JP2011243840A - Light source device and luminaire - Google Patents

Light source device and luminaire Download PDF

Info

Publication number
JP2011243840A
JP2011243840A JP2010116183A JP2010116183A JP2011243840A JP 2011243840 A JP2011243840 A JP 2011243840A JP 2010116183 A JP2010116183 A JP 2010116183A JP 2010116183 A JP2010116183 A JP 2010116183A JP 2011243840 A JP2011243840 A JP 2011243840A
Authority
JP
Japan
Prior art keywords
light source
phosphor
light
solid
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010116183A
Other languages
Japanese (ja)
Inventor
Yasuyuki Miyake
康之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010116183A priority Critical patent/JP2011243840A/en
Publication of JP2011243840A publication Critical patent/JP2011243840A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light source device which uses a phosphor layer having a solid light source emitting blue light and a β sialon phosphor and which can restrain variation of output (light emission intensity) even when the wavelength of the solid light source emitting blue light is in the wavelength range of 460 nm to 490 nm.SOLUTION: A light source device comprises: a solid light source 5 to emit blue light; a phosphor layer 2 containing at least one kind of phosphor, which is excited by the blue light from the solid light source 5 and which emits phosphor light of the wavelength longer than the wavelength of the blue light from the solid light source 5. The phosphor layer 2 contains as a phosphor emitting green light a β sialon phosphor with at least Yb (ytterbium) activated.

Description

本発明は、光源装置および照明装置に関する。   The present invention relates to a light source device and an illumination device.

発光ダイオード等の固体光源と蛍光体層を組み合わせた光源装置(固体光源から出射された光(励起光)が蛍光体層に入射することにより励起されて固体光源からの光の波長よりも長波長の蛍光を蛍光体層から発光させる形式の光源装置)は広く普及しており、近年では高輝度化が進み、一般照明やディスプレイ用の光源装置、自動車のヘッドランプなどにその応用範囲が広がってきている。このような光源装置は、今後も多様な用途での普及が進むと考えられている。   Light source device combining a solid state light source such as a light emitting diode and a phosphor layer (light emitted from the solid state light source (excitation light) is excited by being incident on the phosphor layer and has a wavelength longer than the wavelength of the light from the solid state light source) The light source device of the type that emits the fluorescent light from the phosphor layer has been widely used. In recent years, the brightness has been increased, and its application range has been expanded to light sources for general lighting and displays, automobile headlamps, and the like. ing. Such a light source device is considered to be widely used for various purposes in the future.

このような固体光源と蛍光体層を組み合わせた光源装置を高輝度化するためには、大電流を投入し励起光強度を強めることが考えられるが、実際には蛍光体層で熱が発生し、蛍光体の温度消光による蛍光強度の低下が生じてしまうため、結果として発光強度は飽和、減少し、照明光の高輝度化が困難であった。   In order to increase the brightness of a light source device combining such a solid light source and a phosphor layer, it is conceivable to increase the excitation light intensity by supplying a large current, but in reality, heat is generated in the phosphor layer. Since the fluorescence intensity is lowered due to the temperature quenching of the phosphor, the emission intensity is saturated and reduced as a result, and it is difficult to increase the luminance of the illumination light.

ここで、蛍光体の温度消光とは、蛍光体を加熱すると蛍光強度が低下する現象のことである。温度消光により蛍光強度が低下すると、蛍光に変換されなかったエネルギーが熱となるため蛍光体の発熱量が増加し、さらに蛍光体の温度が上昇して温度消光が進み、蛍光強度もさらに低下するという現象が起きる。このように熱により発生する蛍光体の温度消光も高輝度化を妨げる要因となっていた。   Here, the temperature quenching of the phosphor is a phenomenon in which the fluorescence intensity decreases when the phosphor is heated. If the fluorescence intensity decreases due to temperature quenching, the energy that has not been converted to fluorescence becomes heat, so the amount of heat generated by the phosphor increases, the temperature of the phosphor rises, temperature quenching proceeds, and the fluorescence intensity further decreases. This happens. Thus, the temperature quenching of the phosphor generated by heat has also been a factor that hinders the increase in luminance.

この問題を解決するものとして、例えば、特許文献1に示されているように回転軸の周りに回転可能なカラーホイール(以下、蛍光回転体と称す)に蛍光体層を形成した光源装置が挙げられる。図1は蛍光回転体を用いた光源装置の概略図である。なお、図1において、符号95は固体光源、符号91は蛍光回転体であり、図1の光源装置では、蛍光回転体91が透過型のものとして構成され、固体光源95からの励起光によって励起された蛍光体層からの発光のうち固体光源95側とは反対側に出射する光(透過光)を用いるようになっている(なお、以下、この形式の蛍光回転体を、透過型蛍光回転体と称す)。   As a solution to this problem, for example, as shown in Patent Document 1, a light source device in which a phosphor layer is formed on a color wheel (hereinafter referred to as a fluorescence rotator) that can rotate around a rotation axis can be cited. It is done. FIG. 1 is a schematic view of a light source device using a fluorescent rotator. In FIG. 1, reference numeral 95 denotes a solid light source, and reference numeral 91 denotes a fluorescent rotator. In the light source device of FIG. 1, the fluorescent rotator 91 is configured as a transmission type and excited by excitation light from the solid light source 95. Of the emitted light from the phosphor layer, light (transmitted light) emitted to the side opposite to the solid light source 95 side is used (hereinafter, this type of fluorescent rotator is referred to as transmissive fluorescent rotation). Called the body).

蛍光回転体を用いる場合には、高出力の励起光を照射した場合でも蛍光体層は回転しており、同じ部分が励起されている時間が短いため、発熱が抑えられ、光が別の場所に当たっている間にその熱は放散される。したがって、蛍光体層内で励起光照射により局所的に多量の熱が発生することを抑えられるため、樹脂成分の変色や蛍光体の温度消光を抑えることが可能となり、高輝度化を図ることが可能となる。   When a fluorescent rotator is used, the phosphor layer is rotating even when irradiated with high-power excitation light, and the time during which the same part is excited is short, so heat generation is suppressed and the light is in a different location. The heat is dissipated while hitting. Therefore, since it is possible to suppress a large amount of heat from being locally generated by the excitation light irradiation in the phosphor layer, it is possible to suppress discoloration of the resin component and temperature quenching of the phosphor, thereby achieving high brightness. It becomes possible.

ところで、固体光源と蛍光体層を組み合わせた光源装置(例えば、液晶ディスプレイやプロジェクターなどのディスプレイ用の光源装置)としては、高輝度化のみならず、ディスプレイなどの色再現範囲を拡大することが望まれている。色再現範囲の拡大には光源の発光スペクトルのR(赤色)、G(緑色)、B(青色)成分の各々が半値幅の狭いスペクトルからなることが必要である。   By the way, as a light source device combining a solid light source and a phosphor layer (for example, a light source device for a display such as a liquid crystal display or a projector), it is desired not only to increase the brightness but also to expand the color reproduction range of the display. It is rare. In order to expand the color reproduction range, it is necessary that each of the R (red), G (green), and B (blue) components of the emission spectrum of the light source has a spectrum with a narrow half-value width.

この問題の解決策を固体光源と蛍光体層を組み合わせた光源装置について考えると、蛍光体層には、半値幅の狭い発光スペクトルを持つ蛍光体を使用することが必要となる。特に緑色蛍光体に注目すると、半値幅の狭い発光スペクトルを有する蛍光体として特許文献2で報告されているEu(ユーロピウム)イオンを付活したβサイアロン蛍光体が広く知られている。この蛍光体は、紫外線から青色光で励起可能であり、発光波長540nmの緑色発光を示し、発光スペクトルの半値幅が狭いため、固体光源と組み合わせることで高輝度かつ半値幅の狭い発光スペクトルを有する光源装置を実現することができる。   Considering a solution to this problem for a light source device in which a solid light source and a phosphor layer are combined, it is necessary to use a phosphor having an emission spectrum with a narrow half width at the phosphor layer. Paying particular attention to green phosphors, β sialon phosphors activated by Eu (europium) ions reported in Patent Document 2 are widely known as phosphors having an emission spectrum with a narrow half-value width. This phosphor can be excited by ultraviolet light to blue light, exhibits green light emission with an emission wavelength of 540 nm, and has a narrow half-value width of the emission spectrum. Therefore, when combined with a solid-state light source, this phosphor has an emission spectrum with high brightness and a narrow half-value width. A light source device can be realized.

特表2009−539219号公報Special table 2009-539219 特開2008−120938号公報JP 2008-120938 A

上述したような固体光源と蛍光体を組み合わせた光源装置で、さらに高輝度かつ半値幅の狭い発光スペクトルを有する光源装置を実現するためには、蛍光体(緑色蛍光体)としてEu付活βサイアロン蛍光体を使用し、さらにいままで以上に蛍光体の発熱を抑制する工夫をする必要がある。   In order to realize a light source device that has a light emission device that combines a solid light source and a phosphor as described above and has an emission spectrum with a higher luminance and a narrow half-value width, Eu-activated β sialon is used as the phosphor (green phosphor). It is necessary to devise measures to suppress the heat generation of the phosphor more than ever before by using the phosphor.

ここで、蛍光体からの発熱を詳細に検討すると、発熱は、ストークスシフトと呼ばれる励起光と蛍光のエネルギー差に起因する成分と、蛍光に変換されなかったエネルギーに起因する成分とに分けられる。前者は温度によらず一定の値をとり、後者は温度の上昇に従って増加するものである。したがって、蛍光体の温度上昇を抑制することで後者の成分を減らすことはできるが、前者の成分については別の工夫が必要となる。ストークスシフトに起因する成分は、励起光と蛍光のエネルギー差で決定されるため、このエネルギー差を小さくすれば発熱を減らすことができる。具体的には、蛍光体の発光波長を変えずに、より長波長の光(励起光)で蛍光体を励起することで、励起光と蛍光のエネルギー差を小さくし、蛍光体からの発熱を減らすことができる。もちろん蛍光体の蛍光波長を短くしても同様に達成できるが、蛍光波長を変えることは発光色を変えることになるため、色再現範囲に悪い影響が出る可能性があり望ましくない。従って、青色発光の固体光源としては通常440nm〜460nmの発光ピークを持つものが使用されているが、蛍光体のストークスシフトに起因する発熱を減少させるためには、440nm〜460nmよりも長波長である460nm以上の発光波長を持つ固体光源の使用が望ましい。   Here, when the heat generation from the phosphor is examined in detail, the heat generation is divided into a component caused by an energy difference between excitation light and fluorescence called Stokes shift and a component caused by energy that has not been converted into fluorescence. The former takes a constant value regardless of the temperature, and the latter increases as the temperature increases. Therefore, although the latter component can be reduced by suppressing the temperature rise of the phosphor, another device is required for the former component. Since the component resulting from the Stokes shift is determined by the energy difference between the excitation light and the fluorescence, heat generation can be reduced by reducing this energy difference. Specifically, by exciting the phosphor with longer wavelength light (excitation light) without changing the emission wavelength of the phosphor, the energy difference between the excitation light and the fluorescence is reduced, and heat generation from the phosphor is reduced. Can be reduced. Of course, the same effect can be achieved even if the fluorescent wavelength of the phosphor is shortened. However, changing the fluorescent wavelength changes the emission color, which may adversely affect the color reproduction range and is not desirable. Accordingly, a blue light emitting solid-state light source having a light emission peak of 440 nm to 460 nm is usually used. However, in order to reduce the heat generation due to the Stokes shift of the phosphor, the wavelength is longer than 440 nm to 460 nm. It is desirable to use a solid light source having an emission wavelength of 460 nm or more.

