JP2011236392A - Process for producing polymer to inhibit formation of by-product - Google Patents
Process for producing polymer to inhibit formation of by-product Download PDFInfo
- Publication number
- JP2011236392A JP2011236392A JP2010111347A JP2010111347A JP2011236392A JP 2011236392 A JP2011236392 A JP 2011236392A JP 2010111347 A JP2010111347 A JP 2010111347A JP 2010111347 A JP2010111347 A JP 2010111347A JP 2011236392 A JP2011236392 A JP 2011236392A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- polymerization tank
- polymerization
- polymer
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Polymerisation Methods In General (AREA)
Abstract
Description
本発明は、蒸発潜熱除熱型重合槽を使用した重合体の製造方法に関する。 The present invention relates to a method for producing a polymer using an evaporation latent heat removal type polymerization tank.
重合体の製造において、重合反応により発生する熱を除去するために、蒸発潜熱除熱型重合槽を用いる場合がある。蒸発潜熱除熱型重合槽では、重合器の気相部から蒸発ガスを抜き出し、抜き出したガスを凝縮器で凝集、冷却し、凝縮液及び非凝縮ガスを重合器に戻す。蒸発ガス内の潜熱を重合槽の外部に除去し、冷却された凝縮液を重合槽内に循環させることにより、槽内の温度を制御する。 In the production of a polymer, an evaporation latent heat removal type polymerization tank may be used to remove heat generated by the polymerization reaction. In the latent evaporation heat removal type polymerization tank, the evaporated gas is extracted from the gas phase part of the polymerization vessel, the extracted gas is condensed and cooled by the condenser, and the condensed liquid and the non-condensed gas are returned to the polymerization vessel. The latent heat in the evaporation gas is removed outside the polymerization tank, and the cooled condensate is circulated in the polymerization tank to control the temperature in the tank.
蒸発潜熱除熱型重合槽における溶液重合では、液相部が撹拌されているために、蒸発ガスを抜き出す際にガスとともに微粉やミストを同伴することがある(以下、エントレと称すことがある。)。同伴された微粉やミストには、重合触媒が含まれている場合があり、蒸発ガスの凝集時や循環時等に、触媒を起点として副反応物が生成することがある。副反応物は製品性状へ影響を及ぼすため、その発生を低減する必要がある。
上記の問題に対し、例えば、凝集・循環経路において、重合禁止剤を添加する方法が考えられる。しかしながら、重合禁止剤を添加した凝縮液を再度重合槽へ戻す場合、重合禁止剤が重合槽での重合に影響を及ぼさないよう、重合禁止剤失活剤を添加する工程を設ける必要があり、さらに、重合禁止剤失活剤の添加濃度の調整が必要である。そのため、製造費用を押し上げる要因となる。
尚、重合槽外部での反応を抑制するために、重合禁止剤を添加する工程を導入することについては、特許文献1に記載されている。
In solution polymerization in an evaporation latent heat removal type polymerization tank, since the liquid phase part is stirred, fine gas and mist may be accompanied with the gas when extracting the evaporated gas (hereinafter, referred to as “entre”). ). The entrained fine powder or mist may contain a polymerization catalyst, and a side reaction product may be generated starting from the catalyst when the evaporated gas is aggregated or circulated. Since side reaction products affect product properties, it is necessary to reduce their occurrence.
To solve the above problem, for example, a method of adding a polymerization inhibitor in the aggregation / circulation route can be considered. However, when returning the condensate added with the polymerization inhibitor to the polymerization tank again, it is necessary to provide a step of adding a polymerization inhibitor deactivator so that the polymerization inhibitor does not affect the polymerization in the polymerization tank, Furthermore, it is necessary to adjust the addition concentration of the polymerization inhibitor quencher. Therefore, it becomes a factor which pushes up manufacturing cost.
In addition, in order to suppress reaction outside a polymerization tank, introducing the process of adding a polymerization inhibitor is described in Patent Document 1.
