JP2011240353A - Method for predicting rolling load of foil rolling, method for predicting shape of the foil rolling, and method for determining pass schedule for the foil rolling - Google Patents

Method for predicting rolling load of foil rolling, method for predicting shape of the foil rolling, and method for determining pass schedule for the foil rolling Download PDF

Info

Publication number
JP2011240353A
JP2011240353A JP2010113113A JP2010113113A JP2011240353A JP 2011240353 A JP2011240353 A JP 2011240353A JP 2010113113 A JP2010113113 A JP 2010113113A JP 2010113113 A JP2010113113 A JP 2010113113A JP 2011240353 A JP2011240353 A JP 2011240353A
Authority
JP
Japan
Prior art keywords
rolling
foil
load
rolling load
predicting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113113A
Other languages
Japanese (ja)
Other versions
JP5612354B2 (en
Inventor
Yasushi Maeda
恭志 前田
Kenichi Uesugi
憲一 上杉
Atsushi Mizuyama
淳 水山
Shuji Nagasaki
修司 長崎
Masaji Shibata
正司 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Kobe Steel Ltd
Nippon Steel Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nippon Steel Materials Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2010113113A priority Critical patent/JP5612354B2/en
Publication of JP2011240353A publication Critical patent/JP2011240353A/en
Application granted granted Critical
Publication of JP5612354B2 publication Critical patent/JP5612354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a model for improving the accuracy of predicting rolling load for rolling under light pressure.SOLUTION: In a model for predicting rolling load using the Hitchcock squamous transformation and the Hill function, a correction term F(r) to be multiplied by rolling load P in the Hitchcock squamous transformation and a correction term G(r) to be added to the Hill function are introduced. The correction terms F(r) and G(r) are determined so that the value of a friction coefficient when a foil plate material is rolled is constant without depending on a reduction rate (r), and so that the value of an influence coefficient with respect to a change in the reduction rate (r) is equal to an actual value.

Description

本発明は、12段式、20段式等のクラスター型多段圧延機(以下、多段ミルと称す)等を使用し箔材の圧延を行うに際し、箔圧延時の圧延荷重の予測を精度よく行なう方法と、その方法を用いた箔圧延の形状予測方法、および箔圧延のパススケジュール決定方法に関する。   The present invention accurately predicts a rolling load during foil rolling when rolling a foil material using a cluster type multi-stage rolling mill (hereinafter referred to as a multi-stage mill) such as a 12-stage type or a 20-stage type. The present invention relates to a method for predicting the shape of foil rolling using the method, and a method for determining a pass schedule for foil rolling.

箔材の圧延は、2台の巻回リールで交互に巻取り・巻戻して圧延機を行き来するように極薄の金属板を通板し、この極薄金属板の圧下を繰り返して板厚を減少させることにより行われている。例えば、このような箔材の圧延装置として、多段ミルが用いられる。多段ミルは、ステンレスなどの硬い材料を冷間圧延するためのクラスターロールを持つ圧延機である。多段ミルでは、硬い材料に強圧下を与える目的で、小径のワークロールが用いられる。   Rolling of foil material is performed by winding and unwinding alternately with two winding reels, passing through an ultra-thin metal plate so as to go back and forth between rolling mills, and repeatedly reducing the thickness of this ultra-thin metal plate Is done by reducing For example, a multi-stage mill is used as such a foil material rolling device. A multi-stage mill is a rolling mill having a cluster roll for cold-rolling hard materials such as stainless steel. In a multi-stage mill, a small-diameter work roll is used for the purpose of giving a strong reduction to a hard material.

このような多段ミルを含め、従来の冷間圧延における圧延荷重の予測は、例えば、圧延スタンド毎の入・出側板厚などの圧延パラメータを基に、圧延荷重式(ヒルの式)とロール扁平式(ヒッチコックの式)を連立させて圧延荷重を計算し、この計算値と実績値の比によって得られる補正係数を、次の圧延の設定値として求めた計算圧延荷重に乗じることによって行われていた。さらに、この補正係数をコイル毎、または鋼種毎に学習することにより、摩擦係数の経時的な変動や変形抵抗の推定誤差の影響を小さくして、圧延荷重の予測精度を高めることも行なわれている。   Prediction of rolling load in conventional cold rolling, including such multi-stage mills, is based on rolling load formulas (Hill's formula) and roll flatness based on rolling parameters such as the thickness of the inlet and outlet sides of each rolling stand. The rolling load is calculated by combining the equations (Hitchcock's equation), and the correction factor obtained by the ratio between the calculated value and the actual value is multiplied by the calculated rolling load obtained as the set value for the next rolling. It was. Furthermore, by learning this correction coefficient for each coil or steel type, the influence of fluctuations in the friction coefficient over time and the estimation error of deformation resistance is reduced, and the prediction accuracy of the rolling load is also increased. Yes.

ところで、箔圧延では、板厚が薄くなると、圧延荷重が高まるものの圧下量が減少する。このため、圧下が難しくなり、目標板厚まで圧延するためにパス回数を増やす必要がある。また、圧延を実際に行わないとどの程度まで圧下できるかわからないため、圧延パススケジュールの設計ができない難点があった。さらには、このような軽圧下の平坦度が実機とシミュレーションで異なるとの問題があり、非常に高い平坦度を要求される箔圧延において、平坦度制御が非常に難しいものとなっていた。   By the way, in foil rolling, as the plate thickness decreases, the rolling load increases, but the reduction amount decreases. For this reason, it becomes difficult to reduce, and it is necessary to increase the number of passes in order to roll to the target plate thickness. In addition, since it is not known how much the rolling can be reduced unless the rolling is actually performed, there is a difficulty in designing a rolling pass schedule. Furthermore, there is a problem that the flatness under such light pressure is different from the actual machine and the simulation, and flatness control is very difficult in foil rolling that requires very high flatness.