以上のことから、従来使用されているものよりも発光波長の長い460nm以上の発光波長をもつ固体光源とEu付活βサイアロン蛍光体とを組み合わせた光源装置が高輝度かつ半値幅の狭い発光スペクトルを有する光源装置として望ましいと思われるが、本願の発明者は、この光源装置を実際に検討してみた結果、これまでに知られていなかった新たな課題(問題)を見出した。   From the above, the light source device combining the solid-state light source having an emission wavelength longer than 460 nm longer than that conventionally used and the Eu-activated β-sialon phosphor has a high emission luminance and a narrow half-value width emission spectrum. However, as a result of actually examining this light source device, the inventors of the present application have found a new problem (problem) that has not been known so far.

すなわち、従来使用されているものよりも発光波長の長い460nm以上の発光波長をもつ固体光源とEu付活βサイアロン蛍光体とを組み合わせた光源装置では、光源装置の初期の出力が大きくばらつく、もしくは、駆動中に固体光源の温度の変化とともに出力が変動するという問題が生ずる。このような出力のばらつき、駆動中の変動は、良品の選別工程や温度制御機構の追加などコストアップにつながる問題のため、製品の価値を大きく損なうものである。   That is, in a light source device that combines a solid-state light source having an emission wavelength longer than 460 nm and a Eu-activated β sialon phosphor that has a longer emission wavelength than that conventionally used, the initial output of the light source device varies greatly, or There is a problem that the output fluctuates with the change of the temperature of the solid light source during driving. Such variations in output and fluctuations during driving greatly impair the value of the product due to problems that lead to increased costs, such as a non-defective product selection process and the addition of a temperature control mechanism.

本願の発明者は、上記課題(問題)の原因を調べた結果、この原因が固体光源と蛍光体との両方に存在することを突き止めた。   As a result of examining the cause of the above problem (problem), the inventor of the present application has found that this cause exists in both the solid light source and the phosphor.

すなわち、まず、青色光を発光する固体光源は、発光ダイオード、半導体レーザーとも、ある発光波長を目指して製造しても、実際に固体光源から発せられる発光波長は目標値から5nm程度はばらつくものである。このばらつきは成膜の不均一性に起因する。さらにこの初期のばらつきの他に、駆動中に固体光源の温度が上昇していくと、一般的に発光波長が長波長へ移動する現象が起きる。その移動量は素子の構造などに依存するが、こちらも5nm程度移動することが知られている。このように、固体光源の発光波長には、初期のばらつきと駆動中の変動がつきものである。   That is, first, solid-state light sources that emit blue light, both light-emitting diodes and semiconductor lasers, are manufactured with a target emission wavelength, and the emission wavelength actually emitted from the solid-state light source varies from the target value by about 5 nm. is there. This variation is caused by film formation non-uniformity. In addition to this initial variation, when the temperature of the solid light source rises during driving, a phenomenon in which the emission wavelength generally shifts to a longer wavelength occurs. The amount of movement depends on the structure of the element, but it is also known that the amount of movement is about 5 nm. Thus, the emission wavelength of the solid-state light source is accompanied by initial variations and fluctuations during driving.

次に、蛍光体については、βサイアロン蛍光体は一般にEuイオンを付活したものが良く知られているが、図2に示すようにEu付活βサイアロン蛍光体の励起スペクトルは紫外領域から可視光領域にかけて、特に400nm以上の波長領域では右下がりの構造を取る。従って、通常青色光として使用される440nm〜460nmの波長範囲の光よりも波長が長い460nm〜490nmの波長範囲では励起スペクトルがより一層傾斜しているため、460nm〜490nmの波長範囲で温度変化等により励起波長が変動すると、蛍光強度(緑色発光の強度)も大きく変動してしまう。   Next, as for phosphors, β-sialon phosphors are generally well-known that activate Eu ions, but as shown in FIG. 2, the excitation spectrum of Eu-activated β-sialon phosphors is visible from the ultraviolet region. Over the optical region, particularly in the wavelength region of 400 nm or more, it has a downward-sloping structure. Accordingly, since the excitation spectrum is further inclined in the wavelength range of 460 nm to 490 nm, which is longer than the light in the wavelength range of 440 nm to 460 nm, which is usually used as blue light, the temperature changes in the wavelength range of 460 nm to 490 nm. When the excitation wavelength varies due to the above, the fluorescence intensity (green light emission intensity) also varies greatly.

このように、青色光を発光する固体光源の発光波長のばらつき、変動と、さらに青色光を発光する固体光源の通常青色光として使用される440nm〜460nmの波長範囲の光よりも波長が長い460nm〜490nmの波長範囲においてEu付活βサイアロン蛍光体の蛍光強度が励起波長の少しの変化によって大きく変動してしまうことにより、結果として、光源装置としての出力(発光強度)も大きくばらつき、変動してしまうということを突き止めた。   Thus, the variation and fluctuation of the emission wavelength of the solid-state light source that emits blue light, and 460 nm, which is longer than the light in the wavelength range of 440 nm to 460 nm that is used as the normal blue light of the solid-state light source that further emits blue light. In the wavelength range of ˜490 nm, the fluorescence intensity of the Eu-activated β sialon phosphor largely fluctuates due to a slight change in the excitation wavelength. As a result, the output (light emission intensity) as the light source device varies greatly and fluctuates. I found out.

本発明は、青色光を発光する固体光源とβサイアロン蛍光体を有する蛍光体層を用いた光源装置および照明装置において、発光スペクトルの半値幅が狭く、かつ、発熱を減少させるために(高輝度化を図るために)青色光を発光する固体光源の波長を通常青色光として使用される440nm〜460nmの波長範囲よりも波長が長い460nm〜490nmの波長範囲にした場合にも、出力(発光強度)の変動を抑えることの可能な光源装置および照明装置を提供することを目的としている。   The present invention relates to a light source device and an illumination device using a solid light source that emits blue light and a phosphor layer having a β sialon phosphor, in order to reduce the half width of the emission spectrum and reduce heat generation (high brightness Even when the wavelength of a solid light source emitting blue light is set to a wavelength range of 460 nm to 490 nm, which is longer than the wavelength range of 440 nm to 460 nm, which is normally used as blue light, the output (emission intensity) It is an object of the present invention to provide a light source device and an illumination device capable of suppressing fluctuations in

上記目的を達成するために、請求項1記載の発明は、青色光を発光する固体光源と、該固体光源からの青色光により励起され該固体光源からの青色光の波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層とを有し、前記蛍光体層には、少なくともYbを付活したβサイアロン蛍光体が含まれていることを特徴とすることを特徴とする光源装置である。   In order to achieve the above object, the invention described in claim 1 includes a solid-state light source that emits blue light, and fluorescence that is excited by blue light from the solid-state light source and has a longer wavelength than the wavelength of blue light from the solid-state light source. A phosphor layer containing at least one kind of phosphor that emits light, and the phosphor layer contains at least a β-sialon phosphor activated with Yb, A light source device.

また、請求項2記載の発明は、青色光を発光する固体光源と、回転軸の周りに回転可能な蛍光回転体とを備え、該蛍光回転体は、前記固体光源からの青色光により励起され前記固体光源からの青色光の波長よりも長波長の蛍光を発光する少なくともYbを付活したβサイアロン蛍光体を含む蛍光体層を有していることを特徴とする光源装置である。   The invention according to claim 2 includes a solid light source that emits blue light and a fluorescent rotator that can rotate around a rotation axis, and the fluorescent rotator is excited by the blue light from the solid light source. The light source device includes a phosphor layer including a β sialon phosphor that activates at least Yb that emits fluorescence having a wavelength longer than the wavelength of blue light from the solid-state light source.

また、請求項3記載の発明は、請求項1または請求項2記載の光源装置において、前記固体光源は、発光ダイオードまたは半導体レーザーであることを特徴としている。   According to a third aspect of the present invention, in the light source device according to the first or second aspect, the solid-state light source is a light emitting diode or a semiconductor laser.

また、請求項4記載の発明は、請求項1乃至請求項3のいずれか一項に記載の光源装置において、前記固体光源は、発光波長が460nm〜490nmの範囲のものであることを特徴としている。   According to a fourth aspect of the present invention, in the light source device according to any one of the first to third aspects, the solid-state light source has an emission wavelength in a range of 460 nm to 490 nm. Yes.

また、請求項5記載の発明は、請求項1乃至請求項4のいずれか一項に記載の光源装置において、前記少なくともYbを付活したβサイアロン蛍光体は、YbとYb以外のランタノイドを共に発光中心イオンとして付活したβサイアロン蛍光体であることを特徴としている。   The invention according to claim 5 is the light source device according to any one of claims 1 to 4, wherein the β sialon phosphor activated with at least Yb contains both lanthanoids other than Yb and Yb. It is characterized by being a β sialon phosphor activated as a luminescent center ion.

また、請求項6記載の発明は、請求項5記載の光源装置において、前記Yb以外のランタノイドは、Euであることを特徴としている。   The invention according to claim 6 is the light source device according to claim 5, characterized in that the lanthanoid other than Yb is Eu.

また、請求項7記載の発明は、請求項1乃至請求項6のいずれか一項に記載の光源装置が用いられていることを特徴とする照明装置である。   The invention according to claim 7 is an illumination device characterized by using the light source device according to any one of claims 1 to 6.

請求項1、請求項3乃至請求項7記載の発明によれば、青色光を発光する固体光源と、該固体光源からの青色光により励起され該固体光源からの青色光の波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層とを有し、前記蛍光体層には、少なくともYbを付活したβサイアロン蛍光体が含まれているので、発光スペクトルの半値幅が狭く、かつ、発熱を減少させるために(高輝度化を図るために)青色光を発光する固体光源の波長を通常青色光として使用される440nm〜460nmの波長範囲よりも波長が長い460nm〜490nmの波長範囲にした場合にも、緑色発光について出力(発光強度)の変動を抑えることの可能な(温度変化等による固体光源の波長変動に対して、出力(発光強度)の変動が小さい)光源装置および照明装置を提供することができる。   According to invention of Claim 1, Claim 3 thru | or 7, The solid-state light source which light-emits blue light, A wavelength longer than the wavelength of the blue light excited by the blue light from this solid-state light source, and this solid-state light source And a phosphor layer containing at least one kind of phosphor that emits the fluorescence, and the phosphor layer contains a β sialon phosphor that activates at least Yb. In order to reduce heat generation (in order to increase the brightness), the wavelength of a solid light source that emits blue light is longer than the wavelength range of 440 nm to 460 nm that is normally used as blue light. Even when the wavelength range is 490 nm, the fluctuation in output (light emission intensity) can be suppressed for green light emission (the fluctuation in output (light emission intensity) is small with respect to the wavelength fluctuation of the solid light source due to temperature change or the like). ) Light source device and illumination device can be provided.

