JP2011238543A - Fuse element and sealed wire fuse using the same - Google Patents

Fuse element and sealed wire fuse using the same Download PDF

Info

Publication number
JP2011238543A
JP2011238543A JP2010110897A JP2010110897A JP2011238543A JP 2011238543 A JP2011238543 A JP 2011238543A JP 2010110897 A JP2010110897 A JP 2010110897A JP 2010110897 A JP2010110897 A JP 2010110897A JP 2011238543 A JP2011238543 A JP 2011238543A
Authority
JP
Japan
Prior art keywords
fuse element
heat storage
fuse
resistance wire
storage part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010110897A
Other languages
Japanese (ja)
Other versions
JP5656102B2 (en
Inventor
Masatoshi Araya
正敏 新家
Masashi Kobayashi
昌史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA FUSE CO Ltd
Original Assignee
OSAKA FUSE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA FUSE CO Ltd filed Critical OSAKA FUSE CO Ltd
Priority to JP2010110897A priority Critical patent/JP5656102B2/en
Publication of JP2011238543A publication Critical patent/JP2011238543A/en
Application granted granted Critical
Publication of JP5656102B2 publication Critical patent/JP5656102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuse element which is inexpensive in the manufacturing cost and strong also in thermal shock due to heat cycle in the fuse element having a fusible part which fuses when an overcurrent flows and a heat storage part having heat capacity, and also having connection terminals connected to both ends, and also to provide a sealed wire fuse using this fuse element.SOLUTION: A fuse element is comprised of a single resistance wire 1 in which a fusible part and a heat storage part 3 are continuously formed in a integral manner. The heat storage part 3 of the fuse element is constituted of a multiply bent part 2 of the resistance wire 1 and fusible metal filled in voids of the bent part.

Description

この発明は、過電流が流れた際に溶断する溶断部と熱容量を持たせた蓄熱部を有し、両端部に接続端子を接続したヒューズエレメント及びこのヒューズエレメントを使用した密閉形電線ヒューズに関するものである。   The present invention relates to a fuse element that has a fusing part that melts when an overcurrent flows and a heat storage part that has a heat capacity, and a connection terminal connected to both ends, and a sealed electric wire fuse that uses this fuse element It is.

低圧配電線路の引込線の過負荷や短絡による絶縁被覆の劣化、発煙、発火、断線などを防止するために電線ヒューズが用いられているが、抵抗線の一部に蓄熱部を設け、熱容量を持たせることにより溶断時間−電流特性の調整を容易にし、また、パルス的な電流に対し熱蓄積を行い、抵抗線の温度上昇を抑えて熱的ダメージを防止することが行われている。
パルス的な電流とは、主としてモーターの起動電流であり、過電流保護を考慮しすぎると起動電流に耐えるヒューズの設計が難しくなるが、蓄熱部を設けてタイムラグ特性を持たせれば溶断時間−電流特性においてバランスのとれたヒューズ設計が可能となる。
Wire fuses are used to prevent deterioration of insulation coating due to overloading or short-circuiting of low-voltage distribution lines, smoke generation, ignition, disconnection, etc. Therefore, it is easy to adjust the fusing time-current characteristics, and heat accumulation is performed with respect to a pulsed current to suppress a temperature rise of the resistance wire and prevent thermal damage.
The pulsed current is mainly the motor starting current.If excessive current protection is taken into account, it will be difficult to design a fuse that can withstand the starting current. However, if a heat storage part is provided to provide a time lag characteristic, the fusing time-current It is possible to design a fuse whose characteristics are balanced.

所要の熱容量を有する蓄熱部をヒューズエレメントに設ける場合、直接抵抗線に銅管をカシメ止めするなど、抵抗線の軸方向において圧着接続する場合が通常であるが、抵抗線と蓄熱部が異なる部品で構成されているため、構成部品が多くなりコスト高となっていた。また、ヒューズエレメントにおいて接続箇所が増えると接続不良の問題や、機械的強度の劣化を招きやすく、抵抗線と蓄熱部は一体的に設けることが望ましいといえる。   When a heat storage part with the required heat capacity is provided in the fuse element, it is normal to make a crimp connection in the axial direction of the resistance wire, such as by caulking the copper wire directly to the resistance wire, but the resistance wire and the heat storage part are different Therefore, the number of components increases and the cost is high. Further, if the number of connection points in the fuse element increases, it may easily cause a problem of connection failure or deterioration of mechanical strength, and it can be said that it is desirable to provide the resistance wire and the heat storage unit integrally.