このような箔圧延の軽圧下状況の下において、上述した従来の手法で圧延荷重を計算すると、予測される圧延荷重の精度が極端に低下する現象が認められることが現場の実績としてわかっている。
この現象の原因は、被圧延材の板厚が極端に薄い上に、摩擦係数が大きく圧延荷重が高くなるため、従来の板圧延理論が成立しない領域で圧延が行われると考えられている。実際、ヒルの式の近似精度は、圧下率が10〜60%の範囲以外では低下すると言われ、ヒッチコックの式についても、板厚が薄くかつ摩擦係数が大きい圧延条件では、変形後のロール表面形状が円弧状を保つという前提が成り立たなくなる。このため、特に、圧下率が約5%以下の圧延条件では、ヒルの式の近似精度が低下し、特に、板厚が薄いほど精度が悪くなることがわかっている。
Under such a light rolling condition of foil rolling, it is known as a field result that a phenomenon in which the accuracy of the predicted rolling load is extremely reduced is recognized when the rolling load is calculated by the conventional method described above. .
The cause of this phenomenon is considered to be that rolling is performed in a region where the conventional sheet rolling theory does not hold because the sheet thickness of the material to be rolled is extremely thin and the friction coefficient is large and the rolling load is high. Actually, it is said that the approximate accuracy of Hill's equation is reduced except when the rolling reduction is in the range of 10 to 60%. Also in the hitchcock equation, under the rolling conditions where the plate thickness is thin and the friction coefficient is large, the roll after deformation The assumption that the surface shape is arcuate is no longer valid. For this reason, it has been found that, especially under rolling conditions where the rolling reduction is about 5% or less, the approximation accuracy of Hill's equation decreases, and in particular, the accuracy decreases as the plate thickness decreases.

特許文献1においては、上述した近似精度の悪化に鑑み、ダルロールを用いるタンデム圧延機の最終パスを対象として、圧延荷重予測精度の向上のために、圧延荷重モデルのロール扁平式に補正係数を導入することにより荷重精度が向上することを開示している。   In Patent Document 1, in view of the deterioration of the approximation accuracy described above, a correction coefficient is introduced into the roll flat type of the rolling load model in order to improve the rolling load prediction accuracy for the final pass of the tandem rolling mill using a dull roll. It is disclosed that the load accuracy is improved by doing so.

特開2006−55881号公報JP 2006-55881 A

しかしながら、特許文献1に開示された方法を採用することで、圧延荷重の予測精度の向上は望めるものの、実際の現場に適用できるほどの精度向上は難しいことが実績より明らかとなっている。加えて、特許文献1に開示された方法を用い圧延荷重を算出したとしても、圧延形状の予測精度の向上や圧延パススケジュールの計算には不十分であることも明らかとなっている。   However, by adopting the method disclosed in Patent Document 1, it can be expected that the rolling load prediction accuracy can be improved, but it has become clear from the results that it is difficult to improve the accuracy to the extent that it can be applied to the actual site. In addition, even if the rolling load is calculated using the method disclosed in Patent Document 1, it has also become clear that it is insufficient for improving the prediction accuracy of the rolling shape and calculating the rolling pass schedule.

本発明は、上述の課題を解決するためになされたものであって、その目的は、軽圧下(特に圧下率10%以下)の圧延において、圧延荷重の予測精度を向上させることができると共に、板形状を精度高く予測することができ、且つパススケジュールの設計が可能となる箔圧延の圧延荷重予測方法、箔圧延の形状予測方法および箔圧延のパススケジュール決定方法を提供することである。   The present invention has been made to solve the above-described problems, and its purpose is to improve the prediction accuracy of the rolling load in rolling under light reduction (particularly, a reduction rate of 10% or less), and The present invention provides a foil rolling rolling load prediction method, a foil rolling shape prediction method, and a foil rolling pass schedule determination method capable of predicting a plate shape with high accuracy and designing a pass schedule.

前記目的を達成するため、本発明においては以下の技術的手段を講じた。
すなわち、本発明のある局面に係る箔圧延の圧延荷重予測方法は、箔板材を軽圧下するに際し、圧下率rに依存する補正項F(r),G(r)を備えた圧延荷重モデル(式(1)〜式(5))を用いて圧延荷重を予測する。
In order to achieve the above object, the present invention takes the following technical means.
That is, the rolling load prediction method of the foil rolling according to an aspect of the present invention is a rolling load model having correction terms F (r) and G (r) depending on the reduction ratio r when the foil sheet material is lightly reduced ( The rolling load is predicted using equations (1) to (5).

この圧延荷重予測方法によると、ワークロール半径Rを算出する式で、単位幅あたりの圧延荷重pに補正項F(r)が乗算されることで補正がなされ、圧下力関数Qを算出する式で、補正項G(r)が直接加減算されることで補正がなされる。この結果、推定される摩擦係数が一定になり且つ影響係数が実績値と計算値とで一致して、軽圧下における箔圧延に好ましい圧延荷重予測モデルを提案できる。   According to this rolling load prediction method, the formula for calculating the work roll radius R is corrected by multiplying the rolling load p per unit width by the correction term F (r), and calculating the rolling force function Q. Thus, correction is made by directly adding and subtracting the correction term G (r). As a result, the estimated friction coefficient becomes constant and the influence coefficient agrees with the actual value and the calculated value, so that a rolling load prediction model preferable for foil rolling under light pressure can be proposed.