また、請求項2乃至請求項7記載の発明によれば、青色光を発光する固体光源と、回転軸の周りに回転可能な蛍光回転体とを備え、該蛍光回転体は、前記固体光源からの青色光により励起され前記固体光源からの青色光の波長よりも長波長の蛍光を発光する少なくともYbを付活したβサイアロン蛍光体を含む蛍光体層を有しているので、発光スペクトルの半値幅が狭く、かつ、発熱をより一層減少させるために(より一層の高輝度化を図るために)青色光を発光する固体光源の波長を通常青色光として使用される440nm〜460nmの波長範囲よりも波長が長い460nm〜490nmの波長範囲にした場合にも、出力(発光強度)の変動を抑えることの可能な(温度変化等による固体光源の波長変動に対して、出力(発光強度)の変動が小さい)光源装置および照明装置を提供することができる。   According to the second to seventh aspects of the present invention, the solid-state light source that emits blue light and the fluorescent rotator that can rotate around the rotation axis are provided. A phosphor layer containing at least Yb-activated β sialon phosphor that is excited by blue light and emits fluorescence having a wavelength longer than the wavelength of blue light from the solid-state light source. The wavelength range of the solid light source emitting blue light is smaller than the wavelength range of 440 nm to 460 nm, which is usually used as blue light, in order to further reduce the heat generation (in order to further increase the brightness) However, even when the wavelength is in the long wavelength range of 460 nm to 490 nm, it is possible to suppress fluctuations in output (light emission intensity) (changes in output (light emission intensity) with respect to wavelength fluctuations of the solid light source due to temperature changes, etc.). It is possible to provide a smaller) light source device and a lighting device.

蛍光回転体を用いた光源装置の概略図である。It is the schematic of the light source device using a fluorescence rotary body. Eu付活βサイアロン蛍光体の励起スペクトルを示す図である。It is a figure which shows the excitation spectrum of Eu activated beta sialon fluorescent substance. 本発明の第1の実施形態の光源装置の構成例を示す図(概略図)である。It is a figure (schematic diagram) showing the example of composition of the light source device of a 1st embodiment of the present invention. 本発明の第2の実施形態の光源装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the light source device of the 2nd Embodiment of this invention. 反射型の蛍光回転体の蛍光体層が複数のセクションに分かれている場合についての各種の構成例を示す図(平面図)である。It is a figure (plan view) which shows various structural examples about the case where the fluorescent substance layer of the reflection type fluorescent rotating body is divided into a plurality of sections. 反射型の蛍光回転体の蛍光体層が複数のセクションに分かれている場合についての各種の構成例を示す図(平面図)である。It is a figure (plan view) which shows various structural examples about the case where the fluorescent substance layer of the reflection type fluorescent rotating body is divided into a plurality of sections. 反射型の蛍光回転体の蛍光体層が複数のセクションに分かれている場合についての各種の構成例を示す図(平面図)である。It is a figure (plan view) which shows various structural examples about the case where the fluorescent substance layer of the reflection type fluorescent rotating body is divided into a plurality of sections. 2種類の蛍光体層を垂直方向に重ねて配置した例を示す図(断面図)である。It is a figure (sectional drawing) which shows the example which has arrange | positioned two types of fluorescent substance layers so that it may overlap | superpose in the perpendicular direction. 実施例1、実施例2、比較例のそれぞれについて、各材料の分量を示す図である。It is a figure which shows the quantity of each material about each of Example 1, Example 2, and a comparative example. 実施例1、実施例2、比較例のそれぞれについて、各材料を図9の分量で配合したときの、βサイアロン蛍光体(SiAl6−z8−z:A(Aは発光中心イオン、0<z≦4.2))のz、A(Yb)、A(Eu)の組成を示す図である。For each of Example 1, Example 2, and Comparative Example, β sialon phosphors (Si 6 Al 6-z O z N 8-z : A (A is light emission) when the materials are blended in the amounts shown in FIG. It is a figure which shows the composition of z of a center ion, 0 <z <= 4.2)), A (Yb), and A (Eu). 実施例1、実施例2、比較例のそれぞれのβサイアロン蛍光体の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of each beta sialon fluorescent substance of Example 1, Example 2, and a comparative example. 実施例1、実施例2、比較例のそれぞれのβサイアロン蛍光体の励起スペクトルを示す図である。It is a figure which shows the excitation spectrum of each (beta) sialon fluorescent substance of Example 1, Example 2, and a comparative example. 実施例1、実施例2、比較例のそれぞれのβサイアロン蛍光体について、460nm〜490nmの波長範囲での励起スペクトルの値(強度)を示す図である。It is a figure which shows the value (intensity) of the excitation spectrum in the wavelength range of 460 nm-490 nm about each beta sialon fluorescent substance of Example 1, Example 2, and a comparative example.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図3は本発明の第1の実施形態の光源装置の構成例を示す図(概略図)である。図3を参照すると、この光源装置10は、青色光を発光する固体光源5と、該固体光源5からの青色光により励起され該固体光源5からの青色光の波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層2とを有し、前記蛍光体層2には、少なくともYb(イッテルビウム)を付活したβサイアロン蛍光体が緑色に発光する蛍光体(以下、緑色蛍光体と称す)として含まれていることを特徴としている。   FIG. 3 is a diagram (schematic diagram) illustrating a configuration example of the light source device according to the first embodiment of the present invention. Referring to FIG. 3, the light source device 10 includes a solid-state light source 5 that emits blue light and fluorescent light that is excited by blue light from the solid-state light source 5 and has a wavelength longer than that of the blue light from the solid-state light source 5. A phosphor layer 2 containing at least one kind of phosphor that emits light, and the phosphor layer 2 includes a phosphor in which a β sialon phosphor activated with at least Yb (ytterbium) emits green light (hereinafter referred to as “green phosphor”). It is characterized by being included as a green phosphor).

ここで、青色光を発光する固体光源5としては、発光ダイオードまたは半導体レーザーが用いられ、固体光源5からは、通常青色光として使用される440nm〜460nmの波長範囲よりも波長が長い460nm以上の光を出射するものが用いられる。これにより、蛍光体のストークスシフトに起因する発熱を減少させることができ、蛍光体の温度消光も小さくすることができるため、結果的に光源装置を高輝度化することができる。なお、ストークスシフトに起因する発熱の減少だけを考えると発光波長は長いほど良いが、βサイアロン蛍光体は励起波長が490nmよりも長波長になると蛍光強度は弱くなるため、固体光源5の発光波長は460nm〜490nmの波長範囲が望ましい。   Here, a light-emitting diode or a semiconductor laser is used as the solid-state light source 5 that emits blue light, and the solid-state light source 5 has a wavelength longer than 460 nm that is longer than the wavelength range of 440 nm to 460 nm that is normally used as blue light. What emits light is used. As a result, the heat generation due to the Stokes shift of the phosphor can be reduced, and the temperature quenching of the phosphor can be reduced, and as a result, the brightness of the light source device can be increased. Considering only the decrease in heat generation caused by the Stokes shift, the longer the emission wavelength, the better. However, the β sialon phosphor has a lower fluorescence intensity when the excitation wavelength is longer than 490 nm. Is preferably in the wavelength range of 460 nm to 490 nm.

また、本願の発明者は、前述のように、青色光を発光する固体光源の発光波長のばらつき、変動と、さらに青色光を発光する固体光源の通常青色光として使用される440nm〜460nmの波長範囲の光よりも波長が長い460nm〜490nmの波長範囲においてEu付活βサイアロン蛍光体の蛍光強度が励起波長の少しの変化によって大きく変動してしまうことにより、結果として、光源装置としての出力(発光強度)も大きくばらつき、変動してしまうということを突き止めた。この問題を解決するのに、本願の発明者は、460nm以上の範囲で値の変動の小さい励起スペクトルを持つβサイアロン蛍光体を使用することを考え付いたが、これまでそのような蛍光体は知られていなかった。   In addition, as described above, the inventor of the present application has a wavelength of 440 nm to 460 nm that is normally used as blue light of a solid light source that emits blue light. In the wavelength range of 460 nm to 490 nm, which has a longer wavelength than the light in the range, the fluorescence intensity of the Eu-activated β sialon phosphor largely fluctuates due to a slight change in the excitation wavelength, resulting in an output as a light source device ( It has been found that the light emission intensity) also varies widely and fluctuates. In order to solve this problem, the inventor of the present application has considered using a β sialon phosphor having an excitation spectrum with a small value fluctuation in a range of 460 nm or more. It was not done.

本願の発明者は、今回、後述のように、Ybイオンを付活したβサイアロン蛍光体の焼成実験を行い、その実験結果からYbイオンを発光中心イオンとしてβサイアロン蛍光体に付活することで、Eu(ユーロピウム)のみを付活したβサイアロン蛍光体に比べ、その励起スペクトルの値の変動が460nm〜490nmの波長範囲で小さくなることを見出した。この効果は、Ybのみを付活した場合にも、YbをEuと同時に付活した場合にも得られることも、本願の発明者によって明らかにされた。このようにYbイオンをβサイアロン蛍光体に付活することで、励起スペクトルの値の変動が460nm〜490nmの波長範囲で小さい蛍光体層2を実現することができることが本願の発明者によって新たに見出された。なお、発光中心としてYbイオンを付活したβサイアロン蛍光体(緑色発光の蛍光体)は、前述の特許文献2に記載されてはいるものの、その具体的な特性については、従来何ら知られていない(何ら報告されていない)。   As will be described later, the inventor of the present application conducted a firing experiment of β sialon phosphors activated with Yb ions, and based on the experimental results, Yb ions were used as luminescent center ions to activate β sialon phosphors. It was found that the fluctuation of the value of the excitation spectrum is smaller in the wavelength range of 460 nm to 490 nm than the β sialon phosphor activated only by Eu (europium). It has been clarified by the inventor of the present application that this effect can be obtained when only Yb is activated or when Yb is activated simultaneously with Eu. In this way, the inventors of the present application newly realize that the phosphor layer 2 in which the fluctuation of the excitation spectrum value is small in the wavelength range of 460 nm to 490 nm can be realized by activating the Yb ions to the β sialon phosphor. It was found. In addition, although the β sialon phosphor (green light emitting phosphor) in which Yb ions are activated as the emission center is described in the above-mentioned Patent Document 2, nothing has been known about its specific characteristics. No (nothing reported).

このように、本発明の第1の実施形態の光源装置10によれば、青色光を発光する固体光源5と、該固体光源5からの青色光により励起され該固体光源5からの青色光の波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層2とを有し、前記蛍光体層2には、少なくともYb(イッテルビウム)を付活したβサイアロン蛍光体が緑色蛍光体として含まれているので、発光スペクトルの半値幅が狭く、かつ、発熱を減少させるために(高輝度化を図るために)青色光を発光する固体光源5の波長を通常青色光として使用される440nm〜460nmの波長範囲よりも波長が長い460nm〜490nmの波長範囲にした場合にも、緑色発光について出力(蛍光(緑色光)の発光強度)の変動を抑えることの可能な(温度変化等による固体光源の波長変動に対して、出力(蛍光の発光強度)の変動が小さい)光源装置を提供することができる。   As described above, according to the light source device 10 of the first embodiment of the present invention, the solid-state light source 5 that emits blue light and the blue light that is excited by the blue light from the solid-state light source 5 A phosphor layer 2 containing at least one kind of phosphor that emits fluorescence having a wavelength longer than the wavelength, and the phosphor layer 2 has a β-sialon phosphor activated with at least Yb (ytterbium) in green. Since it is included as a phosphor, the half-value width of the emission spectrum is narrow, and the wavelength of the solid light source 5 that emits blue light is used as normal blue light in order to reduce heat generation (in order to increase brightness). Even when the wavelength range of 460 nm to 490 nm is longer than the wavelength range of 440 nm to 460 nm, fluctuations in output (fluorescence (green light) emission intensity) of green light emission can be suppressed (warm With respect to the wavelength variation of the solid-state light source due to the change or the like, output small variation in (fluorescence intensity) of) it is possible to provide a light source device.

