JP2011238671A - Composite magnetic element - Google Patents

Composite magnetic element Download PDF

Info

Publication number
JP2011238671A
JP2011238671A JP2010106925A JP2010106925A JP2011238671A JP 2011238671 A JP2011238671 A JP 2011238671A JP 2010106925 A JP2010106925 A JP 2010106925A JP 2010106925 A JP2010106925 A JP 2010106925A JP 2011238671 A JP2011238671 A JP 2011238671A
Authority
JP
Japan
Prior art keywords
conductor
composite magnetic
winding
magnetic element
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010106925A
Other languages
Japanese (ja)
Inventor
Takashi Yamaya
孝志 山家
Masahiro Kondo
将寛 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010106925A priority Critical patent/JP2011238671A/en
Publication of JP2011238671A publication Critical patent/JP2011238671A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic element improved in copper loss, core loss, heat stress and noise.SOLUTION: A composite magnetic element 4 consists of a coil composed of conductor bundles 21, 22 and a conductor 3 which electrically connects the conductor bundles, and a composite magnetic body 1 in which the conductor bundles 21, 22 and the conductor 3 are arranged. The coil consists of the conductor bundles 21, 22, and the conductor 3 is derived from the end of the conductor bundle 21 and introduced as the end of the conductor bundle 22. That is, the conductor 3 is exposed between the conductor bundle 21 and the conductor bundle 22 by coiling the conductor into the conductor bundle 21, making space and then coiling the conductor into the conductor bundle 22, without cutting the conductor.

Description

本発明は、主にインバータ等の電源回路に用いられ、大電流を通電して使用するリアクトル等の複合磁性素子に関する。   The present invention relates to a composite magnetic element such as a reactor, which is mainly used in a power supply circuit such as an inverter and used by energizing a large current.

特許文献1には、絶縁被覆を施したコイルを磁性粉末と結合剤との混合物により包み込むように成形し、コイルに外部電極を接続して成るインダクタの構成が開示されている。また図11に示すような、導線2同士が隣接するよう巻き線を施したコイルを磁性粉末と結合剤との混合物である複合磁性体1により包み込むように成形したインダクタの構成も開示されている。   Patent Document 1 discloses a configuration of an inductor in which a coil with an insulating coating is formed so as to be wrapped with a mixture of magnetic powder and a binder, and an external electrode is connected to the coil. Moreover, the structure of the inductor shape | molded so that it may wrap with the composite magnetic body 1 which is a mixture of magnetic powder and a binder as shown in FIG. .

特許文献2には、コアの突合せコーナ部の内側における磁束の集中を、コア同士が対向する端面に、内側に行くに従って磁気ギャップが広くなり、傾斜してゆくような切欠部を設けたリアクトルの構成が開示されている。この傾斜した切欠部は、コアに形成されるループ状の磁束経路に沿った方向におけるギャップGの長さが、磁束経路の外側よりも内側のほうが大きくなるように設けることによって、コイルを通過する漏れ磁束の発生を解消している。   In Patent Document 2, the concentration of magnetic flux inside the butt corner portion of the core is measured on the end face where the cores face each other. A configuration is disclosed. The inclined notch passes through the coil by providing the gap G in the direction along the loop-shaped magnetic flux path formed in the core so that the length on the inner side is larger than the outer side of the magnetic flux path. Elimination of leakage magnetic flux.

特開平5−291046号公報Japanese Patent Application Laid-Open No. 5-291046 特開2006−351959号公報JP 2006-351959 A

特許文献1に開示された、導線2同士が隣接するよう巻き線を施した図11に示すインダクタでは、導線1本を周回し、隣接する導線に入り込む磁束Bが存在し、磁束Bが時間変化する場合には、隣接する導線に発生する渦電流による銅損が生じる。また、導線2の集合体であるコイルを周回する磁界Hは、全ての導線2による磁界が合成されたものであるため、導線2に大電流が通電された際には、磁界Hによって生じる磁束密度Bは巻き線の表面近傍の磁性体に集中しやすく磁気飽和が生じやすかった。   In the inductor shown in FIG. 11 disclosed in Patent Document 1 that is wound so that the conductive wires 2 are adjacent to each other, there is a magnetic flux B that goes around one conductive wire and enters the adjacent conductive wire, and the magnetic flux B changes over time. In this case, copper loss occurs due to eddy currents generated in adjacent conductors. In addition, the magnetic field H that circulates around the coil that is an assembly of the conducting wires 2 is a combination of the magnetic fields of all the conducting wires 2, so that a magnetic flux generated by the magnetic field H when a large current is passed through the conducting wires 2. The density B tends to concentrate on the magnetic material near the surface of the winding, and magnetic saturation is likely to occur.