そこで従来においても、例えば特許文献1に示すように算盤玉形の蓄熱部を有するヒューズエレメントを線材からスエージング加工により一体成形する提案や、特許文献2に示すように大面積部を有するヒューズエレメントを銅棒又は銅線から一体的に切削する方法などが提案されている。
しかしながら、これらのヒュースエレメントは製造コストが高くなる難点があり、また、電流変動によるヒューズエレメントの発熱による膨張収縮によって、ヒューズエレメントに歪が生じるおそれもあった。
Therefore, conventionally, for example, as shown in Patent Document 1, a fuse element having an abacus-shaped heat storage part is integrally formed from a wire by swaging, and as shown in Patent Document 2, a fuse element having a large area part. A method of integrally cutting a copper rod from a copper rod or a copper wire has been proposed.
However, these hose elements have a problem that the manufacturing cost becomes high, and there is a possibility that the fuse element is distorted due to expansion and contraction due to heat generation of the fuse element due to current fluctuation.

特開平5-74323号公報JP-A-5-74323 特開2008-293908JP2008-293908

そこで、この発明の目的とするところは、過電流が流れた際に溶断する溶断部と熱容量を持たせた蓄熱部を有し、両端部に接続端子を接続したヒューズエレメントにおいて、製造コストが安いヒューズエレメント及びこのヒューズエレメントを使用した密閉形電流ヒューズを提供するところにある。
また、電流変動によってヒューズエレメントが発熱し、膨張収縮して熱ストレスが加わることによる歪の発生を抑え、信頼性の高いヒューズエレメント及びこのヒューズエレメントを使用した密閉形電流ヒューズを提供するところにある。
Accordingly, the object of the present invention is to provide a fuse element that has a fusing part that melts when an overcurrent flows and a heat storage part that has a heat capacity, and has a connecting terminal connected to both ends, and the manufacturing cost is low. A fuse element and a sealed current fuse using the fuse element are provided.
Further, the present invention is to provide a highly reliable fuse element and a sealed current fuse using this fuse element by suppressing the generation of distortion due to the heat fluctuation caused by current fluctuation, expansion and contraction, and application of thermal stress. .

上記目的達成のため、この発明においては、溶断部と蓄熱部が単一の抵抗線で連続して一体的に構成されたヒューズエレメントの蓄熱部を抵抗線の多重屈曲部とこの屈曲部の空隙に充填した可溶金属で構成したことを特徴としている。
すなわち、従来のようにスエージング加工や切削によるのではなく、単に単一の抵抗線を多重に屈曲し、この屈曲部の空隙に可溶金属を充填する構成としたものである。
In order to achieve the above object, according to the present invention, the heat storage part of the fuse element in which the fusing part and the heat storage part are continuously and integrally formed by a single resistance wire is divided into a multiple bending part of the resistance wire and a gap between the bending parts. It is characterized by comprising a soluble metal filled in.
That is, instead of swaging or cutting as in the prior art, a single resistance wire is simply bent multiple times, and the gap is filled with a soluble metal.

抵抗線は、銅、銀を主体とした単体もしくは銅・ニッケル合金、銅・ニッケル・クロム合金などの合金線が採用できるが、これに限定されるものではない。可溶金属は、錫単体若しくは錫を主体とする合金、例えば錫・ニッケル合金、錫・銀合金、錫・銅合金、錫・銀・銅合金などが採用できるが、これに限定されるものではない。   The resistance wire may be a single element mainly composed of copper or silver, or an alloy wire such as a copper / nickel alloy or a copper / nickel / chromium alloy, but is not limited thereto. As the fusible metal, tin alone or an alloy mainly composed of tin, such as a tin / nickel alloy, a tin / silver alloy, a tin / copper alloy, a tin / silver / copper alloy, can be adopted, but is not limited thereto. Absent.

多重屈曲部に可溶金属を充填する方法としては、例えば錫単体若しくは錫を主体とする合金を溶融した槽にフラックスを塗布したヒューズエレメント全体を浸漬して一定の速度で槽から引き揚げることによって、可溶金属を多重屈曲部の空隙に充填付着させることができる。   As a method of filling the multiple bends with a soluble metal, for example, by immersing the entire fuse element coated with flux in a tank in which a simple substance of tin or an alloy mainly composed of tin is melted and lifting it from the tank at a constant speed, A soluble metal can be filled and attached to the voids of the multiple bent portions.

多重屈曲部の形態としては、らせんコイル状が好ましい。らせんコイル状とするためには、例えば、バネ製作機械などにより、コイルバネを製作する要領で製作すれば良く、両端直線部を残して全体をコイルバネ状とした後にコイルバネ状部材を左右に伸展して、中央部を挟んで左右にらせんコイル状部分を残す方法や、当初より蓄熱部を構成する部分のみをコイル巻きする方法など適宜の方法をとることが可能である。蓄熱部は中央部を挟んで左右均等に対称的に配置するのが望ましい。   As a form of the multiple bent portion, a spiral coil shape is preferable. In order to obtain a spiral coil shape, for example, it may be produced in the manner of producing a coil spring by a spring production machine or the like. An appropriate method such as a method of leaving spiral coil portions on the left and right with the central portion sandwiched, or a method of winding only a portion constituting the heat storage portion from the beginning can be employed. It is desirable to arrange the heat storage part symmetrically evenly on the left and right with the center part in between.

らせんコイル状とした場合、上記のようにコイルバネを製作する要領で容易に製作可能であり、フラックスや可溶金属が浸透・付着しやすく、所望とする蓄熱部が得られる。また、蓄熱部をらせんコイル状の多重屈曲部とした場合、その巻き始めと巻き終わり部分及び蓄熱部間に位置する中央部は必然的に非直線状となり、この非直線部分が伸縮可能であるため、熱履歴を受けた場合にもヒューズエレメントの歪を低減することができる。   In the case of a helical coil shape, the coil spring can be easily manufactured as described above, and flux and soluble metal can easily permeate and adhere to obtain a desired heat storage section. Further, when the heat storage part is a helical coil-shaped multiple bent part, the winding start and end parts and the central part located between the heat storage parts are inevitably non-linear, and this non-linear part can be expanded and contracted. Therefore, the distortion of the fuse element can be reduced even when the thermal history is received.

また、フラックスや可溶金属が浸透・付着しやすい多重屈曲部としては、らせんコイル状に限定されるものではなく、例えば、抵抗線の軸線方向に沿って少なくとも2回以上の偶数回の折り曲げによって多重屈曲部を構成すれば可溶金属が浸透・付着しやく、容易に蓄熱部を構成することができる。この多重屈曲部は線材の折り曲げ機によって容易に製作可能である。   In addition, the multiple bent portion in which flux and fusible metal easily penetrate and adhere is not limited to a spiral coil shape, for example, by bending at least two or more times along the axial direction of the resistance wire. If the multiple bent portion is configured, it is easy for a soluble metal to permeate and adhere to the heat storage portion. This multiple bent portion can be easily manufactured by a wire bending machine.

このヒューズエレメントにおいても、蓄熱部と接続端子間において抵抗線に非直線部分を設ければ、ヒューズエレメントの発熱による膨張収縮に対応可能であり、熱履歴を受けた場合にヒューズエレメントの歪を低減することができる。   Also in this fuse element, if a non-linear part is provided in the resistance wire between the heat storage part and the connection terminal, it can cope with expansion and contraction due to heat generation of the fuse element, and distortion of the fuse element is reduced when receiving a thermal history can do.

このようなヒューズエレメントを密閉絶縁ケース内に収納して密閉形電線ヒューズを構成すれば、製作コストが安く、信頼性の高い電線ヒューズを提供することができる。   If such a fuse element is housed in a sealed insulation case to form a sealed electric wire fuse, it is possible to provide a highly reliable electric wire fuse with low manufacturing costs.

この発明のヒューズエレメントは、上述のように、単一の抵抗線を多重に屈曲し、この多重屈曲部の空隙に可溶金属を充填する構成としたので、蓄熱部を抵抗線の軸方向において圧着接続する場合に比し、接続箇所が少なく、信頼性が向上する。   As described above, the fuse element according to the present invention has a structure in which a single resistance wire is bent multiple times, and a space between the multiple bent portions is filled with a soluble metal. Compared with the case of crimping connection, there are few connection parts and reliability is improved.

また、抵抗線と蓄熱部が異なる部品で構成されている従来品に比し、部品点数が少なくなりコストの低減を図り得るものである。さらに、スエージング加工や切削加工によって溶断部と蓄熱部を一体に形成する場合に比し、バネ製作機械などにより、蓄熱部をコイル巻きしたり、線材の折り曲げ機によって、抵抗線の軸線方向に沿って少なくとも2回以上の偶数回折り曲げることによって多重屈曲部を構成し、この多重屈曲部に可溶金属を充填付着させるものであるから、製造が容易であり、製造コストを低減することができる。   In addition, the number of parts can be reduced and the cost can be reduced as compared with a conventional product in which the resistance wire and the heat storage section are made of different parts. Furthermore, compared to the case where the fusing part and the heat storage part are integrally formed by swaging or cutting, the heat storage part is coiled by a spring manufacturing machine or the like, or the wire is bent in the axial direction of the resistance wire. A multiple bend is formed by bending at least twice an even number along the line, and a soluble metal is filled and adhered to the multiple bend, so that the manufacture is easy and the manufacturing cost can be reduced. .

多重屈曲部をらせんコイル状とした場合、巻き始めと巻き終わり部分及び蓄熱部間に位置する中央部が非直線状となり、この非直線部分が伸縮可能であるため、熱履歴を受けた場合にもヒューズエレメントの歪を低減することができる。
また、抵抗線の軸線方向に沿って少なくとも2回以上の偶数回の折り曲げた多重屈曲部を有するヒューズエレメントにおいても、蓄熱部と接続端子間において抵抗線に非直線部分を設ければ、同様な効果を期待し得る。
When the multi-bending part is formed in a spiral coil shape, the central part located between the winding start and winding end parts and the heat storage part becomes non-linear, and this non-linear part can be expanded and contracted, so when receiving a thermal history Also, the distortion of the fuse element can be reduced.
Further, even in a fuse element having a multiple bent portion that is bent at least twice or more times along the axial direction of the resistance wire, if a non-linear portion is provided in the resistance wire between the heat storage portion and the connection terminal, the same The effect can be expected.

また、多重屈曲部に可溶金属を充填付着させるものであるから、可溶金属が全体的に行き渡り易く、全体の濡れ状態も目視しやすいため、品質管理も容易となる。さらにまた、多重屈曲部には間隙が存在するため、内部に残留フラックスが溜まり難く、溶断特性も安定する。
また、蓄熱部を多重屈曲部で構成するものであるから、蓄熱部の外径と長さを容易に変更できるため、設計の自由度が高く、溶断特性を簡単に調整できる利点を有している。
Further, since the soluble metal is filled and adhered to the multiple bent portions, the soluble metal is easily spread throughout, and the entire wet state is easily observed, so that quality control is also facilitated. Furthermore, since there are gaps in the multiple bent portions, it is difficult for residual flux to accumulate inside, and the fusing characteristics are stabilized.
In addition, since the heat storage part is composed of multiple bent parts, the outer diameter and length of the heat storage part can be easily changed, so the design freedom is high and the fusing characteristics can be adjusted easily. Yes.

本発明に係るヒューズエレメントの実施形態を示す正面図The front view which shows embodiment of the fuse element which concerns on this invention 同ヒューズエレメントを使用した密閉形電線ヒューズの実施形態を示す正面図Front view showing an embodiment of a sealed electric wire fuse using the same fuse element 同密閉形電線ヒューズの溶断時間―電流特性図Fusing time vs. current characteristics of the sealed electric wire fuse 本発明に係るヒューズエレメントの他の実施形態を示す正面図The front view which shows other embodiment of the fuse element which concerns on this invention さらに他の実施形態を示す正面図Front view showing still another embodiment

図1は溶断部と蓄熱部が単一の抵抗線で連続して一体的に構成されたヒューズエレメントの蓄熱部を抵抗線の多重屈曲部とこの屈曲部の空隙に充填した可溶金属で構成した本発明に係るヒューズエレメントの一実施形態を示すものである。   FIG. 1 shows a fuse element in which a fusing part and a heat storage part are continuously and integrally formed by a single resistance wire, and the heat storage part of the fuse element is composed of a multiple bending part of the resistance wire and a fusible metal filled in the gap between the bending parts. 1 shows an embodiment of a fuse element according to the present invention.

具体的に説明すると、直径1.33mmの銅線を素材とする抵抗線1の両端部及び中央部を残して左右対称位置において多重屈曲部2を一体的に構成し、全体にフラックスを塗布した上、Sn−3.5Ag-0.75Cuの錫を主体とする低融点合金の溶融槽に浸漬して一定の速度で槽から引き揚げることによって、可溶金属を多重屈曲部2の空隙に充填付着させて蓄熱部3としたものである。4は抵抗線1の両端部にカシメ止めした接続端子であり、50A用として直径3.2mmとしている。   More specifically, the multiple bending portion 2 is integrally formed at the left and right symmetrical positions except for both ends and the center portion of the resistance wire 1 made of a copper wire having a diameter of 1.33 mm, and flux is applied to the whole. Above, the molten metal is filled in and attached to the voids of the multiple bent portions 2 by being immersed in a melting bath of a low melting point alloy mainly composed of Sn-3.5Ag-0.75Cu tin and being pulled up from the bath at a constant speed. The heat storage unit 3 is used. Reference numeral 4 denotes a connection terminal that is crimped to both ends of the resistance wire 1 and has a diameter of 3.2 mm for 50A.