なお、図3の構成例では、固体光源5の発光(青色光)と蛍光体層2から発せられる蛍光(緑色光)の混合光を利用するものであるが、混合光をフィルターを通して単色光として用いても良いし(緑色光だけを取り出しても良いし)、そのまま混合光として用いても良い。特に、蛍光体層2として、橙から赤色に発光する蛍光体をYbイオンを付活したβサイアロン蛍光体(緑色蛍光体)と一緒に用いた場合(混合して用いた場合)には(さらに、これに黄色に発光する蛍光体を混合して用いることもできる)、白色光を得ることも可能である。このようにYbイオンを付活したβサイアロン蛍光体(緑色蛍光体)とそれよりも長波長の蛍光を発する蛍光体とを同じ蛍光体層2中に混ぜて使用することもできる。   In the configuration example of FIG. 3, the mixed light of the light emitted from the solid light source 5 (blue light) and the fluorescence emitted from the phosphor layer 2 (green light) is used, but the mixed light is converted into monochromatic light through a filter. It may be used (only green light may be taken out) or may be used as it is as mixed light. In particular, when a phosphor emitting from orange to red is used as the phosphor layer 2 together with a β sialon phosphor (green phosphor) activated with Yb ions (when mixed), It is also possible to use a mixture of phosphors that emit yellow light), and to obtain white light. Thus, the β sialon phosphor (green phosphor) activated with Yb ions and the phosphor emitting longer wavelength fluorescence can be mixed in the same phosphor layer 2 and used.

図4(a),(b)は本発明の第2の実施形態の光源装置の一構成例を示す図である。なお、図4(a)は全体の正面図、図4(b)は蛍光回転体の平面図である。また、図4(a),(b)において、図3と対応する箇所には同じ符号を付している。図4(a),(b)を参照すると、この光源装置20は、青色光を発光する固体光源5と、モーターなどの駆動部(図示せず)による駆動によって回転軸Xの周りに回転可能な蛍光回転体1とを備え、該蛍光回転体1は、前記固体光源5からの青色光(励起光)により励起され前記固体光源5からの青色光の波長よりも長波長の蛍光を発光する少なくともYbを付活したβサイアロン蛍光体(緑色蛍光体)を含む蛍光体層2を有している。   FIGS. 4A and 4B are diagrams showing a configuration example of the light source device according to the second embodiment of the present invention. 4A is a front view of the whole, and FIG. 4B is a plan view of the fluorescent rotator. Further, in FIGS. 4A and 4B, portions corresponding to those in FIG. Referring to FIGS. 4A and 4B, the light source device 20 can be rotated around the rotation axis X by being driven by a solid-state light source 5 that emits blue light and a drive unit (not shown) such as a motor. The fluorescent rotator 1 is excited by blue light (excitation light) from the solid light source 5 and emits fluorescence having a wavelength longer than that of the blue light from the solid light source 5. It has a phosphor layer 2 containing at least β sialon phosphor (green phosphor) activated with Yb.

このような構成の第2の実施形態の光源装置20では、蛍光体層2には、少なくともYbを付活したβサイアロン蛍光体(緑色蛍光体)が含まれているので、第1の実施形態で説明したと同様に、発光スペクトルの半値幅が狭く、かつ、発熱を減少させるために(高輝度化を図るために)青色光を発光する固体光源の波長を通常青色光として使用される440nm〜460nmの波長範囲よりも波長が長い460nm〜490nmの波長範囲にした場合にも、緑色発光について出力(蛍光(緑色光)の発光強度)の変動を抑えることの可能な(温度変化等による固体光源の波長変動に対して、出力(蛍光(緑色光)の発光強度)の変動が小さい)光源装置を提供することができる。   In the light source device 20 of the second embodiment having such a configuration, the phosphor layer 2 contains at least β sialon phosphor (green phosphor) activated with Yb, so that the first embodiment In the same manner as described in, the half-width of the emission spectrum is narrow, and the wavelength of a solid-state light source that emits blue light is usually used as blue light in order to reduce heat generation (in order to increase the luminance). Even when the wavelength range of 460 nm to 490 nm is longer than the wavelength range of ˜460 nm, it is possible to suppress fluctuations in output (fluorescence (green light) emission intensity) of green light emission (solid due to temperature change, etc.) It is possible to provide a light source device in which the output (fluorescence (green light) emission intensity) is small in variation with respect to the wavelength variation of the light source.

さらに、第2の実施形態の光源装置20では、蛍光回転体1を用いることにより、高出力の励起光を照射した場合でも蛍光体層2は回転しており、同じ部分が励起されている時間が短いため、発熱が抑えられ、光が別の場所に当たっている間にその熱は放散される。したがって、蛍光体層2内で励起光照射により局所的に多量の熱が発生することを抑えられるため、樹脂成分の変色や蛍光体の温度消光を抑えることが可能となり、高輝度化を図ることが可能となる。   Furthermore, in the light source device 20 of the second embodiment, by using the fluorescent rotator 1, the phosphor layer 2 is rotated even when irradiated with high-power excitation light, and the same part is excited. Is short, so heat generation is suppressed and the heat is dissipated while the light strikes another location. Therefore, since it is possible to suppress the generation of a large amount of heat locally due to the excitation light irradiation in the phosphor layer 2, it is possible to suppress discoloration of the resin component and temperature quenching of the phosphor, thereby achieving high luminance. Is possible.

また、図4(a),(b)の光源装置20において、蛍光回転体1には、例えば蛍光体層2の面のうち励起光が入射する側とは反対側の面に光反射性を有する基板6が設けられている。この場合、基板6は、光反射性を有する材料(例えば金属など)で形成されている。また、基板6は、放熱基板としての機能も具備している。すなわち、この基板6は、蛍光、励起光の反射面の役割と、蛍光体層2からの熱を外部へ放散させる役割と、蛍光体層2の支持基板の役割も担うものである。このため、高い光反射特性、伝熱特性、加工性が求められる。この基板6には、金属基板やアルミナなどの酸化物セラミックス、窒化アルミニウムなどの非酸化セラミックスなどが使用可能であるが、特に高い光反射特性、伝熱特性、加工性を併せ持つ金属基板を使用するのが望ましい。このように、基板6を光反射性を有する材料(例えば金属など)で形成することによって、この蛍光回転体1を、蛍光体層2の面のうち励起光が入射する側の面から、蛍光、励起光を反射によって取り出す反射型の蛍光回転体として構成することができる。   Further, in the light source device 20 of FIGS. 4A and 4B, the fluorescent rotator 1 has light reflectivity on the surface of the phosphor layer 2 opposite to the side on which the excitation light is incident, for example. A substrate 6 is provided. In this case, the substrate 6 is formed of a light reflective material (for example, metal). The substrate 6 also has a function as a heat dissipation substrate. That is, the substrate 6 also serves as a reflection surface for fluorescence and excitation light, serves to dissipate heat from the phosphor layer 2 to the outside, and serves as a support substrate for the phosphor layer 2. For this reason, high light reflection characteristics, heat transfer characteristics, and workability are required. The substrate 6 can be a metal substrate, oxide ceramics such as alumina, or non-oxide ceramics such as aluminum nitride, but a metal substrate having particularly high light reflection characteristics, heat transfer characteristics, and workability is used. Is desirable. In this way, by forming the substrate 6 with a light-reflective material (for example, metal), the fluorescent rotator 1 is made to fluoresce from the surface of the phosphor layer 2 where the excitation light is incident. In addition, it can be configured as a reflection type fluorescent rotating body that extracts excitation light by reflection.

ここで、反射型の蛍光回転体について説明する。図1に示す光源装置では、固体光源95からの励起光によって励起された蛍光体層92からの出射光のうち、固体光源95側とは反対側に出射する蛍光と蛍光体層92で吸収されずに透過した固体光源95の励起光とを用いている。つまり蛍光回転体91を透過型の蛍光回転体として使用している。この透過型の蛍光回転体91では、蛍光体層92からの出射光には上記透過光とともに蛍光体層92との界面で反射されて固体光源95側へ戻って行く光、つまり反射光も存在しており、この反射光は照明光として利用できない光となってしまう。また、透過型の蛍光回転体91では、目的の色度の照明光を得るためには蛍光体層92の厚みを厚くする必要があり、熱を放散する上でも不利である。   Here, the reflection type fluorescent rotator will be described. In the light source device shown in FIG. 1, among the emitted light from the phosphor layer 92 excited by the excitation light from the solid light source 95, the fluorescence emitted to the opposite side to the solid light source 95 side and the phosphor layer 92 are absorbed. The excitation light of the solid light source 95 that is transmitted without being used. That is, the fluorescent rotator 91 is used as a transmission type fluorescent rotator. In this transmissive fluorescent rotator 91, the light emitted from the phosphor layer 92 is reflected at the interface with the phosphor layer 92 together with the transmitted light and returns to the solid light source 95 side, that is, reflected light. Therefore, this reflected light becomes light that cannot be used as illumination light. Further, in the transmission type fluorescent rotating body 91, it is necessary to increase the thickness of the phosphor layer 92 in order to obtain illumination light having a target chromaticity, which is disadvantageous in dissipating heat.

これに対し、図4(a),(b)の光源装置20では、固体光源5からの励起光によって励起された蛍光体層2からの出射光のうち、固体光源5側に出射する蛍光と蛍光体層2で反射された固体光源5からの励起光を用いている。つまり、蛍光回転体1を反射型の蛍光回転体として使用している。このように反射型の蛍光回転体を使用することで、励起光の反射光も照明光として利用できるため、より一層の高輝度化が可能となる。また透過型に対し、反射型では蛍光体層の厚みが半分以下でも蛍光体層内の光路長が等しくなり同じ色度の光が得られるため、蛍光体層を薄くすることができ、蛍光体層2から基板6までの距離が短くなるので、熱放散の面でも有利である。   On the other hand, in the light source device 20 of FIGS. 4A and 4B, among the emitted light from the phosphor layer 2 excited by the excitation light from the solid light source 5, the fluorescence emitted to the solid light source 5 side Excitation light from the solid light source 5 reflected by the phosphor layer 2 is used. That is, the fluorescent rotator 1 is used as a reflection type fluorescent rotator. By using the reflection type fluorescent rotating body in this way, reflected light of excitation light can also be used as illumination light, so that it is possible to further increase the brightness. In contrast to the transmission type, the reflection type allows the phosphor layer to be made thinner because the optical path lengths in the phosphor layer are equal and light of the same chromaticity can be obtained even when the thickness of the phosphor layer is less than half. Since the distance from the layer 2 to the substrate 6 is shortened, it is advantageous in terms of heat dissipation.