また特許文献2の構成では、コア間に磁気ギャップを設けているために、特許文献1のインダクタよりも磁束密度は不均一である。磁束密度が不均一であれば、コアロスが磁束密度の二乗に比例することから、コアロスが増大することになる。   Moreover, in the structure of patent document 2, since the magnetic gap is provided between cores, magnetic flux density is non-uniform | heterogenous compared with the inductor of patent document 1. FIG. If the magnetic flux density is not uniform, the core loss increases because the core loss is proportional to the square of the magnetic flux density.

本発明は、上記従来技術の課題を解決するためになされたものであり、その目的は、銅損、渦電流損失、コアロスが改善され、電力変換効率が高く、省エネ効果が高く、更に大電流用途にも耐えうる複合磁性素子を提供することにある。   The present invention has been made to solve the above-described problems of the prior art, and its purpose is to improve copper loss, eddy current loss, core loss, high power conversion efficiency, high energy saving effect, and even high current. An object of the present invention is to provide a composite magnetic element that can withstand applications.

本発明は上記課題を、軟磁性粉と結合材を備える複合磁性体と、らせん状の導線による巻き線を有し、前記巻き線は前記複合磁性体に埋設するとともに、前記複合磁性体の少なくとも一部を前記導線の間に配することを特徴とする複合磁性素子により解決する。   The present invention has the above-mentioned problem, comprising a composite magnetic body comprising soft magnetic powder and a binder, and a winding made of a spiral conductive wire, the winding being embedded in the composite magnetic body, and at least of the composite magnetic body This is solved by a composite magnetic element characterized in that a part is arranged between the conductive wires.

なお、導線とは線状の導体であり、表面に絶縁被覆を形成し、絶縁を確保するのが望ましい。   The conductive wire is a linear conductor, and it is desirable to ensure insulation by forming an insulating coating on the surface.

上記の導線間に配した複合磁性体へ磁束が流れ込むことで、隣接する導線への磁束の侵入を防ぐことができるため、隣接する導線の渦電流損失が改善する。   Since the magnetic flux flows into the composite magnetic body disposed between the conductive wires, it is possible to prevent the magnetic flux from entering the adjacent conductive wires, so that the eddy current loss of the adjacent conductive wires is improved.

さらに、導線間に配した複合磁性体がヒートシンクの役割を果たし、通電による導線の過剰な発熱を防ぐことができる。また、図11に示す従来の構成では、通電による発熱で起こる導線の熱膨張が一つの巻き線を中心に発生し、条件によっては複合磁性体に大きな熱応力を及ぼし、複合磁性体内部での亀裂発生が懸念されるが、本発明によれば発熱源となる導線の周囲にヒートシンクの役割を果たす複合磁性体が配置され、さらに複合磁性体内部で磁束が分散されていることでコアロスによる発熱も分散されるため、熱応力に起因する亀裂を未然に防ぐことが可能となる。   Furthermore, the composite magnetic body disposed between the conductive wires serves as a heat sink, and excessive heat generation of the conductive wires due to energization can be prevented. Further, in the conventional configuration shown in FIG. 11, the thermal expansion of the conductive wire caused by the heat generated by energization occurs around one winding, and depending on the conditions, a large thermal stress is exerted on the composite magnetic body, Although there is a concern about the occurrence of cracks, according to the present invention, a composite magnetic body serving as a heat sink is arranged around the conducting wire serving as a heat generation source, and further, magnetic flux is dispersed inside the composite magnetic body, thereby generating heat due to core loss. Therefore, cracks due to thermal stress can be prevented in advance.