この多重屈曲部2は単一の抵抗線1の中央部を残して左右対称位置においてコイル巻きしたもので、バネ製作機械によって巻径3.0mm、8巻きのらせんコイル状に巻かれている。従って、らせんコイル状の多重屈曲部2の巻き始めと巻き終わり部分及び蓄熱部間に位置する中央部は非直線状となっている。   The multiple bent portion 2 is coiled at a symmetrical position except for the central portion of the single resistance wire 1 and is wound into a spiral coil shape having a winding diameter of 3.0 mm and a winding diameter by a spring manufacturing machine. Therefore, the central part located between the winding start part and the winding end part of the helical coil-shaped multiple bending part 2 and the heat storage part is non-linear.

図2は上記ヒューズエレメントを密閉絶縁ケース内に収納して構成した密閉形電線ヒューズの実施形態を示すもので、ガラス製内筒5内にヒューズエレメントを納め、両端の接続端子4を内筒5の保持キャップ6から導出させ、ポリカーボネート製の外筒7に収納している。8は外筒7に被せたポリカーボネート製の外キャップであり、内キャップ9によって内端部を保持された圧縮スリーブ10の電線接続部10aを外キャップ8の外側に突出させている。   FIG. 2 shows an embodiment of a sealed electric wire fuse constructed by housing the fuse element in a sealed insulating case. The fuse element is housed in a glass inner cylinder 5 and the connection terminals 4 at both ends are connected to the inner cylinder 5. It is led out from the holding cap 6 and accommodated in a polycarbonate outer cylinder 7. 8 is an outer cap made of polycarbonate that covers the outer cylinder 7, and an electric wire connection portion 10 a of the compression sleeve 10 that is held at the inner end by the inner cap 9 protrudes to the outside of the outer cap 8.

ヒューズエレメントは両端の接続端子4が圧縮スリーブ10の内端部においてカシメ止めされ、外筒7、内キャップ9及び外キャップの三者を接着剤、高周波融着等によって固着して封止することにより、ヒューズエレメントを密閉絶縁ケース内に収納した密閉形電線ヒューズを構成したものである。   In the fuse element, the connection terminals 4 at both ends are crimped at the inner end portion of the compression sleeve 10, and the outer cylinder 7, the inner cap 9 and the outer cap are fixed by an adhesive, high-frequency fusion or the like and sealed. Thus, a sealed electric wire fuse in which a fuse element is housed in a sealed insulating case is configured.

上記のようにして構成した定格電流3.2mm用50Aの密閉形電線ヒューズについて45°の傾斜状態でヒューズ特性を検証した。検証項目と望ましい特性は次の通りである。
1.通電特性 定格電流の130%(65A)において連続不溶断
電動機の起動電流(320A)において3秒間不溶断
2.溶断特性 115Aにおいて300秒以内溶断
400Aにおいて10秒以内溶断
3.遮断特性 試験電圧250V、試験電流3000A,力率0.4以下(遅れ)で、ヒューズの著しい変形、汚損及び飛散物を生じることなく、遮断可能であること。また、遮断後の絶縁抵抗値が0.2MΩ以上であること。
4.ヒートサイクル 3秒間不溶断電流3秒間通電、30分間休止、連続25回で溶断しないこと
The fuse characteristics of a 50 A sealed electric wire fuse with a rated current of 3.2 mm configured as described above were verified in an inclined state of 45 °. The verification items and desirable characteristics are as follows.
1. Current-carrying characteristics Continuous fusing at 130% of rated current (65A)
1. Fusing for 3 seconds at motor starting current (320A) Fusing characteristics Fusing within 300 seconds at 115A
2. Fusing within 10 seconds at 400A Breaking characteristics The test voltage must be 250V, the test current is 3000A, the power factor is 0.4 or less (delay), and the fuse can be cut off without causing significant deformation, fouling, and flying objects. In addition, the insulation resistance value after shutoff is 0.2 MΩ or more.
4). Heat cycle 3 seconds infusion current 3 seconds energization, 30 minutes rest, 25 times continuous

検証結果を表1に示す。試料No.1〜10に示す通り、優れた溶断特性が得られた。また、試料No.14及び15に示す通り、遮断時に異常は見られず、遮断後の絶縁抵抗値も100MΩ以上で遮断特性も良好であった。試料No.11〜13に示す通り、ヒートサイクルにおいても連続25回をはるかに超える望ましい特性が得られている。表中、溶断箇所として示すイ、ロ、ハ、ニ、ホは、図1に示す箇所である。   The verification results are shown in Table 1. As shown in Sample Nos. 1 to 10, excellent fusing characteristics were obtained. Further, as shown in Sample Nos. 14 and 15, no abnormality was observed at the time of interruption, the insulation resistance value after interruption was 100 MΩ or more, and the interruption characteristics were good. Sample No. As shown in 11 to 13, desirable characteristics far exceeding 25 consecutive times are obtained even in the heat cycle. In the table, “i”, “b”, “c”, “d”, and “ho” shown as fusing locations are locations shown in FIG.

Figure 2011238543
Figure 2011238543

図3は試料No.1〜No.15に基づく溶断時間−電流特性を示すもので、定格電流の130%(65A)において連続不溶断、電動機の起動電流(320A)において3秒間不溶断、115Aにおいて300秒以内溶断の各条件を充足していることがわかる。
なお、密閉形電線ヒューズの構成は図2の形態に限定にされるものではなく、要するにヒューズエレメントを密閉絶縁ケース内に収納して構成する密閉形電線ヒューズであれば、図2の形態以外にも種々の実施形態を取り得る。
FIG. 1-No. 15 shows fusing time-current characteristics, satisfying the conditions of continuous fusing at 130% of rated current (65A), fusing for 3 seconds at motor starting current (320A), and fusing within 300 seconds at 115A You can see that
The configuration of the sealed electric wire fuse is not limited to the configuration shown in FIG. 2. In short, as long as the sealed electric wire fuse is configured by housing the fuse element in the sealed insulating case, the configuration other than the configuration shown in FIG. Can also take various embodiments.

蓄熱部3を構成する多重屈曲部2はらせんコイル状の屈曲部であり、巻き始めと巻き終わり部分及び蓄熱部3間に位置する中央部は非直線状となる。ヒューズエレメントが通電電流による自己発熱もしくは周囲温度の変化により全長が伸び縮みすると容器とヒューズエレメントの熱膨張収縮率が異なるため、ストレスがかかるが、非直線状部分が伸縮することで熱膨張収縮を吸収し、ヒートサイクルによるヒューズエレメントの歪の発生も抑制できるものである。また、蓄熱部3の存在により電流変動による可溶体の発熱を放散して膨張収縮が緩和され、熱衝撃に強い、信頼性の高いヒューズエレメントが提供できる。   The multiple bending part 2 constituting the heat storage part 3 is a helical coil-like bending part, and the central part located between the start and end of winding and the heat storage part 3 is non-linear. If the fuse element expands or contracts due to self-heating due to energizing current or changes in ambient temperature, the thermal expansion / contraction rate differs between the container and the fuse element, so stress is applied, but the non-linear part expands / contracts to cause thermal expansion / contraction. Absorbing and suppressing generation of distortion of the fuse element due to heat cycle. Also, the presence of the heat storage unit 3 can dissipate the heat generated by the fusible body due to current fluctuations, thereby relaxing expansion and contraction, and providing a highly reliable fuse element that is resistant to thermal shock.

過負荷小電流の溶断時は、いわゆるM効果により溶断するが、蓄熱部3は、M効果を促進させるための低融点の可溶合金を貯めておく場所にもなっている。すなわち、過負荷小電流域での動作時、抵抗線1の銅が蓄熱部3の錫を主体とする可溶合金と反応して低融点の合金となり、銅の融点よりかなり低い温度で溶断するので、動作時のケースの熱変形を防止することができる。   When the overload small current is melted, it is melted by the so-called M effect, but the heat storage unit 3 is also a place for storing a low melting point soluble alloy for promoting the M effect. That is, when operating in an overload small current region, the copper of the resistance wire 1 reacts with a soluble alloy mainly composed of tin of the heat storage section 3 to become a low melting point alloy, and melts at a temperature considerably lower than the melting point of copper. As a result, thermal deformation of the case during operation can be prevented.

なお、このヒューズエレメントは、蓄熱部3を構成するらせんコイル状屈曲部の付け根で溶断することが多い。これは蓄熱部3のらせんコイル状の巻き始めもしくは巻き終わりの部分に溜まった可溶合金が抵抗線1の銅に熱拡散して銅を浸食させて溶断させることによる。   In addition, this fuse element is often melted at the base of the helical coil-shaped bent portion constituting the heat storage portion 3. This is because the fusible alloy accumulated in the spiral coil-shaped winding start or winding end portion of the heat storage section 3 is thermally diffused into the copper of the resistance wire 1 to erode the copper and melt it.

図4は、ヒューズエレメントの他の実施形態を示すもので、蓄熱部3を構成する多重屈曲部2が抵抗線1の軸線方向に沿って少なくとも2回以上の偶数回の折り曲げによって構成される屈曲部としており、全体にフラックスを塗布した上、Sn−3.5Ag-0.75Cuの錫を主体とする低融点合金の溶融槽に浸漬して一定の速度で槽から引き揚げることによって、可溶金属を多重屈曲部2の空隙に充填付着させて蓄熱部3としたものである。抵抗線1の両端部には直径3.2mmの接続端子4がカシメ止めされている。
図5は、図4の実施形態のヒューズエレメントにおいて蓄熱部3と接続端子4間において抵抗線1に非直線部分1a、1bを設け、熱履歴を受けた場合のヒューズエレメントの歪を低減可能としている。
FIG. 4 shows another embodiment of the fuse element, in which the multiple bent portion 2 constituting the heat storage portion 3 is bent by an even number of times of bending at least twice along the axial direction of the resistance wire 1. In addition, flux is applied to the whole, and then immersed in a melting bath of a low melting point alloy mainly composed of tin of Sn-3.5Ag-0.75Cu, and then pulled up from the bath at a constant speed to multiplex soluble metals. The heat storage part 3 is filled and attached to the gap of the bent part 2. A connecting terminal 4 having a diameter of 3.2 mm is crimped to both ends of the resistance wire 1.
FIG. 5 shows that the non-linear portions 1a and 1b are provided in the resistance wire 1 between the heat storage section 3 and the connection terminal 4 in the fuse element of the embodiment of FIG. Yes.

1 抵抗線
2 多重屈曲部
3 蓄熱部
4 接続端子
1 Resistance wire 2 Multiple bending part 3 Heat storage part 4 Connection terminal

Claims (6)

過電流が流れた際に溶断する溶断部と蓄熱部を有し、両端部に続端子を接続したヒューズエレメントにおいて、溶断部と蓄熱部が単一の抵抗線で連続して一体的に構成されており、蓄熱部は抵抗線の多重屈曲部とこの屈曲部の空隙に充填した可溶金属で構成されているヒューズエレメント。   In a fuse element that has a fusing part and a heat storage part that melt when an overcurrent flows, and a connecting terminal is connected to both ends of the fuse element, the fusing part and the heat storage part are configured continuously and integrally with a single resistance wire. The heat storage part is a fuse element composed of a multiple bent part of a resistance wire and a fusible metal filled in the gap of the bent part. 蓄熱部を構成する多重屈曲部がらせんコイル状の屈曲部である請求項1記載のヒューズエレメント。   2. The fuse element according to claim 1, wherein the multiple bent portions constituting the heat storage portion are helical coil-shaped bent portions. らせんコイル状屈曲部の巻き始めと巻き終わり部分及び蓄熱部間に位置する中央部が非直線状である請求項2記載のヒューズエレメント。   The fuse element according to claim 2, wherein a central portion located between a winding start portion and a winding end portion of the spiral coil-shaped bent portion and the heat storage portion is non-linear. 蓄熱部を構成する多重屈曲部が抵抗線の軸線方向に沿って少なくとも2回以上の偶数回の折り曲げによって構成される屈曲部である請求項1記載のヒューズエレメント。   2. The fuse element according to claim 1, wherein the multiple bent portion constituting the heat storage portion is a bent portion formed by bending at least twice or more times along the axial direction of the resistance wire. 蓄熱部と接続端子間において抵抗線に非直線部分を有する請求項4記載のヒューズエレメント。   The fuse element of Claim 4 which has a non-linear part in a resistance wire between a thermal storage part and a connection terminal. 請求項1から5記載のいずれかに記載のヒューズエレメントを密閉絶縁ケース内に収納してなる密閉形電線ヒューズ。   A sealed electric wire fuse in which the fuse element according to any one of claims 1 to 5 is housed in a sealed insulating case.
JP2010110897A 2010-05-13 2010-05-13 Fuse element and sealed electric wire fuse using this fuse element Active JP5656102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010110897A JP5656102B2 (en) 2010-05-13 2010-05-13 Fuse element and sealed electric wire fuse using this fuse element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010110897A JP5656102B2 (en) 2010-05-13 2010-05-13 Fuse element and sealed electric wire fuse using this fuse element

Publications (2)

Publication Number Publication Date
JP2011238543A true JP2011238543A (en) 2011-11-24
JP5656102B2 JP5656102B2 (en) 2015-01-21

Family

ID=45326287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010110897A Active JP5656102B2 (en) 2010-05-13 2010-05-13 Fuse element and sealed electric wire fuse using this fuse element

Country Status (1)