本発明の目的は、蒸発潜熱除熱型重合槽を使用した重合体の製造において、副生成物の生成量を低減することである。 The objective of this invention is reducing the production amount of a by-product in manufacture of the polymer which uses an evaporation latent-heat removal type | mold polymerization tank.
本発明によれば、以下の重合体の製造方法が提供される。
1. 蒸発潜熱除熱型重合槽を用いた重合体の製造方法において、
前記重合槽の頭頂部にあるガス抜出口と、前記重合槽内の気相部と液相部の界面との距離Gを、下記式(1)から算出されるH以上1.5H以下とすることを特徴とする重合体の製造方法。
H=u/117.61 (1)
(式中、Hは距離[m]であり、uは定常状態における蒸発ガスの空塔速度[m/hr]である。)
2.原料であるモノマーの表面張力が0.01〜0.1N/m2であることを特徴とする1に記載の重合体の製造方法。
3.前記モノマーがプロピレンであることを特徴とする2に記載の重合体の製造方法。
4.前記液相部の溶液粘度が、100〜5,000mPa・sの範囲であることを特徴とする1〜3のいずれかに記載の重合体の製造方法。
According to the present invention, the following polymer production methods are provided.
1. In the method for producing a polymer using an evaporation latent heat removal type polymerization tank,
The distance G between the gas outlet at the top of the polymerization tank and the interface between the gas phase part and the liquid phase part in the polymerization tank is set to H or more and 1.5 H or less calculated from the following formula (1). A method for producing a polymer characterized by the above.
H = u / 117.61 (1)
(In the formula, H is the distance [m], and u is the superficial velocity [m / hr] of the evaporated gas in the steady state.)
2. 2. The method for producing a polymer according to 1, wherein the monomer as a raw material has a surface tension of 0.01 to 0.1 N / m 2 .
3. 3. The method for producing a polymer according to 2, wherein the monomer is propylene.
4). 4. The method for producing a polymer according to any one of 1 to 3, wherein the solution viscosity of the liquid phase part is in a range of 100 to 5,000 mPa · s.
本発明では、重合禁止剤を使用することなく副反応物の生成量を抑えることができるため、重合体製品の品質を向上できる。
また、重合設備の設計時において重合槽の大きさが計算できるため、必要以上に装置を大きくする必要がなく、適切な装置規模とすることができる。
In this invention, since the production amount of a side reaction product can be suppressed without using a polymerization inhibitor, the quality of the polymer product can be improved.
Further, since the size of the polymerization tank can be calculated at the time of designing the polymerization equipment, it is not necessary to enlarge the apparatus more than necessary, and an appropriate apparatus scale can be obtained.
本発明の重合体の製造方法では、蒸発潜熱除熱型重合槽を用いる。
図1は、本発明の実施に供する蒸発潜熱除熱型重合槽の一例の概略図である。
蒸発潜熱除熱型重合槽は、撹拌装置11を有する重合槽10に、蒸発ガスを凝縮、冷却し、凝縮液を重合槽10に循環させる循環管路20を形成したものである。
ガス抜出口21が重合槽の略頭頂部にあり、ガス抜出口21から蒸発ガスを循環管路20に導入する。蒸発ガスは循環管路20に設けられた凝縮冷却部22にて凝縮、冷却される。凝縮冷却部22は圧縮機や熱交換器により構成される。
尚、本願において、重合槽の頭頂部には、頭頂部及びその周辺を含む。また、図1において原料供給管や製品である重合体の取出管等は省略している。
In the method for producing a polymer of the present invention, an evaporation latent heat removal type polymerization tank is used.
FIG. 1 is a schematic view of an example of an evaporation latent heat removal type polymerization tank used for carrying out the present invention.
The latent heat of vaporization heat removal type polymerization tank is obtained by forming a circulation line 20 in a polymerization tank 10 having a stirring device 11 for condensing and cooling the evaporated gas and circulating the condensed liquid to the polymerization tank 10.