このように、蛍光回転体1を反射型の蛍光回転体とすることで、より一層の高輝度化を図ることができる。なお、以下の各例では、蛍光回転体1は、反射型の蛍光回転体であるとして説明する。   In this way, by making the fluorescent rotator 1 a reflective fluorescent rotator, it is possible to further increase the luminance. In each of the following examples, description will be made assuming that the fluorescent rotator 1 is a reflection type fluorescent rotator.

また、図4(a),(b)の光源装置20において、蛍光体層2には、樹脂中に蛍光体を分散させたものや、ガラス中に蛍光体を分散させたもの、もしくはバインダー成分を含まない蛍光体セラミックスを使用することができる。蛍光体セラミックスは蛍光体の製造過程において、焼成前に材料を任意の形状に成形し、焼成した蛍光体の塊である。蛍光体セラミックスはその製造工程のうち、成形工程においてバインダーとして有機物を使用する場合があるが、成形後に脱脂工程を設け有機成分を焼き飛ばすため、焼成後の蛍光体セラミックスにはバインダー成分は5wt%以下しか残留しない。無機物質のみからなるガラスやセラミックスは一般に樹脂よりも熱伝導率が高いため蛍光体層から基板への熱放散において有利である。特に蛍光体セラミックスは一般的にガラスよりもさらに熱伝導率が高いため好適である。   4 (a) and 4 (b), the phosphor layer 2 has a phosphor dispersed in a resin, a phosphor dispersed in glass, or a binder component. Phosphor ceramics that do not contain can be used. The phosphor ceramic is a lump of phosphor that is formed by firing a material into an arbitrary shape before firing in the manufacturing process of the phosphor. The phosphor ceramics may use an organic substance as a binder in the molding process in the manufacturing process. However, since the organic component is burned off by forming a degreasing process after the molding, the phosphor ceramic after firing has a binder component of 5 wt%. Only the following remains: Since glass and ceramics made of only inorganic substances generally have higher thermal conductivity than resin, they are advantageous in heat dissipation from the phosphor layer to the substrate. In particular, phosphor ceramics are preferable because they generally have higher thermal conductivity than glass.

また、蛍光体層2と基板6との接合は、樹脂やガラス中に蛍光体を分散させた蛍光体層の場合はその樹脂やガラスが接合材となるが、蛍光体セラミックスの場合には、有機接着剤、無機接着剤、低融点ガラス、金属のろう付けなどを接合剤として用いることができる。   The phosphor layer 2 and the substrate 6 are bonded to each other in the case of a phosphor layer in which the phosphor is dispersed in a resin or glass. Organic adhesives, inorganic adhesives, low melting glass, metal brazing, and the like can be used as bonding agents.

また、図4(a),(b)の構成例では、例えば、固体光源5の発光(青色光)と蛍光体層2から発せられる蛍光(緑色光)の混合光を利用するものであるが、この場合、混合光をフィルターを通して単色光として用いても良いし(緑色光だけを取り出しても良いし)、そのまま混合光として用いても良い。特に、蛍光体層2として、橙から赤色に発光する蛍光体をYbイオンを付活したβサイアロン蛍光体(緑色蛍光体)と一緒に用いた場合(混合して用いた場合)には(さらに、これに黄色に発光する蛍光体を混合して用いることもできる)、白色光を得ることも可能である。このようにYbイオンを付活したβサイアロン蛍光体(緑色蛍光体)とそれよりも長波長の蛍光を発する蛍光体とを同じ蛍光体層2中に混ぜて使用しても良いし、次のように別々の蛍光体層を形成して使用しても良い。   4 (a) and 4 (b), for example, use a mixed light of emission (blue light) of the solid light source 5 and fluorescence (green light) emitted from the phosphor layer 2. In this case, the mixed light may be used as monochromatic light through a filter (only green light may be taken out) or may be used as it is as mixed light. In particular, when a phosphor emitting from orange to red is used as the phosphor layer 2 together with a β sialon phosphor (green phosphor) activated with Yb ions (when mixed), It is also possible to use a mixture of phosphors that emit yellow light), and to obtain white light. In this way, β sialon phosphor (green phosphor) activated with Yb ions and phosphor emitting longer wavelength fluorescence may be mixed in the same phosphor layer 2 and used as follows. In this manner, separate phosphor layers may be formed and used.

すなわち、図4(a),(b)の例では、蛍光回転体1の蛍光体層2としては、1種類の蛍光体層だけが用いられている。具体的に、図4(a),(b)の例では、蛍光回転体1の蛍光体層2として、例えば緑色蛍光体からなる蛍光体層だけが用いられるか(この場合、固体光源5として青色光を発光するものを用いれば、反射光として緑色光と青色光が混合された照明光を得ることができる)、緑、赤色、(さらには黄色も可能)の蛍光体のそれぞれが例えば均一に分散されて混合されたものとなっている蛍光体層が用いられている(この場合、固体光源5として青色光を発光するものを用いれば、反射光として白色などの照明光を得ることができる)。ただし、本発明は、これに限定されず、種々の変形が可能である。すなわち、蛍光回転体1の蛍光体層2としては、緑、赤、黄色などの蛍光体層を少なくとも1つ配置した構成にすることができる。換言すれば、蛍光回転体1の蛍光体層2は、複数のセクションに分かれていても良い。複数のセクションに分かれる場合には、隣接するセクションと発光が混ざるのを防ぐため、隣接するセクション間を光反射性の分離壁で分離させることが望ましい。また各セクションに分散している蛍光体の種類、分散量(濃度)が異なっていても良い。また、各セクションの蛍光体層の厚みが異なっていても良い。   That is, in the example of FIGS. 4A and 4B, only one type of phosphor layer is used as the phosphor layer 2 of the fluorescence rotator 1. Specifically, in the example of FIGS. 4A and 4B, only the phosphor layer made of, for example, a green phosphor is used as the phosphor layer 2 of the phosphor rotator 1 (in this case, as the solid light source 5). If a material that emits blue light is used, illumination light in which green light and blue light are mixed can be obtained as reflected light), green, red, and even phosphors can be uniform, for example. (In this case, if a solid light source that emits blue light is used, illumination light such as white light can be obtained as reflected light.) it can). However, the present invention is not limited to this, and various modifications are possible. That is, the phosphor layer 2 of the fluorescent rotator 1 can be configured such that at least one phosphor layer of green, red, yellow or the like is disposed. In other words, the phosphor layer 2 of the fluorescence rotator 1 may be divided into a plurality of sections. When divided into a plurality of sections, it is desirable to separate adjacent sections with a light-reflective separation wall in order to prevent light emission from mixing with the adjacent sections. Further, the type of phosphors dispersed in each section and the amount of dispersion (concentration) may be different. Moreover, the thickness of the phosphor layer in each section may be different.

図5、図6、図7は、反射型の蛍光回転体1の蛍光体層2が複数のセクションに分かれている場合についての各種の構成例を示す図(平面図)である。なお、図5、図6、図7は、説明の便宜上、図4(a),(b)の構成(反射型の蛍光回転体1の蛍光体層2)に対応させて図示されている。図5の例は、反射型蛍光回転体1の蛍光体層2として、2種類の蛍光体層2a,2b(例えば赤色蛍光体からなる蛍光体層2aと緑色蛍光体からなる蛍光体層2b)が2等分に分割された蛍光体領域として設けられており、この場合、固体光源5として青色光を発光するものを用いれば、反射型の蛍光回転体1の回転時の反射光として白色などの照明光を得ることができる。また、図6の例は、反射型蛍光回転体1の蛍光体層2として、2種類の蛍光体層2a,2b(例えば赤色蛍光体からなる蛍光体層2aと緑色蛍光体からなる蛍光体層2b)が蛍光体領域として設けられ、蛍光体層が設けられていない領域が非蛍光体領域42cとして設けられており、この場合、固体光源5として青色光を発光するものを用いれば、反射型蛍光回転体1の回転時の反射光として白色などの照明光を得ることができる。また、図7の例は、反射型蛍光回転体1の蛍光体層2として、3種類の蛍光体層2a,2b,2c(例えば赤色蛍光体からなる蛍光体層2aと緑色蛍光体からなる蛍光体層2bと黄色蛍光体からなる蛍光体層2c)が蛍光体領域として設けられ、蛍光体層が設けられていない領域が非蛍光体領域42cとして設けられており、この場合、固体光源5として青色光を発光するものを用いれば、反射型蛍光回転体1の回転時の反射光として白色などの照明光を得ることができる。   5, 6, and 7 are diagrams (plan views) illustrating various configuration examples when the phosphor layer 2 of the reflection type fluorescent rotator 1 is divided into a plurality of sections. 5, 6, and 7 are illustrated in correspondence with the configuration of FIG. 4A and FIG. 4B (the phosphor layer 2 of the reflection type fluorescent rotating body 1) for convenience of explanation. In the example of FIG. 5, two types of phosphor layers 2 a and 2 b (for example, a phosphor layer 2 a made of a red phosphor and a phosphor layer 2 b made of a green phosphor) are used as the phosphor layer 2 of the reflection type fluorescent rotator 1. Is provided as a phosphor region divided into two equal parts. In this case, if a solid-state light source that emits blue light is used, white or the like is reflected as the reflected light when the reflective fluorescent rotator 1 is rotated. Illumination light can be obtained. In the example of FIG. 6, two types of phosphor layers 2 a and 2 b (for example, a phosphor layer 2 a made of a red phosphor and a phosphor layer made of a green phosphor are used as the phosphor layer 2 of the reflective phosphor rotator 1. 2b) is provided as a phosphor region, and a region where no phosphor layer is provided is provided as a non-phosphor region 42c. In this case, if a solid light source that emits blue light is used, a reflective type is used. Illumination light such as white light can be obtained as reflected light when the fluorescent rotator 1 rotates. In the example of FIG. 7, as the fluorescent layer 2 of the reflection type fluorescent rotator 1, three types of fluorescent layers 2a, 2b, 2c (for example, a fluorescent layer 2a made of a red fluorescent material and a fluorescent light made of a green fluorescent material). The body layer 2b and the phosphor layer 2c made of a yellow phosphor are provided as the phosphor region, and the region where the phosphor layer is not provided is provided as the non-phosphor region 42c. If one that emits blue light is used, illumination light such as white can be obtained as reflected light when the reflective fluorescent rotator 1 rotates.

このように、蛍光回転体1の蛍光体層2が複数のセクションに分かれている場合、蛍光体層2の配置については、2種類以上の蛍光体層を使用する場合には、図5、図6、図7のようにそれらの蛍光体層を水平方向に並べて配置することができる。あるいは、2種類以上の蛍光体層を垂直方向に重ねて配置することもできる。図8には、例えば2種類の蛍光体層2a,2b(例えば赤色蛍光体からなる蛍光体層2aと緑色蛍光体からなる蛍光体層2b)を垂直方向に重ねて配置した蛍光回転体1の例が断面図で示されている。図8の構成の場合にも、固体光源5として青色光を発光するものを用いれば、蛍光回転体1の回転時の反射光として白色などの照明光を得ることができる。   Thus, when the fluorescent substance layer 2 of the fluorescent rotating body 1 is divided into a plurality of sections, the arrangement of the fluorescent substance layer 2 is shown in FIGS. 5 and 5 when two or more kinds of fluorescent substance layers are used. 6. These phosphor layers can be arranged in the horizontal direction as shown in FIG. Alternatively, two or more types of phosphor layers can be stacked in the vertical direction. FIG. 8 shows a fluorescent rotating body 1 in which, for example, two types of phosphor layers 2a and 2b (for example, a phosphor layer 2a made of a red phosphor and a phosphor layer 2b made of a green phosphor) are vertically stacked. An example is shown in cross section. In the case of the configuration of FIG. 8 as well, if a solid light source that emits blue light is used, illumination light such as white can be obtained as reflected light when the fluorescent rotator 1 rotates.