好ましくは、前記箔板材を圧延する際の摩擦係数の値が圧下率に依存せず一定となると共に、圧下率の変化に対する影響係数の値が実績値と一致するように、前記補正項F(r),G(r)を決定し、決定された補正項F(r),G(r)を備えた前記圧延荷重モデルを用いて圧延荷重を予測する。
好ましくは、前記補正項F(r),G(r)が次式で表せることを特徴とする。
Preferably, the value of the coefficient of friction at the time of rolling the foil sheet material is constant without depending on the rolling reduction, and the correction term F ( r) and G (r) are determined, and the rolling load is predicted using the rolling load model having the determined correction terms F (r) and G (r).
Preferably, the correction terms F (r) and G (r) can be expressed by the following equations.

本発明の別の局面に係る箔圧延の形状予測方法は、箔圧延の圧延荷重予測方法を用いて、前記箔板材の出側形状予測を行うことを特徴とする。
この形状予測方法によると、軽圧下(特に圧下率10%以下)の圧延において、圧延後の出側の箔材の形状予測精度を向上させることができる。
本発明のさらに別の局面に係る箔圧延のパススケジュール決定方法は、箔圧延の圧延荷重予測方法を用いて、前記箔板材のパススケジュールを決定することを特徴とする。
The foil rolling shape prediction method according to another aspect of the present invention is characterized in that the outlet side shape prediction of the foil sheet material is performed using a foil rolling rolling load prediction method.
According to this shape prediction method, it is possible to improve the shape prediction accuracy of the foil material on the outlet side after rolling in rolling under light reduction (particularly, a reduction rate of 10% or less).
A foil rolling pass schedule determination method according to still another aspect of the present invention is characterized in that the foil rolling material pass schedule is determined using a foil rolling rolling load prediction method.

このパススケジュール決定方法によると、設計段階において圧延形状を精度高く予測することができ、最適なパススケジュールの設計が可能となり、合理的な圧延を行い生産性の向上を図ることができる。   According to this pass schedule determination method, the rolling shape can be predicted with high accuracy in the design stage, the optimum pass schedule can be designed, and rational rolling can be performed to improve productivity.

本発明によれば、軽圧下(特に圧下率10%以下)の圧延において、圧延荷重の予測精度を向上させることができると共に、板形状を精度高く予測することができ、且つパススケジュールの設計が可能となる。   According to the present invention, in rolling under light reduction (especially a reduction rate of 10% or less), it is possible to improve the prediction accuracy of the rolling load, predict the plate shape with high accuracy, and design the pass schedule. It becomes possible.

本発明の実施の形態に係る箔圧延の圧延荷重予測方法が適用される多段ミルの概略構成を示す図である。It is a figure which shows schematic structure of the multistage mill to which the rolling load prediction method of foil rolling which concerns on embodiment of this invention is applied. 図1の多段ミルの箔圧延のメカニズムを説明する図である。It is a figure explaining the mechanism of foil rolling of the multistage mill of FIG. (a)は圧下率と推定摩擦係数と関係を示した図であり、(b)は圧下率と影響係数と関係を示した図である。(A) is the figure which showed the relationship between a reduction ratio and an estimated friction coefficient, (b) is the figure which showed the relationship between a reduction ratio and an influence coefficient. 張力変化と圧延荷重との関係を示す実績値をまとめた図であって、(a)は圧下率12%の場合、(b)は圧下率6%の場合、(c)は圧下率2.4%の場合、(d)は圧下率1.2%の場合。It is the figure which put together the actual value which shows the relationship between tension change and rolling load, (a) is a reduction rate of 12%, (b) is a reduction rate of 6%, (c) is a reduction rate. When 4%, (d) is when the rolling reduction is 1.2%. 圧延荷重モデルにおける補正項を示す図である。It is a figure which shows the correction | amendment term in a rolling load model. (a)は圧下率と補正後の推定摩擦係数と関係を示した図であり、(b)は圧下率と補正後の影響係数と関係を示した図である。(A) is the figure which showed the relationship between a reduction ratio and the estimated friction coefficient after correction | amendment, (b) is the figure which showed the relationship between a reduction ratio and the influence coefficient after correction | amendment. 箔圧延の出側板形状の予測方法を示すフローチャートである。It is a flowchart which shows the prediction method of the outgoing side board shape of foil rolling. (a)は従来モデルによる出側板形状の予測結果を示す図であり、(b)は新モデルによる出側板形状の予測結果を示す図である。(A) is a figure which shows the prediction result of the exit side plate shape by a conventional model, (b) is a figure which shows the prediction result of the exit side plate shape by a new model.

以下、図面を参照しつつ、本発明の実施の形態について説明する。
まず、本発明の実施の形態に係る箔圧延の圧延荷重予測方法が適用される12段式のクラスター型多段圧延機(多段ミル)の概要について説明する。
図1は、ステンレス等の金属箔(以降、箔材)を圧延する多段ミル1の概略図である。多段ミル1は、1対のワークロール4,4と複数の中間ロール5及びバックアップロール6を有していて、2台の巻回リール2,3の間に配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, an outline of a 12-stage cluster type multi-stage rolling mill (multi-stage mill) to which the rolling load prediction method for foil rolling according to the embodiment of the present invention is applied will be described.
FIG. 1 is a schematic view of a multi-stage mill 1 for rolling a metal foil such as stainless steel (hereinafter, foil material). The multi-stage mill 1 has a pair of work rolls 4, 4, a plurality of intermediate rolls 5 and a backup roll 6, and is disposed between two winding reels 2, 3.