A gas outlet 21 is located substantially at the top of the polymerization tank, and evaporative gas is introduced into the circulation line 20 from the gas outlet 21. The evaporative gas is condensed and cooled in a condensing and cooling unit 22 provided in the circulation line 20. The condensation cooling unit 22 is configured by a compressor and a heat exchanger.
In addition, in this application, the top part of a polymerization tank includes a top part and its periphery. Further, in FIG. 1, the raw material supply pipe and the product polymer take-out pipe are omitted.
本発明の製造方法では、重合槽10の頭頂部にあるガス抜出口21と、重合槽10内の液相部12と気相部13の界面(気液界面15)との距離Gを、下記式(1)から算出されるH以上1.5H以下とすることを特徴とする。
H=u/117.61 (1)
(式中、Hは距離[m]であり、uは定常状態における蒸発ガスの空塔速度[m/hr]である。)
In the production method of the present invention, the distance G between the gas outlet 21 at the top of the polymerization vessel 10 and the interface (gas-liquid interface 15) between the liquid phase portion 12 and the gas phase portion 13 in the polymerization vessel 10 is as follows. It is characterized by being H or more and 1.5H or less calculated from the formula (1).
H = u / 117.61 (1)
(In the formula, H is the distance [m], and u is the superficial velocity [m / hr] of the evaporated gas in the steady state.)
式(1)において、蒸発ガスの空塔速度(u)は下記式(2)で表わされる。
u=w/(ρ・A) (2)
(式(2)中、wは定常状態における蒸発ガス質量流量[kg/hr]であり、ρはガス密度[kg/m3]であり、Aは重合槽の断面積[m2]である。)
In the formula (1), the superficial velocity (u) of the evaporation gas is represented by the following formula (2).
u = w / (ρ · A) (2)
(In formula (2), w is a mass flow rate of evaporating gas [kg / hr] in a steady state, ρ is a gas density [kg / m 3 ], and A is a cross-sectional area [m 2 ] of the polymerization tank. .)
空塔速度(u)は、上記式(2)に示すように、蒸発ガス質量流量(w)に比例する。蒸発ガス質量流量(w)は、蒸発ガスラインに設置する圧縮機やブロワー等により制御する。蒸発ガス質量流量(w)は、重合時に発生する発熱量に応じて適宜調整する。蒸発ガス質量流量(w)は、通常、1〜100000kg/hrであり、好ましくは1〜80000kg/hrであり、より好ましくは1〜50000kg/hrである。
蒸発ガス質量流量(w)が大きいと、凝縮・循環されるガス(モノマーや溶媒等)が増加する。従って、重合槽内部の外部に排気できる熱量が増加する。しかしながら、蒸発ガス質量流量(w)が大きいと、蒸発ガスを凝縮したり冷却するための熱交換器及びコンプレッサーが大きくなるため、経済的に不利となる。
The superficial velocity (u) is proportional to the evaporative gas mass flow rate (w) as shown in the above equation (2). The evaporative gas mass flow rate (w) is controlled by a compressor or blower installed in the evaporative gas line. The evaporative gas mass flow rate (w) is appropriately adjusted according to the amount of heat generated during the polymerization. The evaporative gas mass flow rate (w) is usually 1 to 100,000 kg / hr, preferably 1 to 80000 kg / hr, more preferably 1 to 50000 kg / hr.
When the evaporative gas mass flow rate (w) is large, the condensed gas (monomer, solvent, etc.) increases. Accordingly, the amount of heat that can be exhausted to the outside inside the polymerization tank increases. However, if the evaporative gas mass flow rate (w) is large, the heat exchanger and the compressor for condensing and cooling the evaporative gas become large, which is economically disadvantageous.