以下、本発明の第1、第2の実施形態の光源装置10、20をより詳細に説明する。   Hereinafter, the light source devices 10 and 20 of the first and second embodiments of the present invention will be described in more detail.

まず、Yb(イッテルビウム)を付活したβサイアロン蛍光体(以下、Yb付活βサイアロン蛍光体と称す)について説明する。βサイアロン蛍光体は、組成式SiAl6−z8−z:A(Aは発光中心イオン、0<z≦4.2)で表され、β型窒化珪素と同じ結晶構造をもつものである。Ybイオンを発光中心イオンとしてこのβサイアロン蛍光体に付活することで、Euのみを付活したβサイアロン蛍光体に比べ、その励起スペクトルの値の変動が460nm〜490nmの波長範囲で小さいβサイアロン蛍光体を得ることができる。この効果は、Ybのみを付活した場合にも、EuやCeといったその他のランタノイドを発光中心イオンとして同時に付活した場合にも得られる。このときのYbイオンとその他の発光中心イオンを合わせた濃度は、母体のモル数に対して0.05mol%〜1.0mol%の範囲が望ましい。これは、発光中心イオン濃度が0.05mol%以下の場合は発光中心イオンが少なすぎるために蛍光強度が十分に得られず、1.0mol%以上の場合には濃度消光が生じるために蛍光強度が十分に得られないためである。また、Ybイオンが少なすぎる場合にはβサイアロン蛍光体の励起スペクトルの値が460nm〜490nmの波長範囲で右下がりに変動してしまい、望ましくない。蛍光体の粒径は、中位径が10μm〜30μmの範囲のものが望ましい。中位径が10μm未満のものは蛍光体の発光効率が低いためであり、30μmよりも大きなものは蛍光体層内で均一に分散しにくいためである。 First, a β sialon phosphor activated with Yb (ytterbium) (hereinafter referred to as a Yb activated β sialon phosphor) will be described. The β sialon phosphor is represented by the composition formula Si 6 Al 6 -z O z N 8 -z : A (A is an emission center ion, 0 <z ≦ 4.2), and has the same crystal structure as β-type silicon nitride. It has. By activating the β sialon phosphor with the Yb ion as the luminescent center ion, the variation of the excitation spectrum value is smaller in the wavelength range of 460 nm to 490 nm than the β sialon phosphor activated only with Eu. A phosphor can be obtained. This effect can be obtained when only Yb is activated or when other lanthanoids such as Eu and Ce are simultaneously activated as luminescent center ions. The combined concentration of Yb ions and other emission center ions at this time is preferably in the range of 0.05 mol% to 1.0 mol% with respect to the number of moles of the base material. This is because when the emission center ion concentration is 0.05 mol% or less, the fluorescence intensity is not sufficiently obtained because the emission center ion is too low, and when the emission center ion concentration is 1.0 mol% or more, concentration quenching occurs, resulting in fluorescence intensity. This is because sufficient cannot be obtained. On the other hand, when the amount of Yb ions is too small, the value of the excitation spectrum of the β sialon phosphor fluctuates downward in the wavelength range of 460 nm to 490 nm, which is not desirable. As for the particle diameter of the phosphor, the median diameter is desirably in the range of 10 μm to 30 μm. This is because the emission efficiency of the phosphor is low when the median diameter is less than 10 μm, and when the median diameter is larger than 30 μm, it is difficult to uniformly disperse within the phosphor layer.

Yb付活βサイアロン蛍光体の製造方法は以下の通りである。出発材料としてSi(ケイ素)、Al(アルミニウム)、Yb(イッテルビウム)、および、発光中心イオンとしたいYb以外のランタノイド元素の窒化物、酸化物もしくはフッ化物の粉末を用意し、目的の組成比になるように秤量し、十分に混合する。混合は、アルミナや窒化ケイ素製のボールを利用したボールミルで実施可能であり、混合効率を高めるためにエタノールやイソプロパノール、ヘキサンなどを溶媒として用いた湿式混合を行っても良い。ただし、材料が溶媒中の水分と反応してしまう可能性があるため、溶媒は脱水したものが望ましい。混合後は真空乾燥炉や窒素雰囲気の乾燥炉内で十分に乾燥させる。その後必要であればメッシュを通して目的の大きさに分級し、窒化ホウ素製るつぼに投入する。材料は0.1〜1.0MPaの窒素加圧雰囲気下で1800〜2000℃、2〜10時間焼成する。焼成後は不純物除去のため、塩酸やフッ酸などの酸性溶液や水酸化ナトリウムなどのアルカリ溶液、もしくは沸騰した水で洗浄しても良い。最後にもう一度メッシュを通して分級することで目的の蛍光体粉末を得ることが出来る。なお、焼成前にスリップキャスティング法や加圧成型法を用いて材料を成型し、焼成を実施すれば、板状の蛍光体セラミックスを得ることも可能である。   The method for producing the Yb-activated β sialon phosphor is as follows. Prepare Si (silicon), Al (aluminum), Yb (ytterbium) as a starting material, and nitride, oxide or fluoride powders of lanthanoid elements other than Yb to be used as the luminescent center ion, and achieve the desired composition ratio Weigh and mix well. Mixing can be performed with a ball mill using balls made of alumina or silicon nitride, and wet mixing using ethanol, isopropanol, hexane, or the like as a solvent may be performed to increase mixing efficiency. However, since the material may react with moisture in the solvent, the solvent is preferably dehydrated. After mixing, it is sufficiently dried in a vacuum drying furnace or a drying furnace in a nitrogen atmosphere. Then, if necessary, it is classified to the desired size through a mesh and put into a boron nitride crucible. The material is fired at 1800 to 2000 ° C. for 2 to 10 hours in a nitrogen pressurized atmosphere of 0.1 to 1.0 MPa. After calcination, in order to remove impurities, it may be washed with an acidic solution such as hydrochloric acid or hydrofluoric acid, an alkaline solution such as sodium hydroxide, or boiled water. Finally, the target phosphor powder can be obtained by classification through the mesh once more. In addition, it is also possible to obtain a plate-like phosphor ceramic by molding a material using a slip casting method or a pressure molding method before firing and performing firing.

また、固体光源5としては、青色光領域に発光波長をもつ発光ダイオードやレーザーダイオードなどが使用可能であり、特に460nm以上の発光波長を持つものが望ましい。本発明は、励起光強度が高い光源を使用する場合にその効果が顕著に現れるため、もちろんこれらの光源に限定はされるものではないが、例えば、GaN系の材料を用いた約480nmの青色光を発光するレーザーダイオードを用いることができる。   Further, as the solid light source 5, a light emitting diode or laser diode having a light emission wavelength in the blue light region can be used, and a light source having a light emission wavelength of 460 nm or more is particularly desirable. In the present invention, when a light source having high excitation light intensity is used, the effect appears remarkably. Therefore, the present invention is not limited to these light sources, but for example, a blue color of about 480 nm using a GaN-based material. A laser diode that emits light can be used.

また、蛍光体層2に使用される蛍光体としては、Yb付活βサイアロン蛍光体のほかに、青色光領域の光を吸収し、Yb付活βサイアロン蛍光体よりも長波長の光を発するものを用いることができる。例えば、赤色用には、CaAlSiN:Eu2+、(Ca,Sr)AlSiN:Eu2+、CaSi:Eu2+、(Ca,Sr)Si:Eu2+、KSiF:Mn4+、KTiF:Mn4+等を用いることができる。また、黄色用には、YAl12:Ce3+、(Sr,Ba)SiO:Eu2+、Ca(Si,Al)12(O,N)16:Eu2+等を用いることができる。 In addition to the Yb-activated β sialon phosphor, the phosphor used in the phosphor layer 2 absorbs light in the blue light region and emits light having a longer wavelength than the Yb-activated β sialon phosphor. Things can be used. For example, for red, CaAlSiN 3 : Eu 2+ , (Ca, Sr) AlSiN 3 : Eu 2+ , Ca 2 Si 5 N 8 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , KSiF 6 : Mn 4+ , KTiF 6 : Mn 4+ and the like can be used. For yellow, use Y 3 Al 5 O 12 : Ce 3+ , (Sr, Ba) 2 SiO 4 : Eu 2+ , Ca x (Si, Al) 12 (O, N) 16 : Eu 2+, etc. Can do.

蛍光体層2としては、これらの蛍光体粉末を樹脂中やガラス中に分散させたものや、蛍光体セラミックスを用いることが出来る。樹脂としてはシリコーン樹脂、シリコンエポキシ樹脂、フッ素樹脂などの熱硬化性樹脂や液晶ポリマーなどの熱可塑性樹脂を使用することができる。ここで、ガラスとしては、組成にSiO、B、AlO、Pなどの成分を含む低融点ガラスが挙げられる。 As the phosphor layer 2, those obtained by dispersing these phosphor powders in a resin or glass, or phosphor ceramics can be used. As the resin, a thermosetting resin such as a silicone resin, a silicon epoxy resin, or a fluororesin, or a thermoplastic resin such as a liquid crystal polymer can be used. Here, as the glass, SiO 2, B 2 O 3 , Al 2 O, a low melting point glass containing a component such as P 2 O 5 and the like in the composition.

また、蛍光体は、焼成前に成型し、焼成することで、蛍光体セラミックスとすることができる。蛍光体セラミックスは、自動研磨装置などを用いて厚さ数十〜数百μmの厚みに研磨し、さらにダイアモンドカッターやレーザーを用いたダイシングやスクライブにより円形や四角形や扇形、リング形など任意の形状の板にすることができる。蛍光体セラミックスの表面にエッチングや機会研磨により凹凸の光取出し構造を設けたり、レンズを実装したり、正面方向へ出射される発光成分を増加させることも可能である。   Further, the phosphor can be made into a phosphor ceramic by molding and firing before firing. Phosphor ceramics are polished to a thickness of several tens to several hundreds of μm using an automatic polishing machine, etc., and further shaped in any shape such as a circle, square, fan, or ring by dicing or scribing using a diamond cutter or laser. Can be made of It is also possible to provide an uneven light extraction structure by etching or opportunity polishing on the surface of the phosphor ceramic, to mount a lens, or to increase the emission component emitted in the front direction.

また、基板6には、金属基板や酸化物セラミックス、非酸化セラミックスなどが使用可能であるが、特に高い光反射特性、伝熱特性、加工性を併せ持つ金属基板を使用するのが望ましい。金属としてはAl、Cu、Ti、Si、Ag、Au、Ni、Mo、W、Fe、Pdなどの単体やそれらを含む合金が使用可能である。これらの基板の表面に増反射や腐食防止を目的としたコーティングを施しても良い。   The substrate 6 can be a metal substrate, oxide ceramic, non-oxide ceramic, or the like, but it is desirable to use a metal substrate having particularly high light reflection characteristics, heat transfer characteristics, and workability. As the metal, simple substances such as Al, Cu, Ti, Si, Ag, Au, Ni, Mo, W, Fe, and Pd, and alloys containing them can be used. The surface of these substrates may be coated for the purpose of increasing reflection and preventing corrosion.