すなわち、これら2台の巻回リール2,3を交互に巻取り・巻出して多段ミル1を行き来するように箔材7を通板することにより、この極薄金属板の圧下を繰り返して板厚を減少させて、箔材7の圧延が行われる。
多段ミル1と各巻回リール2、3との間には、箔材7の通板方向で上流側から下流方側へ向けて順に、箔材7の板厚を測定する板厚計(図示せず)や、箔材7のパスラインを一定にするデフレクタロール8とが配置されている。
[圧延荷重の予測]
ここで、前述した多段ミル1を用いて箔材7を軽圧下するに際し、圧延状況を従来の圧延荷重予測モデルを用いシミュレートすることを考える。
That is, these two winding reels 2 and 3 are alternately wound and unwound and the foil material 7 is passed through the multi-stage mill 1 so that the reduction of the ultrathin metal plate is repeated. The foil material 7 is rolled while reducing the thickness.
Between the multi-stage mill 1 and each of the winding reels 2, 3, a thickness gauge (not shown) that measures the thickness of the foil material 7 in order from the upstream side to the downstream side in the sheet passing direction of the foil material 7. Or a deflector roll 8 for making the pass line of the foil material 7 constant.
[Prediction of rolling load]
Here, it is considered that when the foil material 7 is lightly reduced using the multi-stage mill 1 described above, the rolling situation is simulated using a conventional rolling load prediction model.

使用した圧延荷重予測モデルは以下の通りである。   The rolling load prediction model used is as follows.

図2に、多段ミル1における圧延部分の拡大図を示す。この図に示す如く、ワークロール4,4に挟まれた箔材7は、圧延パスにおいて、厚さh1から厚さh0に圧延加工される。lはワークロール4の接触長さ、Rは扁平変形後のワークロール4の半径、Δhは圧下量(h1−h0)、φ1は接触角であって、圧下率rはΔh/h1で表わされる。
式(8)〜式(12)を用いて計算した結果を、図3に示す。
In FIG. 2, the enlarged view of the rolling part in the multistage mill 1 is shown. As shown in this figure, the foil material 7 sandwiched between the work rolls 4 and 4 is rolled from a thickness h 1 to a thickness h 0 in a rolling pass. l is the contact length of the work roll 4, R is the radius of the work roll 4 after flat deformation, Δh is the reduction amount (h 1 −h 0 ), φ 1 is the contact angle, and the reduction rate r is Δh / h Represented by 1 .
The results calculated using equations (8) to (12) are shown in FIG.

図3(a)は、圧下率rの推移に伴う摩擦係数μの変化を示したものである。この摩擦係数μは計算値であり推定摩擦係数とも呼ぶ。図3(b)で示されるグラフは、圧下率の推移に伴う影響係数(圧延荷重を張力で微分したもの)の変化を示したものであり、○が計算値、●が実績値である。
図3(a)に示すように、摩擦係数μは圧下率rが小さくなるほど、特に、軽圧下領域(r<0.1)において顕著に大きな値となっている。摩擦係数μは、本来であれば圧下率rによらず一定値(図3(a)においては0.1程度)であることが知見されている。すなわち、摩擦係数μは圧下率rが小さい領域では過大であると推察される。
FIG. 3A shows the change of the friction coefficient μ with the transition of the rolling reduction ratio r. This friction coefficient μ is a calculated value and is also called an estimated friction coefficient. The graph shown in FIG. 3B shows the change in the influence coefficient (the rolling load differentiated by the tension) with the change in rolling reduction, where ◯ is the calculated value and ● is the actual value.
As shown in FIG. 3A, the friction coefficient μ becomes significantly larger as the rolling reduction ratio r becomes smaller, particularly in the light rolling area (r <0.1). It has been found that the friction coefficient μ is originally a constant value (about 0.1 in FIG. 3A) regardless of the rolling reduction r. That is, it is assumed that the friction coefficient μ is excessive in the region where the rolling reduction r is small.

一方、影響係数について、実績値と計算値とで比較した。
その結果、図3(b)に示すように、本来は一致する実績値と計算値とが、圧下率r<0.1の軽圧下領域では一致していない。
なお、図3(b)における実績値は、数々の箔圧延の実績データを図4(a)〜図4(d)のようにまとめ、各グラフの傾きを影響係数として求めたものである。
On the other hand, the impact coefficient was compared between the actual value and the calculated value.
As a result, as shown in FIG. 3 (b), the actually matched actual value and the calculated value do not match in the light reduction region where the reduction rate r <0.1.
In addition, the actual value in FIG.3 (b) collects the actual data of many foil rolling like FIG.4 (a)-FIG.4 (d), and calculated | required the inclination of each graph as an influence coefficient.

図4の箔圧延の実績データは、圧下率r=12%(通常圧延)から圧下率r=1%(軽圧下)までにおけるものであり、入側・出側板厚をAGC(Auto Gap Control)による板厚制御を行い、入側・出側張力を単独で上下動させ、その張力変化に対する荷重変化を、圧下率rを変化させて求めた。
図4(a)に、圧下率r=12%の場合における張力変化に対する荷重変化を示す。図4(b)に、圧下率r=6%の場合における張力変化に対する荷重変化を示す。図4(c)に、圧下率r=2%の場合における張力変化に対する荷重変化を示す。図4(d)に、圧下率r=1%の場合における張力変化に対する荷重変化を示す。なお、図4(a)〜図4(d)に示した張力は、入側・出側張力の和の偏差を示している。これらの図に示すように、圧下率rに関わらず、荷重に対する入側・出側張力の配分はほぼ等しい。
The actual rolling rolling data shown in Fig. 4 is for rolling reduction r = 12% (normal rolling) to rolling reduction r = 1% (light reduction). The thickness of the inlet and outlet plates is AGC (Auto Gap Control). Thickness control was performed by moving the inlet and outlet tensions independently, and the load change with respect to the tension change was obtained by changing the rolling reduction ratio r.
FIG. 4A shows a change in load with respect to a change in tension when the rolling reduction ratio r = 12%. FIG. 4B shows a change in load with respect to a change in tension when the rolling reduction ratio r = 6%. FIG. 4C shows the load change with respect to the tension change when the rolling reduction ratio r = 2%. FIG. 4D shows a load change with respect to a tension change when the rolling reduction ratio r = 1%. In addition, the tension shown in FIGS. 4A to 4D indicates a deviation of the sum of the entry side and exit side tensions. As shown in these figures, regardless of the rolling reduction ratio r, the distribution of the inlet side / outer side tension with respect to the load is substantially equal.