Country Link
JP (1) JP5656102B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175362A (en) * 2012-02-24 2013-09-05 Osaka Fuse Co Ltd Electric wire fuse
JP2013206792A (en) * 2012-03-29 2013-10-07 Yazaki Corp Electric wire fuse and method of manufacturing electric wire fuse
KR20150059055A (en) * 2013-11-20 2015-05-29 엘에스전선 주식회사 Winding alloy wire for fuse choke coil
JP2016062671A (en) * 2014-09-16 2016-04-25 ダイヘンヒューズ株式会社 Sealed wire fuse
CN107484337A (en) * 2017-08-22 2017-12-15 刘蓉 A kind of overcurrent protection wiring board
JP2021117311A (en) * 2020-01-24 2021-08-10 株式会社リコー Image forming apparatus and device including wire harness
CN113380591A (en) * 2021-05-11 2021-09-10 国网浙江嘉善县供电有限公司 Anti-external-damage line-connection ceramic tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899882U (en) * 1972-02-29 1973-11-24
JPS4973731U (en) * 1972-10-13 1974-06-26
JPS50118442U (en) * 1974-03-13 1975-09-27
JPS51141337U (en) * 1975-05-08 1976-11-13
JP2008293908A (en) * 2007-05-28 2008-12-04 Chugoku Electric Power Co Inc:The Fuse element and fuse equipped with this fuse element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899882U (en) * 1972-02-29 1973-11-24
JPS4973731U (en) * 1972-10-13 1974-06-26
JPS50118442U (en) * 1974-03-13 1975-09-27
JPS51141337U (en) * 1975-05-08 1976-11-13
JP2008293908A (en) * 2007-05-28 2008-12-04 Chugoku Electric Power Co Inc:The Fuse element and fuse equipped with this fuse element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175362A (en) * 2012-02-24 2013-09-05 Osaka Fuse Co Ltd Electric wire fuse
JP2013206792A (en) * 2012-03-29 2013-10-07 Yazaki Corp Electric wire fuse and method of manufacturing electric wire fuse
KR20150059055A (en) * 2013-11-20 2015-05-29 엘에스전선 주식회사 Winding alloy wire for fuse choke coil
KR102105213B1 (en) * 2013-11-20 2020-04-28 엘에스전선 주식회사 Winding alloy wire for fuse choke coil
JP2016062671A (en) * 2014-09-16 2016-04-25 ダイヘンヒューズ株式会社 Sealed wire fuse
CN107484337A (en) * 2017-08-22 2017-12-15 刘蓉 A kind of overcurrent protection wiring board
CN107484337B (en) * 2017-08-22 2023-09-08 胜蓝科技股份有限公司 Overcurrent protection circuit board
JP2021117311A (en) * 2020-01-24 2021-08-10 株式会社リコー Image forming apparatus and device including wire harness
JP7419834B2 (en) 2020-01-24 2024-01-23 株式会社リコー Equipment equipped with an image forming device and a wire harness
CN113380591A (en) * 2021-05-11 2021-09-10 国网浙江嘉善县供电有限公司 Anti-external-damage line-connection ceramic tube
CN113380591B (en) * 2021-05-11 2022-11-04 国网浙江嘉善县供电有限公司 Anti-external-damage line-connection ceramic tube

Also Published As

Publication number Publication date
JP5656102B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5656102B2 (en) Fuse element and sealed electric wire fuse using this fuse element
US7471498B2 (en) Wound capacitor having a thermal disconnect at a hot spot
JP2006339161A (en) Helically wound fusible conductor for fuse element with plastic sealing
JP6265570B2 (en) Manufacturing method of ceramic heater type glow plug and ceramic heater type glow plug
JP6005175B2 (en) Ceramic heater type glow plug and manufacturing method thereof
JP6023410B2 (en) Fusible link
KR101891466B1 (en) Fuse resistor assembly and method manufacturing fuse resistor assembly
JP6034710B2 (en) Electric wire fuse and method of manufacturing electric wire fuse
JPWO2018150845A1 (en) Electric motor and method of manufacturing electric motor
TWI758638B (en) Fuse resistor assembly and method of manufacturing the fuse resistor assembly
JP6007010B2 (en) Electric wire fuse and manufacturing method thereof
JP4361095B2 (en) Coiled fusible conductor with insulated intermediate coil for fuse elements
JP5692010B2 (en) Terminal fitting
WO2015146554A1 (en) Ceramic heater-type glow plug
CN207082502U (en) A kind of improved low-tension fuse
JP5587670B2 (en) High voltage cutout fuse
JP6152469B2 (en) Ceramic heater type glow plug
JP2009117288A (en) Fuse resistor
JP5587752B2 (en) High voltage cutout fuse lead wire connector
JP6055196B2 (en) Electric wire fuse and method of manufacturing electric wire fuse
JP3194629U (en) fuse
JP2013149356A (en) Cylindrical fuse
JP5865196B2 (en) Sheath heater and glow plug
JP6373640B2 (en) Manufacturing method of cylindrical current fuse
CN112242219A (en) Fuse-resistor assembly and method of manufacturing a fuse-resistor assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R150 Certificate of patent or registration of utility model

Ref document number: 5656102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250