また、導線間に配した複合磁性体へ磁束が分散されることで、磁束密度が均一となることから、磁束Bの飽和を防ぎ、同時にコアロスを改善することができる。さらに、図11に示す従来の構成では、一つの巻き線の周囲に集中する磁束により、複合磁性体内部に生じる電磁吸引力が大きな力となっていたのに対し、本発明の構成では、磁束の発生部位が分散されるため電磁吸引力に起因する素子の振動や騒音も分散・低減することができる。また、巻き線間に生じるローレンツ力に起因する素子の振動や騒音も、巻き線間に配した複合磁性体により低減される。   Further, since the magnetic flux is distributed to the composite magnetic body disposed between the conductive wires, the magnetic flux density becomes uniform, so that saturation of the magnetic flux B can be prevented and core loss can be improved at the same time. Further, in the conventional configuration shown in FIG. 11, the magnetic attraction generated inside the composite magnetic body is a large force due to the magnetic flux concentrated around one winding, whereas in the configuration of the present invention, the magnetic flux Since the generation sites are dispersed, the vibration and noise of the element due to the electromagnetic attractive force can be dispersed and reduced. In addition, the vibration and noise of the element due to the Lorentz force generated between the windings are also reduced by the composite magnetic body disposed between the windings.

さらに本発明は上記課題を、巻き線を複数の導線束より構成し、前記導線束の間に複合磁性体が配されている複合磁性素子により解決する。これら導体の表面には絶縁被膜が形成されているものをもちいることが望ましいが、さらに前記導線束の表面に絶縁層を形成し、さらに絶縁を強化しても良い。   Furthermore, the present invention solves the above problem by a composite magnetic element in which a winding is composed of a plurality of conductor bundles and a composite magnetic body is disposed between the conductor bundles. Although it is desirable to use an insulating film formed on the surface of these conductors, an insulating layer may be further formed on the surface of the conductor bundle to further enhance the insulation.

各導線の間に複合磁性体を配する構成でも本発明の効果は得られるが、導線を導線束にまとめることで、導線束間の隙間を大きく空けることができるため、複合磁性体を導線間に充填する際の作業性が向上する。   The effect of the present invention can be obtained even in a configuration in which a composite magnetic body is arranged between each conductor. However, since the conductor wire is bundled into a conductor bundle, a gap between the conductor bundles can be greatly increased. The workability at the time of filling in is improved.

さらに本発明は上記課題を、導線束における、互いに近接する導線の断面が、数珠状に連なるよう構成することで解決する。   Furthermore, this invention solves the said subject by comprising so that the cross section of the conducting wire which mutually adjoins in a conducting wire bundle may be continued in a bead shape.

導線の断面が数珠状に連なるよう配置することで、各導線は全て複合磁性体と接するため、隣接する導線への磁束の侵入を、より確実に防ぐことができる。   By arranging the cross sections of the conductive wires so as to be continuous in a bead shape, all the conductive wires are in contact with the composite magnetic body, so that the penetration of magnetic flux into the adjacent conductive wires can be more reliably prevented.

特に、導線の断面が巻き軸に平行な直線に沿って数珠状に連なる、すなわちソレノイドコイルを作成するのは既存の設備で可能であり、巻き線時の作業性も良い。   In particular, it is possible with existing equipment to make a cross section of the conducting wire beaded along a straight line parallel to the winding axis, that is, to create a solenoid coil, and the workability during winding is also good.

さらに本発明は上記課題を、内側の導線束における導線の断面積を、外側の導線束における導線の断面積と異なるよう構成することで解決する。   Furthermore, this invention solves the said subject by comprising so that the cross-sectional area of the conducting wire in an inside conducting wire bundle may differ from the cross-sectional area of the conducting wire in an outside conducting wire bundle.