また、基板6には放熱性を高めるためにフィンなどの構造を設けても良い。   Further, the substrate 6 may be provided with a structure such as a fin in order to improve heat dissipation.

また、蛍光体層2と基板6の接合には、樹脂やガラスを使用した場合の蛍光体層2であれば、それら自身を接合材として使用することができるが、蛍光体層2が蛍光体セラミックスの場合には有機接着剤、無機接着剤、低融点ガラス、ろう付けなどを用いることが出来る。なかでも高い反射率と伝熱特性を両立可能なろう付けが望ましい。すなわち、セラミックスと金属の接合は、まずセラミックス側に金属膜を形成し、その金属膜と金属基板をろう付けすることで可能である。セラミックスへの金属膜の形成は、真空中での蒸着法やスパッタ法、もしくは高融点金属法などが使用可能である。ここで、高融点金属法とは、セラミックスの表面に金属微粒子を含む有機バインダーを塗布し、水蒸気と水素を含む還元雰囲気下で1000〜1700℃に加熱する方法である。このとき形成される金属膜には、Si、Nb、Ti、Zr、Mo、Ni、Mn、W、Fe、Pt、Al、Au、Pd、Ta、Cuなどを含む単体や合金が用いられる。また、ろう材にはAg、Cu、Zn、Ni、Sn、Ti、Mn、In、Biなどを含むろう材が使用可能である。必要であれば金属膜と金属の接合面の酸化被膜をフラックスで除去し、接合面にろう材を配置し、200〜800℃に加熱し、冷却することで接合することが出来る。また接合後にセラミックスと金属の膨張係数の差による接合面の破壊を防ぐために、セラミックスと金属の中間の膨張係数を有する物質を介在させて接合を行っても良い。   In addition, the phosphor layer 2 and the substrate 6 can be bonded to each other as long as the phosphor layer 2 is made of resin or glass. In the case of ceramics, organic adhesives, inorganic adhesives, low melting glass, brazing, and the like can be used. In particular, brazing that can achieve both high reflectivity and heat transfer characteristics is desirable. That is, the ceramic and metal can be joined by first forming a metal film on the ceramic side and brazing the metal film and the metal substrate. The metal film can be formed on the ceramic by a vacuum deposition method, a sputtering method, a refractory metal method, or the like. Here, the refractory metal method is a method in which an organic binder containing metal fine particles is applied to the surface of a ceramic and heated to 1000 to 1700 ° C. in a reducing atmosphere containing water vapor and hydrogen. For the metal film formed at this time, a simple substance or an alloy containing Si, Nb, Ti, Zr, Mo, Ni, Mn, W, Fe, Pt, Al, Au, Pd, Ta, Cu, or the like is used. In addition, a brazing material containing Ag, Cu, Zn, Ni, Sn, Ti, Mn, In, Bi, or the like can be used as the brazing material. If necessary, the oxide film on the joining surface of the metal film and the metal can be removed by flux, a brazing material is placed on the joining surface, heated to 200 to 800 ° C., and cooled to be joined. Moreover, in order to prevent destruction of the joint surface due to the difference in expansion coefficient between the ceramic and the metal after joining, the joining may be performed by interposing a substance having an intermediate expansion coefficient between the ceramic and the metal.

また、蛍光回転体1は、蛍光体層2と基板6を接合したものをモーター等と連結することで実現できる。このときの基板6の形状は円盤状や四角形などが考えられる。また回転の安定性を確保するために円盤の一部を切り欠いたり、逆におもりをつけた形状とすることも可能である。   Moreover, the fluorescent rotator 1 can be realized by connecting the phosphor layer 2 and the substrate 6 joined to a motor or the like. The shape of the substrate 6 at this time may be a disk shape or a quadrangle. Moreover, in order to ensure the stability of rotation, it is also possible to cut out a part of the disk or to have a shape with a weight on the contrary.

また、上述の各例では、基板6を金属などで構成し、蛍光回転体1を反射型の蛍光回転体として構成したが、基板6を光透過性の材料(透明材料)で構成すれば、蛍光回転体1を図1に示したような透過型の蛍光回転体として構成することもできる。この場合も、本発明が適用されることで(すなわち、蛍光回転体1が、固体光源5からの青色光により励起され固体光源5からの青色光の波長よりも長波長の蛍光を発光する少なくともYbを付活したβサイアロン蛍光体を含む蛍光体層2を有していることで)、発光スペクトルの半値幅が狭く、かつ、発熱をより一層減少させるために(より一層の高輝度化を図るために)青色光を発光する固体光源5の波長を通常青色光として使用される440nm〜460nmの波長範囲よりも波長が長い460nm〜490nmの波長範囲にした場合にも、出力(発光強度)の変動を抑えることの可能な(温度変化等による固体光源の波長変動に対して、出力(発光強度)の変動が小さい)光源装置を提供することができる。   In each of the above examples, the substrate 6 is made of metal or the like, and the fluorescent rotator 1 is made as a reflective fluorescent rotator. However, if the substrate 6 is made of a light-transmitting material (transparent material), The fluorescent rotator 1 can also be configured as a transmission type fluorescent rotator as shown in FIG. Also in this case, by applying the present invention (that is, the fluorescent rotator 1 is excited by the blue light from the solid light source 5 and emits fluorescence having a wavelength longer than that of the blue light from the solid light source 5). In order to reduce the half-value width of the emission spectrum and further reduce the heat generation (by further increasing the brightness), the phosphor layer 2 containing the β sialon phosphor activated with Yb is included. The output (emission intensity) is also obtained when the wavelength of the solid light source 5 emitting blue light is set to a wavelength range of 460 nm to 490 nm, which is longer than the wavelength range of 440 nm to 460 nm, which is normally used as blue light. Can be suppressed (the fluctuation of the output (light emission intensity) is small with respect to the fluctuation of the wavelength of the solid light source due to a temperature change or the like).

なお、上述の各例では示されていないが、必要であれば、固体光源5と蛍光体層2との間に、レンズなどの光学素子が設けられても良い。   Although not shown in the above examples, an optical element such as a lens may be provided between the solid light source 5 and the phosphor layer 2 if necessary.

また、本発明の上述した種々の光源装置を所定のレンズ系などの光学部品と組み合わせることで、発光スペクトルの半値幅が狭く、かつ、発熱をより一層減少させるために(より一層の高輝度化を図るために)青色光を発光する固体光源5の波長を通常青色光として使用される440nm〜460nmの波長範囲よりも波長が長い460nm〜490nmの波長範囲にした場合にも、出力(発光強度)の変動を抑えることの可能な(温度変化等による固体光源の波長変動に対して、出力(発光強度)の変動が小さい)照明装置を提供できる。   In addition, by combining the above-described various light source devices of the present invention with optical components such as a predetermined lens system, the half-value width of the emission spectrum is narrow and the heat generation is further reduced (with higher brightness). Output (emission intensity) even when the wavelength of the solid-state light source 5 emitting blue light is set to a wavelength range of 460 nm to 490 nm, which is longer than the wavelength range of 440 nm to 460 nm, which is normally used as blue light. ) Can be suppressed (the output (light emission intensity) fluctuation is small relative to the wavelength fluctuation of the solid-state light source due to a temperature change or the like).

最後に、本願の発明者によってなされたYb付活βサイアロン蛍光体の焼成実験について説明する。   Finally, a firing experiment of the Yb-activated β sialon phosphor made by the inventors of the present application will be described.

先ず、出発材料としてα型窒化珪素(Si:宇部興産製SN−E10)、窒化アルミニウム(AlN:トクヤマ製Hグレード)、酸化アルミニウム(Al:住友化学製APK−Y300)、酸化イッテルビウム(Yb:信越化学製 純度99.99%)、酸化ユウロピウム(Eu:信越化学製 純度99.99%)を用意し、実施例1、実施例2、比較例のそれぞれについて、これらの材料を図9の分量で配合し(図9において、%は材料全体に対する重量パーセント)、βサイアロン蛍光体(SiAl6−z8−z:A(Aは発光中心イオン、0<z≦4.2))のz、A(Yb)、A(Eu)が図10の組成となるようにした(すなわち、実施例1ではYbのみを付活し、実施例2ではYbとEuを等量付活し、比較例ではEuのみを付活した)。なお、図10において、%は母体のモル数に対するモルパーセントである。 First, α-type silicon nitride (Si 3 N 4 : Ube Industries SN-E10), aluminum nitride (AlN: Tokuyama H grade), aluminum oxide (Al 2 O 3 : Sumitomo Chemical APK-Y300), Ytterbium oxide (Yb 2 O 3 : Shin-Etsu Chemical purity 99.99%) and europium oxide (Eu 2 O 3 : Shin-Etsu Chemical purity 99.99%) were prepared. Examples 1, 2 and Comparative Examples For each, these materials are blended in the amounts shown in FIG. 9 (in FIG. 9,% is weight percent of the total material) and β-sialon phosphor (Si 6 Al 6-z O z N 8-z : A (A is (Emission center ion, 0 <z ≦ 4.2)) z, A (Yb), and A (Eu) are set to have the composition shown in FIG. In example 2, Y And the Eu equal amounts activated and activated only Eu in the comparative example). In FIG. 10, “%” is a mole percent with respect to the number of moles of the base material.

そして、これらの材料を窒化ケイ素製ボールを用いたボールミルにより十分に混合した。混合した材料は、100番のナイロンメッシュを通して分級した後、窒化ホウ素製るつぼに投入した。このるつぼを多目的焼成炉(富士電波製ハイマルチ5000)内に配置し、窒素1.0MPa雰囲気下で2000℃、4時間の焼成を行った。得られた焼成物は乳鉢で解した後、沸騰したお湯で洗浄し、乾燥後に380番のナイロンメッシュを通して分級した。こうして得られた蛍光体を粉末X線回折装置(BrukerAXS製D8Advance)で調べたところ、実施例1、実施例2、比較例のいずれも、βサイアロンの構造ができていることが確かめられた。   These materials were sufficiently mixed by a ball mill using silicon nitride balls. The mixed material was classified through No. 100 nylon mesh and then put into a boron nitride crucible. This crucible was placed in a multi-purpose firing furnace (High Multi 5000 manufactured by Fuji Denpa) and baked at 2000 ° C. for 4 hours in a nitrogen 1.0 MPa atmosphere. The obtained fired product was unraveled in a mortar, washed with boiling hot water, dried and classified through a # 380 nylon mesh. The phosphor thus obtained was examined with a powder X-ray diffractometer (D8 Advance manufactured by Bruker AXS). As a result, it was confirmed that the structures of Example 1, Example 2, and Comparative Example all had a β sialon structure.