重合槽内のガス密度(ρ)は、槽内の圧力等により制御できる。ガス密度は通常10〜60kg/m3である。好ましくは15〜50kg/m3であり、より好ましくは20〜40kg/m3である。ガス密度が低い場合、蒸発ガスを凝縮器で凝縮することが困難になるため、潜熱の除熱による重合槽の温度制御が困難となる。一方、ガス密度が高いと、設備の高圧対応が必要となり、設備費が高くなるため、経済的に不利となる。 The gas density (ρ) in the polymerization tank can be controlled by the pressure in the tank. The gas density is usually 10-60 kg / m 3 . Preferably it is 15-50 kg / m < 3 >, More preferably, it is 20-40 kg / m < 3 >. When the gas density is low, it is difficult to condense the evaporated gas with a condenser, so that it is difficult to control the temperature of the polymerization tank by removing the latent heat. On the other hand, if the gas density is high, the equipment needs to be compatible with high pressure, and the equipment cost becomes high, which is economically disadvantageous.
重合槽の断面積(A)は、重合槽中心部の横断面の面積を意味し、通常、0.01〜30m2である。好ましくは、1〜30m2であり、より好ましくは、5〜25m2である。断面積(A)が小さいと、生産量が低く、実際の工業生産には現実的ではない。一方、断面積(A)が大きいと、重合槽が大きくなりすぎ設備費が高くなるため、経済的に不利となる。 The cross-sectional area (A) of a polymerization tank means the area of the cross section of a polymerization tank center part, and is 0.01-30 m < 2 > normally. Preferably, a 1-30 m 2, more preferably 5~25m 2. If the cross-sectional area (A) is small, the production amount is low, which is not practical for actual industrial production. On the other hand, if the cross-sectional area (A) is large, the polymerization tank becomes too large and the equipment cost becomes high, which is economically disadvantageous.
上述した蒸発ガス質量流量(u)、ガス密度(ρ)及び重合槽の断面積(A)により、空塔速度(u)を決定する。空塔速度(u)により、式(1)からHが算出できる。
本発明では、ガス抜出口21と、重合槽内の気相部13と液相部12の界面との距離Gを、H以上1.5H以下(H≦G≦1.5H)とする。距離GがHよりも小さいと、循環管路20に導入されるミストや微粉等の同伴量が増えるため、循環管路20内で副生成物が生成し、得られる重合体の品質低下の原因となる。一方、距離Gが1.5Hよりも大きいと、重合槽が不要に大きくなるため、重合槽の費用が高くなるため、製造費が増加するため好ましくない。
距離Gは、H〜1.25Hであることが好ましく、特に、H〜1.2Hであることが好ましい。
尚、ガス抜出口21と気液界面15の距離Gは、オーバーフロー抜出等、公知を方法により制御できる。
The superficial velocity (u) is determined by the evaporative gas mass flow rate (u), the gas density (ρ) and the cross-sectional area (A) of the polymerization tank. From the equation (1), H can be calculated from the superficial velocity (u).
In the present invention, the distance G between the gas outlet 21 and the interface between the gas phase part 13 and the liquid phase part 12 in the polymerization tank is set to H or more and 1.5H or less (H ≦ G ≦ 1.5H). When the distance G is smaller than H, the amount of entrainment of mist, fine powder and the like introduced into the circulation line 20 is increased, so that by-products are generated in the circulation line 20 and the quality of the resulting polymer is deteriorated. It becomes. On the other hand, if the distance G is larger than 1.5H, the polymerization tank becomes unnecessarily large, and the cost of the polymerization tank increases, which is not preferable because the manufacturing cost increases.
The distance G is preferably H to 1.25H, and particularly preferably H to 1.2H.
The distance G between the gas outlet 21 and the gas-liquid interface 15 can be controlled by a known method such as overflow extraction.