導線の銅損、複合磁性体のコアロスによる発熱は、複合磁性素子の表面より放熱されるが、特に複合磁性素子の内側での発熱を極力抑え、放熱を促進する必要がある。そこで、内側の導線束における導線の断面積を、外側の導線束における導線の断面積よりも大きくすると、内側の導線束の電気抵抗が低いことから銅損による発熱が抑えられ、同時に断面積の大きい内側の導線から外側の導線へ伝熱し、外側の導線および複合磁性体から放熱される。   Heat generated by the copper loss of the conductive wire and the core loss of the composite magnetic material is radiated from the surface of the composite magnetic element, and in particular, it is necessary to suppress the heat generation inside the composite magnetic element as much as possible to promote heat dissipation. Therefore, if the cross-sectional area of the conductor in the inner conductor bundle is made larger than the cross-sectional area of the conductor in the outer conductor bundle, the heat resistance due to copper loss is suppressed because the electrical resistance of the inner conductor bundle is low. Heat is transferred from the large inner conductor to the outer conductor, and is radiated from the outer conductor and the composite magnetic body.

さらに本発明は上記課題を、導線の断面が円とすることで解決する。   Furthermore, this invention solves the said subject because the cross section of conducting wire is made into a circle.

導線の断面が円である、いわゆる丸線は、断面が四角形のいわゆる平角線と比べて隣接する導線間の接触面積を最小限とすることができるため、隣接する導線間の隙間に複合磁性体が充填されることで隣接する導線への磁束の侵入を最小限に防ぐことで渦電流損失も改善する。また同時に複合磁性体がヒートシンクの役割を果たし、放熱の効果も高めることができる。また丸線では、平角線で生じる巻き線時のよじれが生じない。   The so-called round wire, in which the cross section of the conducting wire is a circle, can minimize the contact area between adjacent conducting wires as compared to a so-called rectangular wire having a square cross section. The eddy current loss is also improved by preventing the magnetic flux from entering adjacent conductors to a minimum by being filled. At the same time, the composite magnetic body serves as a heat sink, and the heat dissipation effect can be enhanced. Further, the round wire does not cause kinking during winding that occurs in a flat wire.

本発明により、銅損、渦電流損失、コアロスが改善され、電力変換効率が高く、省エネ効果の高い複合磁性素子を提供することができる。   According to the present invention, it is possible to provide a composite magnetic element with improved copper loss, eddy current loss, and core loss, high power conversion efficiency, and high energy saving effect.

また、磁気飽和しにくいことから、通電電流に対するインダクタンスの低下が少ない、いわゆる直流重畳特性に優れている上、放熱性にも優れているため、インバータ等の大電流を通電する用途にも耐えうる複合磁性素子を提供することができる。   In addition, since it is difficult to saturate magnetically, there is little decrease in inductance with respect to the energized current, so-called DC superposition characteristics are excellent, and heat dissipation is also excellent, so it can withstand applications such as inverters that energize large currents. A composite magnetic element can be provided.

本発明の実施形態における複合磁性素子の上面図である。It is a top view of the composite magnetic element in the embodiment of the present invention. 本発明の実施形態における複合磁性素子の側面図である。It is a side view of the composite magnetic element in embodiment of this invention. 本発明の実施形態図1におけるAA面の断面図である。FIG. 2 is a cross-sectional view of the AA plane in FIG. 1 according to the embodiment of the present invention. 本発明の他の実施形態における複合磁性素子の上面図である。It is a top view of the composite magnetic element in other embodiment of this invention. 本発明の他の実施形態図4におけるAA面の断面図である。FIG. 5 is a cross-sectional view of the AA plane in FIG. 4 according to another embodiment of the present invention. 本発明の他の実施形態図4におけるAA面の断面図である。FIG. 5 is a cross-sectional view of the AA plane in FIG. 4 according to another embodiment of the present invention. 本発明の他の実施形態図4におけるAA面の断面図である。FIG. 5 is a cross-sectional view of the AA plane in FIG. 4 according to another embodiment of the present invention. 本発明の他の実施形態における複合磁性素子の上面図である。It is a top view of the composite magnetic element in other embodiment of this invention. 本発明の他の実施形態図8におけるAA面の断面図である。FIG. 9 is a cross-sectional view of the AA plane in FIG. 8 according to another embodiment of the present invention. 本発明における導線周囲の磁束Bの説明図である。It is explanatory drawing of the magnetic flux B around the conducting wire in this invention. 従来技術における複合磁性体の断面図である。It is sectional drawing of the composite magnetic body in a prior art.

以下、本発明の実施の形態を図面に沿って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明における複合磁性素子の一例を図1、図2及び図3に示す。複合磁性素子4は、導線束21、22および導線束間を電気的に接続する導線3よりなる巻き線、さらに導線束21、22、導線3が埋設される複合磁性体1より構成されている。   An example of the composite magnetic element in the present invention is shown in FIGS. The composite magnetic element 4 is composed of a winding composed of the conductor bundles 21 and 22 and the conductor 3 that electrically connects the conductor bundles, and the composite magnetic body 1 in which the conductor bundles 21 and 22 and the conductor 3 are embedded. .

巻き線は導線束21、22よりなり、導線束21の端部より導線3が導出され、導線束22の端部より導入されている。すなわち、導線束21を巻いた後、導線を切断せずにそのまま間隔を空けて導線束22を巻くことで、導線束21と導線束22の間には導線3が露出する。もちろん、前記2つの導線束は別々に製作し、各々の導線束における導線の端末部同士を複合磁性素子4の外部で接続しても良い。いずれの場合も、2つの導線束に流れる電流の向きを同一とすることが望ましい。   The winding consists of conductor bundles 21 and 22, and the conductor 3 is led out from the end of the conductor bundle 21 and introduced from the end of the conductor bundle 22. That is, after winding the conducting wire bundle 21, the conducting wire 3 is exposed between the conducting wire bundle 21 and the conducting wire bundle 22 by winding the conducting wire bundle 22 at intervals without cutting the conducting wire. Of course, the two conductor bundles may be manufactured separately, and the terminal portions of the conductors in each conductor bundle may be connected outside the composite magnetic element 4. In any case, it is desirable that the directions of the currents flowing through the two wire bundles are the same.

複合磁性体1は、例えば金属系の磁性粉末と熱硬化性の液状の樹脂を混合しスラリー状としたものを用いることができる。熱硬化性の樹脂はスラリーとしたときの流動性が十分であるよう低粘度のものが好ましく、例えばエポキシ樹脂などを用いることができる。ここで磁性粉末としてはFe−Si6.5%材のガスアトマイズ粉末等のダスト粉末を用いることができる。これらを樹脂と混合してスラリー状とする際に、アルミナ粉末、シリカ粉末などを同時に配合し、磁性体であるダスト粉末の占積率を下げて透磁率を調整してもよい。前記手順により配合した磁性スラリーを、導線束21、22、導線3よりなる巻き線をセットした型に注型し加熱硬化させることで複合磁性素子4を得ることができる。もちろん、先に巻き芯となりうる形状の複合磁性体を形成しておき、これに巻き線を施した後、型にセットし空間となっている部分へ複合磁性体のスラリーで注型しても良い。   As the composite magnetic body 1, for example, a metal magnetic powder and a thermosetting liquid resin mixed to form a slurry can be used. The thermosetting resin preferably has a low viscosity so as to have sufficient fluidity when made into a slurry. For example, an epoxy resin can be used. Here, dust powder such as gas atomized powder of Fe-Si 6.5% material can be used as the magnetic powder. When these are mixed with a resin to form a slurry, alumina powder, silica powder, or the like may be blended at the same time to reduce the space factor of the dust powder, which is a magnetic material, and adjust the magnetic permeability. The composite magnetic element 4 can be obtained by casting the magnetic slurry blended according to the above procedure into a mold in which windings made of the conductor bundles 21 and 22 and the conductor 3 are set and heat-curing. Of course, a composite magnetic body having a shape that can be a winding core is formed in advance, and after winding this, it is set in a mold and cast into the space portion with a slurry of the composite magnetic body. good.

複合磁性素子4は、通電電流は例えば50A以上700A以下の範囲で好適に用いられ、その場合は複合磁性体の磁気飽和を防ぐため、比透磁率は500以下に設定することが望ましい。一方、比透磁率を低く設定することで、磁束が巻き線全体を周回することができず導線へ侵入し易くなるが、図3に示されるように、本発明における導線束の断面を周回する磁束Bは、導線束21と22の間を流れることから、導線3への磁束Bの侵入を防ぐことができる。なお、導線3としては、例えば直径3mm程度の丸銅線を用いることができる。   The composite magnetic element 4 is preferably used with an energization current in the range of, for example, 50 A or more and 700 A or less. In that case, in order to prevent magnetic saturation of the composite magnetic material, the relative permeability is preferably set to 500 or less. On the other hand, by setting the relative permeability low, the magnetic flux cannot circulate around the entire winding and easily enters the conductor, but as shown in FIG. 3, it circulates the cross section of the conductor bundle in the present invention. Since the magnetic flux B flows between the conductor bundles 21 and 22, it is possible to prevent the magnetic flux B from entering the conductor 3. In addition, as the conducting wire 3, for example, a round copper wire having a diameter of about 3 mm can be used.

また、導線束における互いに近接する導線の断面が、数珠状に連なっている、いわゆるソレノイドコイル状とした図4、図5、図6、図7の構成であってもよい。   Moreover, the structure of FIG.4, FIG.5, FIG.6, FIG.7 made into what is called a solenoid coil shape where the cross section of the conducting wire which adjoins each other in a conducting wire bundle continued in a bead shape may be sufficient.

導線束における導線は、必要とされるインダクタンスが低く、大電流を通電する用途に用いる場合は図5のように隣接する導線間に間隔を設ける。   The conducting wires in the conducting wire bundle have a low required inductance, and when used for an application in which a large current is passed, an interval is provided between adjacent conducting wires as shown in FIG.

また、比較的必要とされるインダクタンスが高く、通電電流が比較的小さい場合は図6のように、隣接する導線間が接するよう配置する。   Further, when the inductance required is relatively high and the energization current is relatively small, as shown in FIG.

また、図7のように内側の導線束21における導線の断面積を、外側の導線束22における導線の断面積よりも大きくすることで、内側の導線束21の電気抵抗が低いことから銅損による発熱が抑えられ、同時に断面積の大きい内側の導線21から外側の導線22へ伝熱し、外側の導線22および複合磁性体1から放熱されるため望ましい。また、図7に於ける巻き軸中心近傍の複合磁性体をアルミ等の熱伝導率の高い部材に置き換え、内部の冷却性能を高くした場合は、逆に内側の導線束における導線の断面積を小さくしても良い。   Further, as shown in FIG. 7, by making the cross-sectional area of the conductor in the inner conductor bundle 21 larger than the sectional area of the conductor in the outer conductor bundle 22, the electrical resistance of the inner conductor bundle 21 is low. This is desirable because heat generation due to is suppressed, and heat is transferred from the inner conductor 21 having a large cross-sectional area to the outer conductor 22 and radiated from the outer conductor 22 and the composite magnetic body 1. In addition, when the composite magnetic body in the vicinity of the center of the winding axis in FIG. 7 is replaced with a member having high thermal conductivity such as aluminum and the internal cooling performance is enhanced, the cross sectional area of the conductor in the inner conductor bundle is conversely changed. It may be small.

また、内側の導線21と外側の導線22を接続する導線3は、磁束に平行な平面状とすることで内側の導線21から外側の導線22への伝熱が促進されるため望ましい。もちろん、前記2つの導線束は別々に製作し、端末部を磁性素子の外部で接続しても良い。いずれの場合も、2つの導線束に流れる電流の向きを同一とすることが望ましい。   Moreover, since the conducting wire 3 which connects the inner side conducting wire 21 and the outer side conducting wire 22 is made into a planar shape parallel to the magnetic flux, heat transfer from the inner conducting wire 21 to the outer conducting wire 22 is promoted. Of course, the two conductor bundles may be manufactured separately and the terminal portion may be connected outside the magnetic element. In any case, it is desirable that the directions of the currents flowing through the two wire bundles are the same.

さらに、図8、図9のように導線2の断面が互いに円環状に連なる構成としてもよい。導線2の一部に予め隙間を設けておき、スラリーを注型することで磁性素子を形成できる。この場合、導線2の内側の磁束Bと、外側の磁束Bが互いに逆方向となる。   Furthermore, it is good also as a structure which the cross section of the conducting wire 2 mutually follows an annular | circular shape like FIG. 8, FIG. A magnetic element can be formed by previously providing a gap in a part of the conductive wire 2 and casting the slurry. In this case, the magnetic flux B inside the conductor 2 and the magnetic flux B outside are opposite to each other.

また、導線2は断面が円であることが望ましい。断面が円のいわゆる丸線であれば、図10のように、導線間にも複合磁性体が充填されることで、隣接する導線間の接触面積を最小限とすることができる、さらに隣接する導線間の隙間に複合磁性体が充填されるため複合磁性体がヒートシンクの役割を果たし、放熱の効果を得られるが、同時に隣接する導線への磁束の侵入を最小限に防ぐことで渦電流損失を抑えることができる。   Moreover, as for the conducting wire 2, it is desirable for a cross section to be a circle. If the cross section is a so-called round wire, the contact area between the adjacent conductors can be minimized by filling the composite magnetic body between the conductors as shown in FIG. Since the composite magnetic material fills the gaps between the conductors, the composite magnetic material acts as a heat sink and provides heat dissipation, but at the same time, eddy current loss is prevented by minimizing the penetration of magnetic flux into the adjacent conductors. Can be suppressed.

なお、本発明が適用される磁性素子においては、巻き線の直流損失と交流損失が約50%、鉄損が約50%程度であり、これら両者の損失を低下させることによりインバータ動作の効率を高めることができ、燃費、省エネ等の環境対応の観点からも本発明による損失の低減効果を享受することができる。   In the magnetic element to which the present invention is applied, the direct current loss and the alternating current loss of the winding are about 50%, and the iron loss is about 50%. The efficiency of the inverter operation is reduced by reducing both of these losses. The loss reduction effect of the present invention can also be enjoyed from the viewpoint of environmental measures such as fuel efficiency and energy saving.

また、巻き線の交流損失は一本の素線断面における表面に電流が流れやすい表皮損と近傍の素線が発生する磁界が巻き線を貫通する際に渦電流を発生することによる近接損によるものであるが、これらの分離は容易で、巻きまわした巻き線の交流抵抗を測定すると両者の合計の損失が得られ、巻きまわしをほどいて素線が近接しない状態で測定すれば素線の表皮損のみが測定される。例えば、10KHzでは表皮損が10% 近接損が90%と近接損の影響が大きい。このように影響の大きな近接損を本発明により低減することができる。   In addition, the AC loss of the winding is due to the skin loss that makes it easy for current to flow on the surface of a single wire cross section and the proximity loss due to the generation of eddy current when the magnetic field generated by the nearby strand penetrates the winding. However, it is easy to separate them, and when measuring the AC resistance of the wound winding, the total loss of both can be obtained. Only skin damage is measured. For example, at 10 kHz, the skin loss is 10%, the proximity loss is 90%, and the influence of the proximity loss is large. Thus, the proximity loss having a great influence can be reduced by the present invention.

1 複合磁性体
2、3 導線
21、22 導線束
4 複合磁性素子
B 磁束
DESCRIPTION OF SYMBOLS 1 Composite magnetic body 2, 3 Conductor 21, 22 Conductor bundle 4 Composite magnetic element B Magnetic flux

Claims (6)

軟磁性粉と結合材を備える複合磁性体と、らせん状の導線による巻き線を有し、前記巻き線は前記複合磁性体に埋設するとともに、前記複合磁性体の少なくとも一部を前記導線の間に配することを特徴とする複合磁性素子。   A composite magnetic body comprising soft magnetic powder and a binder, and a winding made of a helical conductor, the winding being embedded in the composite magnetic body, and at least a part of the composite magnetic body between the conductors A composite magnetic element characterized by being arranged in 前記巻き線は複数の導線束よりなり、前記導線束の間に前記複合磁性体を配することを特徴とする請求項1記載の複合磁性素子。   The composite magnetic element according to claim 1, wherein the winding includes a plurality of conductor bundles, and the composite magnetic body is disposed between the conductor bundles. 前記導線束における、互いに近接する前記導線の断面が、数珠状に連なるよう配置されていることを特徴とする請求項2記載の複合磁性素子。   3. The composite magnetic element according to claim 2, wherein sections of the conducting wires adjacent to each other in the conducting wire bundle are arranged in a beaded manner. 前記導線束における、互いに近接する前記導線の断面が、前記巻き線の巻き軸に平行な直線に沿って数珠状に連なるよう配置されていることを特徴とする請求項3記載の複合磁性素子。   4. The composite magnetic element according to claim 3, wherein sections of the conducting wires adjacent to each other in the conducting wire bundle are arranged in a beaded manner along a straight line parallel to a winding axis of the winding. 巻き線における内側の前記導線束における導線の断面積が、外側の前記導線束における導線の断面積と異なることを特徴とする請求項4記載の複合磁性素子。   5. The composite magnetic element according to claim 4, wherein a cross-sectional area of the conductor in the inner wire bundle in the winding is different from a cross-sectional area of the conductor in the outer conductor bundle. 前記導線の断面が円であることを特徴とする請求項1から5のいずれかに記載の複合磁性素子。   6. The composite magnetic element according to claim 1, wherein a cross section of the conducting wire is a circle.
JP2010106925A 2010-05-07 2010-05-07 Composite magnetic element Pending JP2011238671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106925A JP2011238671A (en) 2010-05-07 2010-05-07 Composite magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106925A JP2011238671A (en) 2010-05-07 2010-05-07 Composite magnetic element

Publications (1)

Publication Number Publication Date
JP2011238671A true JP2011238671A (en) 2011-11-24

Family

ID=45326361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106925A Pending JP2011238671A (en) 2010-05-07 2010-05-07 Composite magnetic element

Country Status (1)

Country Link
JP (1) JP2011238671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219458A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Coil component
JP2018041872A (en) * 2016-09-08 2018-03-15 スミダコーポレーション株式会社 Composite magnetic material, composite magnetic compact obtained by thermally curing the same, electronic component arranged by use of composite magnetic compact, and manufacturing methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566936U (en) * 1992-02-13 1993-09-03 日立フェライト株式会社 Plane coil
JP2003017350A (en) * 2001-07-04 2003-01-17 Murata Mfg Co Ltd Method fo manufacturing chip beads inductor and chip beads inductor
JP2005260073A (en) * 2004-03-12 2005-09-22 Yonezawa Densen Kk Inductance element and its manufacturing method
JP2009010137A (en) * 2007-06-27 2009-01-15 Fuji Electric Systems Co Ltd Winding and magnetic part
WO2009066433A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Coil component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566936U (en) * 1992-02-13 1993-09-03 日立フェライト株式会社 Plane coil
JP2003017350A (en) * 2001-07-04 2003-01-17 Murata Mfg Co Ltd Method fo manufacturing chip beads inductor and chip beads inductor
JP2005260073A (en) * 2004-03-12 2005-09-22 Yonezawa Densen Kk Inductance element and its manufacturing method
JP2009010137A (en) * 2007-06-27 2009-01-15 Fuji Electric Systems Co Ltd Winding and magnetic part
WO2009066433A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Coil component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219458A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Coil component
JP2018041872A (en) * 2016-09-08 2018-03-15 スミダコーポレーション株式会社 Composite magnetic material, composite magnetic compact obtained by thermally curing the same, electronic component arranged by use of composite magnetic compact, and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
JP6400663B2 (en) Contactless power transformer
US10410778B2 (en) Magnetic circuit component
US8686820B2 (en) Reactor
US20070090916A1 (en) Quad-gapped toroidal inductor
US6661327B1 (en) Electromagnetic inductor and transformer device and method making the same
EP2597656A1 (en) Reactor
EP2669911A1 (en) Reactor and reactor apparatus
CN111312500A (en) Inductance coil and electromagnetic device
JP2012099739A (en) Core segment, annular coil core and annular coil
JP2010093145A (en) Alpha-winding coil
US11621113B2 (en) Electromagnetic device with thermally conductive former
US20240006120A1 (en) Insulation for transformer or inductor
JP2011238671A (en) Composite magnetic element
JP2011124242A (en) Reactor device
JP5189637B2 (en) Coil parts and power supply circuit using the same
CN112216481A (en) Magnetic induction coil
JP6722561B2 (en) Coil parts
JP2016039322A (en) Coil and coil component
CN210956373U (en) Magnetic part
JPS5830115A (en) Power transformer
JP2009088084A (en) Stationary induction apparatus
CN210325464U (en) Magnetic induction coil
WO2019044835A1 (en) Heat-sink-mounted inductor
JP3187497U (en) Magnetic parts
CN216487618U (en) Hollow iron core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140611