以上述べたような「摩擦係数、影響係数が現実の値と不一致」となっている状況を回避するために、本願発明者らは以下の考えに至った。
まず、式(10),式(11)に示すヒッチコックの式では、ワークロール4から箔材7に付与される圧延荷重分布が放物線形状であることを前提とし、接触長さlが円弧変形することを前提としている。しかしながら、軽圧下時の圧延変形の状態をFEM解析すると、軽圧下時には円弧変形では表現できないロール変形が生じていることが知見された。
In order to avoid the situation where “the friction coefficient and the influence coefficient do not coincide with the actual values” as described above, the inventors of the present application have reached the following idea.
First, in the Hitchcock equation shown in equations (10) and (11), the contact length l is an arc deformation assuming that the rolling load distribution applied from the work roll 4 to the foil material 7 is a parabolic shape. It is assumed that However, an FEM analysis of the state of rolling deformation at the time of light reduction revealed that roll deformation that cannot be expressed by arc deformation has occurred at the time of light reduction.

このため、圧下率rによらず摩擦係数μを一定値とし、影響係数を実績値と計算値とで一致させるためには、圧延荷重pに影響を与える補正項が有効であることの考えに至った。より詳しくは、式(11)における(C・P/Δh)に着目して、圧延荷重Pに乗算される項を補正項F(r)とすることが好ましいことを見出した。
次に、影響係数は、圧延荷重を張力で偏微分した値であって、式(8)を張力σで偏微分すると明らかなように、圧下力関数Qとワークロール4の接触長さlとの関数となる。このことを鑑み、影響係数を実績値と計算値とで一致させるためには、接触長さl及び圧下力関数Qを補正する必要がある。
For this reason, in order to make the friction coefficient μ constant regardless of the rolling reduction r and to make the influence coefficient coincide with the actual value and the calculated value, it is considered that a correction term that affects the rolling load p is effective. It came. More specifically, focusing on (C · P / Δh) in equation (11), it was found that the term multiplied by the rolling load P is preferably the correction term F (r).
Next, the influence coefficient is a value obtained by partially differentiating the rolling load with the tension, and as apparent when the equation (8) is partially differentiated with the tension σ, the rolling force function Q and the contact length l of the work roll 4 are Is a function of In view of this, in order to make the influence coefficient coincide with the actual value and the calculated value, it is necessary to correct the contact length l and the rolling force function Q.

ところが、式(10)から接触長さlが扁平変形後のワークロール4の半径Rの関数であるので、接触長さlの補正は、ワークロール4の半径R、すなわち式(11)を補正することによりすでに実現されている。
そこで、圧下力関数Qの補正を行う。圧下力関数Qの補正項G(r)は、式(12)に直接加算することとした。
However, since the contact length l is a function of the radius R of the work roll 4 after the flat deformation from the equation (10), the correction of the contact length l corrects the radius R of the work roll 4, that is, the equation (11). Has already been realized.
Therefore, the reduction force function Q is corrected. The correction term G (r) of the rolling force function Q is directly added to the equation (12).

以上の補正項を組み込んだ本願発明にかかる圧延荷重予測式は、式(1)〜式(5)のようになる。   The rolling load prediction formula according to the present invention in which the above correction term is incorporated is as shown in Formula (1) to Formula (5).

補正項F(r),G(r)の具体的な式は、以下のようにして求めている。
まず、図3(a)において、圧下率rが可変となったとしても、摩擦係数μが略一定の値(例えば、μ=0.1)をとると共に、図3(b)において、圧下率rが変わったとしても、影響係数の計算値と実績値とが一致するように、補正項F(r),G(r)の数値を決定する。
Specific expressions of the correction terms F (r) and G (r) are obtained as follows.
First, in FIG. 3A, even if the rolling reduction r becomes variable, the friction coefficient μ takes a substantially constant value (for example, μ = 0.1), and in FIG. Even if r changes, the numerical values of the correction terms F (r) and G (r) are determined so that the calculated value of the influence coefficient matches the actual value.

具体的には、圧下率r=12%の圧延を行った際の状況を、式(1)〜式(5)を用いてシミュレートし、「摩擦係数μが略一定」且つ「影響係数の計算値と実績値とが一致する」ようなF(r),G(r)の数値を求める。同様に、圧下率r=6%、圧下率r=2%、圧下率r=1%の圧延をシミュレートし、各圧下率rでのF(r),G(r)を求める。これらの計算には収束計算の手法を用いるとよい。   Specifically, the situation at the time of rolling with a reduction ratio r = 12% was simulated using the equations (1) to (5), and “the friction coefficient μ is substantially constant” and “the influence coefficient of The numerical values of F (r) and G (r) such that the calculated value and the actual value match are obtained. Similarly, rolling with a reduction ratio r = 6%, a reduction ratio r = 2%, and a reduction ratio r = 1% is simulated, and F (r) and G (r) at each reduction ratio r are obtained. A convergence calculation method may be used for these calculations.

図5の●のグラフは、求まったF(r)の値がプロットされたもので、これらの点を基にした回帰式により、F(r)は式(6)のように決定される。
図5の○のグラフは、求まったG(r)の値がプロットされたもので、これらの点を基にした回帰式により、G(r)は式(7)のように決定される。
The ● graph in FIG. 5 is a plot of the obtained values of F (r), and F (r) is determined as shown in Equation (6) by a regression equation based on these points.
The circled graph in FIG. 5 is a plot of the obtained G (r) value, and G (r) is determined as shown in Equation (7) by a regression equation based on these points.

