JP2011238500A - Connection structure and manufacturing method thereof - Google Patents

Connection structure and manufacturing method thereof Download PDF

Info

Publication number
JP2011238500A
JP2011238500A JP2010109816A JP2010109816A JP2011238500A JP 2011238500 A JP2011238500 A JP 2011238500A JP 2010109816 A JP2010109816 A JP 2010109816A JP 2010109816 A JP2010109816 A JP 2010109816A JP 2011238500 A JP2011238500 A JP 2011238500A
Authority
JP
Japan
Prior art keywords
resin
insulating resin
wire
insulating
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010109816A
Other languages
Japanese (ja)
Inventor
Eigo Tatsukawa
永吾 達川
Satoshi Takamura
聡 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2010109816A priority Critical patent/JP2011238500A/en
Publication of JP2011238500A publication Critical patent/JP2011238500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connection structure having a stable electric property over time, in which galvanic corrosion, i.e. corrosion caused in a conductor in contact with a connection terminal made of a metal more precious than a metal that the conductor is made of, is prevented from occurring, and to provide a manufacturing method of the connection structure.SOLUTION: A connection structure 1 includes: a covered electric cable 40 having a conductor 43 covered with an insulative covering 41 and a cable-tip portion 42 composed of a tip portion of the conductor 43 stripped of the insulative covering 41 and bared; a connection terminal 10 having a cable connection 12 to connect the cable-tip portion 42 with and made of a metal more precious than a metal that the conductor 43 is made of; and an insulating resin 50 sealing the cable-tip portion 42 connected with the cable connection 12. The insulating resin 50 consists of two or more kinds of resins different in the viscosity before hardening.

Description

この発明は、例えば、自動車用ワイヤーハーネスの接続を担うコネクタ等に装着される接続端子付電線としての接続構造体に関し、さらに詳しくは、ワイヤーハーネスの導体と、該導体を構成する金属より貴な金属で構成される接続端子との接続構造体に関する。   The present invention relates to a connection structure as an electric wire with a connection terminal attached to, for example, a connector for connecting an automobile wire harness. More specifically, the present invention is more noble than a conductor of a wire harness and a metal constituting the conductor. The present invention relates to a connection structure with a connection terminal made of metal.

自動車、OA機器、家電製品の分野において、電気伝導性に優れた銅系材料から成る芯線を有する銅電線が信号線、電力線として使用されてきた。中でも自動車分野においては、車輌の高性能・高機能化が急速に進められてきていることから、車載される各種電気機器、制御機器等の増加に伴って使用される電線も増加する傾向にあるのが現状である。   In the fields of automobiles, office automation equipment, and home appliances, copper wires having a core wire made of a copper-based material having excellent electrical conductivity have been used as signal lines and power lines. In particular, in the automobile field, since high performance and high functionality of vehicles have been rapidly advanced, there is a tendency that the number of electric wires used increases with the increase of various electric devices and control devices mounted on the vehicle. is the current situation.

その一方で車両の軽量化により燃費効率を向上させようとする要求が急速に高まりつつあり、銅電線と比較してより軽量で安価なアルミ電線が自動車分野において特に注目されている。   On the other hand, demands for improving fuel efficiency by reducing the weight of vehicles are increasing rapidly, and aluminum wires that are lighter and cheaper than copper wires are attracting particular attention in the automotive field.

しかし、実際にアルミ電線を自動車用として用いる場合、異種金属接触腐食(電食)が生じるという問題が生じる。
詳しくは、接続端子と電線の導体とのそれぞれを構成する金属材料が異種の金属材料である場合、接続端子と導体との接続部分に水などの電解液が付着すると、両者の標準電極電位が異なるため、イオン化傾向の大きい金属(卑な金属)と小さい金属(貴な金属)との間に腐食電流が流れる。その結果、卑な金属は金属イオンとなり溶液中に溶解し腐食される。これを異種金属腐食という。
However, when an aluminum electric wire is actually used for automobiles, there arises a problem that different metal contact corrosion (electric corrosion) occurs.
Specifically, when the metal material constituting each of the connection terminal and the conductor of the electric wire is a different metal material, if an electrolyte such as water adheres to the connection portion between the connection terminal and the conductor, the standard electrode potential of the two is Since they are different, a corrosion current flows between a metal having a large ionization tendency (base metal) and a small metal (precious metal). As a result, the base metal becomes metal ions and dissolves in the solution and is corroded. This is called foreign metal corrosion.

例えば、雨天時の走行や洗車、あるいは結露などによって異種金属同士の接続部分が被水した場合には電気的に卑であるアルミ系端子のイオン化が進行して腐食が促進する。その結果、端末部の接触状態が悪化して電気的特性が不安定になる他、接触抵抗の増大や腐食による線径の減少により電気抵抗の増大、更には断線が生じて電装部品の誤動作、機能停止に至ることも考えられる。   For example, when a connection part of different metals gets wet due to running, car washing, or condensation in rainy weather, ionization of an aluminum base that is electrically base proceeds to promote corrosion. As a result, the contact state of the terminal part deteriorates and the electrical characteristics become unstable, the electrical resistance increases due to the increase in contact resistance and the wire diameter decreases due to corrosion, and further the disconnection causes malfunction of the electrical components, It is also possible to stop functioning.

殊に、異種金属端子同士の接続の中でもアルミ系端子と銅系端子とを接続する場合、相互の標準電極電位差が大きくなるため、電食が生じ易くなる。   In particular, when aluminum-based terminals and copper-based terminals are connected among different types of metal terminals, the difference in standard electrode potential between the terminals increases, so that electric corrosion tends to occur.

このような電食の発生を防ぐ従来の方法として、下記特許文献1においてアルミ電線用端子が提案されている。
特許文献1におけるアルミ電線用端子は、端子後端部をアルミ系材料で形成し、端子先端部を銅系材料で形成し、これら前記端子後端部と端子先端部を接合して、その接合部を絶縁体で封止して構成した接続端子である。
As a conventional method for preventing the occurrence of such electric corrosion, Patent Document 1 below proposes an aluminum wire terminal.
In the terminal for an aluminum electric wire in Patent Document 1, the terminal rear end portion is formed of an aluminum-based material, the terminal tip end portion is formed of a copper-based material, the terminal rear end portion and the terminal tip end portion are joined, It is the connection terminal comprised by sealing a part with an insulator.

特許文献1によれば、アルミ系材料で形成した端子後端部にアルミ電線を接続し、銅系材料で形成した端子先端部に接続相手方の銅系端子を接続することができ、さらに、端子先端部と端子後端部との接続部分を樹脂封止することにより、該接続部分に電解液が付着することがなく電食を防止できるとされている。   According to Patent Document 1, it is possible to connect an aluminum electric wire to a terminal rear end portion formed of an aluminum-based material, and to connect a copper terminal of a counterpart to a terminal tip portion formed of a copper-based material. It is said that electrolytic corrosion can be prevented without the electrolytic solution adhering to the connecting portion by resin sealing the connecting portion between the front end portion and the terminal rear end portion.

しかし、特許文献1のように樹脂封止を施す場合、その構造や製造工程が複雑になる上、使用樹脂量も多いためコストがかかるという問題があった。   However, when resin sealing is performed as in Patent Document 1, the structure and the manufacturing process are complicated, and the amount of resin used is large, so that there is a problem that costs are increased.

一方、防水コネクタを使用することが考えられるが、振動疲労や経年劣化で亀裂が生じた場合、この亀裂部から雨水等が防水コネクタ内にいったん浸入すると、逆に電食を促進する結果となる。   On the other hand, it is conceivable to use a waterproof connector, but if cracks occur due to vibration fatigue or aging deterioration, once rainwater or the like enters the waterproof connector from this crack, it reverses the result of galvanic corrosion. .

そこで、必要な部分のみ、樹脂封止することが考えられる。しかしながら、端子先端部と端子後端部との接続部分をコーティングする樹脂が硬化前の粘度が低い樹脂である場合、拡散性、流動性に富むため、低粘度の樹脂を接続部分に供給したときに、層厚が薄くなり、電解液が浸透し易くなる。その結果、浸透した電解液により、端子先端部と端子後端部との接続部分の電食が発生するという難点があった。   Therefore, it is conceivable to seal only the necessary portions with resin. However, when the resin that coats the connection part between the terminal front end and the terminal rear end is a resin having a low viscosity before curing, it is rich in diffusibility and fluidity, so when a low viscosity resin is supplied to the connection part In addition, the layer thickness is reduced, and the electrolyte solution is likely to penetrate. As a result, there has been a problem that electrolytic corrosion of the connection portion between the terminal front end portion and the terminal rear end portion occurs due to the permeated electrolytic solution.

さらに、硬化前の粘度が500mPa・S以下の低粘度の樹脂である場合、接続部分に供給した樹脂の一部が相手側端子接続部にまで流れてしまい、相手側端子との接続不良の要因となるという難点があった。   In addition, when the viscosity before curing is a low viscosity resin of 500 mPa · S or less, a part of the resin supplied to the connection part flows to the mating terminal connection part, causing a poor connection with the mating terminal. There was a difficulty of becoming.

さらにまた、低粘度の樹脂の場合、被覆する厚みを確保するために何度も樹脂の被覆・硬化を繰り返す手間を要し、積層した樹脂の層間に界面が生じ、剥離し易くなり電解液が浸入し接続部分が電食するという難点もあった。   Furthermore, in the case of a low-viscosity resin, it takes time and effort to repeatedly coat and cure the resin many times in order to ensure the coating thickness. There was also a problem that it penetrated and the connection part was eroded.

一方、前記接続部分を封止する樹脂が高粘度の樹脂の場合、接続部分に存在する微小な隙間に確実に充填させることができないことから、微小な隙間に電解液が浸入するなどして電食に至るという難点を有していた。   On the other hand, when the resin that seals the connection portion is a high-viscosity resin, the minute gap existing in the connection portion cannot be reliably filled. It had the difficulty of reaching food.

さらに、硬化前の粘度が高い樹脂の場合、塗布する際に拡がり難いため、接続部分との樹脂の接触面積が小さくなり、一体性が損なわれ、接続部分に対して剥離し易くなる。剥離すると、接続部分に電解質が浸入し、付着することで、電食に至るという難点も有していた。   Further, in the case of a resin having a high viscosity before curing, since it is difficult to spread when applied, the contact area of the resin with the connection portion is reduced, the integrity is impaired, and the connection portion is easily peeled off. When peeled off, the electrolyte infiltrates and adheres to the connection portion, which has the disadvantage of leading to electrolytic corrosion.

特開2004−111058号公報JP 2004-111058 A

そこで本発明は、導体と、該導体を構成する金属より貴な金属で構成される接続端子とが接触することで導体が腐食するという異種金属接触腐食の発生を防止し、経年安定した電気特性を有する接続構造体及び接続構造体の製造方法の提供を目的とする。   Therefore, the present invention prevents the occurrence of dissimilar metal contact corrosion that the conductor corrodes by contact between the conductor and a connection terminal made of a metal that is noble than the metal constituting the conductor, and has stable electrical characteristics over time. It is an object of the present invention to provide a connection structure having a structure and a method for manufacturing the connection structure.

本発明は、導体を絶縁被覆で被覆し、先端側の前記絶縁被覆を剥がして前記導体を露出させた電線先端部を備えた被覆電線と、前記電線先端部を接続する電線接続部を備え、前記導体を構成する金属より貴な金属で構成される接続端子と、前記電線接続部に接続した前記電線先端部を封止する絶縁樹脂とで構成した接続構造体であって、前記絶縁樹脂を、硬化前の粘度が異なる2種類以上の樹脂で構成したことを特徴とする。   The present invention comprises a coated electric wire provided with a wire tip that coats a conductor with an insulating coating, peels off the insulating coating on the tip side and exposes the conductor, and a wire connecting portion that connects the wire tip. A connection structure composed of a connection terminal composed of a metal nobler than the metal composing the conductor and an insulating resin sealing the tip end of the electric wire connected to the electric wire connecting portion, the insulating resin It is characterized by comprising two or more kinds of resins having different viscosities before curing.

この発明の態様として、前記絶縁樹脂を、第1絶縁樹脂と、該第1絶縁樹脂よりもオリゴマーの割合が高く、モノマーの割合が低い第2絶縁樹脂とで構成し、前記第1絶縁樹脂と前記第2絶縁樹脂を、それぞれ同じ主成分で構成することができる。   As an aspect of the present invention, the insulating resin is composed of a first insulating resin and a second insulating resin having a higher oligomer ratio and a lower monomer ratio than the first insulating resin, and the first insulating resin Each of the second insulating resins can be composed of the same main component.

またこの発明の態様として、前記第1絶縁樹脂を、硬化前の粘度が50μm以下の隙間に浸透可能な粘度の樹脂とし、前記第2絶縁樹脂を、硬化前の粘度が前記第1絶縁樹脂よりも粘度の高い樹脂とし、前記電線先端部を前記絶縁樹脂で封止した樹脂封止部を、前記電線先端部の表面を前記第1絶縁樹脂で被覆する第1樹脂封止部と、前記第1樹脂封止部の外面を前記第2絶縁樹脂で被覆する第2樹脂封止部とで構成することができる。   Further, as an aspect of the present invention, the first insulating resin is a resin having a viscosity capable of penetrating into a gap of 50 μm or less before curing, and the second insulating resin has a viscosity before curing that is higher than that of the first insulating resin. A resin-sealed portion in which the wire tip is sealed with the insulating resin, a first resin-sealed portion that covers the surface of the wire tip with the first insulating resin, It can comprise with the 2nd resin sealing part which coat | covers the outer surface of 1 resin sealing part with said 2nd insulating resin.

またこの発明の態様として、前記第1絶縁樹脂を、硬化前の粘度が2,000mPa・s以下の低粘度の樹脂とし、前記第2絶縁樹脂を、硬化前の粘度が5,000mPa・s以上の高粘度の樹脂とすることができる。   As an aspect of the present invention, the first insulating resin is a low-viscosity resin having a viscosity before curing of 2,000 mPa · s or less, and the second insulating resin is 5,000 mPa · s or more in viscosity before curing. The high viscosity resin can be obtained.

またこの発明の態様として、前記第1絶縁樹脂を、硬化前の粘度が500mPa・s以上とし、前記第2絶縁樹脂を、粘度が20,000mPa・s以下とすることができる。   As an aspect of the present invention, the first insulating resin may have a viscosity before curing of 500 mPa · s or more, and the second insulating resin may have a viscosity of 20,000 mPa · s or less.

またこの発明の態様として、前記電線先端部における前記電線接続部から露出している露出導体の表面を被覆した前記絶縁樹脂の厚みを少なくとも200μmで形成することができる。   As an aspect of the present invention, the insulating resin covering the surface of the exposed conductor exposed from the wire connecting portion at the wire tip can be formed with a thickness of at least 200 μm.

またこの発明の態様として、前記絶縁樹脂を、ショアD硬度が40〜80、金属に対する接着強度が−40℃〜125℃の範囲において3MPa以上、且つ、弾性率が200MPa以上1000MPa以下の樹脂とすることができる。   As an aspect of the present invention, the insulating resin is a resin having a Shore D hardness of 40 to 80 and an adhesive strength to a metal of 3 MPa or more and an elastic modulus of 200 MPa or more and 1000 MPa or less in a range of −40 ° C. to 125 ° C. be able to.

またこの発明の態様として、接続構造体は、前記絶縁樹脂を、シリコン系、アクリル系、ウレタン系、ポリアミド系、エポキシ系、フッ素系、ポリビニルブチラール系、フェノール系、ポリイミド系、アクリルゴム系のうち少なくともいずれかの樹脂とすることができる。   Moreover, as an aspect of the present invention, the connection structure includes the insulating resin made of silicon, acrylic, urethane, polyamide, epoxy, fluorine, polyvinyl butyral, phenol, polyimide, or acrylic rubber. At least one of the resins can be used.

またこの発明の態様として、前記導体がアルミニウム系材料からなり、前記接続端子が銅系材料からなるよう構成することができる。   As an aspect of the present invention, the conductor can be made of an aluminum-based material, and the connection terminal can be made of a copper-based material.

また本発明は、導体を絶縁被覆で被覆する被覆電線において先端側の前記絶縁被覆を剥がして前記導体を露出させた電線先端部を、前記被覆電線を構成する金属より貴な金属で構成される接続端子に備えた電線接続部に接続し、前記電線接続部に接続した前記電線先端部を絶縁樹脂で封止する接続構造体の製造方法であって、前記電線先端部の前記絶縁樹脂による封止を、硬化前の粘度が少なくとも50μm以下の隙間に浸透可能な粘度の第1絶縁樹脂と、硬化前の粘度が前記第1絶縁樹脂よりも粘度の高い第2絶縁樹脂とを含む2種類以上の樹脂を用い、前記電線先端部の表面を前記第1絶縁樹脂で被覆する第1樹脂被覆工程を行い、前記第1樹脂被覆工程の後に、前記第1絶縁樹脂の外面を前記第2絶縁樹脂で被覆する第2樹脂封被覆工程を行うことを特徴とする。   Further, according to the present invention, in the covered electric wire covering the conductor with an insulating coating, the electric wire tip portion where the insulating coating on the tip end side is peeled and the conductor is exposed is made of a metal nobler than the metal constituting the covered electric wire. A method of manufacturing a connection structure that is connected to an electric wire connection provided in a connection terminal and seals the electric wire tip connected to the electric wire connection with an insulating resin, wherein the electric wire tip is sealed with the insulating resin. Two or more types including a first insulating resin having a viscosity capable of penetrating into a gap having a viscosity before curing of at least 50 μm and a second insulating resin having a viscosity before curing higher than that of the first insulating resin. A first resin coating step of coating the surface of the wire tip with the first insulating resin, and after the first resin coating step, the outer surface of the first insulating resin is applied to the second insulating resin. 2nd resin seal coater to coat with And performing.

この発明の態様として、前記絶縁樹脂を紫外線硬化樹脂で構成し、紫外線照射して前記絶縁樹脂を硬化させる紫外線照射工程を、前記第1樹脂被覆工程と前記第2樹脂被覆工程との間に行わずに、前記第2樹脂被覆工程の後に行うことができる。   As an aspect of the present invention, an ultraviolet irradiation step in which the insulating resin is made of an ultraviolet curable resin and the insulating resin is cured by irradiating with ultraviolet rays is performed between the first resin coating step and the second resin coating step. Instead, it can be performed after the second resin coating step.

前記電線接続部と前記電線先端部との接続は、圧着による接続に限らず、例えば、超音波溶接などの溶接、或いは、金属粒子等を含有することにより導電性を有する接着剤やテープを用いた接続であってもよい。   The connection between the wire connection portion and the wire tip is not limited to the connection by crimping, for example, welding such as ultrasonic welding, or using an adhesive or tape having conductivity by containing metal particles or the like. It may be a connection.

前記接続端子は、雌型端子、雄型端子のいずれの端子をも含むものとする。   The connection terminals include both female terminals and male terminals.

前記絶縁樹脂は、2種類の絶縁樹脂で構成するに限らず、粘度に応じて3種類以上の絶縁樹脂で構成してもよい。   The insulating resin is not limited to being composed of two types of insulating resins, but may be composed of three or more types of insulating resins depending on the viscosity.

前記絶縁樹脂にはフィラーを含有してもよい。フィラーとしては、例えば、結晶シリカ、合成シリカ等のシリカや、アルミナ、ガラスバルーン等の無機フィラーがあげられる。   The insulating resin may contain a filler. Examples of the filler include silica such as crystalline silica and synthetic silica, and inorganic filler such as alumina and glass balloon.

なお、本発明の特許請求の範囲及び明細書にて「〜」の記号を使って記載される範囲は、記号の前に記載される数値と、記号の後に記載される数値とを含むものとする。   In addition, the range described using the symbol “to” in the claims and the specification of the present invention includes the numerical value described before the symbol and the numerical value described after the symbol.

この発明によれば、導体と、該導体を構成する金属より貴な金属で構成される接続端子とが接触することで導体が腐食するという異種金属接触腐食の発生を防止し、経年安定した電気特性を有する接続構造体及び接続構造体の製造方法を提供することができる。   According to the present invention, it is possible to prevent the occurrence of dissimilar metal contact corrosion in which a conductor corrodes due to contact between a conductor and a connection terminal made of a metal nobler than the metal constituting the conductor. A connection structure having characteristics and a method for manufacturing the connection structure can be provided.

本実施形態の圧着端子付電線の圧着端子部分の斜視図。The perspective view of the crimp terminal part of the electric wire with a crimp terminal of this embodiment. 本実施形態の圧着端子の説明図。Explanatory drawing of the crimp terminal of this embodiment. 本実施形態の圧着端子付電線の圧着端子部分の構成説明図。Structure explanatory drawing of the crimp terminal part of the electric wire with a crimp terminal of this embodiment. 側方から視た圧着端子付電線の圧着端子部分を一部断面で示した説明図。Explanatory drawing which showed the crimp terminal part of the electric wire with a crimp terminal seen from the side in a partial cross section. 図4中のA−A線矢視断面図。FIG. 5 is a cross-sectional view taken along line AA in FIG. 4. 本実施形態の樹脂封止部を形成する様子を断面で表した説明図。Explanatory drawing which represented a mode that the resin sealing part of this embodiment was formed in a cross section. 本実施形態の樹脂封止部を形成する様子を断面で表した説明図。Explanatory drawing which represented a mode that the resin sealing part of this embodiment was formed in a cross section.

この発明の一実施形態を、以下図面を用いて説明する。
本実施形態の圧着端子付電線1は、図1乃至図5に示すように、圧着端子10、被覆電線40、及び、樹脂封止部29とで構成している。
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 to 5, the electric wire 1 with a crimp terminal of the present embodiment includes a crimp terminal 10, a covered electric wire 40, and a resin sealing portion 29.

図1は、本実施形態の圧着端子付電線1の圧着端子部分の外観図であり、図2(a)は、後述する樹脂封止部29を仮想線で示した本実施形態の圧着端子付電線1の圧着端子10を含む部分の斜視図である。図2(b)は、圧着前の圧着端子10および被覆電線40の外観図である。図3は、圧着端子10を長手方向Xの先端部から後端部の手前部分まで幅方向Yの中間部分を切断して表した本実施形態の圧着端子付電線1の圧着端子10を含む部分を示す説明図である。図4は、側方から視た圧着端子付電線の圧着端子部分を一部断面で示した説明図であり、図5は、図4中のA−A線断面図である。   FIG. 1 is an external view of a crimp terminal portion of a wire 1 with a crimp terminal according to the present embodiment. FIG. 2A is a diagram with a crimp terminal according to the present embodiment in which a resin sealing portion 29 described later is indicated by a virtual line. 1 is a perspective view of a portion including a crimp terminal 10 of an electric wire 1. FIG. 2B is an external view of the crimp terminal 10 and the covered electric wire 40 before crimping. FIG. 3 shows a portion including the crimp terminal 10 of the electric wire 1 with the crimp terminal of the present embodiment in which the crimp terminal 10 is represented by cutting the intermediate portion in the width direction Y from the front end portion in the longitudinal direction X to the front portion of the rear end portion. It is explanatory drawing which shows. FIG. 4 is an explanatory view showing a part of the crimp terminal of the electric wire with crimp terminal as viewed from the side, and FIG. 5 is a sectional view taken along line AA in FIG.

被覆電線40は、図2(b)に示すように、近年の小型化、軽量化に伴い、従来の撚り線と比べて細いアルミ電線を撚って芯線43を構成し、該芯線43を絶縁樹脂で構成する絶縁被覆41で被覆している。被覆電線40の先端側には、前記絶縁被覆41を剥がして被覆電線40を露出させた電線先端部42を形成している。   As shown in FIG. 2 (b), the coated electric wire 40 has a core wire 43 formed by twisting a thin aluminum electric wire as compared with a conventional stranded wire in accordance with recent miniaturization and weight reduction. It coat | covers with the insulation coating 41 comprised with resin. On the distal end side of the covered electric wire 40, an electric wire tip portion 42 is formed by peeling off the insulating coating 41 and exposing the covered electric wire 40.

前記圧着端子10は雌型端子であり、図2(a)に示すように、長手方向Xの前方から後方に向かって、図示省略する雄型端子のオスタブの挿入を許容するボックス部11と、該ボックス部11の後方で、所定の長さの第1トランジション18を介して配置されたワイヤーバレル部12と、ワイヤーバレル部12の後方で所定の長さの第2トランジション19を介して配置されたインシュレーションバレル部15とを一体に構成している。   The crimp terminal 10 is a female terminal, and as shown in FIG. 2 (a), from the front to the rear in the longitudinal direction X, the box part 11 that allows insertion of a male terminal of a male terminal (not shown); A wire barrel portion 12 is disposed behind the box portion 11 via a first transition 18 having a predetermined length, and is disposed behind a wire barrel portion 12 via a second transition 19 having a predetermined length. The insulation barrel portion 15 is integrally formed.

圧着前のワイヤーバレル部12は、図2(b)に示すように、バレル底部13と、その幅方向Yの両側から斜め外側上方に延出するワイヤーバレル片14とで構成し、後方視略U型に形成している。圧着前のインシュレーションバレル部15も、バレル底部16と、その幅方向Yの両側から斜め外側上方に延出するインシュレーションバレル片17とで構成し、後方視略U型に形成している。   As shown in FIG. 2 (b), the wire barrel portion 12 before crimping is composed of a barrel bottom portion 13 and wire barrel pieces 14 extending obliquely outward and upward from both sides in the width direction Y. It is formed in a U shape. The insulation barrel portion 15 before crimping is also composed of a barrel bottom portion 16 and an insulation barrel piece 17 extending obliquely outward and upward from both sides in the width direction Y, and is formed in a substantially U shape in rear view.

圧着端子10の長手方向Xの後方部分には、図2(a)に示すように、被覆電線40の電線先端部42が接続された電線接続部分21を構成している。   As shown in FIG. 2A, an electric wire connecting portion 21 to which an electric wire front end portion 42 of the covered electric wire 40 is connected is configured at the rear portion in the longitudinal direction X of the crimp terminal 10.

電線接続部分21は、長手方向Xの後方から先端側に順に、インシュレーションバレル部15等で構成する被覆電線圧着部21a、後方側芯線露出部21b、インシュレーションバレル片17等で構成する芯線圧着部21c、及び、先端側芯線露出部21dとからなる。   The wire connection portion 21 is, in order from the rear in the longitudinal direction X to the distal end side, a core wire crimping portion constituted by a covered wire crimping portion 21a constituted by the insulation barrel portion 15 or the like, a rear side core wire exposed portion 21b, an insulation barrel piece 17 or the like. It consists of the part 21c and the front end side core wire exposed part 21d.

詳述すると、被覆電線圧着部21aは、被覆電線40の絶縁被覆41をインシュレーションバレル部15によりかしめて圧着した部分である。後方側芯線露出部21bは、被覆電線圧着部21aと芯線圧着部21cとの間である第2トランジション19において芯線43が絶縁被覆41やバレル片14,17に覆われずに露出した露出芯線部分である。芯線圧着部21cは、被覆電線40の芯線43をワイヤーバレル部12によりかしめて圧着した部分である。先端側芯線露出部21dは、芯線圧着部21cの前方側である第1トランジション18において芯線43が絶縁被覆41やワイヤーバレル片14に覆われずに露出した露出芯線部分である。   More specifically, the covered wire crimping portion 21 a is a portion where the insulation coating 41 of the covered wire 40 is crimped by the insulation barrel portion 15. The rear-side core wire exposed portion 21b is an exposed core wire portion where the core wire 43 is exposed without being covered by the insulation coating 41 or the barrel pieces 14 and 17 in the second transition 19 between the covered wire crimp portion 21a and the core wire crimp portion 21c. It is. The core wire crimping portion 21 c is a portion where the core wire 43 of the covered electric wire 40 is crimped by the wire barrel portion 12 and crimped. The distal end side core wire exposed portion 21d is an exposed core portion where the core wire 43 is exposed without being covered with the insulating coating 41 or the wire barrel piece 14 in the first transition 18 on the front side of the core wire crimping portion 21c.

圧着端子10は、厚み0.25mm、幅31mmの銅合金条(FAS680H材、古河電気工業株式会社製)を金属基板とし、金属基板に折り曲げ加工を施して立体構成している。   The crimp terminal 10 has a three-dimensional structure by using a copper alloy strip (FAS680H material, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 0.25 mm and a width of 31 mm as a metal substrate and bending the metal substrate.

ボックス部11は、倒位の中空四角柱体で構成され、該ボックス部11の内部空間は、圧着端子10に樹脂封止部29を形成する前において長手方向Xに連通している。ここでボックス部11の長手方向Xの後端で開口する開口部Aを後端開口部Arに設定する。   The box portion 11 is formed of an inverted hollow rectangular column, and the internal space of the box portion 11 communicates with the longitudinal direction X before the resin sealing portion 29 is formed on the crimp terminal 10. Here, the opening A that opens at the rear end in the longitudinal direction X of the box portion 11 is set as the rear end opening Ar.

ボックス部11は、図4に示すように長手方向Xの前方から後方へ順に機能上3つの部分に区分けしている。詳しくは、それぞれ挿入された雄型端子(図示省略)と接続する雌型接続部分23と、ボックス部11をコネクタハウジングに形成された端子収容凹部(図示省略)に収容した状態で取り付けるハウジング取付け部分24と、樹脂封止部29を構成する絶縁樹脂50の流入を許容する内部空間26Aを有し、ボックス部11の後側部分に構成された樹脂流入許容部分26としている。   The box part 11 is functionally divided into three parts in order from the front to the rear in the longitudinal direction X as shown in FIG. Specifically, a female connection portion 23 that connects to each inserted male terminal (not shown), and a housing mounting portion that is attached in a state where the box portion 11 is housed in a terminal housing recess (not shown) formed in the connector housing. 24 and an internal space 26 </ b> A that allows inflow of the insulating resin 50 that forms the resin sealing portion 29, and is a resin inflow allowing portion 26 that is configured in the rear portion of the box portion 11.

ボックス部11の雌型接続部分23は、内部に雄型端子のオスタブの挿入を許容する空間23Aを備え、挿入される雄型端子のオスタブに接触する接触片23aを備えている。   The female connection portion 23 of the box portion 11 includes a space 23 </ b> A that allows insertion of a male terminal male tab therein, and a contact piece 23 a that contacts the male terminal male tab to be inserted.

ボックス部11のハウジング取付け部分24は、コネクタハウジング側に形成した溝部(図示省略)に差し込み可能に下方へ向けて突出して形成したハウジング取付け突片25と、コネクタハウジング側に形成した凸部(図示省略)を内部空間24Aへの差し込みを許容するハウジング取付け開口Adとを備えている。ハウジング取付け突片25は、ボックス部11の底部の幅方向Yの両端部に下方へ向けて突出して形成し、ハウジング取付け開口Adは、ボックス部11の底部を開口させて形成している。   The housing mounting portion 24 of the box portion 11 includes a housing mounting protruding piece 25 formed so as to protrude downward so as to be inserted into a groove portion (not shown) formed on the connector housing side, and a convex portion (illustrated) formed on the connector housing side. (Omitted) is provided with a housing mounting opening Ad that allows insertion into the internal space 24A. The housing mounting protrusions 25 are formed projecting downward at both ends in the width direction Y of the bottom portion of the box portion 11, and the housing mounting openings Ad are formed by opening the bottom portion of the box portion 11.

ボックス部11の樹脂流入許容部分26は、内部に樹脂封止部29の形成を許容する内部空間26Aを備えている。   The resin inflow permitting portion 26 of the box portion 11 includes an internal space 26 </ b> A that allows the resin sealing portion 29 to be formed therein.

このように構成した圧着端子10は、電線先端部42を圧着した状態において電線接続部分21の表面全体を覆う樹脂封止部29が形成されている。
樹脂封止部29は、電線接続部分21の表面全体に形成しており、中でも絶縁被覆41やバレル片14,17に覆われずに露出した芯線露出部分である後方側芯線露出部21b、及び先端側芯線露出部21dに形成した厚みが少なくとも200μmとなるように形成している。
In the crimp terminal 10 configured in this manner, a resin sealing portion 29 that covers the entire surface of the wire connection portion 21 in a state where the wire tip portion 42 is crimped is formed.
The resin sealing portion 29 is formed on the entire surface of the electric wire connecting portion 21, and in particular, the rear side core wire exposed portion 21 b which is a core wire exposed portion exposed without being covered with the insulating coating 41 or the barrel pieces 14, 17, and The tip-side core wire exposed part 21d is formed to have a thickness of at least 200 μm.

樹脂封止部29は、電線先端部42の表面を覆う第1樹脂封止部29Aと、主に第1樹脂封止部29Aの外面を覆う第2樹脂封止部29Bとで構成している。   The resin sealing portion 29 includes a first resin sealing portion 29A that covers the surface of the wire tip portion 42 and a second resin sealing portion 29B that mainly covers the outer surface of the first resin sealing portion 29A. .

続いて、このような樹脂封止部29を構成する絶縁樹脂50について説明する。   Subsequently, the insulating resin 50 constituting the resin sealing portion 29 will be described.

絶縁樹脂50は、第1樹脂封止部29Aを構成する第1絶縁樹脂50Aと、第2樹脂封止部29Bを構成する第2絶縁樹脂50Bとで構成し、硬化前の粘度すなわち電線接続部分21へ塗布する際の粘度がそれぞれ異なる樹脂材料で構成している。   The insulating resin 50 is composed of a first insulating resin 50A that constitutes the first resin sealing portion 29A and a second insulating resin 50B that constitutes the second resin sealing portion 29B. It is comprised with the resin material from which the viscosity at the time of applying to 21 differs.

第1絶縁樹脂50Aは、硬化前の粘度が50μm以下の隙間に浸透可能な低粘度の樹脂であり、第2絶縁樹脂50Bは、該第1絶縁樹脂50Aよりもオリゴマーの割合が高く、モノマーの割合が低く高粘度の樹脂とし、前記第1絶縁樹脂50Aと前記第2絶縁樹脂50Bとは、それぞれ同じ主成分で構成することが好ましい。   The first insulating resin 50A is a low-viscosity resin that can penetrate into a gap having a viscosity before curing of 50 μm or less, and the second insulating resin 50B has a higher oligomer ratio than the first insulating resin 50A. The first insulating resin 50A and the second insulating resin 50B are preferably composed of the same main component, respectively, with a low ratio and high viscosity resin.

詳しくは、第1絶縁樹脂50Aは、「JIS K6251」の規定に基づいて条件が25℃の下、BH型回転粘度計を用いて計測した硬化前の粘度が500〜2,000mPa・sの樹脂材料からなる。   Specifically, the first insulating resin 50A is a resin having a viscosity before curing of 500 to 2,000 mPa · s measured using a BH type rotational viscometer under conditions of 25 ° C. based on the provisions of “JIS K6251”. Made of material.

第2絶縁樹脂50Bは、「JIS K6251」の規定に基づいて第1絶縁樹脂50Aと同条件の下計測した硬化前の粘度が5,000〜20,000mPa・sの樹脂材料からなる。   The second insulating resin 50B is made of a resin material having a viscosity before curing of 5,000 to 20,000 mPa · s measured under the same conditions as the first insulating resin 50A based on the provisions of “JIS K6251”.

さらに、第1絶縁樹脂50A、及び第2絶縁樹脂50Bは、いずれも「JIS K6253」の規定に基づいて条件が25℃の下、計測したショアD硬度が40〜80の樹脂材料からなる。   Furthermore, both the first insulating resin 50A and the second insulating resin 50B are made of a resin material having a measured Shore D hardness of 40 to 80 under a condition of 25 ° C. based on the provisions of “JIS K6253”.

さらにまた第1絶縁樹脂50A、及び第2絶縁樹脂50Bは、いずれも「JIS K6849」の規定に基づいて計測した金属に対する接着強度が−40℃から125℃の範囲において3MPa以上の樹脂材料からなる。   Furthermore, both the first insulating resin 50A and the second insulating resin 50B are made of a resin material having an adhesive strength to metal measured based on the provisions of “JIS K6849” of 3 MPa or more in the range of −40 ° C. to 125 ° C. .

また、第1絶縁樹脂50A、及び第2絶縁樹脂50Bは、いずれも「JIS K6251」の規定に基づいて計測した弾性率が200MPa以上1000MPa以下である樹脂材料からなる。   The first insulating resin 50A and the second insulating resin 50B are both made of a resin material having an elastic modulus of 200 MPa or more and 1000 MPa or less measured based on the provisions of “JIS K6251”.