式(1)は図1に示す蒸発潜熱除熱型重合槽に類似する装置により、蒸発ガスに含まれるエントレ量(ミストや微粉等)について検討した結果から得られた式である。本発明者は実験結果から、[エントレ流量/蒸発ガス流量](e)と、[空塔速度(u)/距離(H)](u/H)が下記式(3)で示される比例関係にあることを見出した。
e=3.978−12×(u/H)3.133 (3)
(eはエントレ流量/蒸発ガス流量[kg/kg]であり、uはガス空塔速度[m/s]であり、Hは距離[m]である。)
The expression (1) is an expression obtained from the result of examining the amount of entrainment (mist, fine powder, etc.) contained in the evaporation gas by an apparatus similar to the latent heat of vaporization type heat removal polymerization tank shown in FIG. From the experimental results, the inventor has shown that [entrance flow rate / evaporation gas flow rate] (e) and [superficial velocity (u) / distance (H)] (u / H) are proportional to each other by the following formula (3). I found out.
e = 3.978 −12 × (u / H) 3.133 (3)
(E is the entry flow rate / evaporative gas flow rate [kg / kg], u is the gas superficial velocity [m / s], and H is the distance [m].)
また、[エントレ流量/蒸発ガス流量](e)と得られる重合体中における副生成物の量の関係は下記式(4)で表されることがわかった。
副生成物量[wtppm]=8.20×106e (4)
(eはエントレ流量/蒸発ガス流量[kg/kg]である。)
Further, it was found that the relationship between [entre flow rate / evaporation gas flow rate] (e) and the amount of by-products in the obtained polymer is expressed by the following formula (4).
By-product amount [wtppm] = 8.20 × 10 6 e (4)
(E is the entry flow rate / evaporation gas flow rate [kg / kg].)
上記式(3)及び(4)より、副生成物量を設定すると、u/Hが決定される。通常、重合体における副生成物量が100wtppm未満程度であれば、製品の品質に影響しない。従って、副生成物の量を100wtppmに設定することにより下記式(5)を得る。
(u/H)3.133=3.067×106 (5)
(式中、Hは距離[m]であり、uは定常状態における蒸発ガスの空塔速度[m/hr]である。)
式(5)からHを求めると、下記式(1)が得られる。
H=u/117.61 (1)
From the above formulas (3) and (4), u / H is determined when the amount of by-products is set. Usually, if the amount of by-products in the polymer is less than 100 wtppm, the quality of the product is not affected. Therefore, the following formula (5) is obtained by setting the amount of by-products to 100 wtppm.
(U / H) 3.133 = 3.067 × 10 6 (5)
(In the formula, H is the distance [m], and u is the superficial velocity [m / hr] of the evaporated gas in the steady state.)
When H is obtained from the equation (5), the following equation (1) is obtained.
H = u / 117.61 (1)
本発明の製造方法は、各種重合体に適用できるが、特に、ポリオレフィンの製造に適している。また、単独重合でも共重合体の重合にも適用できる。
原料モノマーの具体例としては、エチレン、プロピレン、1−ブテン等が挙げられる。
特に、モノマーの表面張力が0.01〜0.1N/m2であるものが好ましい。
The production method of the present invention can be applied to various polymers, but is particularly suitable for the production of polyolefins. Further, it can be applied to homopolymerization or copolymer polymerization.
Specific examples of the raw material monomer include ethylene, propylene, 1-butene and the like.
In particular, the monomer having a surface tension of 0.01 to 0.1 N / m 2 is preferable.
重合方式は、溶液重合である。重合触媒、溶媒、重合条件等については、特に制限はない。例えば、国際公開第WO2006−117983を参照することができる。
具体的に、重合温度は製品グレードや分子量により適宜調整されるが、50℃〜100℃が一般的であり、好ましくは、60℃〜90℃である。
また、重合圧力は、0.5〜3MPaGであり、好ましくは、1〜2MPaGである。低圧では、凝縮器でプロピレンが凝縮しづらく、高圧では、設備費増加し経済性から好ましくない。
The polymerization method is solution polymerization. There are no particular restrictions on the polymerization catalyst, solvent, polymerization conditions and the like. For example, International Publication No. WO2006-117983 can be referred to.
Specifically, the polymerization temperature is appropriately adjusted depending on the product grade and molecular weight, but is generally 50 ° C. to 100 ° C., and preferably 60 ° C. to 90 ° C.
Moreover, superposition | polymerization pressure is 0.5-3 MPaG, Preferably, it is 1-2 MPaG. At low pressure, propylene is difficult to condense in the condenser, and at high pressure, the equipment cost increases, which is not preferable from the viewpoint of economy.