図6には、式(1)〜式(7)(新モデルと呼ぶこともある)を用いて、箔圧延をシミュレートした結果が示されている。
図6(a)の「補正後のグラフ」に示されるように、摩擦係数μは、圧下率rによらずほぼ一定である。また、影響係数に関しては、図6(b)に示される如く、圧下率rが変化したとしても、新モデルによる計算値と実績値とが略一致するものとなっている。
FIG. 6 shows the result of simulating foil rolling using Expressions (1) to (7) (sometimes referred to as a new model).
As shown in the “corrected graph” in FIG. 6A, the friction coefficient μ is substantially constant regardless of the rolling reduction r. As for the influence coefficient, as shown in FIG. 6B, even if the rolling reduction r changes, the calculated value by the new model and the actual value are substantially the same.

これにより、新モデルは、箔材の軽圧下であっても確実に圧延状況を再現でき、圧延荷重等を精確に予測することができるものとなる。
[出側板形状の予測]
次に、上述した式(1)〜式(7)が適用される新モデルを用いた、箔圧延の出側板形状の予測方法について説明する。
As a result, the new model can reliably reproduce the rolling situation even under light pressure of the foil material, and can accurately predict the rolling load and the like.
[Prediction of exit plate shape]
Next, a method for predicting the shape of the exit side plate of the foil rolling using the new model to which the above-described equations (1) to (7) are applied will be described.

図7は、この箔圧延の形状予測方法を示すフローチャートである。なお、予測される形状とは、圧延材の出側板形状である。
まず、ステップS10にて、ワークロール4直下での圧延材の荷重分布p(x)、ロールギャップS(x)、板幅方向の張力分布σ(x)を仮定する。
ステップS20にて、ワークロール4やバックアップロール6間の力の釣り合いやロール表面の適合条件から、ロール間の接触面圧q(x)を計算する。
FIG. 7 is a flowchart showing the foil rolling shape prediction method. The predicted shape is the shape of the exit side plate of the rolled material.
First, in step S10, the load distribution p (x) of the rolled material immediately below the work roll 4, the roll gap S (x), and the tension distribution σ (x) in the sheet width direction are assumed.
In step S20, the contact surface pressure q (x) between the rolls is calculated from the balance of forces between the work rolls 4 and the backup rolls 6 and the roll surface matching conditions.

ステップS30にて、圧延材の荷重分布p(x),ロール間接触面圧q(x)、すなわちp(x)・q(x)から各ロール(ワークロール4やバックアップロール6)のたわみ量を算出する。
ステップS40にて、計算されたたわみ量からワークロール4の表面変位を計算する。
ステップS50にて、得られたワークロール4の表面変位を基に、板厚分布、張力分布σ(x)を算出する。
In step S30, the amount of deflection of each roll (work roll 4 or backup roll 6) from the load distribution p (x) of the rolled material and the contact surface pressure q (x) between the rolls, that is, p (x) · q (x). Is calculated.
In step S40, the surface displacement of the work roll 4 is calculated from the calculated deflection amount.
In step S50, a plate thickness distribution and a tension distribution σ (x) are calculated based on the obtained surface displacement of the work roll 4.

ステップS60にて、板厚分布から得られる圧下量Δh、張力分布σ(x)などを基に、新モデル(式(1)〜式(7))を用いて、圧延荷重分布p(x)を求める。
以上のようなステップS20〜ステップS50を、例えば計算値が収束するまで、繰返し計算する。
なお、ステップS50において、入側及び出側板厚から板幅方向の圧下率ε(x)を計算し、この圧下率ε(x)すなわち伸び率ε(x)を出側板形状とする。さらに、圧下率ε(x)の偏差Δε(x)を計算した上で、張力分布σ(x)をσ(x)=σ(x)+Ε・(1−ξ)・Δε(x)で算出する。ここで、ξは形状変化係数である。
In step S60, the rolling load distribution p (x) is calculated using the new model (formulas (1) to (7)) based on the reduction amount Δh obtained from the plate thickness distribution, the tension distribution σ (x), and the like. Ask for.
Steps S20 to S50 as described above are repeatedly calculated until, for example, the calculated value converges.
In step S50, the rolling reduction ratio ε (x) in the sheet width direction is calculated from the inlet and outlet side plate thicknesses, and this rolling reduction ratio ε (x), that is, the elongation ratio ε (x) is defined as the outlet plate shape. Further, after calculating the deviation Δε (x) of the rolling reduction ε (x), the tension distribution σ (x) is calculated by σ (x) = σ (x) + Ε · (1-ξ) · Δε (x) To do. Here, ξ is a shape change coefficient.

このようにして算出された結果を、図8を用いて説明する。
図8(a)は、従来モデル(式(8)〜式(12))を用いた形状予測結果であり、図8(b)は、新モデル(式(1)〜式(7))を用いた形状予測結果である。各図とも、圧下率r=1%にて圧延した場合であって、その縦軸は、圧延後の平坦度である。
新モデルを用いると、圧下率rによらず、ほぼ一定の摩擦係数となるとともに、軽圧下領域においても、板形状の予測精度が向上していることがわかる。
[圧延パススケジュールの決定]
なお、圧下率rが小さい箔材7の圧延において、そのパススケジュールを上述した圧延荷重予測方法、つまり新モデルを用いて算出するようにすることは非常に好ましい。以下、このパススケジュールの決定方法について説明する。
The result calculated in this way will be described with reference to FIG.
FIG. 8A shows a shape prediction result using a conventional model (formula (8) to formula (12)), and FIG. 8B shows a new model (formula (1) to formula (7)). It is the shape prediction result used. In each figure, the rolling is performed at a rolling reduction r = 1%, and the vertical axis represents the flatness after rolling.
It can be seen that when the new model is used, the friction coefficient is almost constant regardless of the rolling reduction r, and the prediction accuracy of the plate shape is improved even in the light rolling region.
[Determination of rolling pass schedule]
In rolling the foil material 7 with a small rolling reduction r, it is very preferable to calculate the pass schedule using the above-described rolling load prediction method, that is, a new model. Hereinafter, a method for determining the path schedule will be described.

圧延材のパススケジュールとして、各圧延機で最大圧延荷重を超えない制約条件下で、圧下率をなるべく大きくし生産性を上げる条件(評価関数)で圧延を行うものを考える。このパススケジュールは、例えば、以下の手順で求める。
(手順1) 複数存在する圧延機のそれぞれにおいて、最大圧延荷重(圧延機の耐荷重)PMAXを決める。
As a pass schedule of the rolled material, a rolling schedule is considered in which each rolling mill performs rolling under conditions (evaluation function) that increase the reduction ratio as much as possible under the constraint conditions that do not exceed the maximum rolling load. This pass schedule is obtained by the following procedure, for example.
(Procedure 1) In each of a plurality of rolling mills, a maximum rolling load (load resistance of the rolling mill) P MAX is determined.

(手順2) 圧延機での元板厚hin,製品板厚houtを決める。
(手順3) 圧延機のワークロール4の半径R、及び過去の実績値から推定した摩擦係数μを決定すると共に、iパス目の圧下率r(i)を仮定する。
(手順4) iパス目の入側板厚hin (i)から圧下率r(i)を基に出側板厚hout (i)を求める。なお、i=1の場合は、hin (1)=hinとする。
(Procedure 2) Determine the original plate thickness h in and the product plate thickness h out in the rolling mill.
(Procedure 3) The friction coefficient μ estimated from the radius R of the work roll 4 of the rolling mill and the past actual value is determined, and the reduction ratio r (i) of the i- th pass is assumed.
(Procedure 4) The outlet side plate thickness h out (i) is obtained from the inlet side plate thickness h in (i) of the i-th pass based on the rolling reduction ratio r (i) . When i = 1, it is assumed that h in (1) = h in .

(手順5) hin (i),r(i)から圧延材の変形抵抗Kを求める。
(手順6) 変形抵抗K,iパス目の入側板厚hin (i)から、入側張力σin,出側張力σoutを決定する。
(手順7) 摩擦係数μ、入側張力σin,出側張力σout、変形抵抗K、入側板厚hin (i)、出側板厚hout (i)を、新モデル(式(1)〜式(7))に代入し、iパス目の予測圧延荷重Pcalを求める。
(Procedure 5) The deformation resistance K of the rolled material is obtained from h in (i) and r (i) .
(Procedure 6) From the deformation resistance K and the input side plate thickness h in (i) of the i-th pass, the input side tension σ in and the output side tension σ out are determined.
(Procedure 7) Friction coefficient μ, inlet side tension σ in , outlet side tension σ out , deformation resistance K, inlet side plate thickness h in (i) , outlet side plate thickness h out (i ) Substituting into the expression (7)), the predicted rolling load P cal for the i-th pass is obtained.

(手順8) Pcal (i)>PMAXの場合には、設定した圧下率r(i)=r(i)+δrとして、手順4へ戻る。
(手順9) Pcal (i)<PMAXの場合には、設定した圧下率r(i)=r(i)・αとして、手順4へ戻る。ただし、α<1.0である予め決められた値である。
(手順10) 前回の荷重計算Pcal (i-1)>PMAX、且つPcal (i)<PMAXの場合は、iパス目の圧下率r(i)とし、hin (i+1)=hout (i)、且つi=i+1とする。
(Procedure 8) If P cal (i) > P MAX , the set rolling reduction ratio r (i) = r (i) + δr is returned to Procedure 4.
(Procedure 9) If P cal (i) <P MAX , return to Procedure 4 with the set rolling reduction ratio r (i) = r (i) · α. However, it is a predetermined value with α <1.0.
(Procedure 10) If the previous load calculation P cal (i-1) > P MAX and P cal (i) <P MAX , the reduction ratio r (i) of the i-th pass is set, and h in (i + 1 ) = H out (i) and i = i + 1.

(手順11) hout (i)>houtの場合、手順4へ戻る。
(手順12) hout (i)<houtの場合、iパスを最終パスとする。この場合の圧下率r(i)は(hin (i)−hout)/hin (i)である。
以上のようにすると、圧下率rが小さい箔材7の圧延のパススケジュールを的確に決定することができる。
(Procedure 11) If h out (i) > h out , return to step 4.
(Procedure 12) If h out (i) <h out , the i path is the final path. In this case, the reduction ratio r (i) is (h in (i) −h out ) / h in (i) .
If it does as mentioned above, the pass schedule of rolling of foil material 7 with a small rolling reduction r can be determined exactly.

なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 多段ミル
2 巻回リール
3 巻回リール
4 ワークロール
5 中間ロール
6 バックアップロール
7 箔材
8 デフレクタロール
1 Multistage Mill 2 Winding Reel 3 Winding Reel 4 Work Roll 5 Intermediate Roll 6 Backup Roll 7 Foil Material 8 Deflector Roll

Claims (5)