さらに、第1絶縁樹脂50A、及び第2絶縁樹脂50Bは、いずれも2時間煮沸した時の重量変化率で表わした煮沸吸水率が1.0%以下であり、電解液(水)に対する耐加水分解性に優れた樹脂材料からなる。   Furthermore, both the first insulating resin 50A and the second insulating resin 50B have a boiling water absorption rate of 1.0% or less, expressed as a weight change rate when boiled for 2 hours, and are resistant to hydrolysis with respect to the electrolytic solution (water). It consists of a resin material with excellent decomposability.

上述した第1絶縁樹脂50A、及び第2絶縁樹脂50Bとしては、例えば、シリコン系、アクリル系、ウレタン系、ポリアミド系、エポキシ系、フッ素系、ポリビニルブチラール系、フェノール系、ポリイミド系、アクリルゴム系のうちいずれかの樹脂材料をいずれも同じ主成分として構成することができる。   Examples of the first insulating resin 50A and the second insulating resin 50B described above include, for example, silicon-based, acrylic-based, urethane-based, polyamide-based, epoxy-based, fluorine-based, polyvinyl butyral-based, phenol-based, polyimide-based, and acrylic rubber-based. Any one of the resin materials can be configured as the same main component.

続いて電線接続部分21の表面に樹脂封止部29を形成する方法について図6乃び図7を用いて説明する。
なお、図6(a),(b)、及び図7は、電線接続部分21の表面に樹脂封止部29を形成する様子を一部拡大して断面により示した説明図である。
Next, a method for forming the resin sealing portion 29 on the surface of the wire connecting portion 21 will be described with reference to FIGS.
6A, 6 </ b> B, and 7 are explanatory views illustrating a state in which the resin sealing portion 29 is formed on the surface of the wire connection portion 21 in a partially enlarged view.

まず、電線接続部分21の表面を第1絶縁樹脂50Aで被覆する第1樹脂被覆工程を行う。第1樹脂被覆工程では、図6(a)に示すように、第1絶縁樹脂50Aを電線接続部分21に滴下する。第1絶縁樹脂50Aは低粘度であるため、例えば、後方側芯線露出部21b、及び、先端側芯線露出部21dを構成する複数本の芯線43の僅かな隙間に浸透するとともに電線接続部分21の表面全体に拡がり(図6(a)中の一部拡大図参照)、電線接続部分21の表面を被覆する膜状の第1樹脂封止部29Aを形成することができる。   First, the 1st resin coating process which coat | covers the surface of the electric wire connection part 21 with 1st insulating resin 50A is performed. In the first resin coating step, as shown in FIG. 6A, the first insulating resin 50 </ b> A is dropped onto the electric wire connection portion 21. Since the first insulating resin 50A has a low viscosity, for example, the first insulating resin 50A penetrates into a slight gap between the plurality of core wires 43 constituting the rear side core wire exposed portion 21b and the front end side core wire exposed portion 21d and A film-like first resin sealing portion 29 </ b> A that extends over the entire surface (see a partially enlarged view in FIG. 6A) and covers the surface of the wire connection portion 21 can be formed.

第1絶縁樹脂50Aは低粘度であるため、電線接続部分21を被覆する第1樹脂封止部29Aの膜厚は薄くなっているが、第1樹脂封止部29Aは、各芯線43の表面を第1絶縁樹脂50Aによりコーティングした状態で形成される。   Since the first insulating resin 50 </ b> A has a low viscosity, the thickness of the first resin sealing portion 29 </ b> A that covers the wire connection portion 21 is thin, but the first resin sealing portion 29 </ b> A is formed on the surface of each core wire 43. Is coated with the first insulating resin 50A.

続いて、第1絶縁樹脂50Aの外面を第2絶縁樹脂50Bで被覆する第2樹脂封被覆工程を行う。第2樹脂封被覆工程では、図6(b)に示すように、電線接続部分21の表面に被覆した第1絶縁樹脂50Aの表面に第2絶縁樹脂50Bを滴下する。第1絶縁樹脂50Aは高粘度であるため、広い範囲に拡がらず、電線接続部分21を嵩高く被覆する第2樹脂封止部29Bを形成することができる(図6(b)中の一部拡大図参照)。   Then, the 2nd resin sealing coating process which coat | covers the outer surface of 1st insulating resin 50A with 2nd insulating resin 50B is performed. In the second resin sealing and covering step, as shown in FIG. 6B, the second insulating resin 50B is dropped on the surface of the first insulating resin 50A that covers the surface of the wire connecting portion 21. Since the first insulating resin 50A has a high viscosity, it does not spread over a wide range, and the second resin sealing portion 29B that covers the wire connecting portion 21 in a bulky manner can be formed (one in FIG. 6B). (See enlarged view).

このように第1樹脂被覆工程と第2樹脂封被覆工程とを連続して行った後、図7に示すように、電線接続部分21の表面に被覆した第1絶縁樹脂50Aと第2絶縁樹脂50Bとに対して紫外線照射することで、第1絶縁樹脂50Aと第2絶縁樹脂50Bとを硬化することができ、第1樹脂封止部29Aと第2樹脂封止部29Bとの2層からなる樹脂封止部29を界面なく形成することができる(図7中の一部拡大図参照)。   After continuously performing the first resin coating step and the second resin sealing coating step in this way, as shown in FIG. 7, the first insulating resin 50A and the second insulating resin coated on the surface of the wire connecting portion 21 are used. The first insulating resin 50A and the second insulating resin 50B can be cured by irradiating 50B with ultraviolet light, and from two layers of the first resin sealing portion 29A and the second resin sealing portion 29B. The resin sealing portion 29 to be formed can be formed without an interface (see a partially enlarged view in FIG. 7).

なお、光重合開始剤がカチオン重合開始剤の場合、カチオンが活性種として発生し、カチオン重合が生じる。光重合開始剤がラジカル重合開始剤の場合、ラジカルが活性種として発生し、ラジカル重合が生じる。   When the photopolymerization initiator is a cationic polymerization initiator, cations are generated as active species, and cationic polymerization occurs. When the photopolymerization initiator is a radical polymerization initiator, radicals are generated as active species and radical polymerization occurs.

上述した工程により、図1及至図5に示すような圧着端子付電線1を構成でき、このような構成の圧着端子付電線1は、以下のように様々な作用、効果を得ることができる。
圧着端子付電線1は、芯線43を絶縁被覆41で被覆し、先端側の前記絶縁被覆41を剥がして前記芯線43を露出させた電線先端部42を備えた被覆電線40と、前記電線先端部42を接続するワイヤーバレル部12を備え、前記芯線43を構成する金属より貴な金属で構成される圧着端子10と、前記ワイヤーバレル部12に接続した前記電線先端部42を封止する絶縁樹脂50とで構成した圧着端子付電線1であり、前記絶縁樹脂50を、硬化前の粘度が異なる2種類の絶縁樹脂50A,50Bで構成している。
Through the steps described above, the electric wire 1 with a crimp terminal as shown in FIGS. 1 to 5 can be configured, and the electric wire 1 with a crimp terminal having such a configuration can obtain various actions and effects as follows.
The electric wire 1 with a crimp terminal includes a covered electric wire 40 including an electric wire tip 42 in which a core wire 43 is covered with an insulating coating 41 and the insulating coating 41 on the tip side is peeled to expose the core wire 43, and the electric wire tip portion Insulating resin that seals the wire terminal portion 42 that is connected to the wire barrel portion 12 and the crimp terminal 10 that includes the wire barrel portion 12 that connects the wire 42 and is made of a metal that is nobler than the metal that forms the core wire 43. 50, and the insulating resin 50 is composed of two types of insulating resins 50A and 50B having different viscosities before curing.

前記構成により異種金属である芯線43と圧着端子10同士が接触し、電解液が付着することで圧着端子10と、該圧着端子10よりも卑な金属である芯線43との間で電食が発生することを有効に防止し、経年安定した電気特性を有する圧着端子付電線1を提供することができる。   With the above-described configuration, the core wire 43 which is a different metal and the crimp terminal 10 come into contact with each other, and the electrolytic solution adheres, so that electrolytic corrosion occurs between the crimp terminal 10 and the core wire 43 which is a base metal than the crimp terminal 10. It is possible to provide the electric wire 1 with a crimp terminal that effectively prevents the occurrence and has stable electrical characteristics over time.

詳しくは、芯線43を構成するアルミと、圧着端子10を構成する銅合金のように、種類の異なる金属を接触させた状態で電解液が付着すると、両者の標準電極電位が異なるため、イオン化傾向の大きい金属(卑な金属:本実施例では芯線43を構成するアルミニウム)と小さい金属(貴な金属:本実施例では金属基板を構成する銅合金)間に腐食電流が流れる。その結果、卑な金属は金属イオンとなり溶液中に溶解し腐食される。   Specifically, when the electrolytic solution adheres in a state where different types of metals such as aluminum constituting the core wire 43 and copper alloy constituting the crimp terminal 10 are in contact with each other, the standard electrode potentials of the two are different, and thus ionization tendency Corrosion current flows between a large metal (base metal: aluminum constituting the core wire 43 in this embodiment) and a small metal (noble metal: copper alloy constituting the metal substrate in this embodiment). As a result, the base metal becomes metal ions and dissolves in the solution and is corroded.

これに対して圧着端子付電線1は、粘度の異なる2種類以上の前記絶縁樹脂50で前記電線先端部42を封止する構成である。このため、粘度の低い第1絶縁樹脂50Aが電線先端部42の微小な隙間にまで浸透して各芯線43の表面をコーティングすることができる。そして、電線先端部42全体に拡がることで粘度の低い第1絶縁樹脂50Aにより電線先端部42の表面全体を被覆することができる。   On the other hand, the electric wire 1 with a crimp terminal has a configuration in which the electric wire tip portion 42 is sealed with two or more kinds of the insulating resins 50 having different viscosities. For this reason, the first insulating resin 50 </ b> A having a low viscosity can penetrate into the minute gaps of the wire tip 42 and coat the surface of each core wire 43. And the whole surface of the electric wire front-end | tip part 42 can be coat | covered with 50 A of 1st insulating resin with a low viscosity by spreading over the whole electric-wire front-end | tip part 42.

さらに、第1絶縁樹脂50Aは低粘度であるため、電線接続部分21を被覆する第1樹脂封止部29Aの膜厚は薄くなっているが、粘度の高い第2絶縁樹脂50Bにより、電線先端部42を防食性の観点から十分な膜厚で被覆することができる。   Furthermore, since the first insulating resin 50A has a low viscosity, the film thickness of the first resin sealing portion 29A that covers the wire connecting portion 21 is thin. The portion 42 can be coated with a sufficient film thickness from the viewpoint of corrosion resistance.

このように電線先端部42を粘度の異なる第1絶縁樹脂50Aと第2絶縁樹脂50Bでしっかりと封止することができ、圧着端子付電線1は、優れた防食効果を得ることができる。   Thus, the electric wire front-end | tip part 42 can be sealed firmly with the 1st insulating resin 50A and the 2nd insulating resin 50B from which a viscosity differs, and the electric wire 1 with a crimp terminal can acquire the outstanding anticorrosion effect.

また、前記絶縁樹脂50は、第1絶縁樹脂50Aと、該第1絶縁樹脂50Aよりもオリゴマーの割合が高く、モノマーの割合が低い第2絶縁樹脂50Bとで構成し、前記第1絶縁樹脂50Aと前記第2絶縁樹脂50Bを、それぞれ同じ主成分で構成している。ただし、粘度の調整はこれに限定されず、例えばフィラーの含有量を変えることにより粘度を調整してもよい。   The insulating resin 50 includes a first insulating resin 50A and a second insulating resin 50B having a higher oligomer ratio and a lower monomer ratio than the first insulating resin 50A, and the first insulating resin 50A. And the second insulating resin 50B are composed of the same main component. However, the adjustment of the viscosity is not limited to this. For example, the viscosity may be adjusted by changing the content of the filler.

上記構成により、第2絶縁樹脂50Bは、第1絶縁樹脂50Aよりも粘度が高くなり、それぞれ粘度の異なる樹脂で電線先端部42を封止することができる。   With the above configuration, the second insulating resin 50B has a higher viscosity than the first insulating resin 50A, and the electric wire tip 42 can be sealed with resins having different viscosities.

また粘度の異なる第1絶縁樹脂50Aと第2絶縁樹脂50Bとを同じ主成分で構成することで、それぞれの絶縁樹脂50を電線接続部分21に積層被覆したとき、互いに馴染み易くなり、第1絶縁樹脂50Aと第2絶縁樹脂50Bとの間に界面が生じることがない。   Further, by configuring the first insulating resin 50A and the second insulating resin 50B having different viscosities with the same main component, when the respective insulating resins 50 are laminated and coated on the wire connection portion 21, the first insulating resin 50A and the second insulating resin 50B are easily adapted to each other. There is no interface between the resin 50A and the second insulating resin 50B.

よって、第1絶縁樹脂50Aに対して第2絶縁樹脂50Bが剥離することがなく、第1絶縁樹脂50Aと第2絶縁樹脂50Bとの間に電解液が浸入することを防ぐことができ、優れた防食効果を得ることができる。   Therefore, the second insulating resin 50B does not peel from the first insulating resin 50A, and it is possible to prevent the electrolytic solution from entering between the first insulating resin 50A and the second insulating resin 50B. Anticorrosive effect can be obtained.

圧着端子付電線1は、前記第1絶縁樹脂50Aを、50μm以下の隙間に浸透可能な粘度の樹脂とし、前記第2絶縁樹脂50Bを、前記第1絶縁樹脂50Aよりも粘度の高い樹脂とし、前記前記電線先端部42を前記絶縁樹脂50で封止した樹脂封止部29を、前記電線先端部42の表面を前記第1絶縁樹脂50Aで被覆する第1樹脂封止部29Aと、前記第1樹脂封止部29Aの外面を前記第2絶縁樹脂50Bで被覆する第2樹脂封止部29Bとで構成している。   In the electric wire 1 with a crimp terminal, the first insulating resin 50A is a resin having a viscosity capable of penetrating into a gap of 50 μm or less, the second insulating resin 50B is a resin having a higher viscosity than the first insulating resin 50A, A resin sealing portion 29 in which the wire tip 42 is sealed with the insulating resin 50; a first resin sealing portion 29A that covers the surface of the wire tip 42 with the first insulating resin 50A; The outer surface of one resin sealing portion 29A is composed of a second resin sealing portion 29B that covers the second insulating resin 50B.

このように第1絶縁樹脂50Aと第2樹脂封止部29Bとを上述した積層構成で被覆するとすることで低粘度樹脂である前記第1絶縁樹脂50Aと、高粘度樹脂である第2樹脂封止部29Bとの両方の樹脂の粘度の違いによる特性を活かした樹脂封止部29を形成することができ、優れた防食効果を得ることができる。   As described above, the first insulating resin 50A and the second resin sealing portion 29B are covered with the above-described laminated structure, whereby the first insulating resin 50A that is a low-viscosity resin and the second resin seal that is a high-viscosity resin. The resin sealing portion 29 can be formed by taking advantage of the difference in the viscosity of both the resin and the stopper portion 29B, and an excellent anticorrosion effect can be obtained.

詳しくは、第1絶縁樹脂50Aが電線接続部分21の表面に有する50μm以下の微小な隙間にまで浸透させることにより、電線接続部分21の各芯線43を前記第1絶縁樹脂50Aでコーティングし、該電線先端部42の全体にいき渡らせることができる。   Specifically, the core wire 43 of the wire connection portion 21 is coated with the first insulation resin 50A by allowing the first insulation resin 50A to penetrate into a minute gap of 50 μm or less on the surface of the wire connection portion 21, The entire wire tip 42 can be spread.

さらに第1絶縁樹脂50Aは、電線接続部分21の表面全体という広範囲にわたって被覆することができる。   Furthermore, the first insulating resin 50 </ b> A can be coated over a wide range, that is, the entire surface of the wire connecting portion 21.

よって、第1絶縁樹脂50Aにより電線接続部分21をコーティングすることができるとともに、電線先端部42との広い接触面積を確保することができ、芯線43と圧着端子10との間の細部に第1絶縁樹脂50Aが塗れ広がるため、電線先端部42を含む電線接続部分21と第1絶縁樹脂50Aとの接触面積が広げることができる。
また電線接続部分21に対して第1絶縁樹脂50Aが剥離することがなくしっかりと被覆することができる。
Therefore, the electric wire connecting portion 21 can be coated with the first insulating resin 50A, and a wide contact area with the electric wire tip 42 can be secured, and the details between the core wire 43 and the crimp terminal 10 are the first. Since the insulating resin 50A is spread and spread, the contact area between the wire connecting portion 21 including the wire tip 42 and the first insulating resin 50A can be increased.
Further, the first insulating resin 50 </ b> A can be firmly covered with the wire connecting portion 21 without being peeled off.

一方、第1樹脂封止部29Aの外面を第1絶縁樹脂50Aよりも粘度の高い第2絶縁樹脂50Bで被覆することにより、防食性を確保する上で十分な膜厚を確保して被覆することができる。   On the other hand, by covering the outer surface of the first resin sealing portion 29A with the second insulating resin 50B having a viscosity higher than that of the first insulating resin 50A, a sufficient film thickness is secured to ensure corrosion resistance. be able to.

圧着端子付電線1は、前記第1絶縁樹脂50Aを、粘度が2,000mPa・s以下の低粘度の樹脂とし、前記第2絶縁樹脂50Bを、粘度が5,000mPa・s以上の高粘度の樹脂とすることができる。   In the electric wire 1 with a crimp terminal, the first insulating resin 50A is a low-viscosity resin having a viscosity of 2,000 mPa · s or less, and the second insulating resin 50B is a high-viscosity having a viscosity of 5,000 mPa · s or more. It can be a resin.

このように、前記第1絶縁樹脂50Aの粘度を2,000mPa・s以下とすることで、微小な隙間へ浸透しつつ、十分な接触面積で拡散して電線接続部分21全体を被覆することができる。   In this way, by setting the viscosity of the first insulating resin 50A to 2,000 mPa · s or less, it is possible to cover the entire wire connection portion 21 by diffusing with a sufficient contact area while penetrating into a minute gap. it can.

一方、前記第2絶縁樹脂50Bの粘度を5,000mPa・s以上とすることで、十分な膜厚を確保して第1樹脂封止部29Aを被覆することができる。   On the other hand, by setting the viscosity of the second insulating resin 50B to 5,000 mPa · s or more, it is possible to cover the first resin sealing portion 29A while securing a sufficient film thickness.

より好ましくは、圧着端子付電線1は、前記第1絶縁樹脂50Aを、粘度が500〜2,000mPa・sの範囲内である低粘度の樹脂とし、前記第2絶縁樹脂50Bを、粘度が5,000〜20,000mPa・sの範囲内である高粘度の樹脂とすることができる。   More preferably, in the electric wire 1 with a crimp terminal, the first insulating resin 50A is a low-viscosity resin having a viscosity in the range of 500 to 2,000 mPa · s, and the second insulating resin 50B has a viscosity of 5 , 20,000 to 20,000 mPa · s.

このように前記第1絶縁樹脂50Aの粘度を500mPa・s以上とすることで、電線接続部分21を第1絶縁樹脂50Aで被覆する際に、圧着端子10の先端側、すなわち、ボックス部11の内部にまで第1絶縁樹脂50Aが流れ込むことがなく、接続相手側となる雄型端子のオスタブをボックス部11の内部に挿入したとき、接続不良の要因となる事態を防ぐことができる。   In this way, by setting the viscosity of the first insulating resin 50A to 500 mPa · s or more, when the wire connecting portion 21 is covered with the first insulating resin 50A, the tip end side of the crimp terminal 10, that is, the box portion 11 The first insulating resin 50 </ b> A does not flow into the inside, and when the male tab of the male terminal serving as the connection partner is inserted into the box portion 11, it is possible to prevent a situation that causes connection failure.

さらに、電線接続部分21に滴下した第1絶縁樹脂50Aが拡散しすぎることがなく、その厚みが極端に薄くなりすぎることがないため、必要最低限の膜厚を確保して第1絶縁樹脂50Aにより電線接続部分21の表面を被覆することができる。   Furthermore, since the first insulating resin 50A dropped on the wire connection portion 21 does not diffuse excessively and the thickness thereof does not become extremely thin, the first insulating resin 50A is secured with a minimum necessary film thickness. Thus, the surface of the wire connecting portion 21 can be covered.

またこのように前記第2絶縁樹脂50Bの粘度を20,000mPa・s以下とすることで、粘度が高すぎることで、拡散性に乏しく、第1絶縁樹脂50Aの表面を第2絶縁樹脂50Bで被覆するのに時間がかかるという事態を防ぐことができる。さらに、第1絶縁樹脂50Aの表面を完全に被覆できないという被覆に斑が生じることもないため、必要な防食性を確実に得ることができる。   In addition, by setting the viscosity of the second insulating resin 50B to 20,000 mPa · s or less in this way, the viscosity is too high, resulting in poor diffusibility, and the surface of the first insulating resin 50A is covered with the second insulating resin 50B. The situation where it takes time to coat can be prevented. Furthermore, since the coating that the surface of the first insulating resin 50 </ b> A cannot be completely coated does not occur, the necessary anticorrosive property can be reliably obtained.

圧着端子付電線1は、電線接続部分21におけるワイヤーバレル部12から露出している露出導体としての後方側芯線露出部21b、及び、先端側芯線露出部21dに形成した樹脂封止部29の厚みを少なくとも200μmで形成することにより、ワイヤーバレル部12から露出していることで電解液が付着し易く、侵食し易い後方側芯線露出部21b、及び、先端側芯線露出部21dの表面を200μm以上という十分な膜厚を確保してしっかりと封止することができ、電食を確実に防止することができる。   In the electric wire 1 with a crimp terminal, the thickness of the resin-sealed portion 29 formed on the rear side core wire exposed portion 21b as the exposed conductor exposed from the wire barrel portion 12 in the electric wire connecting portion 21 and the front end side core wire exposed portion 21d. The surface of the rear-side core wire exposed portion 21b and the front-side core wire exposed portion 21d that are liable to adhere and erode due to being exposed from the wire barrel portion 12 is 200 μm or more. It is possible to secure a sufficient film thickness so that it can be tightly sealed and to reliably prevent electrolytic corrosion.

第1絶縁樹脂50A、及び、第2絶縁樹脂50Bを、ショアD硬度が40〜80、金属に対する接着強度が−40℃から125℃の範囲において3MPa以上、且つ、弾性率が200MPa以上1000MPa以下の樹脂とすることにより、電線接続部分21に形成した樹脂封止部29が電線接続部分21に対して剥離し難くすることができる。   The first insulating resin 50A and the second insulating resin 50B have a Shore D hardness of 40 to 80, an adhesive strength to metal of 3 MPa or more and a modulus of elasticity of 200 MPa or more and 1000 MPa or less in a range of −40 ° C. to 125 ° C. By using resin, the resin sealing part 29 formed in the electric wire connection part 21 can be made difficult to peel from the electric wire connection part 21.

従って、電解液の浸入を防ぐことができ、電食が生じることのない優れた耐久性を備えて構成することができる。   Therefore, the electrolyte solution can be prevented from entering, and the battery can be configured with excellent durability without causing electrolytic corrosion.

また、本実施形態の圧着端子付電線1は、芯線43を、アルミニウム系材料で形成し、前記圧着端子10を、銅系材料で形成しているため、優れた導電性能を得ることができつつ、燃費の向上を図ることができる。   Moreover, since the electric wire 1 with a crimp terminal of this embodiment forms the core wire 43 with an aluminum-type material, and forms the said crimp terminal 10 with a copper-type material, it can obtain the outstanding electroconductive performance. , Fuel consumption can be improved.

詳しくは、このように芯線43を、アルミニウム系材料で形成することにより、コストダウンを図ることができるとともに、車両を軽量化することができ、燃費効率の向上を図ることができる。   Specifically, by forming the core wire 43 from an aluminum-based material in this way, the cost can be reduced, the vehicle can be reduced in weight, and fuel efficiency can be improved.

さらにまた、異種金属端子同士の接続の中でもアルミニウム系材料と銅系材料とを接続する場合、相互の標準電極電位差が特に大きくなるため、電食を起こし易くなるが、本実施形態の圧着端子付き電線1のように、絶縁樹脂50を、粘度の異なる2種類以上の樹脂で構成することで、粘度の違いを活かした樹脂封止部29を電線接続部分21に形成することができ、長期に亘って電食を防止することができる。   Furthermore, when connecting aluminum-based materials and copper-based materials among different types of metal terminals, the standard electrode potential difference between them is particularly large, so that electric corrosion tends to occur. Like the electric wire 1, the insulating resin 50 is made of two or more types of resins having different viscosities, so that the resin sealing portion 29 utilizing the difference in viscosity can be formed in the electric wire connecting portion 21. It is possible to prevent electrolytic corrosion.

また、本実施形態の圧着端子付き電線1の製造方法では、電線先端部42の絶縁樹脂50による封止を、少なくとも50μm以下の隙間に浸透可能な粘度の第1絶縁樹脂50Aと、第1絶縁樹脂50Aよりも粘度の高い第2絶縁樹脂50Bとを用い、電線接続部分21の表面を第1絶縁樹脂50Aで被覆する第1樹脂被覆工程を行い、第1樹脂被覆工程の後に、第1絶縁樹脂50Aの表面を第2絶縁樹脂50Bで被覆する第2樹脂封被覆工程を行う製造方法である。   Moreover, in the manufacturing method of the electric wire 1 with a crimp terminal according to the present embodiment, the first insulating resin 50A having a viscosity capable of permeating the electric wire tip end portion 42 with the insulating resin 50 into a gap of at least 50 μm and the first insulation. Using the second insulating resin 50B having a viscosity higher than that of the resin 50A, a first resin coating step of covering the surface of the wire connection portion 21 with the first insulating resin 50A is performed, and after the first resin coating step, the first insulation is performed. This is a manufacturing method for performing a second resin sealing coating step of coating the surface of the resin 50A with the second insulating resin 50B.

第1樹脂被覆工程では、50μm以下の微小な隙間に浸透する低い粘度である第1絶縁樹脂50Aを用いて、電線接続部分21を被覆する工程であるため、電線接続部分21に有する微小な隙間にまで第1絶縁樹脂50Aを浸透させることができるとともに、電線接続部分21の表面全体を被覆することができる。   In the first resin coating step, the wire connecting portion 21 is covered with the first insulating resin 50A having a low viscosity that penetrates into the minute gap of 50 μm or less. The first insulating resin 50 </ b> A can be permeated up to and the entire surface of the wire connection portion 21 can be covered.

さらにまた、第2樹脂被覆工程では、第1絶縁樹脂50Aよりも粘度の高い第2絶縁樹脂50Bを用いて、電線接続部分21の表面全体に被覆された第1樹脂封止部29Aの外面を被覆する工程であるため、第1絶縁樹脂50Aの膜厚では不十分な電線接続部分21の被覆を第2絶縁樹脂50Bによって補うことができる。   Furthermore, in the second resin coating step, the outer surface of the first resin sealing portion 29A covered on the entire surface of the electric wire connecting portion 21 using the second insulating resin 50B having a higher viscosity than the first insulating resin 50A. Since this is a coating step, the coating of the wire connection portion 21 that is insufficient with the film thickness of the first insulating resin 50A can be supplemented with the second insulating resin 50B.

このように、第1樹脂封止部29Aと第2樹脂封止部29Bとの粘度の違いによる特性を活かした優れた防食効果を得ることができる。   In this way, an excellent anticorrosion effect that makes use of the characteristics due to the difference in viscosity between the first resin sealing portion 29A and the second resin sealing portion 29B can be obtained.

前記圧着端子付き電線1の製造方法は、前記絶縁樹脂50を紫外線硬化樹脂で構成し、紫外線照射して前記絶縁樹脂50を硬化させる紫外線照射工程を、前記第1樹脂被覆工程と前記第2樹脂被覆工程との間に行わずに、前記第2樹脂被覆工程の後に行う製造方法である。   In the method of manufacturing the electric wire 1 with the crimp terminal, the insulating resin 50 is made of an ultraviolet curable resin, and an ultraviolet irradiation process in which the insulating resin 50 is cured by irradiating with an ultraviolet ray includes the first resin coating process and the second resin. It is a manufacturing method performed after a said 2nd resin coating process, without performing between coating processes.

このような製造方法により、第1樹脂封止部29Aと第2樹脂封止部29Bとの間に界面が生じることなく、第1樹脂封止部29Aと第2樹脂封止部29Bとの一体性に優れた樹脂封止部29を形成することができ、剥離による電解液の浸入を防ぎ、優れた防食効果を得ることができる。   By such a manufacturing method, the first resin sealing portion 29A and the second resin sealing portion 29B are integrated with each other without causing an interface between the first resin sealing portion 29A and the second resin sealing portion 29B. It is possible to form the resin-sealed portion 29 having excellent properties, prevent the electrolyte from entering due to peeling, and obtain an excellent anticorrosive effect.

続いて、本実施形態の圧着端子付き電線1の効果を確認するために行った効果確認試験について説明する。
本効果確認試験では、サンプルとして複数の圧着端子付き電線ごとに、電線接続部分21に対して絶縁樹脂50の粘度に応じて樹脂封止部29を形成し、これら樹脂封止部29ごとの防食性能を比較することで、本実施形態の樹脂封止部29を構成する2種類の絶縁樹脂50の粘度に応じた組み合わせによる効果を確認した。
Then, the effect confirmation test performed in order to confirm the effect of the electric wire 1 with a crimp terminal of this embodiment is demonstrated.
In this effect confirmation test, a resin sealing portion 29 is formed on the wire connection portion 21 according to the viscosity of the insulating resin 50 for each of the plurality of wires with crimp terminals as a sample, and the anticorrosion for each of the resin sealing portions 29 is formed. By comparing the performance, the effect of the combination according to the viscosity of the two types of insulating resins 50 constituting the resin sealing portion 29 of the present embodiment was confirmed.

樹脂封止部29としては、低粘度の第1絶縁樹脂50Aのみで形成した樹脂封止部29、高粘度の第2絶縁樹脂50Bのみで形成した樹脂封止部29、第1絶縁樹脂50Aと第2絶縁樹脂50Bとの2種類の絶縁樹脂50で形成した樹脂封止部29を形成した。   The resin sealing portion 29 includes a resin sealing portion 29 formed only from the low-viscosity first insulating resin 50A, a resin sealing portion 29 formed only from the high-viscosity second insulating resin 50B, and the first insulating resin 50A. The resin sealing portion 29 formed of two types of insulating resins 50 with the second insulating resin 50B was formed.

このうち2種類の絶縁樹脂50で形成する樹脂封止部29は、第1樹脂封止部29Aと第2樹脂封止部29Bとの上述した積層構造で構成した。   Of these, the resin sealing portion 29 formed of two types of insulating resins 50 is configured by the above-described laminated structure of the first resin sealing portion 29A and the second resin sealing portion 29B.

さらに、このように粘度の異なる第1絶縁樹脂50Aと第2絶縁樹脂50Bとを用い、第1絶縁樹脂50Aを構成するモノマーとオリゴマーと、第2絶縁樹脂50Bを構成するモノマーとオリゴマーとは、上述した樹脂材料のうち同じ種類の樹脂材料を主成分として構成した。
具体的には、第1絶縁樹脂50Aと第2絶縁樹脂50Bとは、シリコン系、アクリル系、ウレタン系、ポリアミド系、エポキシ系、フッ素系、ポリビニルブチラール系、フェノール系、ポリイミド系、アクリルゴム系のうちいずれかの同じ種類の樹脂材料を主成分として構成した。
Furthermore, using the first insulating resin 50A and the second insulating resin 50B having different viscosities as described above, the monomer and oligomer constituting the first insulating resin 50A, and the monomer and oligomer constituting the second insulating resin 50B are: Of the resin materials described above, the same kind of resin material was used as the main component.
Specifically, the first insulating resin 50A and the second insulating resin 50B are silicon, acrylic, urethane, polyamide, epoxy, fluorine, polyvinyl butyral, phenol, polyimide, and acrylic rubber. Of these, the same kind of resin material was used as the main component.

第1絶縁樹脂50Aとしては、粘度(mPa・s)が230、500、730、1,200、1,750、1,800、2,000、2,100という、いずれも第2絶縁樹脂50Bよりも低粘度である粘度の異なる7種類の樹脂を使用した。   The first insulating resin 50A has viscosities (mPa · s) of 230, 500, 730, 1,200, 1,750, 1,800, 2,000, and 2,100, all from the second insulating resin 50B. Also, seven types of resins having different viscosities with low viscosity were used.

第2絶縁樹脂50Bとしては、粘度(mPa・s)が3,500、5,000、5,500、6,300、6500、7,000、8,000、8,500、10,000、11,000、15,000、16,500、17,000、20,000、24,000という、いずれも第1絶縁樹脂50Aよりも高粘度である粘度の異なる15種類の樹脂を使用した。   As the second insulating resin 50B, the viscosity (mPa · s) is 3,500, 5,000, 5,500, 6,300, 6500, 7,000, 8,000, 8,500, 10,000, 11 15 kinds of resins having different viscosities higher than the first insulating resin 50A were used, namely, 15,000, 15,000, 16,500, 17,000, 20,000, and 24,000.

本効果確認実験では、圧着端子付き電線の芯線43の断面積が0.75sq、2.5sqのそれぞれについて、上述した第1絶縁樹脂50Aと第2絶縁樹脂50Bの様々な組み合わせでサンプルを作成するとともに、サンプルごとに樹脂封止部29を形成した電線接続部分21の抵抗変動値を算出し、これらを基に防食性能を比較した。   In this effect confirmation experiment, samples are prepared with various combinations of the first insulating resin 50A and the second insulating resin 50B described above for each of the cross-sectional areas of the core wire 43 of the crimp-attached electric wire having 0.75 sq and 2.5 sq. And the resistance fluctuation value of the electric wire connection part 21 which formed the resin sealing part 29 for every sample was computed, and anticorrosion performance was compared based on these.

抵抗変動値は、電線接続部分21ごとの初期抵抗値を測定するとともに、それぞれの電線を後述する環境に晒した後に、電線接続部分21ごとの抵抗値を測定し、初期抵抗値に対する変動値として算出した。
抵抗の測定に際しては、抵抗測定器(ACmΩHiTESTER3560、日置電機株式会社製)を用いて測定した。
As for the resistance fluctuation value, the initial resistance value for each electric wire connection portion 21 is measured, and the resistance value for each electric wire connection portion 21 is measured after exposing each electric wire to an environment to be described later. Calculated.
The resistance was measured using a resistance measuring instrument (ACmΩHiTESTER 3560, manufactured by Hioki Electric Co., Ltd.).

本効果確認試験では、実際の使用に耐え得る耐侵食性を確認するために初期抵抗値の測定後に複数の電線を、高温暴露(120℃×120時間)の条件下に晒した後、JIS Z2371に定める塩水噴霧試験(35℃の5重量%食塩水を所定圧力で噴霧する)を96時間実施した。さらにその後、恒温恒湿(85℃,95%RH×96h)の条件下に晒した。   In this effect confirmation test, in order to confirm erosion resistance that can withstand actual use, after measuring the initial resistance value, after exposing a plurality of electric wires to high temperature exposure (120 ° C. × 120 hours), JIS Z2371 The salt spray test (5% by weight saline solution at 35 ° C. is sprayed at a predetermined pressure) for 96 hours was carried out. Thereafter, the film was exposed to conditions of constant temperature and humidity (85 ° C., 95% RH × 96 h).

その後、上述したように、各サンプルとしての電線に対して、初期抵抗の計測と同様にして抵抗値を測り、同一サンプルの初期抵抗値を差し引くことにより、曝露前後の電線接続部分21の抵抗変動値を算出し、これらを基に防食性能を比較した。   Thereafter, as described above, the resistance value of the wire connection part 21 before and after the exposure is measured by measuring the resistance value in the same manner as the initial resistance measurement and subtracting the initial resistance value of the same sample. Values were calculated and the anticorrosion performance was compared based on these values.

ここで抵抗変動値が2.5mΩ以下を満足することが防食に有効であることが明らかになっている。   Here, it has been clarified that satisfying a resistance fluctuation value of 2.5 mΩ or less is effective for corrosion prevention.

各サンプルの抵抗変動値と電線接続部分21の樹脂の封止状態を基に、各サンプルについて表1のような分類を行った。   Based on the resistance fluctuation value of each sample and the sealing state of the resin of the electric wire connection portion 21, the samples were classified as shown in Table 1.

Figure 2011238500
表1に示すとおり、分類Aは、第1絶縁樹脂50Aの中でも、最も高粘度である粘度が2,100(mPa・s)の樹脂と、最も低粘度である粘度が230(mPa・s)の樹脂とを除いて分類した第1絶縁樹脂50Aのみで分類されるグループである。
Figure 2011238500
As shown in Table 1, the classification A is a resin having the highest viscosity of 2,100 (mPa · s) and the lowest viscosity of 230 (mPa · s) among the first insulating resins 50A. It is a group classified only by the first insulating resin 50A that is classified by excluding the above-mentioned resin.

分類Bは、第2絶縁樹脂50Bの中でも、上位2種類の高粘度である粘度が20,000、24,000(mPa・s)の第2絶縁樹脂50Bのみで分類されるグループである。   The classification B is a group classified only by the second insulating resin 50B having the viscosity of 20,000 and 24,000 (mPa · s), which is the top two types of high viscosity among the second insulating resins 50B.

また、表1に示すように、分類CからKの中でも、例えば、分類E,H,I,J,Kについては、いずれも第1絶縁樹脂50Aと第2絶縁樹脂50Bとのうち少なくとも一方を、粘度の異なる複数の樹脂を分類している。   Further, as shown in Table 1, among the classifications C to K, for example, for the classifications E, H, I, J, and K, at least one of the first insulating resin 50A and the second insulating resin 50B is used. A plurality of resins having different viscosities are classified.

このような分類E,H,I,J,Kについては、第1絶縁樹脂50Aと第2絶縁樹脂50Bとの間で全ての組み合わせとなるよう樹脂封止部29を形成したサンプルを作成し、防食性能を比較している。   For such classifications E, H, I, J, and K, a sample in which the resin sealing portion 29 is formed so as to be all combinations between the first insulating resin 50A and the second insulating resin 50B is created. The anticorrosion performance is compared.

分類AからKごとの平均抵抗変動値を比較したところ、分類AからKのうち、分類AからI、Kにおける平均抵抗変動値は、いずれも2.5mΩより大きくなり腐食性能が良好ではなかったのに対してJの分類における平均抵抗変動値は、2.5mΩ以下となり優れた腐食性能を有する結果となった。   When comparing the average resistance fluctuation values for each of classifications A to K, among the classifications A to K, the average resistance fluctuation values for classifications A to I and K were both greater than 2.5 mΩ, and the corrosion performance was not good. On the other hand, the average resistance fluctuation value in the classification of J was 2.5 mΩ or less, which resulted in excellent corrosion performance.

以上より、本実施形態の圧着端子付電線1の優れた防食性能を確認することができた。   From the above, it was possible to confirm the excellent anticorrosion performance of the electric wire 1 with crimp terminal of the present embodiment.

さらに、本効果確認試験により、使用する2種類の樹脂のうち、第1絶縁樹脂50Aの粘度が500〜2,000(mPa・s)であり、第2絶縁樹脂50Bの粘度が5,000〜20,000(mPa・s)であることが最適であることが明らかとなった。   Further, according to this effect confirmation test, of the two types of resins used, the first insulating resin 50A has a viscosity of 500 to 2,000 (mPa · s), and the second insulating resin 50B has a viscosity of 5,000 to 5,000. It was revealed that 20,000 (mPa · s) is optimal.

詳述すると、分類C,D,Eのように、粘度がいずれも500mPa・s未満である第1絶縁樹脂50Aを用いて形成した第1樹脂封止部29Aの場合、抵抗変動値が2.5mΩを超える値となったのに加え、第1樹脂封止部29Aを観察したところ、ボックス部11の内部にまで第1絶縁樹脂50Aが流れ込んでいるサンプルも確認された。この場合、接続相手側となる雄型端子のオスタブをボックス部11の内部に挿入したとき、接続不良の要因となるため、機能上難点を有することになる。また、電線接続部分21には非常に薄い膜状のみで被覆された部分が存在した。   More specifically, in the case of the first resin sealing portion 29A formed using the first insulating resin 50A having a viscosity of less than 500 mPa · s as in the categories C, D, and E, the resistance fluctuation value is 2. In addition to the value exceeding 5 mΩ, when the first resin sealing portion 29A was observed, a sample in which the first insulating resin 50A had flowed into the box portion 11 was also confirmed. In this case, when the male tab of the male terminal on the connection partner side is inserted into the box portion 11, it causes a connection failure and thus has a functional difficulty. Further, the wire connection portion 21 had a portion covered only with a very thin film.

このことからも第1絶縁樹脂50Aの粘度は、粘度が500mPa・s以上であることが好ましいことが明らかになった。   This also revealed that the viscosity of the first insulating resin 50A is preferably 500 mPa · s or more.

また、分類F,G,Hのように、粘度が2,000mPa・sより大きな値である第1絶縁樹脂50Aを用いて形成した樹脂封止部29の場合、抵抗変動値が2.5mΩを超える値となった。これは、粘度が2,000mPa・sを超えると、50μm以下という微小な隙間へ浸透し難くなるからであると考えられる。また、樹脂封止部29を観察したところ、電線接続部分21に対して十分な接触面積で拡散して全体を被覆することができないものも存在した。   In addition, in the case of the resin sealing portion 29 formed using the first insulating resin 50A having a viscosity greater than 2,000 mPa · s as in the categories F, G, and H, the resistance fluctuation value is 2.5 mΩ. The value exceeded. This is considered to be because when the viscosity exceeds 2,000 mPa · s, it is difficult to penetrate into a minute gap of 50 μm or less. Moreover, when the resin sealing part 29 was observed, there existed what cannot be spread | diffused with sufficient contact area with respect to the electric wire connection part 21, and the whole could be coat | covered.

このことから第1絶縁樹脂50Aの粘度は、粘度が2,000mPa・s以上であることが好ましいことが明らかになった。   From this, it became clear that the viscosity of the first insulating resin 50A is preferably 2,000 mPa · s or more.

一方、分類C,F,Iのように、前記第2絶縁樹脂50Bの粘度が5,000mPa・s未満である第2絶縁樹脂50Bを用いて形成した樹脂封止部29の場合、抵抗変動値が2.5mΩを超える値となったのに加え、樹脂封止部29を観察したところ、第2樹脂封止部29Bを被覆したとき、電食を防止する上で十分な層厚を確保することができないサンプルが多数存在していた。   On the other hand, in the case of the resin sealing portion 29 formed using the second insulating resin 50B in which the viscosity of the second insulating resin 50B is less than 5,000 mPa · s, as in the categories C, F, and I, the resistance fluctuation value In addition to the value exceeding 2.5 mΩ, the resin sealing portion 29 was observed, and when the second resin sealing portion 29B was covered, a sufficient layer thickness was secured to prevent electrolytic corrosion. There were many samples that could not.

このことから第2絶縁樹脂50Bの粘度は、粘度が5,000mPa・s以上であることが好ましいことが明らかになった。   This revealed that the viscosity of the second insulating resin 50B is preferably 5,000 mPa · s or more.

また、分類B,E,H,Kのように、粘度が20,000mPa・sを超える第2絶縁樹脂50Bを用いて形成した樹脂封止部29の場合、抵抗変動値が2.5mΩを超える値となったのに加え、浸透性が悪いため、均等な膜厚で塗れず、樹脂封止部29の形成に時間を要するとともに、サンプルの中には、膜厚が厚くなりすぎて端子がソケットに入らないなどの機能上の問題が生じたサンプルも存在した。   Moreover, in the case of the resin sealing portion 29 formed using the second insulating resin 50B having a viscosity exceeding 20,000 mPa · s, as in the classifications B, E, H, and K, the resistance fluctuation value exceeds 2.5 mΩ. In addition, since the permeability was poor, it could not be applied with a uniform film thickness, and it took time to form the resin sealing portion 29. Some samples had functional problems such as not being able to fit in the socket.

このことから第2絶縁樹脂50Bの粘度は、粘度が20,000mPa・s以下であることが好ましいことが明らかになった。   From this, it has become clear that the viscosity of the second insulating resin 50B is preferably 20,000 mPa · s or less.

上述した本効果確認試験により、使用する2種類の樹脂のうち、第1絶縁樹脂50Aの粘度が500〜2,000(mPa・s)であり、第2絶縁樹脂50Bの粘度が5,000〜20,000(mPa・s)である本実施形態の圧着端子付電線1が防食性能、機能の両観点から最適であることが明らかとなった。   Of the two types of resins used, the first insulating resin 50A has a viscosity of 500 to 2,000 (mPa · s) and the second insulating resin 50B has a viscosity of 5,000 to It became clear that the electric wire 1 with a crimp terminal of the present embodiment of 20,000 (mPa · s) is optimal from the viewpoint of both anticorrosion performance and function.

この発明の構成と、上述した実施形態との対応において、
接続構造体は、圧着端子付電線1に対応し、以下同様に、
接続端子は、圧着端子10に対応し、
導体は、芯線43に対応し、
電線接続部は、ワイヤーバレル部12に対応し、
前記電線接続部に接続した前記電線先端部は、電線接続部分21に対応し、
露出導体は、後方側芯線露出部21b、及び、先端側芯線露出部21dに対応するものとする。
In the correspondence between the configuration of the present invention and the above-described embodiment,
The connection structure corresponds to the electric wire 1 with a crimp terminal, and similarly,
The connection terminal corresponds to the crimp terminal 10,
The conductor corresponds to the core wire 43,
The wire connection portion corresponds to the wire barrel portion 12,
The wire tip connected to the wire connecting portion corresponds to the wire connecting portion 21,
The exposed conductors correspond to the rear side core wire exposed portion 21b and the front end side core wire exposed portion 21d.

本発明は、上述した実施形態に限定せず、様々な実施形態で構成することができる。
例えば、他の実施形態として樹脂封止部29は、前記ボックス部11の内部の長手方向の電線接続部分21側で開口する電線接続部側開口部Arを前記絶縁樹脂50で閉塞した構成であってもよい(図示せず)。
The present invention is not limited to the above-described embodiments, and can be configured in various embodiments.
For example, as another embodiment, the resin sealing portion 29 has a configuration in which a wire connection portion side opening Ar that opens on the wire connection portion 21 side in the longitudinal direction inside the box portion 11 is closed with the insulating resin 50. (Not shown).

これにより、前記ボックス部11の内部に電線接続部側開口部Arを通じて電解液が流入することを確実に阻止することができ、電解液が前記ボックス部11の内部に長期に亘って滞留することがなく、樹脂封止部29が加水分解することを防ぐことができ、電食の発生を確実に防止することができる。   Thereby, it can prevent reliably that electrolyte solution flows in into the inside of the said box part 11 through the electric wire connection part side opening part Ar, and electrolyte solution retains in the inside of the said box part 11 over a long period of time. Therefore, the resin sealing portion 29 can be prevented from being hydrolyzed, and the occurrence of electrolytic corrosion can be reliably prevented.

また、他の実施形態として電線接続部分21に滴下した絶縁樹脂50の流れを堰き止める堰止め部を、圧着端子10に形成してもよい(図示せず)。   Moreover, you may form the damming part which dams the flow of the insulating resin 50 dripped at the electric wire connection part 21 as another embodiment in the crimp terminal 10 (not shown).

これにより、例えば、電線接続部分21に滴下した絶縁樹脂50がボックス部11の内部にまで流れ込んで、接続相手側の雄型端子のオスタブを雌型接続部23に挿入したとき、接続不良となることを防ぐことができ、また、絶縁樹脂50が拡散しすぎて膜厚が薄くなりすぎることを防ぐことができる。   Thereby, for example, when the insulating resin 50 dripped onto the electric wire connection portion 21 flows into the box portion 11 and the male tab of the male terminal on the connection partner side is inserted into the female connection portion 23, connection failure occurs. In addition, it is possible to prevent the insulating resin 50 from being excessively diffused and the film thickness from becoming too thin.

1…圧着端子付電線
10…圧着端子
12…ワイヤーバレル部
21…電線接続部分
21b…後方側芯線露出部
21d…先端側芯線露出部
29A…第1樹脂封止部
29B…第2樹脂封止部
40…被覆電線
41…絶縁被覆
42…電線先端部
43…芯線
50…絶縁樹脂
50A…第1絶縁樹脂
50B…第2絶縁樹脂
DESCRIPTION OF SYMBOLS 1 ... Electric wire with a crimp terminal 10 ... Crimp terminal 12 ... Wire barrel part 21 ... Electric wire connection part 21b ... Back side core wire exposed part 21d ... Tip side core wire exposed part 29A ... 1st resin sealing part 29B ... 2nd resin sealing part DESCRIPTION OF SYMBOLS 40 ... Covered electric wire 41 ... Insulation coating 42 ... Electric wire front-end | tip part 43 ... Core wire 50 ... Insulation resin 50A ... 1st insulation resin 50B ... 2nd insulation resin

Claims (11)

導体を絶縁被覆で被覆し、先端側の前記絶縁被覆を剥がして前記導体を露出させた電線先端部を備えた被覆電線と、
前記電線先端部を接続する電線接続部を備え、前記導体を構成する金属より貴な金属で構成される接続端子と、
前記電線接続部に接続した前記電線先端部を封止する絶縁樹脂とで構成した接続構造体であって、
前記絶縁樹脂を、硬化前の粘度が異なる2種類以上の樹脂で構成した
接続構造体。
Covering the conductor with an insulation coating, stripping the insulation coating on the tip side and exposing the conductor, a covered electric wire with a wire tip,
A connection terminal comprising a wire connection part for connecting the wire tip part, made of a metal noble than the metal constituting the conductor,
A connection structure composed of an insulating resin that seals the wire tip connected to the wire connection portion,
The connection structure which comprised the said insulating resin with 2 or more types of resin from which the viscosity before hardening differs.
前記絶縁樹脂を、
第1絶縁樹脂と、該第1絶縁樹脂よりもオリゴマーの割合が高く、モノマーの割合が低い第2絶縁樹脂とで構成し、
前記第1絶縁樹脂と前記第2絶縁樹脂を、それぞれ同じ主成分で構成した
請求項1に記載の接続構造体。
The insulating resin,
A first insulating resin and a second insulating resin having a higher oligomer ratio and a lower monomer ratio than the first insulating resin;
The connection structure according to claim 1, wherein the first insulating resin and the second insulating resin are each composed of the same main component.
前記第1絶縁樹脂を、
硬化前の粘度が50μm以下の隙間に浸透可能な粘度の樹脂とし、
前記第2絶縁樹脂を、
硬化前の粘度が前記第1絶縁樹脂よりも粘度の高い樹脂とし、
前記前記電線先端部を前記絶縁樹脂で封止した樹脂封止部を、
前記電線先端部の表面を前記第1絶縁樹脂で被覆する第1樹脂封止部と、
前記第1樹脂封止部の外面を前記第2絶縁樹脂で被覆する第2樹脂封止部とで構成した
請求項1または2に記載の接続構造体。
The first insulating resin;
A resin having a viscosity that can penetrate into a gap of 50 μm or less before curing,
The second insulating resin;
The viscosity before curing is higher than that of the first insulating resin,
A resin sealing portion in which the wire tip is sealed with the insulating resin,
A first resin sealing portion that covers the surface of the tip portion of the electric wire with the first insulating resin;
The connection structure according to claim 1 or 2, comprising an outer surface of the first resin sealing portion and a second resin sealing portion that covers the second insulating resin.
前記第1絶縁樹脂を、硬化前の粘度が2,000mPa・s以下の低粘度の樹脂とし、
前記第2絶縁樹脂を、硬化前の粘度が5,000mPa・s以上の高粘度の樹脂とした
請求項3に記載の接続構造体。
The first insulating resin is a low-viscosity resin having a viscosity before curing of 2,000 mPa · s or less,
The connection structure according to claim 3, wherein the second insulating resin is a high-viscosity resin having a viscosity before curing of 5,000 mPa · s or more.
前記第1絶縁樹脂を、硬化前の粘度が500mPa・s以上とし、
前記第2絶縁樹脂を、硬化前の粘度が20,000mPa・s以下とした
請求項4に記載の接続構造体。
The first insulating resin has a viscosity before curing of 500 mPa · s or more,
The connection structure according to claim 4, wherein the second insulating resin has a viscosity before curing of 20,000 mPa · s or less.
前記電線先端部における前記電線接続部から露出している露出導体の表面を被覆した前記絶縁樹脂の厚みを少なくとも200μmで形成した
請求項1乃至5のうちいずれかに記載の接続構造体。
The connection structure according to any one of claims 1 to 5, wherein a thickness of the insulating resin covering a surface of an exposed conductor exposed from the electric wire connection portion at the electric wire tip is formed to be at least 200 µm.
前記絶縁樹脂を、
ショアD硬度が40〜80、金属に対する接着強度が−40℃〜125℃の範囲において3MPa以上、且つ、弾性率が200MPa以上1000MPa以下の樹脂とした
請求項1または6に記載の接続構造体。
The insulating resin,
The connection structure according to claim 1 or 6, wherein a resin having a Shore D hardness of 40 to 80 and an adhesive strength to a metal of -40 ° C to 125 ° C of 3 MPa or more and an elastic modulus of 200 MPa to 1000 MPa is used.
前記絶縁樹脂を、
シリコン系、アクリル系、ウレタン系、ポリアミド系、エポキシ系、フッ素系、ポリビニルブチラール系、フェノール系、ポリイミド系、アクリルゴム系のうち少なくともいずれかの樹脂とした
請求項1乃至7のうちいずれかに記載の接続構造体。
The insulating resin,
The resin according to any one of claims 1 to 7, wherein the resin is at least one of silicon, acrylic, urethane, polyamide, epoxy, fluorine, polyvinyl butyral, phenol, polyimide, and acrylic rubber. The connection structure described.
前記導体は、アルミニウム系材料からなり、
前記接続端子は、銅系材料からなる
請求項1乃至8のうちいずれかに記載の接続構造体。
The conductor is made of an aluminum-based material,
The connection structure according to claim 1, wherein the connection terminal is made of a copper-based material.
導体を絶縁被覆で被覆する被覆電線において先端側の前記絶縁被覆を剥がして前記導体を露出させた電線先端部を、
前記被覆電線を構成する金属より貴な金属で構成される接続端子に備えた電線接続部に接続し、
前記電線接続部に接続した前記電線先端部を絶縁樹脂で封止する接続構造体の製造方法であって、
前記電線先端部の前記絶縁樹脂による封止を、硬化前の粘度が少なくとも50μm以下の隙間に浸透可能な粘度の第1絶縁樹脂と、前記第1絶縁樹脂よりも硬化前の粘度が高い第2絶縁樹脂とを含む2種類以上の樹脂を用い、
前記電線先端部の表面を前記第1絶縁樹脂で被覆する第1樹脂被覆工程を行い、
前記第1樹脂被覆工程の後に、前記第1絶縁樹脂の外面を前記第2絶縁樹脂で被覆する第2樹脂封被覆工程を行う
接続構造体の製造方法。
In the covered electric wire covering the conductor with an insulating coating, the electric wire tip portion where the insulating coating on the tip side is peeled off to expose the conductor,
Connect to the wire connection part provided in the connection terminal composed of a noble metal than the metal constituting the covered wire,
A method of manufacturing a connection structure that seals the wire tip connected to the wire connection with an insulating resin,
A first insulating resin having a viscosity capable of penetrating into the gap having a viscosity before curing of at least 50 μm or less, and a second viscosity before curing higher than that of the first insulating resin. Using two or more types of resin including insulating resin,
Performing a first resin coating step of coating the surface of the wire tip with the first insulating resin;
The manufacturing method of the connection structure which performs the 2nd resin sealing coating process which coat | covers the outer surface of the said 1st insulating resin with the said 2nd insulating resin after the said 1st resin coating process.
前記絶縁樹脂を紫外線硬化樹脂で構成し、
紫外線照射して前記絶縁樹脂を硬化させる紫外線照射工程を、前記第1樹脂被覆工程と前記第2樹脂被覆工程との間に行わずに、前記第2樹脂被覆工程の後に行う
請求項10に記載の接続構造体の製造方法。
The insulating resin is composed of an ultraviolet curable resin,
11. The ultraviolet irradiation process for curing the insulating resin by irradiating with ultraviolet light is performed after the second resin coating process without being performed between the first resin coating process and the second resin coating process. Method for manufacturing the connection structure of the present invention.
JP2010109816A 2010-05-12 2010-05-12 Connection structure and manufacturing method thereof Pending JP2011238500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109816A JP2011238500A (en) 2010-05-12 2010-05-12 Connection structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109816A JP2011238500A (en) 2010-05-12 2010-05-12 Connection structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2011238500A true JP2011238500A (en) 2011-11-24

Family

ID=45326258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109816A Pending JP2011238500A (en) 2010-05-12 2010-05-12 Connection structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2011238500A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021279A1 (en) * 2012-07-30 2014-02-06 矢崎総業株式会社 Aluminum electrical wire with crimped terminal and method for producing aluminum electrical wire with crimped terminal
JP2014120283A (en) * 2012-12-14 2014-06-30 Auto Network Gijutsu Kenkyusho:Kk Wire with terminal
JP2016181387A (en) * 2015-03-24 2016-10-13 古河電気工業株式会社 Electric wire with terminal, and manufacturing method thereof
JP2016181367A (en) * 2015-03-24 2016-10-13 古河電気工業株式会社 Connection structure, wire harness, and method of manufacturing connection structure
WO2016194566A1 (en) * 2015-05-29 2016-12-08 株式会社オートネットワーク技術研究所 Terminal-equipped electric wire and method for producing same
WO2016194567A1 (en) * 2015-05-29 2016-12-08 株式会社オートネットワーク技術研究所 Terminal-equipped electric wire and method for producing same
JP2018063762A (en) * 2016-10-11 2018-04-19 古河電気工業株式会社 Method of manufacturing wire with terminal and wire with terminal
US10020093B2 (en) 2015-01-29 2018-07-10 Autonetworks Technologies, Ltd. Terminal-equipped coated wire
JP2019129068A (en) * 2018-01-24 2019-08-01 矢崎総業株式会社 Manufacturing method of wire with terminal and wire with terminal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021279A1 (en) * 2012-07-30 2014-02-06 矢崎総業株式会社 Aluminum electrical wire with crimped terminal and method for producing aluminum electrical wire with crimped terminal
JP2014120283A (en) * 2012-12-14 2014-06-30 Auto Network Gijutsu Kenkyusho:Kk Wire with terminal
US10020093B2 (en) 2015-01-29 2018-07-10 Autonetworks Technologies, Ltd. Terminal-equipped coated wire
JP2016181387A (en) * 2015-03-24 2016-10-13 古河電気工業株式会社 Electric wire with terminal, and manufacturing method thereof
JP2016181367A (en) * 2015-03-24 2016-10-13 古河電気工業株式会社 Connection structure, wire harness, and method of manufacturing connection structure
WO2016194566A1 (en) * 2015-05-29 2016-12-08 株式会社オートネットワーク技術研究所 Terminal-equipped electric wire and method for producing same
WO2016194567A1 (en) * 2015-05-29 2016-12-08 株式会社オートネットワーク技術研究所 Terminal-equipped electric wire and method for producing same
JP2018063762A (en) * 2016-10-11 2018-04-19 古河電気工業株式会社 Method of manufacturing wire with terminal and wire with terminal
JP2019129068A (en) * 2018-01-24 2019-08-01 矢崎総業株式会社 Manufacturing method of wire with terminal and wire with terminal

Similar Documents

Publication Publication Date Title
JP2011238500A (en) Connection structure and manufacturing method thereof
JP5480368B2 (en) Crimp terminal, connection structure and connector
JP5242625B2 (en) Connection structure and method for manufacturing connection structure
JP5228116B2 (en) Connection structure
JP5255404B2 (en) Connection part and connection method of wire and terminal made of different metals
JP5306972B2 (en) Wire harness, method for manufacturing wire harness
EP2650972B1 (en) Crimp terminal, connection structure, and production method for same
JP5063751B2 (en) Terminal structure of wire harness
JP2010108829A (en) Connecting part and connecting method of conductor and terminal
JP2010108828A (en) Connecting part and connecting method of conductor and terminal
JP2011181499A (en) Connecting structure
US20110067238A1 (en) Method of making an improved electrical connection with sealed cable core and a terminal
JP2016181367A (en) Connection structure, wire harness, and method of manufacturing connection structure
JP2021120959A (en) Electric wire with terminal
JP2011192586A (en) Cable having terminal fitting, and manufacturing method for same
WO2013183404A1 (en) Sheathed wire with terminal and wire harness
JP5290885B2 (en) Connection method of conductor and terminal
JP2010055901A (en) Electric wire with terminal metal fitting, and its manufacturing method
JP5137977B2 (en) Terminal and conductor-terminal connection
JP2012234651A (en) Connector terminal, method of manufacturing the same, and connector
JP7157545B2 (en) Wire with terminal
JP2013025910A (en) Terminal crimping wire for vehicle
JP5939865B2 (en) Electric wire with terminal
JP6023450B2 (en) Electric wire with terminal
JP6887211B2 (en) Terminals and wires with terminals