本発明の製造方法は、重合槽内における液相部の溶液粘度が、100〜5,000mPa・sの範囲において、特に、効果を発揮する。溶液粘度が100mPa・sより低いと、蒸発ガスに含まれるエントレ量(ミストや微粉等)が少ないため、本発明の効果が表れにくい。一方、5,000mPasより高いと、粘度が高すぎて良好な撹拌状態が得られず、大きな撹拌動力が必要となり現実的ではない。
溶液粘度は、150〜4、000mPa・sの範囲であることがより好ましく、特に200〜3、000mPa・sの範囲であることが好ましい。
尚、溶液粘度は、ブルックフィールド粘度計で測定した値である。
The production method of the present invention is particularly effective when the solution viscosity of the liquid phase part in the polymerization tank is in the range of 100 to 5,000 mPa · s. When the solution viscosity is lower than 100 mPa · s, the amount of entrainment (mist, fine powder, etc.) contained in the evaporating gas is small, so that the effect of the present invention is hardly exhibited. On the other hand, if it is higher than 5,000 mPas, the viscosity is too high to obtain a good stirring state, and a large stirring power is required, which is not realistic.
The solution viscosity is more preferably in the range of 150 to 4,000 mPa · s, and particularly preferably in the range of 200 to 3,000 mPa · s.
The solution viscosity is a value measured with a Brookfield viscometer.
本発明では、蒸発ガス抜出口と、重合槽内の気相部と液相部の界面との距離Gを、H〜1.5Hとすることにより、蒸発ガスに同伴された触媒による副反応物の生成を低減できる。従って、製品の品質を向上できる。また、循環管路で重合禁止剤を使用しないため生産性の改善が期待される。 In the present invention, by setting the distance G between the evaporative gas outlet and the interface between the gas phase portion and the liquid phase portion in the polymerization tank to be H to 1.5H, a side reaction product by the catalyst entrained in the evaporative gas is obtained. Can be reduced. Therefore, the quality of the product can be improved. Further, since no polymerization inhibitor is used in the circulation line, improvement in productivity is expected.
実施例1
プロピレンを重合した。プロピレンの表面張力は0.02N/m2である。
表1に示すように、蒸発ガス質量流量(u)、ガス密度(ρ)及び重合槽の断面積(A)を調整した。その結果、蒸発ガス空塔速度は0.034m/s(122.4m/hr)であった。
液相部の溶液粘度を、1,000mPa・sとし、蒸発ガス抜出口と、重合槽内の気相部と液相部の界面との距離Gを1.0m付近に制御して重合した。その結果、得られた重合体に含まれる副生成物の割合は100wtppmであり、製品物性への影響は無視できる程度であった。
Example 1
Propylene was polymerized. The surface tension of the propylene is 0.02 N / m 2.
As shown in Table 1, the evaporative gas mass flow rate (u), the gas density (ρ), and the cross-sectional area (A) of the polymerization tank were adjusted. As a result, the evaporative gas superficial velocity was 0.034 m / s (122.4 m / hr).
The solution viscosity of the liquid phase part was set to 1,000 mPa · s, and the polymerization was carried out by controlling the distance G between the evaporating gas outlet and the interface between the gas phase part and the liquid phase part in the polymerization tank to around 1.0 m. As a result, the ratio of by-products contained in the obtained polymer was 100 wtppm, and the influence on the product properties was negligible.
実施例2
重合槽断面積Aを7.7m2とし、距離Gを1.5m付近に制御して重合した他は、実施例1と同様にした。その結果、蒸発ガス空塔速度uは0.049m/sとなり、得られた重合体に含まれる副生成物の割合は100wtppmであった。
Example 2
The same procedure as in Example 1 was conducted, except that the polymerization tank cross-sectional area A was 7.7 m 2 and the polymerization was carried out by controlling the distance G to around 1.5 m. As a result, the evaporative gas superficial velocity u was 0.049 m / s, and the ratio of by-products contained in the obtained polymer was 100 wtppm.