箔板材を軽圧下するに際し、圧下率rに依存する補正項F(r),G(r)を備えた圧延荷重モデル(式(1)〜式(5))を用いて圧延荷重を予測することを特徴とする箔圧延の圧延荷重予測方法。
When the foil sheet material is lightly reduced, the rolling load is predicted using a rolling load model (equations (1) to (5)) having correction terms F (r) and G (r) depending on the reduction ratio r. A method for predicting a rolling load of foil rolling.
前記箔板材を圧延する際の摩擦係数の値が圧下率に依存せず一定となると共に、圧下率の変化に対する影響係数の値が実績値と一致するように、前記補正項F(r),G(r)を決定し、
決定された補正項F(r),G(r)を備えた前記圧延荷重モデルを用いて圧延荷重を予測することを特徴とする請求項1に記載の箔圧延の圧延荷重予測方法。
The correction term F (r), so that the value of the coefficient of friction when rolling the foil sheet material is constant without depending on the rolling reduction and the value of the influence coefficient with respect to the change in rolling reduction matches the actual value. G (r) is determined,
The rolling load prediction method for foil rolling according to claim 1, wherein the rolling load is predicted using the rolling load model having the determined correction terms F (r) and G (r).
前記補正項F(r),G(r)が次式で表せることを特徴とする請求項2に記載の箔圧延の圧延荷重予測方法。
The rolling load prediction method for foil rolling according to claim 2, wherein the correction terms F (r) and G (r) can be expressed by the following equations.
請求項1〜3のいずれかに記載された箔圧延の圧延荷重予測方法を用いて、前記箔板材の出側形状予測を行うことを特徴とする箔圧延の形状予測方法。   A method for predicting the shape of a rolled foil, wherein the shape of the exit side of the foil sheet material is predicted using the method for predicting the rolling load of the foil rolling according to any one of claims 1 to 3. 請求項1〜3のいずれかに記載された箔圧延の圧延荷重予測方法を用いて、前記箔板材のパススケジュールを決定することを特徴とする箔圧延のパススケジュール決定方法。   A foil rolling pass schedule determination method, wherein the foil rolling material pass schedule is determined using the foil rolling rolling load prediction method according to claim 1.
JP2010113113A 2010-05-17 2010-05-17 Foil rolling rolling load prediction method, foil rolling shape prediction method, and foil rolling pass schedule determination method Active JP5612354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113113A JP5612354B2 (en) 2010-05-17 2010-05-17 Foil rolling rolling load prediction method, foil rolling shape prediction method, and foil rolling pass schedule determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113113A JP5612354B2 (en) 2010-05-17 2010-05-17 Foil rolling rolling load prediction method, foil rolling shape prediction method, and foil rolling pass schedule determination method

Publications (2)

Publication Number Publication Date
JP2011240353A true JP2011240353A (en) 2011-12-01
JP5612354B2 JP5612354B2 (en) 2014-10-22

Family

ID=45407554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113113A Active JP5612354B2 (en) 2010-05-17 2010-05-17 Foil rolling rolling load prediction method, foil rolling shape prediction method, and foil rolling pass schedule determination method

Country Status (1)

Country Link
JP (1) JP5612354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955891A (en) * 2016-01-08 2017-07-18 宝山钢铁股份有限公司 The working roll for being suitable for tandem mills matches somebody with somebody roller method
CN113089069A (en) * 2020-01-09 2021-07-09 山西沃特海默新材料科技股份有限公司 Preparation method of microporous foil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323108A (en) * 1996-06-05 1997-12-16 Hitachi Ltd Device for controlling dynamic setup of rolling mill and method thereof
JP2008246513A (en) * 2007-03-29 2008-10-16 Nisshin Steel Co Ltd Method of manufacturing one-side tapered steel sheet of which the thickness varies into tapered shape in rolling direction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323108A (en) * 1996-06-05 1997-12-16 Hitachi Ltd Device for controlling dynamic setup of rolling mill and method thereof
JP2008246513A (en) * 2007-03-29 2008-10-16 Nisshin Steel Co Ltd Method of manufacturing one-side tapered steel sheet of which the thickness varies into tapered shape in rolling direction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955891A (en) * 2016-01-08 2017-07-18 宝山钢铁股份有限公司 The working roll for being suitable for tandem mills matches somebody with somebody roller method
CN113089069A (en) * 2020-01-09 2021-07-09 山西沃特海默新材料科技股份有限公司 Preparation method of microporous foil
CN113089069B (en) * 2020-01-09 2022-05-20 山西沃特海默新材料科技股份有限公司 Preparation method of microporous foil

Also Published As

Publication number Publication date
JP5612354B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
JP4919857B2 (en) Manufacturing method of single-sided taper steel plate whose thickness changes in a taper shape in the rolling direction
JP5612354B2 (en) Foil rolling rolling load prediction method, foil rolling shape prediction method, and foil rolling pass schedule determination method
JP6628049B2 (en) Method of changing strip thickness in tandem rolling mill
JP7226402B2 (en) Metal strip rolling control method, rolling control device, and manufacturing method
JP5790638B2 (en) Plate thickness control method and plate thickness control device
JP6870359B2 (en) Arithmetic logic unit and arithmetic method
JP5626172B2 (en) Steel strip manufacturing equipment
CN115335158B (en) Method, control system and production line for controlling strip flatness of rolled material
JP2000167604A (en) Plate rolling mill and plate rolling method
JP2019055415A (en) Plate crown control method, plate crown control device, and steel plate manufacturing method
JP5967033B2 (en) Meander control device and meander control method
JP5983267B2 (en) Shape control device and shape control method of material to be rolled
JP4813014B2 (en) Shape control method for cold tandem rolling mill
CN108602098B (en) Strip steel shape correcting device and method
JP7103329B2 (en) Rolling mill control method and control device
JP7147423B2 (en) Method and device for setting pass schedule for manufacturing cold-rolled metal strip
JP2019107675A (en) Control device and control method for rolling mill
JP7067541B2 (en) Rolling mill control method and control device
JP2018126767A (en) Arithmetic unit and arithmetic method
JP5557719B2 (en) Rolling control method
JP2002028708A (en) Method of manufacturing for steel sheet and thick plate and device for manufacturing thick plate
JP2003285113A (en) Method for producing metal plate having good plate profile
JP2017225988A (en) Draft leveling control device and draft leveling control method
JP6562010B2 (en) Control device and control method for rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140904

R150 Certificate of patent or registration of utility model

Ref document number: 5612354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250