縮小したセル領域において、乗り物で高速移動しながら移動通信を行う際、特許文献1に示されたジッタバッファの制御方法では、第1無線通信ネットワークから第2無線通信ネットワークへハンドオーバする際、つぎのようなことが考えられる。すなわち、第1無線通信ネットワーク及び第2無線通信ネットワークにおけるそれぞれの遅延時間を取得するために、パケットのラウンドトリップ(往復時間)だけ待つ必要が発生する。さらに、ハンドオーバまでの準備時間を計算するために、遅延時間の取得や準備時間の計算中にハンドオーバが完了し、ジッタバッファの制御が間に合わない懸念がある。
また、ハンドオーバによる遅延時間の取得や準備時間の計算中に、無線通信装置がさらに第3無線通信ネットワークの領域に入った場合、さらなる遅延時間の取得に要する時間が増え、ますますジッタバッファの制御が間に合わない懸念がある。
本発明の目的は、異なる無線通信ネットワークへのハンドオーバを行っても再生品質の低下を防止可能な無線通信装置及びその制御方法を提供することである。
本発明の無線通信装置は、第1無線通信ネットワーク又は第2無線通信ネットワークに接続され、無線通信を行う無線通信装置であって、前記第1無線通信ネットワーク又は前記第2無線通信ネットワークを介して伝送されるパケットデータを一時的に格納し、当該パケットデータのジッタを補正するバッファ部と、前記バッファ部の容量を制御するバッファ制御部と、前記第1無線通信ネットワーク及び前記第2無線通信ネットワークにそれぞれ接続された無線接続装置からの電波強度を取得する電波強度取得部と、前記電波強度取得部によって取得された電波強度に基づき、前記第1無線通信ネットワークから前記第2無線通信ネットワークへのハンドオーバを行うか否かを決定し、前記ハンドオーバの実行を制御するハンドオーバ制御部と、前記無線通信装置の位置情報を取得する位置情報取得部と、を備え、前記ハンドオーバ制御部によって前記第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、前記バッファ制御部は、前記位置情報取得部によって取得された位置情報に基づき、前記バッファ部の容量を制御する構成を有する。
これにより、第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、バッファ制御部は、位置情報に基づき、バッファ部の容量を制御するので、高速移動中や次世代移動通信ネットワークの下においても、リアルタイム性を低下させることなく、高速なハンドオーバが要求されるハンドオーバ時であっても、バッファ部の制御が可能である。従って、異なる無線通信ネットワークへのハンドオーバを行った際、再生品質の低下を防止することができる。
また、本発明の無線通信装置は、前記位置情報に対応するネットワーク遅延値が格納された遅延値格納部と、前記遅延値格納部から前記位置情報部によって取得された位置情報に対応する前記ネットワーク遅延値を取得し、前記第2無線通信ネットワークを介して伝送される前記パケットデータのネットワーク遅延量を予測する遅延予測部と、を備え、前記ハンドオーバ制御部によって前記第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、前記遅延予測部は、前記ネットワーク遅延量を予測し、前記バッファ制御部は、前記遅延予測部によって予測された前記第2無線通信ネットワークのネットワーク遅延量が前記第1無線通信ネットワークのネットワーク遅延量に比べて大きい場合、前記バッファ部の容量を小さくし、前記第2無線通信ネットワークのネットワーク遅延量が前記第1無線通信ネットワークのネットワーク遅延量に比べて小さい場合、前記バッファ部の容量を大きくする構成を有する。
これにより、第2無線通信ネットワークのネットワーク遅延量が第1無線通信ネットワークのネットワーク遅延量に比べて大きい場合、バッファ部の容量が小さくなり、第2無線通信ネットワークのネットワーク遅延量が第1無線通信ネットワークのネットワーク遅延量に比べて小さい場合、バッファ部の容量が大きくなるので、ハンドオーバ先の無線通信ネットワークに適した容量のバッファ部に切り替えることが可能となる。従って、例えば、VoIP通話中にハンドオーバが発生しても、ハンドオーバの前後で相手通信端末と無線通信装置の間での遅延時間を同一に揃えることができ、音途切れが発生することなく、通話を行うことが可能となる。
また、本発明の無線通信装置は、前記遅延予測部によって予測された前記第2無線通信ネットワークを介して伝送される前記パケットデータである音声データのネットワーク遅延量、及び前記バッファ制御部によって制御された前記バッファ部の容量に基づき、再生速度を算出する再生速度制御部と、前記ハンドオーバ制御部によって前記ハンドオーバが行われた場合、前記再生速度制御部によって算出された再生速度になるように、前記音声データの再生速度を変更する速度変更部と、を備えた構成を有する。
これにより、ハンドオーバが行われた場合、音声データのネットワーク遅延量及びバッファ部の容量に基づいて算出された再生速度になるように、音声データの再生速度が変更されるので、ハンドオーバの前から後へ切り替わる際、1倍速に近い速度でバッファ部の滞留時間を変化させることができ、ユーザに違和感を生じさせることなく、より品質の高い通話が可能となる。
また、本発明の無線通信装置は、前記バッファ部に格納された音声データのうち、無音データのパケット数を計数する無音検出部を備え、前記再生速度制御部は、前記無音検出部によって計数された前記無音データのパケット数と、前記第1無線通信ネットワークのネットワーク遅延量と前記遅延予測部によって予測された前記第2無線通信ネットワークのネットワーク遅延量の差である遅延差分値と、前記バッファ制御部によって制御された前記バッファ部の容量に基づき、前記再生速度を算出する構成を有する。これにより、バッファ部に格納された音声データのうち、無音データのパケット数に応じて再生速度が変更されるので、より1倍速に近い速度で滞留時間を変化させることができる。
また、本発明の無線通信装置は、前記遅延値格納部は、前記位置情報に対応するネットワーク遅延値が格納された遅延値テーブルを有し、接続中の無線通信ネットワークに接続されたサーバ装置から受信した情報、当該無線通信装置の周辺に位置する他の無線通信装置から受信した情報、又は当該無線通信装置が通信を行った履歴情報を用いて、前記遅延値テーブルを更新する構成を有する。これにより、最新のネットワーク遅延値に更新されるので、位置や環境が変化しても、高い通話品質を維持することができる。
また、本発明の無線通信装置は、前記位置情報取得部は、GPS又は前記第2無線通信ネットワークから前記位置情報を取得する構成を有する。これにより、位置情報を容易に取得することができる。
また、本発明の無線通信装置の制御方法は、第1無線通信ネットワーク又は第2無線通信ネットワークに接続され、無線通信を行う無線通信装置の制御方法であって、前記第1無線通信ネットワーク又は前記第2無線通信ネットワークを介して伝送されるパケットデータを一時的に格納し、当該パケットデータのジッタを補正するバッファ部の容量を制御するバッファ制御ステップと、前記第1無線通信ネットワーク及び前記第2無線通信ネットワークにそれぞれ接続された無線接続装置からの電波強度を取得する電波強度取得ステップと、前記電波強度取得ステップで取得された電波強度に基づき、前記第1無線通信ネットワークから前記第2無線通信ネットワークへのハンドオーバを行うか否かを決定し、前記ハンドオーバの実行を制御するハンドオーバ制御ステップと、前記無線通信装置の位置情報を取得する位置情報取得ステップと、を有し、前記ハンドオーバ制御ステップで前記第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、前記バッファ制御ステップでは、前記位置情報取得ステップで取得された位置情報に基づき、前記バッファ部の容量を制御する構成を有する。
これにより、第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、バッファ制御ステップでは、位置情報に基づき、バッファ部の容量を制御するので、高速移動中や次世代移動通信ネットワークの下においても、リアルタイム性を低下させることなく、高速なハンドオーバが要求されるハンドオーバ時であっても、バッファ部の制御が可能である。従って、異なる無線通信ネットワークへのハンドオーバを行った際、再生品質の低下を防止することができる。
本発明によれば、第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、バッファ制御部は、位置情報に基づき、バッファ部の容量を制御するので、高速移動中や次世代移動通信ネットワーク下でもリアルタイム性の低下なく、高速なハンドオーバが要求されるハンドオーバ時にもバッファ部の制御が可能である。したがって、異なる無線通信ネットワークへのハンドオーバを行った際、再生品質の低下を防止することができる。
以下、本発明の実施形態について、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態の無線通信装置101が使用可能な通信ネットワークの構成を示す図である。この通信ネットワークにおいて、移動ノードである無線通信装置101は、対向ノードである相手通信端末103との間で、リアルタイム通信系のアプリケーションであるVoIP(Voice over Internet Protocol)による通話を行う。
図1は、第1の実施形態の無線通信装置101が使用可能な通信ネットワークの構成を示す図である。この通信ネットワークにおいて、移動ノードである無線通信装置101は、対向ノードである相手通信端末103との間で、リアルタイム通信系のアプリケーションであるVoIP(Voice over Internet Protocol)による通話を行う。
無線通信装置101は、第1無線通信ネットワーク121と第2無線通信ネットワーク122の間でハンドオーバが可能である。第1無線通信ネットワーク121は、第1無線通信ゲートウェイ131を介してインターネット140に結合されている。また、第2無線通信ネットワーク122は、第2無線通信ゲートウェイ132を介してインターネット140に結合されている。
ここで、第1無線通信ネットワーク121は、例えばLTE(Long Term Evolution)という次世代ネットワークである。また、第2無線通信ネットワーク122は、例えば無線LANである。なお、第1及び第2無線通信ネットワークはこのような組み合わせに限定されないことは勿論である。
また、本実施形態では、無線通信装置101は、ハンドオーバの前、基地局111を介して第1無線通信ネットワーク121と接続される。また、無線通信装置101は、ハンドオーバの後、アクセスポイント112を介して第2無線通信ネットワーク122と接続される。なお、基地局111及びアクセスポイント112はそれぞれ無線接続装置に相当する。
相手通信端末103は、例えば送受話器を有し、図示しないインターネットサービスプロバイダが提供するサービスを利用できる端末であり、VoIPゲートウェイ133を介してインターネット140に接続されている。
インターネット140には、図示しないSIP(Session Initiation Protocol)サーバやホームエージェント(HA)が接続されている。
この通信ネットワークでは、HAに、無線通信装置101が本来属する無線通信ネットワークで用いるホームアドレスを登録するとともに、ハンドオーバ時にハンドオーバ先の無線通信ネットワークの気付けアドレス(care of address)を登録することが行われる。これにより、無線通信装置101は、異なる無線通信ネットワーク間におけるハンドオーバを可能とする。なお、このようなIPモビリティ技術については、前述したモバイルIPや、NEMOにおいて既に公知の技術であるので、ここではその詳細な説明を省略する。
図1に示される第1無線通信遅延時間αは、第1無線通信ゲートウェイ131から第1無線通信ネットワーク121及び基地局111を介して無線通信装置101までのパケット遅延時間を意味する。このパケット遅延時間は、パケットに含まれる時間情報とパケット受信間隔から求められる。
また、第2無線通信遅延時間βは、後述するように、遅延予測部321(図3参照)が最新の位置情報を取得するように位置情報取得部330(図3参照)を制御し、この取得した位置情報に対応付けられたネットワーク遅延値を遅延値テーブル322(図3参照)から読み出すことにより得られる。
なお、遅延時間γは、VoIPゲートウェイ133から第1無線通信ゲートウェイ131までのパケット遅延時間を意味する。また、遅延時間δは、VoIPゲートウェイ133から第2無線通信ゲートウェイ132までのパケット遅延時間を意味する。これらの遅延時間γと遅延時間δは、共通のインターネット140におけるパケットの送受信に係る時間であることから、第1無線通信遅延時間αと第2無線通信遅延時間βの差分の大きさに比べ、γ≒δとして考えることができる。
図2は、無線通信装置101の構成を示す機能ブロック図である。無線通信装置101は、第1無線通信ネットワーク121に対応する第1無線I/F201(インターフェース)、第2無線通信ネットワーク122に対応する第2無線I/F202、VoIPのアプリケーションを実行する実行部を構成する電話機能部240、及び第1無線通信ネットワーク121と第2無線通信ネットワーク122への接続を制御する通信制御部230を有する。また、無線通信装置101は、第1無線通信ネットワーク121及び第2無線通信ネットワーク122の電波強度情報を取得する電波強度情報取得部210、及び第1無線通信ネットワーク121と第2無線通信ネットワーク122との間のハンドオーバを制御するハンドオーバ制御部220を有する。
通信制御部230は、無線通信を実行する無線通信部を構成するものである。通信制御部230は、第1無線通信ネットワーク121又は第2無線通信ネットワーク122を介して、電話機能部240と相手通信端末103との間で行われる通話を制御する。また、通信制御部230は、ハンドオーバ制御部220による制御の下、第1無線I/F201又は第2無線I/F202を制御する。
電波強度情報取得部210(電波強度取得部)は、第1無線I/F201及び第2無線I/F202からそれぞれ対応する第1無線通信ネットワーク121及び第2無線通信ネットワーク122の電波強度情報を取得し、この取得した電波強度情報をハンドオーバ制御部220に供給する。
ハンドオーバ制御部220は、電波強度情報取得部210から供給された電波強度情報を基に、第1無線通信ネットワーク121から第2無線通信ネットワーク122へハンドオーバを行うか否かを決定する。ハンドオーバ制御部220は、第1無線通信ネットワーク121から第2無線通信ネットワーク122へのハンドオーバを行うと決定した場合、電話機能部240に対し、第2無線通信ネットワーク122の遅延予測を行うように指示する。
電話機能部240は、ハンドオーバ制御部220からの指示を受けると、ハンドオーバ先である第2無線通信ネットワーク122の遅延予測を行う。
図3は、電話機能部240の構成を示す機能ブロック図である。電話機能部240は、例えばソフトフォンからなり、公知のソフトフォンと同様の構成を有する。すなわち、電話機能部240は、全体制御部301、ボタン入力部302、画面表示部303、SIP制御部304、マイク305、エンコーダ306、パケット送信部307、パケット受信部308、ジッタバッファ309、デコーダ310、スピーカ311、ジッタバッファ制御部320、遅延予測部321、遅延値テーブル322及び位置情報取得部330を有する。
全体制御部301は、ハンドオーバ制御部220から指示を受けると、第2無線通信遅延時間βの遅延予測を行うために、遅延予測部321を制御する。
位置情報取得部330は、例えばGPS(全地球測位システム:Global Positioning System)から位置情報を取得する。また、位置情報取得部330は、第2無線通信ネットワーク122におけるアクセスポイント112のセルIDを位置情報として取得する。
遅延値テーブル322(遅延値格納部)は、例えば、GPSの位置情報に対応付けられたネットワーク遅延値を、無線通信装置101の通信履歴遅延情報として保持(格納)している。なお、遅延値テーブル322は、接続中の通信ネットワークに接続されたサーバ(図示せず)からダウンロードした遅延情報を無線通信装置101の通信履歴遅延情報の初期値とする。ユーザは、サーバから必要に応じて遅延情報をダウンロードし、遅延値テーブル322を初期化することができる。
遅延予測部321は、最新の位置情報を取得するように位置情報取得部330を制御し、取得した位置情報に対応付けられたネットワーク遅延値を遅延値テーブル322から読み出し、第2無線通信遅延時間β(ネットワーク遅延量)を取得(予測)する。
また、遅延予測部321は、この取得した第2無線通信遅延時間βと、ハンドオーバ前にあらかじめ分かっている第1無線通信遅延時間αとを用いて、遅延時間差分値(β−α)を算出し、この遅延差分値である遅延時間差分値(β−α)から最適なジッタバッファサイズを予測する。そして、遅延予測部321は、ジッタバッファ制御部320にこの予測したジッタバッファサイズを供給する。
ジッタバッファ制御部320は、遅延予測部321から供給されたジッタバッファサイズに切り替えるように、ジッタバッファ309を制御する。ジッタバッファ309は第1又は第2無線通信ネットワークを介して伝送されるパケットデータを一時的に格納し、このパケットデータのジッタ(受信間隔のずれ)を補正する。
なお、上記各部の機能は、CPUがプログラムを実行することによりハードウェア回路とともに実現されてもよいし、全てハードウェア回路で実現されてもよい。
上記構成を有する無線通信装置101の動作を示す。図4は、電話機能部240における遅延予測動作手順を示すフローチャートである。電話機能部240内の全体制御部301は、ハンドオーバ制御部220によってハンドオーバを行うことが決定され、ハンドオーバ制御部220から第2無線通信ネットワーク122の遅延予測を行うように指示されたか否かを判別する(ステップS1)。
遅延予測を行うように指示されていない場合、本動作は終了する。一方、遅延予測を行うように指示されている場合、全体制御部301は、無線通信装置101の位置情報を取得するように、遅延予測部321を制御する。遅延予測部321は、位置情報取得部330から最新の位置情報を取得する(ステップS2)。
遅延予測部321は、この位置情報に対応付けられたネットワーク遅延値を遅延値テーブル322から読み出し(ステップS3)、第2無線通信遅延時間βを取得する(ステップS4)。
ここで、遅延予測部321が遅延値テーブル322を用いて第2無線通信遅延時間βを取得する方法について説明する。遅延値テーブル322には、第N無線通信遅延時間(N=1,2,・・・)における遅延値テーブルが複数設けられている。図5は、GPSから得られた位置情報(経度・緯度)の範囲と第N無線通信遅延時間(N=1,2,・・・)とが対応付けられた遅延値テーブルを示す図である。
第2無線通信遅延時間βは、例えば、位置情報取得部330から取得した位置情報(経度・緯度)をもとに、第2無線通信における遅延値テーブルから、数式(2)を満たす第2無線通信遅延時間zn(ms)として読み出される。
xn≦経度≦xm かつ yn≦緯度≦ym …(2)
ただし、n,mは自然数である。
遅延予測部321は、この取得した第2無線通信遅延時間βと、ハンドオーバ前の第1無線通信遅延時間αとを用いて、遅延時間差分値(β−α)を求め、この遅延時間差分値(β−α)から最適なジッタバッファサイズPBSize2を算出する(ステップS5)。
ここで、第2無線通信ネットワーク122におけるジッタバッファサイズ(予測値)PBSize2(Predict Buffer Size)を予測する方法について説明する。第1無線通信ネットワーク121から第2無線通信ネットワーク122へハンドオーバを行う際、通信路における遅延時間が変わっても、相手通信端末103から無線通信装置101で音声が出力されるまでの遅延時間は一定であることが望ましい。このため、第2無線通信ネットワークにおけるジッタバッファサイズPBSize2は、数式(3)に従って算出される。
PBSize2={1−(β−α)/X}*PBSize1 …(3)
ただし、PBSize1は第1無線通信ネットワーク121におけるジッタバッファサイズである。Xはジッタバッファ制御部320から取得することができる現在通信中の第1無線通信ネットワーク121におけるジッタバッファ309での音声データ滞留時間である。
遅延予測部321は、この算出されたジッタバッファサイズをジッタバッファ制御部320に供給する。
ジッタバッファ制御部320は、ジッタバッファ309を制御し、遅延予測部321から供給されたジッタバッファサイズに切り替える(ステップS6)。すなわち、ジッタバッファ制御部320は、数式(3)から明らかなように、遅延予測部321によって予測された第2無線通信遅延時間βが第1無線通信遅延時間αに比べて長い場合、ジッタバッファ309のサイズ(容量)を小さくし、第2無線通信遅延時間βが第1無線通信遅延時間αに比べて短い場合、ジッタバッファ309のサイズを大きくする。この後、本動作は終了する。
このように、第1の実施形態の無線通信装置によれば、高速移動中や次世代移動通信ネットワークの下においても、リアルタイム性を低下させることなく、高速なハンドオーバが要求されるハンドオーバ時であっても、ジッタバッファを制御することが可能である。つまり、ハンドオーバの前後でジッタバッファサイズを変更することにより、ハンドオーバの前後で相手通信端末103と無線通信装置101の間での遅延時間を同一に揃えることができる。従って、通話が途切れたり、早まったりすることなく、通話品質が向上する。
なお、上記実施形態では、位置情報取得部330から取得した位置情報(経度・緯度)をもとに、第2無線通信における遅延値テーブルから第2無線通信遅延時間βを求める場合を示したが、つぎのようにして求めてもよい。
図6は、アクセスポイントIDから得られる位置情報と第N無線通信遅延時間(N=1,2,・・・)とが対応付けられた遅延値テーブルを示す図である。第2無線通信遅延時間βは、例えば、位置情報取得部330から取得した位置情報(アクセスポイントID)をもとに、第2無線通信における遅延値テーブルから、アクセスポイントID=dnに対応付けられた第2無線通信遅延時間pn(ms)として読み出される。
図7は、基地局IDから得られる位置情報と第N無線通信遅延時間(N=1,2,・・・)とが対応付けられた遅延値テーブルを示す図である。第2無線通信遅延時間βは、例えば、位置情報取得部330から取得した位置情報(基地局ID)をもとに、基地局ID=knに対応付けられた第2無線通信遅延時間qn(ms)として読み出される。
(第2の実施形態)
図8は、第2の実施形態における電話機能部240の構成を示す機能ブロック図である。第2の実施形態の無線通信装置101の電話機能部240には、第1の実施形態における電話機能部240の機能ブロック(図3参照)に加え、さらに、無音検出部723、再生速度制御部724及び速度変更部725が設けられている。その他、第1の実施形態と同一の構成要素については同一の符号を付すことによりその説明を省略する。
図8は、第2の実施形態における電話機能部240の構成を示す機能ブロック図である。第2の実施形態の無線通信装置101の電話機能部240には、第1の実施形態における電話機能部240の機能ブロック(図3参照)に加え、さらに、無音検出部723、再生速度制御部724及び速度変更部725が設けられている。その他、第1の実施形態と同一の構成要素については同一の符号を付すことによりその説明を省略する。
無音検出部723は、パケット受信部308で受信した相手通信端末103からのパケットと、ジッタバッファ309からデコーダ310へのパケットを取り込み、パケット内に含まれる音声データが有音データであるか無音データであるかを判断する。
一般的に、VoIPアプリケーションにおける音声符号化においては、音声符号化を行う際、アナログ音声の音声データに対し、有音データであるか無音データであるかが判断される。有音データである場合、そのまま符号化処理が行われ、符号化パケットは相手端末に送信される。一方、無音データである場合、符号化処理は行われず、無音状態等を知らせる情報ビットだけがパケット化されて送信される。
従って、無音検出部723は、この無音状態を示す情報等をパケットから解析することで、パケット内に含まれる音声データが有音データであるか無音データであるかを判断することが可能である。
具体的に、無音検出部723は、パケット受信部308で受信したパケットに無音データが含まれていた場合、無音検出部723の内部に保持するカウンタを値1インクリメントし(増加させ)、ジッタバッファ309から出力されたパケットに無音データが含まれていた場合、カウンタを値1デクリメントする(減少させる)。このカウンタの値を調べることにより、ジッタバッファ309内に存在する無音データのパケット数がわかる。
再生速度制御部724は、ハンドオーバ制御部220からハンドオーバ開始の決定の通知があると、つぎのような制御を行う。再生速度制御部724は、無音検出部723から計数されたジッタバッファ309内の無音データのパケット数を取得する。また、再生速度制御部724は、遅延予測部321から、予測された第2無線通信遅延時間βとハンドオーバ開始前からあらかじめ分かっている第1無線通信遅延時間αとの遅延時間差分値(β−α)を取得する。さらに、再生速度制御部724は、ジッタバッファ制御部320から、現在通信中の第1無線通信ネットワークにおけるジッタバッファ309の音声データ滞留時間Xを取得する。再生速度制御部724は、これら取得した情報をもとに、再生速度を算出し、この算出された再生速度になるように速度変更部725を制御する。
つぎに、再生速度制御部724における再生速度算出方法について詳細に説明する。ハンドオーバを行う決定情報がない状態では、再生速度制御部724は、再生速度を1倍速とし、速度変更部725を制御する。すなわち、音声データキャプチャ時のサンプリング周波数で再生が行われる。
一方、ハンドオーバを行う決定情報が通知されると、再生速度制御部724は、つぎのような算出方法に従って、再生速度を算出し、速度変更部725を制御する。まず、再生速度制御部724は、予測された第2無線通信遅延時間βとハンドオーバ処理を行う前の第1無線通信遅延時間αとの遅延時間差分値(β−α)と、現在通信中の第1無線通信ネットワーク121におけるジッタバッファ309での音声データ滞留時間Xとから、数式(4)に従ってハンドオーバ先の第2無線通信ネットワーク122におけるジッタバッファ309での音声データ滞留時間Yを算出する。
Y=X−(β−α) …(4)
遅延時間差分値(β−α)<0である場合、すなわち、ハンドオーバ後の第2無線通信ネットワークの遅延時間が第1無線通信ネットワークの遅延時間より短い場合、数式(4)よりY<Xとなり、ジッタバッファ309内での音声データの滞留時間を短くする必要がある。従って、再生速度を上げることにより、滞留時間を減らすことが行われる。このとき、再生速度Vaは、滞留時間をXからYに変化させる時間をTd、音声符号化の1フレーム時間をTfとすると、数式(5)に従って算出される。
Va=1+{|β−α|/(Td*Tf)} …(5)
さらに、デコーダ310で無音パケットを破棄させることにより、同じTd時間でもより遅い再生速度、すなわち1倍速に近い速度で滞留時間をXからYに変化させることができる。具体的に、無音検出部723から取得されるジッタバッファ309内の無音パケット数をNとすると、数式(6)に従って、再生速度Va’は算出される。
Va’=1+{|β−α−N*Tf|/(Td*Tf)} …(6)
逆に、遅延時間差分値(βーα)>0である場合、すなわち、ハンドオーバ後の第2無線通信ネットワークの遅延時間が第1無線通信ネットワークの遅延時間より長い場合、数式(4)よりY>Xとなり、ジッタバッファ309内での音声データの滞留時間を長くする必要がある。従って、再生速度を下げることにより、滞留時間を増やすことが行われる。再生速度Vbは、滞留時間をXからYに変化させる時間をTd、音声符号化の1フレーム時間をTfとすると、数式(7)に従って算出される。
Vb=1−{|β−α|/(Td*Tf)} …(7)
さらに、デコーダ310で無音パケットを検出した場合、デコーダ310に無音パケットを複数回再生させることにより、同じTd時間でもより速い再生速度、すなわち1倍速に近い速度で滞留時間をXからYに変化させることができる。具体的に、無音検出部723から取得されるジッタバッファ309内の無音パケット数をNとし、無音パケット1回について、たとえば2回無音パケットを再生すると定義すると、再生速度Vb’は数式(8)に従って算出される。
Vb’=1−{|β−α−N*Tf|/(Td*Tf)} …(8)
図9は、電話機能部240における遅延予測動作手順を示すフローチャートである。第1の実施形態と同一のステップ処理について同一のステップ番号を付すことによりその説明を省略する。
ステップS6でジッタバッファ309のサイズが変更されると、再生速度制御部724は、前述した遅延時間差分値(β−α)と、音声データ滞留時間Xとから、ハンドオーバ先の第2無線通信ネットワーク122におけるジッタバッファ309での音声データ滞留時間Yを算出する(ステップS7)。
再生速度制御部724は、算出した音声データ滞留時間Yが音声データ滞留時間Xより短いか否かを判別する(ステップS8)。Y<Xの場合、再生速度制御部724は、速度変更部725に対し、再生速度を上げるように指示する(ステップS9)。このとき、デコーダ310に対し、無音パケットを破棄させることにより、1倍速に近い速度で滞留時間をXからYに変化させることができる。そして、速度変更部725が再生速度を上げることにより、ジッタバッファ309内での音声データの滞留時間が減る。この後、本動作が終了する。
一方、ステップS8でY>Xの場合、再生速度制御部724は、速度変更部725に対し、再生速度を下げるように指示する(ステップS10)。このとき、デコーダ310に対し、無音パケットを複数回再生させることにより1倍速に近い速度で滞留時間をXからYに変化させることができる。そして、速度変更部725が再生速度を下げることにより、ジッタバッファ309内での音声データの滞留時間が増える。この後、本動作が終了する。
図10は、遅延時間差分値(β−α)、ジッタバッファサイズ及び再生速度の関係を示すテーブルである。第2の無線通信ネットワークに切り替わる際、遅延時間差分値(β−α)>0である場合、ジッタバッファサイズを小さくし、再生速度を遅くするように制御が行われる。一方、遅延時間差分値(β−α)<0である場合、ジッタバッファサイズを大きくし、再生速度を速くするように制御が行われる。
このように、第2の実施形態の無線通信装置によれば、ハンドオーバの前から後へ切り替わる際、1倍速に近い速度で滞留時間をXからYに変化させることで、ユーザに違和感を生じさせることなく、より品質の高い通話が可能となる。
(第3の実施形態)
図11は、第3の実施形態における無線通信装置101が遅延値情報を受信する通信ネットワークの構成を示す図である。図12は、電話機能部240の構成を示す機能ブロック図である。第3の実施形態の無線通信装置101の電話機能部240には、第2の実施形態における電話機能部240の機能ブロック(図8参照)に加え、さらに、遅延値更新制御部926が設けられている。その他、第1、第2の実施形態と同一の構成要素については同一の符号を付すことによりその説明を省略する。
図11は、第3の実施形態における無線通信装置101が遅延値情報を受信する通信ネットワークの構成を示す図である。図12は、電話機能部240の構成を示す機能ブロック図である。第3の実施形態の無線通信装置101の電話機能部240には、第2の実施形態における電話機能部240の機能ブロック(図8参照)に加え、さらに、遅延値更新制御部926が設けられている。その他、第1、第2の実施形態と同一の構成要素については同一の符号を付すことによりその説明を省略する。
無線通信装置101は、接続中の第N無線通信ネットワーク802や、無線通信装置101の周辺に位置する他の無線通信装置803等の外部から、ネットワーク遅延値を受信し、遅延値テーブル322を更新することができる。
このネットワーク遅延値は、位置情報とその位置情報に対応した遅延値とから構成される。前述したように、無線通信装置101は、同じセル内に位置する他の無線通信装置803からネットワーク遅延値を受信し、遅延値テーブル322を更新する。なお、無線通信装置101は、第N無線通信ネットワーク802に接続されたセンターサーバ801からネットワーク遅延値を受信するようにしてもよい。また、無線通信装置101は、通信を行った履歴情報から遅延値テーブル322を更新してもよい。
外部から、位置情報とその位置情報に対応した遅延値から構成されたネットワーク遅延値を受信する場合、無線通信装置101は、パケット受信部308を介してネットワーク遅延値を受信する。そして、パケット受信部308は、位置情報とその位置情報に対応した遅延値を遅延値更新制御部926に供給する。
遅延値更新制御部926は、パケット受信部308から供給されたネットワーク遅延値で遅延値テーブル322を更新する。また、遅延値更新制御部926は、必要に応じて、遅延値テーブル322からネットワーク遅延値となる位置情報とその位置情報に対応した遅延値を読み出し、パケット送信部307に供給する。
パケット送信部307は、遅延値更新制御部926から供給されたネットワーク遅延値を外部に送信する。一方、接続中の第N無線通信ネットワーク802からネットワーク遅延値を受信する場合、遅延予測部321が遅延値テーブル322を更新する。
図13は、電話機能部240における遅延値更新手順を示すフローチャートである。この遅延値更新処理は、定期的に実行される。遅延値更新制御部926は、同じセル内(周辺)に位置する他の無線通信装置803があるか否かを判別する(ステップS21)。このとき、無線通信装置101は、セルを管理する基地局111から他の無線通信装置803の存在を確認することが可能である。
他の無線通信装置803がある場合、遅延値更新制御部926は、他の無線通信装置803からネットワーク遅延値を受信するか否かを判別する(ステップS22)。ネットワーク遅延値を受信する場合、遅延値更新制御部926は、パケット受信部308を介して他の無線通信装置803からネットワーク遅延値を受信し(ステップS23)、遅延値テーブル322を更新する(ステップS24)。この後、本動作は終了する。
一方、ステップS22でネットワーク遅延値を受信しない場合、遅延値更新制御部926は、ネットワーク遅延値を送信するか否かを判別する(ステップS25)。ネットワーク遅延値を送信する場合、遅延値更新制御部926は、パケット送信部307を介して他の無線通信装置803にネットワーク遅延値を送信する(ステップS26)。この後、本動作は終了する。また、ステップS25でネットワーク遅延値を送信しない場合、又はステップS21でセル内に位置する他の無線通信装置803が無い場合、そのまま本動作は終了する。
第3の実施形態の無線通信装置によれば、定期的にネットワーク遅延値が更新されるので、位置や環境が変化しても、高い通話品質を維持することができる。
本発明は、異なる無線通信ネットワークへのハンドオーバを行っても再生品質の低下を防止する無線通信装置等として有用である。
101 無線通信装置
103 相手通信端末
111 基地局
112 アクセスポイント
121 第1無線通信ネットワーク
122 第2無線通信ネットワーク
131 第1無線通信ゲートウェイ
132 第2無線通信ゲートウェイ
133 VoIPゲートウェイ
140 インターネット
201 第1無線I/F
202 第2無線I/F
210 電波強度情報取得部
220 ハンドオーバ制御部
230 通信制御部
240 電話機能部
301 全体制御部
302 ボタン入力部
303 画面表示部
304 SIP制御部
305 マイク
306 エンコーダ
307 パケット送信部
308 パケット受信部
309 ジッタバッファ
310 デコーダ
311 スピーカ
320 ジッタバッファ制御部
321 遅延予測部
322 遅延値テーブル
330 位置情報取得部
723 無音検出部
724 再生速度制御部
725 速度変更部
801 センターサーバ
802 第N無線通信ネットワーク
803 無線通信装置
926 遅延値更新制御部
103 相手通信端末
111 基地局
112 アクセスポイント
121 第1無線通信ネットワーク
122 第2無線通信ネットワーク
131 第1無線通信ゲートウェイ
132 第2無線通信ゲートウェイ
133 VoIPゲートウェイ
140 インターネット
201 第1無線I/F
202 第2無線I/F
210 電波強度情報取得部
220 ハンドオーバ制御部
230 通信制御部
240 電話機能部
301 全体制御部
302 ボタン入力部
303 画面表示部
304 SIP制御部
305 マイク
306 エンコーダ
307 パケット送信部
308 パケット受信部
309 ジッタバッファ
310 デコーダ
311 スピーカ
320 ジッタバッファ制御部
321 遅延予測部
322 遅延値テーブル
330 位置情報取得部
723 無音検出部
724 再生速度制御部
725 速度変更部
801 センターサーバ
802 第N無線通信ネットワーク
803 無線通信装置
926 遅延値更新制御部
Claims (7)
- 第1無線通信ネットワーク又は第2無線通信ネットワークに接続され、無線通信を行う無線通信装置であって、
前記第1無線通信ネットワーク又は前記第2無線通信ネットワークを介して伝送されるパケットデータを一時的に格納し、当該パケットデータのジッタを補正するバッファ部と、
前記バッファ部の容量を制御するバッファ制御部と、
前記第1無線通信ネットワーク及び前記第2無線通信ネットワークにそれぞれ接続された無線接続装置からの電波強度を取得する電波強度取得部と、
前記電波強度取得部によって取得された電波強度に基づき、前記第1無線通信ネットワークから前記第2無線通信ネットワークへのハンドオーバを行うか否かを決定し、前記ハンドオーバの実行を制御するハンドオーバ制御部と、
前記無線通信装置の位置情報を取得する位置情報取得部と、を備え、
前記ハンドオーバ制御部によって前記第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、前記バッファ制御部は、前記位置情報取得部によって取得された位置情報に基づき、前記バッファ部の容量を制御することを特徴とする無線通信装置。 - 請求項1に記載の無線通信装置であって、
前記位置情報に対応するネットワーク遅延値が格納された遅延値格納部と、
前記遅延値格納部から前記位置情報部によって取得された位置情報に対応する前記ネットワーク遅延値を取得し、前記第2無線通信ネットワークを介して伝送される前記パケットデータのネットワーク遅延量を予測する遅延予測部と、を備え、
前記ハンドオーバ制御部によって前記第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、
前記遅延予測部は、前記ネットワーク遅延量を予測し、
前記バッファ制御部は、前記遅延予測部によって予測された前記第2無線通信ネットワークのネットワーク遅延量が前記第1無線通信ネットワークのネットワーク遅延量に比べて大きい場合、前記バッファ部の容量を小さくし、前記第2無線通信ネットワークのネットワーク遅延量が前記第1無線通信ネットワークのネットワーク遅延量に比べて小さい場合、前記バッファ部の容量を大きくすることを特徴とする無線通信装置。 - 請求項2に記載の無線通信装置であって、
前記遅延予測部によって予測された前記第2無線通信ネットワークを介して伝送される前記パケットデータである音声データのネットワーク遅延量、及び前記バッファ制御部によって制御された前記バッファ部の容量に基づき、再生速度を算出する再生速度制御部と、
前記ハンドオーバ制御部によって前記ハンドオーバが行われた場合、前記再生速度制御部によって算出された再生速度になるように、前記音声データの再生速度を変更する速度変更部と、
を備えたことを特徴とする無線通信装置。 - 請求項3に記載の無線通信装置であって、
前記バッファ部に格納された音声データのうち、無音データのパケット数を計数する無音検出部を備え、
前記再生速度制御部は、前記無音検出部によって計数された前記無音データのパケット数と、前記第1無線通信ネットワークのネットワーク遅延量と前記遅延予測部によって予測された前記第2無線通信ネットワークのネットワーク遅延量の差である遅延差分値と、前記バッファ制御部によって制御された前記バッファ部の容量に基づき、前記再生速度を算出することを特徴とする無線通信装置。 - 請求項1〜4のいずれか一項に記載の無線通信装置であって、
前記遅延値格納部は、前記位置情報に対応するネットワーク遅延値が格納された遅延値テーブルを有し、接続中の無線通信ネットワークに接続されたサーバ装置から受信した情報、当該無線通信装置の周辺に位置する他の無線通信装置から受信した情報、又は当該無線通信装置が通信を行った履歴情報を用いて、前記遅延値テーブルを更新することを特徴とする無線通信装置。 - 請求項5に記載の無線通信装置であって、
前記位置情報取得部は、GPS又は前記第2無線通信ネットワークから前記位置情報を取得することを特徴とする無線通信装置。 - 第1無線通信ネットワーク又は第2無線通信ネットワークに接続され、無線通信を行う無線通信装置の制御方法であって、
前記第1無線通信ネットワーク又は前記第2無線通信ネットワークを介して伝送されるパケットデータを一時的に格納し、当該パケットデータのジッタを補正するバッファ部の容量を制御するバッファ制御ステップと、
前記第1無線通信ネットワーク及び前記第2無線通信ネットワークにそれぞれ接続された無線接続装置からの電波強度を取得する電波強度取得ステップと、
前記電波強度取得ステップで取得された電波強度に基づき、前記第1無線通信ネットワークから前記第2無線通信ネットワークへのハンドオーバを行うか否かを決定し、前記ハンドオーバの実行を制御するハンドオーバ制御ステップと、
前記無線通信装置の位置情報を取得する位置情報取得ステップと、を有し、
前記ハンドオーバ制御ステップで前記第2無線通信ネットワークへのハンドオーバを行うことが決定された場合、前記バッファ制御ステップでは、前記位置情報取得ステップで取得された位置情報に基づき、前記バッファ部の容量を制御することを特徴とする無線通信装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010117294A JP2011244395A (ja) | 2010-05-21 | 2010-05-21 | 無線通信装置及びその制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010117294A JP2011244395A (ja) | 2010-05-21 | 2010-05-21 | 無線通信装置及びその制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011244395A true JP2011244395A (ja) | 2011-12-01 |
Family
ID=45410548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010117294A Withdrawn JP2011244395A (ja) | 2010-05-21 | 2010-05-21 | 無線通信装置及びその制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011244395A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016528758A (ja) * | 2013-06-07 | 2016-09-15 | アップル インコーポレイテッド | 無線レベルのフィードバックによるジッタバッファ性能向上 |
JP2017049903A (ja) * | 2015-09-04 | 2017-03-09 | Kddi株式会社 | 作業装置及び通信制御方法 |
KR102192268B1 (ko) * | 2020-09-16 | 2020-12-17 | 주식회사 알에프투디지털 | RadioDNS 디코딩시 심리스 연결을 통한 과금 최소화 방법 |
JP7120680B1 (ja) * | 2021-07-01 | 2022-08-17 | Necプラットフォームズ株式会社 | 通話中継装置、通話中継方法及び通話中継プログラム |
-
2010
- 2010-05-21 JP JP2010117294A patent/JP2011244395A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016528758A (ja) * | 2013-06-07 | 2016-09-15 | アップル インコーポレイテッド | 無線レベルのフィードバックによるジッタバッファ性能向上 |
JP2017049903A (ja) * | 2015-09-04 | 2017-03-09 | Kddi株式会社 | 作業装置及び通信制御方法 |
KR102192268B1 (ko) * | 2020-09-16 | 2020-12-17 | 주식회사 알에프투디지털 | RadioDNS 디코딩시 심리스 연결을 통한 과금 최소화 방법 |
JP7120680B1 (ja) * | 2021-07-01 | 2022-08-17 | Necプラットフォームズ株式会社 | 通話中継装置、通話中継方法及び通話中継プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4545109B2 (ja) | 通信経路制御装置 | |
JP4820958B2 (ja) | セル再選択の間に通信接続を維持するための通信制御部および方法 | |
US8665824B2 (en) | Wireless communication apparatus | |
JP5002707B2 (ja) | 無線通信装置、通信装置、無線通信方法および通信方法 | |
US8879501B2 (en) | Wireless communication apparatus | |
KR101154746B1 (ko) | 무선 통신 장치 및 통신 장치 | |
KR101016093B1 (ko) | 통신 제어 장치, 무선 통신 장치, 통신 제어 방법 및 무선 통신 방법 | |
US8619711B2 (en) | Wireless communication apparatus | |
CN107103907B (zh) | 编码器能力的动态发信号通知的机制 | |
JP5074575B2 (ja) | 無線通信装置 | |
JP6245465B2 (ja) | 無線通信装置及び無線基地局切替方法 | |
JP2011244395A (ja) | 無線通信装置及びその制御方法 | |
JP5031434B2 (ja) | 無線通信装置 | |
JP2009033685A (ja) | 音声評価装置及び音声評価方法 | |
JP4949522B2 (ja) | 通信制御装置、無線通信装置、通信制御方法及び無線通信方法 | |
CN115696486A (zh) | 一种周期业务的传输方法及通信装置 | |
JP2010233234A (ja) | 無線通信装置、無線通信装置の通信方法 | |
JP2010172016A (ja) | 通信経路制御装置、通信経路制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130806 |