実施例3
重合槽断面積Aを23m2とした他は、実施例1と同様にした。その結果、蒸発ガス空塔速度uは0.016m/sとなり、得られた重合体に含まれる副生成物の割合は100wtppmであった。
Example 3
The same procedure as in Example 1 was performed except that the polymerization tank cross-sectional area A was 23 m 2 . As a result, the evaporative gas superficial velocity u was 0.016 m / s, and the ratio of by-products contained in the obtained polymer was 100 wtppm.
比較例1
距離Gを4.0m付近に制御して重合した他は、実施例1と同様にした。その結果、得られた重合体に含まれる副生成物の割合は1wtppmと低下したものの、重合槽の重量が82トンと大型化した。
Comparative Example 1
The same procedure as in Example 1 was conducted, except that the polymerization was carried out by controlling the distance G to around 4.0 m. As a result, although the ratio of the by-product contained in the obtained polymer was reduced to 1 wtppm, the weight of the polymerization tank was increased to 82 tons.
比較例2
距離Gを0.3m付近に制御して重合した他は、実施例1と同様にした。その結果、重合槽の重量は54トンと多少小型化したが、得られた重合体に含まれる副生成物の割合は5000wtppmとなり、製品物性に悪影響が現れた。
Comparative Example 2
The same procedure as in Example 1 was conducted, except that the polymerization was carried out by controlling the distance G to around 0.3 m. As a result, although the weight of the polymerization tank was slightly reduced to 54 tons, the ratio of the by-product contained in the obtained polymer was 5000 wtppm, and the product properties were adversely affected.
比較例3
重合槽断面積Aを3.8m2とした他は、実施例1と同様にした。その結果、蒸発ガス空塔速度uは0.1m/s、得られた重合体に含まれる副生成物の割合は3000wtppmであり、製品物性に悪影響が現れた
Comparative Example 3
The same procedure as in Example 1 was performed except that the polymerization tank cross-sectional area A was 3.8 m 2 . As a result, the evaporative gas superficial velocity u was 0.1 m / s, and the ratio of by-products contained in the obtained polymer was 3000 wtppm, which adversely affected product properties.
本発明の重合体の製造方法は、蒸発潜熱除熱型重合槽を用いた各種重合体の製造方法として好適である。 The method for producing a polymer of the present invention is suitable as a method for producing various polymers using an evaporation latent heat removal type polymerization tank.
10 重合槽
11 撹拌装置
12 液相部
13 気相部
15 気液界面
20 循環管路
21 ガス抜出口
22 凝縮冷却部
DESCRIPTION OF SYMBOLS 10 Polymerization tank 11 Stirring device 12 Liquid phase part 13 Gas phase part 15 Gas-liquid interface 20 Circulation line 21 Gas outlet 22 Condensing cooling part
Claims (4)
前記重合槽の頭頂部にあるガス抜出口と、前記重合槽内の気相部と液相部の界面との距離Gを、下記式(1)から算出されるH以上1.5H以下とすることを特徴とする重合体の製造方法。
H=u/117.61 (1)
(式中、Hは距離[m]であり、uは定常状態における蒸発ガスの空塔速度[m/hr]である。) In the method for producing a polymer using an evaporation latent heat removal type polymerization tank,
The distance G between the gas outlet at the top of the polymerization tank and the interface between the gas phase part and the liquid phase part in the polymerization tank is set to H or more and 1.5 H or less calculated from the following formula (1). A method for producing a polymer characterized by the above.