さらに蛍光分光光度計(日立製作所製F4500)を用いて発光スペクトル、励起スペクトルを測定した結果を図11、図12に示す。なお、図11、図12は最大値で規格化した相対値で示されている。図11から、実施例1、実施例2、比較例のいずれも発光スペクトルは540nm付近にあり変化はないが、図12の励起スペクトルを比較すると、Ybを付活した実施例1、実施例2では460nm〜490nmの波長範囲での励起スペクトルは比較的値(強度)の変化が小さいのに対し、Euのみを付活した比較例では同じ範囲で長波長になるにつれて励起スペクトルの強度が大きく低下している。よりわかりやすくするために図13に460nmの値で規格化しなおした励起スペクトルの値(強度)を示している。図13の下段にも示したとおり、460nm〜490nmの波長範囲での励起スペクトルの値(強度)の変化量(460nm〜490nmの波長範囲での励起スペクトルの(最大値)―(最小値))は、Euのみを付活した比較例の場合には23.2%と大きいものであるのに対し、Ybのみを付活した実施例1では16.5%、YbとEuを等量付活した実施例2では11.6%と大きな改善が確認できた。   Furthermore, the result of having measured the emission spectrum and the excitation spectrum using the fluorescence spectrophotometer (F4500 by Hitachi, Ltd.) is shown in FIG. 11 and FIG. In addition, FIG. 11, FIG. 12 is shown by the relative value normalized by the maximum value. From FIGS. 11A and 11B, the emission spectra of Examples 1, 2 and Comparative Examples are all in the vicinity of 540 nm and do not change. However, when the excitation spectra of FIG. 12 are compared, Example 1 and Example 2 in which Yb is activated are compared. The excitation spectrum in the wavelength range of 460 nm to 490 nm has a relatively small change in value (intensity), whereas in the comparative example in which only Eu is activated, the intensity of the excitation spectrum greatly decreases as the wavelength becomes longer in the same range. is doing. For easier understanding, FIG. 13 shows the value (intensity) of the excitation spectrum re-normalized with the value of 460 nm. As shown in the lower part of FIG. 13, the amount of change (intensity) of the excitation spectrum in the wavelength range of 460 nm to 490 nm ((maximum value) − (minimum value) of the excitation spectrum in the wavelength range of 460 nm to 490 nm) In the comparative example in which only Eu is activated, it is as large as 23.2%, whereas in Example 1 in which only Yb is activated, 16.5%, Yb and Eu are activated in equal amounts. In Example 2, significant improvement of 11.6% was confirmed.

こうして得られたYb付活βサイアロン蛍光体を460nm以上の発光波長を持つ固体光源5と組み合わせ、反射型の蛍光回転体1を利用した光源装置とすることで、高輝度で半値幅が狭く(色純度が良く)、かつ、緑色光出力に関してバラツキや変動が小さい光源装置を実現することができる。   The Yb-activated β sialon phosphor thus obtained is combined with a solid-state light source 5 having an emission wavelength of 460 nm or more to obtain a light source device using the reflection type fluorescent rotator 1, thereby achieving high brightness and a narrow half-value width ( It is possible to realize a light source device that has good color purity) and little variation and fluctuation in green light output.

本発明は、一般照明、ディスプレイ、自動車のヘッドランプなどに利用可能である。   The present invention can be used for general lighting, displays, automobile headlamps, and the like.

1 蛍光回転体
2 蛍光体層
42c 非蛍光体領域
5 固体光源
6 基板
10、20 光源装置
DESCRIPTION OF SYMBOLS 1 Fluorescence rotating body 2 Phosphor layer 42c Non-phosphor area | region 5 Solid light source 6 Substrate 10, 20 Light source device

Claims (7)

青色光を発光する固体光源と、該固体光源からの青色光により励起され該固体光源からの青色光の波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層とを有し、前記蛍光体層には、少なくともYbを付活したβサイアロン蛍光体が含まれていることを特徴とすることを特徴とする光源装置。 A solid-state light source that emits blue light, and a phosphor layer that includes at least one phosphor that is excited by blue light from the solid-state light source and emits fluorescence having a wavelength longer than the wavelength of the blue light from the solid-state light source. And the phosphor layer contains at least a β sialon phosphor activated with Yb. 青色光を発光する固体光源と、回転軸の周りに回転可能な蛍光回転体とを備え、該蛍光回転体は、前記固体光源からの青色光により励起され前記固体光源からの青色光の波長よりも長波長の蛍光を発光する少なくともYbを付活したβサイアロン蛍光体を含む蛍光体層を有していることを特徴とする光源装置。 A solid-state light source that emits blue light; and a fluorescent rotator that is rotatable around a rotation axis. The fluorescent rotator is excited by blue light from the solid-state light source, and has a wavelength of blue light from the solid-state light source. A light source device characterized by having a phosphor layer containing at least Yb-activated β sialon phosphor that emits long-wavelength fluorescence. 請求項1または請求項2記載の光源装置において、前記固体光源は、発光ダイオードまたは半導体レーザーであることを特徴とする光源装置。 3. The light source device according to claim 1, wherein the solid state light source is a light emitting diode or a semiconductor laser. 請求項1乃至請求項3のいずれか一項に記載の光源装置において、前記固体光源は、発光波長が460nm〜490nmの範囲のものであることを特徴とする光源装置。 4. The light source device according to claim 1, wherein the solid-state light source has an emission wavelength in a range of 460 nm to 490 nm. 請求項1乃至請求項4のいずれか一項に記載の光源装置において、前記少なくともYbを付活したβサイアロン蛍光体は、YbとYb以外のランタノイドを共に発光中心イオンとして付活したβサイアロン蛍光体であることを特徴とする光源装置。 5. The light source device according to claim 1, wherein the β sialon phosphor activated with at least Yb is β sialon fluorescence activated with both lanthanoids other than Yb and Yb as luminescent center ions. A light source device characterized by being a body. 請求項5記載の光源装置において、前記Yb以外のランタノイドは、Euであることを特徴とする光源装置。 6. The light source device according to claim 5, wherein the lanthanoid other than Yb is Eu. 請求項1乃至請求項7のいずれか一項に記載の光源装置が用いられていることを特徴とする照明装置。 An illumination device using the light source device according to any one of claims 1 to 7.
JP2010116183A 2010-05-20 2010-05-20 Light source device and luminaire Pending JP2011243840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010116183A JP2011243840A (en) 2010-05-20 2010-05-20 Light source device and luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010116183A JP2011243840A (en) 2010-05-20 2010-05-20 Light source device and luminaire

Publications (1)

Publication Number Publication Date
JP2011243840A true JP2011243840A (en) 2011-12-01

Family

ID=45410180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116183A Pending JP2011243840A (en) 2010-05-20 2010-05-20 Light source device and luminaire

Country Status (1)

Country Link
JP (1) JP2011243840A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203819A (en) * 2013-04-02 2014-10-27 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Phosphor device and illumination system using the same
JP2015094777A (en) * 2013-11-08 2015-05-18 日本電気硝子株式会社 Fluorescent wheel for projector, manufacturing method of the same, and light-emitting device for projector
JP2015111244A (en) * 2013-11-01 2015-06-18 株式会社リコー Light source device and projector using the same
JP2015118107A (en) * 2013-11-13 2015-06-25 日本電気硝子株式会社 Projector fluorescent wheel and projector light-emitting device
JP2016099520A (en) * 2014-11-21 2016-05-30 日亜化学工業株式会社 Wavelength conversion member and projector including the wavelength conversion member
CN109072075A (en) * 2016-05-09 2018-12-21 通用电气公司 Additive Mn phosphor material for high power density application
WO2024043010A1 (en) * 2022-08-23 2024-02-29 パナソニックIpマネジメント株式会社 Fluorescent wheel, light source device, projection-type video display device, and method for producing fluorescent wheel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203819A (en) * 2013-04-02 2014-10-27 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Phosphor device and illumination system using the same
US9229304B2 (en) 2013-04-02 2016-01-05 Delta Electronics, Inc. Phosphor device and illumination system using same
JP2015111244A (en) * 2013-11-01 2015-06-18 株式会社リコー Light source device and projector using the same
JP2015094777A (en) * 2013-11-08 2015-05-18 日本電気硝子株式会社 Fluorescent wheel for projector, manufacturing method of the same, and light-emitting device for projector
JP2015118107A (en) * 2013-11-13 2015-06-25 日本電気硝子株式会社 Projector fluorescent wheel and projector light-emitting device
US9609293B2 (en) 2014-11-21 2017-03-28 Nichia Corporation Wavelength converting member and projector including the wavelength converting member
JP2016099520A (en) * 2014-11-21 2016-05-30 日亜化学工業株式会社 Wavelength conversion member and projector including the wavelength conversion member
US9823557B2 (en) 2014-11-21 2017-11-21 Nichia Corporation Wavelength converting member and projector including the wavelength converting member
CN109072075A (en) * 2016-05-09 2018-12-21 通用电气公司 Additive Mn phosphor material for high power density application
KR20190005962A (en) * 2016-05-09 2019-01-16 제네럴 일렉트릭 컴퍼니 Manganese-doped phosphor material for high power density applications
JP2019519100A (en) * 2016-05-09 2019-07-04 ゼネラル・エレクトリック・カンパニイ Manganese-doped phosphor materials for high power density applications
JP7012664B2 (en) 2016-05-09 2022-01-28 ゼネラル・エレクトリック・カンパニイ Manganese-doped fluorophore material for high power density applications
KR102465103B1 (en) * 2016-05-09 2022-11-08 제네럴 일렉트릭 컴퍼니 Manganese-Doped Phosphor Materials for High Power Density Applications
WO2024043010A1 (en) * 2022-08-23 2024-02-29 パナソニックIpマネジメント株式会社 Fluorescent wheel, light source device, projection-type video display device, and method for producing fluorescent wheel

Similar Documents

Publication Publication Date Title
JP5530165B2 (en) Light source device and lighting device
JP5530171B2 (en) Lighting device
JP6054180B2 (en) Phosphor and manufacturing method thereof, white light emitting device, surface light source device, display device, and illumination device
US8872208B2 (en) Light source device and lighting device
JP5611690B2 (en) Light source device, color adjustment method, lighting device
JP5530187B2 (en) Light source device and lighting device
JP4045299B2 (en) Oxynitride phosphor and light emitting device
JP2011243840A (en) Light source device and luminaire
JP5076017B2 (en) Light emitting device
JP5740344B2 (en) Method for manufacturing light emitting device
JP2010031201A (en) Fluorescent substance and light emission device using the same
JP2011208139A (en) Complex crystal fluorescent substance, light-emitting device, surface light source device, display and lighting installation
JP6850265B2 (en) Fluorescent ceramic
JP4929413B2 (en) Light emitting device
JP2012129135A (en) Light source device, illumination device, and method of manufacturing phosphor layer
JP2012243618A (en) Light source device and lighting device
JP5550368B2 (en) Light source device and lighting device
JP2012114040A (en) Light source device and lighting system
JP4840778B2 (en) Phosphor production method, phosphor, phosphor-containing composition, light emitting device, image display device, and illumination device
JP2012079989A (en) Light source device and lighting fixture
JP5781367B2 (en) Light source device and lighting device
JP5766521B2 (en) Lighting device
WO2019061818A1 (en) Wavelength conversion device and light emitting device
JP2013144794A (en) Oxynitride-based phosphor and light-emitting device using the same
JP7147138B2 (en) Light-emitting device, lighting device, image display device, and vehicle indicator light

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120912