H = u / 117.61 (1)
(In the formula, H is the distance [m], and u is the superficial velocity [m / hr] of the evaporated gas in the steady state.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010111347A JP5671254B2 (en) | 2010-05-13 | 2010-05-13 | Method for producing a polymer that suppresses the formation of by-products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010111347A JP5671254B2 (en) | 2010-05-13 | 2010-05-13 | Method for producing a polymer that suppresses the formation of by-products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011236392A true JP2011236392A (en) | 2011-11-24 |
JP5671254B2 JP5671254B2 (en) | 2015-02-18 |
Family
ID=45324721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010111347A Active JP5671254B2 (en) | 2010-05-13 | 2010-05-13 | Method for producing a polymer that suppresses the formation of by-products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5671254B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0288602A (en) * | 1988-09-26 | 1990-03-28 | Kyowa Gas Chem Ind Co Ltd | Method for controlling polymerization temperature |
JP2001247604A (en) * | 2000-03-08 | 2001-09-11 | Japan Polychem Corp | Preparation method of alpha-olefin polymer |
JP2003306504A (en) * | 2002-04-17 | 2003-10-31 | Mitsui Chemicals Inc | Process for polymerization of olefin |
JP2010070584A (en) * | 2008-09-16 | 2010-04-02 | Japan Polypropylene Corp | Continuous gas phase manufacturing method for propylene-based block copolymer |
-
2010
- 2010-05-13 JP JP2010111347A patent/JP5671254B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0288602A (en) * | 1988-09-26 | 1990-03-28 | Kyowa Gas Chem Ind Co Ltd | Method for controlling polymerization temperature |
JP2001247604A (en) * | 2000-03-08 | 2001-09-11 | Japan Polychem Corp | Preparation method of alpha-olefin polymer |
JP2003306504A (en) * | 2002-04-17 | 2003-10-31 | Mitsui Chemicals Inc | Process for polymerization of olefin |
JP2010070584A (en) * | 2008-09-16 | 2010-04-02 | Japan Polypropylene Corp | Continuous gas phase manufacturing method for propylene-based block copolymer |
Also Published As
Publication number | Publication date |
---|---|
JP5671254B2 (en) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9493586B2 (en) | Method for producing magnesium alcoholate | |
JP2009503155A (en) | Process for the preparation of linear alpha olefins with improved heat removal | |
JP2002003505A (en) | METHOD FOR PRODUCING alpha-OLEFIN POLYMER | |
US7157598B2 (en) | Method for producing an aqueous alkali acrylate solution | |
US9403144B2 (en) | Apparatus for mass polymerization of vinyl chloride resin and method for mass polymerization of vinyl chloride resin | |
WO1999051610A1 (en) | Process for producing fine organometallic particles and catalyst for polymerization | |
JP2011528384A5 (en) | ||
JP5671254B2 (en) | Method for producing a polymer that suppresses the formation of by-products | |
KR101501074B1 (en) | Process for the polymerization of olefins | |
KR101319234B1 (en) | Process for preparing polybutadiene latex | |
WO2006008902A1 (en) | Process for producing polymer | |
JP2015098455A (en) | Method for producing unsaturated nitrile | |
JP5546493B2 (en) | Ethyleneimine polymer and process for producing the same | |
TW201036912A (en) | Recovery device of chlorosilane and recovery method of chlorosilane using the same | |
EP2952542B1 (en) | Bulk pvc composition and bulk pvc polymerization method | |
CN115873155A (en) | External electron donor composition, propylene polymerization catalytic composition and propylene polymerization method | |
EP3390462B1 (en) | Olefin polymerization process | |
JP5374576B2 (en) | Trichlorosilane cooling tower and method for producing trichlorosilane using the same | |
US20200231719A1 (en) | Methods of Polyolefin Solids Recovery | |
WO2015097013A1 (en) | Process | |
JP6620145B2 (en) | Continuous process for producing ultra-high molecular weight polyethylene | |
JP2001247604A (en) | Preparation method of alpha-olefin polymer | |
JP2013071967A (en) | Ethyleneimine polymer and method for producing the same | |
Mirjahanmardi et al. | Effects of Various Amounts of New Hepta-Ether as the Internal Donor on the Polymerization of Propylene with and without the External Donor | |
JP2009084553A (en) | Method for producing rubbery polymer for electronic material and rubbery polymer for electronic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140812 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141008 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5671254 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |