WO2006008902A1 - Process for producing polymer - Google Patents

Process for producing polymer Download PDF

Info

Publication number
WO2006008902A1
WO2006008902A1 PCT/JP2005/011332 JP2005011332W WO2006008902A1 WO 2006008902 A1 WO2006008902 A1 WO 2006008902A1 JP 2005011332 W JP2005011332 W JP 2005011332W WO 2006008902 A1 WO2006008902 A1 WO 2006008902A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
polymer
isobutylene
producing
block copolymer
Prior art date
Application number
PCT/JP2005/011332
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Yoshimi
Naoki Furukawa
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006528535A priority Critical patent/JPWO2006008902A1/en
Publication of WO2006008902A1 publication Critical patent/WO2006008902A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/12Separation of polymers from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom

Definitions

  • the present invention prepares a polymer, particularly an isobutylene block copolymer, as a powdered resin particle or a powdered resin pellet while efficiently removing the solvent contained in the product. Regarding the method.
  • Patent Document 1 discloses a method for producing an isobutylene block copolymer in a mixed solvent in which methyl chloride and methylcyclohexane are combined. It is disclosed.
  • Patent Document 2 discloses an isobutylene block copolymer having an isobutylene polymer block and a styrene polymer block force in a mixed solvent having methylene chloride and hexane power. A manufacturing method is disclosed.
  • a rubbery polymer recovery method employs a method of pelletizing by a submerged cut method after removing a solvent by a thin film evaporator or an extruder or a method of forming a granular material by steam stripping.
  • JP 2002-161109 A proposes a solvent removal method using a twin screw extruder for solvent evaporation of an isobutylene block copolymer.
  • Patent Document 1 US Pat. No. 4,946,899
  • Patent Document 2 Japanese Patent Publication No. 7-59601
  • Patent Document 3 JP-A-8-041123
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-161109
  • the present invention provides a rosin powder granule or cocoon powder of a polymer, particularly an isobutylene block copolymer or cocoon of an isobutylene block copolymer that generates very little alcohol by steam stripping.
  • the object is to provide a method capable of stably producing fat pellets.
  • the present invention is a method for producing a coconut powder granule or a coconut pellet by removing the solvent of the polymer solution, and the solvent of the polymer solution is a primary having 3 to 8 carbon atoms and A mixed solvent of Z or secondary monohalogen ⁇ hydrocarbons and aliphatic and Z or aromatic hydrocarbons containing a polymer in which the catalyst is deactivated and removed from the solution after completion of polymerization.
  • grain In obtaining the body, a surfactant and water are added to the solution, and the liquid is liquid-dispersed by stirring, and the solvent is removed by heating in step (1).
  • the present invention relates to a method for producing a polymer, characterized by heating in the range represented
  • the present invention relates to a method for producing a polymer, wherein the polymer is an isobutylene block copolymer.
  • a preferred embodiment relates to a process for producing an isobutylene block copolymer, wherein the solvent removal temperature power in step (1) is 70 ° C or higher and lower than 130 ° C.
  • the internal temperature is 100 ° C or higher and lower than 160 ° C.
  • the present invention relates to a method for producing a characteristic isobutylene-based block copolymer.
  • isobutylene block copolymer force (A) polymer block mainly composed of isobutylene and (B) polymer block force mainly composed of an aromatic vinyl monomer It is related with the manufacturing method of the isobutylene type block copolymer characterized by the above-mentioned.
  • the present invention relates to a method for producing an isobutylene block copolymer, which is a solvent containing butyl butyl chloride and a solvent power of an isobutylene block copolymer solution.
  • a monohalogen carbonization in a stripping process is performed in order to obtain a polymer, in particular, an isobutylene block copolymer resin powder or resin pellet, while reducing the residual solvent in the product.
  • the decomposition of the hydrogen solvent can be suppressed. In other words, it is possible to suppress the production of alcohol associated with the decomposition of the monohalogen hydrocarbon solvent, and to make it possible to reuse the recovered solvent.
  • FIG. 1 is an explanatory diagram of an apparatus for performing solvent removal and steam stripping according to the present invention. Explanation of symbols
  • the polymer of the present invention is not particularly limited as long as it can be solution-polymerized, but an isobutylene polymer is particularly preferably used.
  • the isobutylene polymer of the present invention is not particularly limited as long as it is a polymer containing isobutylene, but (A) a polymer block mainly composed of isobutylene, and (B) an aromatic vinyl system.
  • the polymer block power isobutylene copolymer composed mainly of monomers is preferred. More specifically, monomers such as isoprene and aromatic vinyl monomers are added in the presence of a Lewis acid catalyst. Those obtained by cationic polymerization together with an initiator can be preferably used.
  • the polymer block composed mainly of isobutylene in (A) is usually a polymer block containing 60% by weight or more, preferably 80% by weight or more of isobutylene units.
  • the polymer block composed mainly of the aromatic bulle monomer (B) is usually a polymer containing 60% by weight or more, preferably 80% by weight or more of the aromatic bule monomer unit. It is a block.
  • the aromatic bur monomer is not particularly limited, and examples thereof include styrene, o-, m- or P-methylstyrene, a-methylstyrene, and indene. These may be used alone or in combination of two or more. Of these, styrene, p-methylstyrene, a- methylstyrene or a mixture thereof is particularly preferable from the viewpoint of cost.
  • the Lewis acid catalyst in the present invention is not particularly limited as long as it can be used for cationic polymerization, and examples thereof include metal halides such as TiCl, BC1, BF, A1C1, and SnCl. Of these, tetrasalt-titanium (TiCl 3) is preferable.
  • polymerization solvent used in the cationic polymerization a mixed solvent of primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms and aliphatic and Z or aromatic hydrocarbons is used. it can.
  • the primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms are not particularly limited, and include methyl chloride, methylene chloride, butyl chloride (1 chlorobutane), black benzene, and the like. Can be mentioned. Of these, butyl chloride is preferred in terms of the balance of the solubility of the isobutylene block copolymer, the ease of detoxification by decomposition, the cost, and the like.
  • the aliphatic and Z or aromatic hydrocarbons are not particularly limited, and examples thereof include pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, and toluene. Can be mentioned. One or more selected from the group consisting of methylcyclohexane, ethylcyclohexane and toluene power are particularly preferred.
  • X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group.
  • R 1 and R 2 are the same or different and each represents a monovalent hydrocarbon group hydrogen atom or 1 to 6 carbon atoms, R 1 and R 2 may be different even in the same.
  • R 3 represents a polyvalent aromatic hydrocarbon group or a polyvalent aliphatic hydrocarbon group.
  • n represents a natural number from 1 to 6.
  • Propyl) benzene is also called dicumulant mouth ride.
  • an electron donor component may be allowed to coexist if necessary.
  • examples of such compounds include pyridines, amines, amides, sulfoxides, esters, or metal compounds having an oxygen atom bonded to a metal atom.
  • the respective components are mixed under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C. Especially good for balancing energy costs and polymerization stability. Furthermore, the temperature range is 80 ° C to 1-30 ° C.
  • the number average molecular weight of the isobutylene block copolymer is not particularly limited, but the surface strength such as fluidity, calorific properties, physical properties, etc. is preferably 30000-500000. Especially preferred to be between 50000 and 40 0000! /.
  • the polymer solution containing the isobutylene block copolymer is brought into contact with water or alkali water to deactivate the catalyst to stop the reaction, and then washed with water to obtain a catalyst.
  • a refined dope can be obtained by extracting and removing residues and metal ions.
  • the temperature for deactivation and washing with water is not particularly limited, but is preferably in the range of room temperature to 100 ° C.
  • the amount of water used for deactivation and rinsing is not particularly limited, but the volume ratio of water to the polymer solution is preferably in the range of 1Z10-10.
  • the purified polymer solution obtained in this manner is subsequently subjected to the powder and granule step (1) (also referred to as a crumbization step).
  • the concentration of the resin in the polymer solution is preferably 10-60% by weight by adding the solvent used for polymerization as necessary.
  • the concentration can be adjusted to a desired concentration by using one or more evaporators such as flash evaporation, thin film evaporation, stirring tank, and wet wall type.
  • the polymer solution concentration is high, it can be adjusted to a desired concentration by diluting the solvent.
  • a surfactant and water are added to the purified polymer solution thus obtained, that is, the solution containing the isobutylene block copolymer from which the catalyst has been deactivated and removed, and the mixture is stirred.
  • the resin particles can be obtained by the step (1) in which the solvent is removed by heating while liquid-liquid dispersion.
  • the amount of water to be added is not particularly limited, but it is preferable that the liquid-liquid dispersion has a strength of 0.5 to 4 times that of the polymer solution.
  • the surfactant it is necessary to stably disperse the polymer solution at a high temperature of 70 ° C or higher, and to reduce foaming due to solvent volatilization. It is preferable to use the nonionic surfactant which has. Specific examples include glycerin fatty acid ester, sorbitan ester, propylene glycol fatty acid ester, sucrose fatty acid ester, citrate mono (di or tri) stearate ester, pentaerythritol fatty acid ester, trimethylolpropane fatty acid ester, polyglycerin fatty acid ester.
  • the amount of the nonionic surfactant to be added is not particularly limited, but is preferably 0.05 to 5 parts by weight with respect to the polymer.
  • the amount is less than 0.05 parts by weight, the properties as a surfactant cannot be sufficiently exhibited, and particles are not formed.
  • the amount exceeds 5 parts by weight, the physical properties of the weight body are deteriorated and the problem of foaming in the granular material becomes remarkable, which is not preferable.
  • the refined polymer solution and water are liquid-liquid dispersed in the presence of a nonionic surfactant, and then the solvent is removed by heating (1), whereby fine particles are formed.
  • a vessel equipped with a stirrer is preferably used as the device used for liquid-liquid dispersion by stirring and solvent removal.
  • Arbitrary blades such as screw blades, propeller blades, anchor blades, paddle blades, inclined paddle blades, turbine blades, and large lattice blades can be used. These can be used for the liquid-liquid dispersion operation and the solvent removal operation using the same stirring tank, or after the liquid-liquid dispersion operation is performed in advance to form the dispersion liquid, the solvent removal is subsequently performed in a plurality of stirring tanks. Can also be used.
  • the internal pressure is preferably less than 1.10 times and less than 1.04 times (saturated water vapor pressure calculated from the internal temperature). Since the water is in the can, it cannot be less than 1.000 times. 1. When it is 10 times or more, the mono- and logene ⁇ hydrocarbon solvent for the differential pressure with respect to the saturated water vapor pressure is steam stripping process (2) Disassembled by alcohol This is not preferable because a large amount of sulfite is generated.
  • the liquid temperature in the step (1) is not particularly limited, but is preferably equal to or higher than the azeotropic point of the solvent and water. However, even below the azeotropic point, the solvent can be easily removed by reducing the pressure in the container. Specifically, it is preferably 70 ° C or higher and lower than 130 ° C, more preferably 80 ° C or higher and less than 110 ° C. If it is less than 70 ° C, the solvent removal rate decreases, which is preferable in terms of production efficiency. If the temperature is 130 ° C or higher, the function of the nonionic surfactant is lost and a stable liquid-liquid dispersion system cannot be formed.
  • the aqueous solution containing the obtained rosin powder particles can be further removed by passing through step (2) by a steam stripping operation in which steam is continuously passed through.
  • the vessel used for steam stripping is preferably connected to a pipe for introducing steam, and the method of introducing steam into the stirring vessel is preferably used in the same manner as suspension and solvent removal operations. Further, the steam stripping operation can be carried out by venting steam in the same tank following the removal of the solvent, or can be continued by separately providing a stripping tank.
  • stripping can be performed by bringing steam and a resin slurry into contact with each other by a shelf method.
  • the liquid temperature in the step (2) is not particularly limited, but is preferably 100 ° C or higher and lower than 160 ° C, more preferably 120 ° C or higher and lower than 160 ° C. If it is less than 100 ° C, the solvent removal rate decreases, which is not preferable in terms of production efficiency. If the temperature is 160 ° C or higher, the fusion between the fats and oils is promoted, and a good granular material cannot be obtained.
  • the aqueous solution containing the rosin powder particles after the steam stripping is dehydrated and dried by the step (3) described below.
  • dehydration operations using various filters, centrifuges, and the like can be used.
  • the water content of the dehydrated fat particles after dehydration by this operation is not particularly limited, but it is effective to make it 10 to 50% by weight. is there.
  • the obtained hydrous greaves powder granule is a conductive heat transfer dryer such as a grooved agitator dryer.
  • the rice cake powder is dried by using a hot air heat receiving dryer such as a fluid dryer, etc. It can be a granule.
  • the moisture content in the product powder is not particularly limited, but less than 1% It is preferable to be full.
  • the above-described dehydrated water-containing greaves powder particles or dried product pulverulent particles can be commercialized as rosin pellets using an extruder having a devolatilization mechanism.
  • an extruder having a devolatilization mechanism a single-screw or twin-screw extruder having a vent mechanism can be used.
  • the twin-screw extruder is preferably used from the viewpoint of solvent removal and monomer removal efficiency.
  • the resin discharged from the extruder can be made into a final product by strand cutting, underwater cutting, hot cutting, etc.
  • Molecular weight GPC system manufactured by Waters (column: Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form). The number average molecular weight is expressed in terms of polystyrene.
  • the obtained polymer solution was poured into a large amount of water to stop the reaction. After the reaction was stopped, the polymer solution phase and the aqueous phase were separated with a separating funnel. After the polymer solution phase was washed twice with the same method, it was confirmed that the aqueous layer was neutral, and the polymer solution phase was discharged with a sufficient force to obtain a polymer solution.
  • a pressure-resistant stirrer with a tank volume of 50 liters and an inner diameter of 30 cm is charged with 12.5 liters of pure water and 12.5 liters of the polymer solution obtained in the production example, and 5 parts of nonionic surfactant (polyethylene glycol monostearate) is added. Add lg and seal.
  • the stirrer blade was heated by a jacket while stirring at 400 rpm using a two-stage tilted four-paddle paddle with a blade diameter of 15 cm.
  • Example 2 The same procedure as in Example 1 was performed except that the stripping condition was changed to 160 ° C in the step (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Resin particles or resin pellets of a polymer, especially an isobutylene block copolymer, are obtained while attaining a reduction in residual solvent amount in the product. In the process, a monohalogenated hydrocarbon solvent in a stripping step is inhibited from decomposing and thus yielding an alcohol in order that the solvent to be recovered can be reused. The solvent of a polymer solution is a mixed solvent comprising a C3-8, primary and/or secondary, monohalogenated hydrocarbon and an aliphatic and/or aromatic hydrocarbon. Before resin particles are obtained from the solution containing an isobutylene block copolymer and obtained after polymerization and catalyst deactivation/removal, a surfactant and water are added to the solution and this mixture is heated to remove the solvent with stirring for liquid-liquid dispersion. In this step (1), the actual pressure of the gas phase part in the tank is regulated so as to be in a specific range.

Description

明 細 書  Specification
重合体の製造方法  Method for producing polymer
技術分野  Technical field
[0001] 本発明は、製品中に含有される溶媒を効率的に除去しながら粉粒体ィ匕し、榭脂粉 粒体あるいは榭脂ペレットとして重合体、特にイソブチレン系ブロック共重合体を製造 する方法に関する。  [0001] The present invention prepares a polymer, particularly an isobutylene block copolymer, as a powdered resin particle or a powdered resin pellet while efficiently removing the solvent contained in the product. Regarding the method.
背景技術  Background art
[0002] イソブチレンとスチレン等の芳香族ビニル系単量体とをカチオン重合することにより 、イソブチレンを主成分とする重合体ブロックと芳香族ビュル系単量体を主成分とす る重合体ブロック力 なるイソブチレン系ブロック共重合体の製造法にっ 、ては、例 えば、米国特許第 4946899号 (特許文献 1)明細書に、塩化メチルとメチルシクロへ キサンを組み合わせた混合溶媒中での製造方法が開示されている。  [0002] A polymer block mainly composed of isobutylene and an aromatic butyl monomer by cationic polymerization of isobutylene and an aromatic vinyl monomer such as styrene. For example, US Pat. No. 4,946,899 (Patent Document 1) discloses a method for producing an isobutylene block copolymer in a mixed solvent in which methyl chloride and methylcyclohexane are combined. It is disclosed.
[0003] また特公平 7— 59601号公報 (特許文献 2)にも、塩化メチレンとへキサン力もなる 混合溶媒中で、イソブチレン重合体ブロックとスチレン重合体ブロック力 なるイソブ チレン系ブロック共重合体の製造方法が開示されている。  [0003] Also, Japanese Patent Publication No. 7-59601 (Patent Document 2) discloses an isobutylene block copolymer having an isobutylene polymer block and a styrene polymer block force in a mixed solvent having methylene chloride and hexane power. A manufacturing method is disclosed.
[0004] 一般に、ゴム状重合体の回収方法には、薄膜蒸発機や押出機による溶媒除去後 水中カット方式でペレツトイ匕する方法やスチームストリツビングによって粉粒体ィ匕する 方法が採用されて 、るケースが多!、。  [0004] Generally, a rubbery polymer recovery method employs a method of pelletizing by a submerged cut method after removing a solvent by a thin film evaporator or an extruder or a method of forming a granular material by steam stripping. There are many cases!
[0005] 熱可塑性を示す重合体と溶媒からなる重合体溶液からの溶媒の除去方法につ!、 ては、例えば特開平 8— 041123号公報 (特許文献 3)に、単軸の薄膜蒸発機を用い ることによりスチレンアクリル共重合体の残存溶媒を榭脂の熱的、機械的劣化を引き 起こさずに 1, OOOppm以下にする方法が提案されている。し力しながらこの方法を 本発明で用いるイソブチレン系ブロック共重合体に適用すると、榭脂を溶融状態にし て溶媒を蒸発させるために、榭脂の熱的、機械的劣化による着色などの問題が生じ る。  [0005] Regarding a method for removing a solvent from a polymer solution comprising a polymer exhibiting thermoplasticity and a solvent, see, for example, JP-A-8-041123 (Patent Document 3), a uniaxial thin film evaporator. A method has been proposed in which the residual solvent of the styrene-acrylic copolymer is reduced to 1, OOOppm or less without causing thermal and mechanical deterioration of the resin. However, when this method is applied to the isobutylene block copolymer used in the present invention, since the resin is melted and the solvent is evaporated, there are problems such as coloring due to thermal and mechanical deterioration of the resin. It occurs.
[0006] また、特開 2002— 161109号公報(特許文献 4)に、イソブチレン系ブロック共重合 体の溶媒蒸発に二軸押出機を用いた溶媒除去方法が提案されており、ペレットでの 供給が可能となっている力 残存溶媒を 1, OOOppm以下にするには設備が高価に なり必ずしも有利な方法ではな ヽ。 [0006] Further, JP 2002-161109 A (Patent Document 4) proposes a solvent removal method using a twin screw extruder for solvent evaporation of an isobutylene block copolymer. The power that can be supplied To reduce the residual solvent to 1, OOOppm or less, the equipment becomes expensive and not necessarily an advantageous method.
[0007] 一方、スチームストリツビングによる粉粒体の製造法としては、重合体溶液を分散剤 を含む熱水中に注入し、溶媒を揮発、回収する方法が一般的であり、その場合水の 存在下で高温にさらされることとなり、炭素数 3〜8の 1級及び Z又は 2級のモノハロ ゲンィ匕炭化水素の分解によりアルコールの生成が避けられず、これが溶媒に溶解し[0007] On the other hand, as a method for producing a granular material by steam stripping, a method in which a polymer solution is poured into hot water containing a dispersant, and the solvent is volatilized and recovered is generally used. In the presence of water, it is exposed to high temperatures, and the generation of alcohol is inevitable due to the decomposition of primary and Z or secondary monohalogen 匕 hydrocarbons having 3 to 8 carbon atoms, which dissolves in the solvent.
、回収後再度重合溶媒として使用する場合に重合阻害を起こすことが知られている。 It is known that polymerization is inhibited when it is used again as a polymerization solvent after recovery.
[0008] 特にこの現象は塩ィ匕ブチルで顕著であり、この場合ブタノールを生成する。これが 溶媒中に蓄積して 50ppm以上となると、その溶媒は回収後重合に供することができ なくなり、多大な溶剤ロスを生じるという課題があった。 [0008] This phenomenon is particularly prominent with butyl chloride, which produces butanol. When this accumulated in the solvent and became 50 ppm or more, the solvent could not be used for polymerization after recovery, and there was a problem that a great amount of solvent was lost.
[0009] このようにイソブチレン系ブロック共重合体力 榭脂粉粒体あるいは榭脂ペレットを 製造するにあたっての諸問題を解決し、残存溶媒の低い製品を安定的に生産する 製造プロセスの開発が望まれて 、た。 [0009] Thus, there is a demand for development of a production process that solves various problems in producing isobutylene-based block copolymer, resin particles, and resin pellets, and stably produces products with low residual solvent. It was.
特許文献 1:米国特許第 4946899号  Patent Document 1: US Pat. No. 4,946,899
特許文献 2:特公平 7— 59601号  Patent Document 2: Japanese Patent Publication No. 7-59601
特許文献 3:特開平 8— 041123号  Patent Document 3: JP-A-8-041123
特許文献 4:特開 2002— 161109号  Patent Document 4: Japanese Patent Laid-Open No. 2002-161109
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は、上記現状に鑑み、重合体の榭脂粉粒体あるいは榭脂ペレット、特にス チームストリツビングによるアルコールの生成が極めて少ないイソブチレン系ブロック 共重合体の榭脂粉粒体あるいは榭脂ペレットを安定的に製造できる方法を提供する ことを目的とするものである。 [0010] In view of the above-mentioned situation, the present invention provides a rosin powder granule or cocoon powder of a polymer, particularly an isobutylene block copolymer or cocoon of an isobutylene block copolymer that generates very little alcohol by steam stripping. The object is to provide a method capable of stably producing fat pellets.
課題を解決するための手段  Means for solving the problem
[0011] 本発明は、重合体溶液力も溶媒を除去することにより榭脂粉粒体あるいは榭脂ペレ ットを製造する方法であり、重合体溶液の溶媒が、炭素数 3〜8の 1級及び Z又は 2 級のモノハロゲンィ匕炭化水素と脂肪族及び Z又は芳香族炭化水素との混合溶媒で あって、触媒を失活、除去した重合体を含有する重合終了後の溶液から、榭脂粉粒 体を得るにあたって、該溶液に、界面活性剤、及び水を加え、撹拌により液 液分散 させながら、加熱により溶媒を除去する工程(1)において実際の缶内気相部の圧力 が以下の式で表される範囲で加熱することを特徴とする重合体の製造方法に関する [0011] The present invention is a method for producing a coconut powder granule or a coconut pellet by removing the solvent of the polymer solution, and the solvent of the polymer solution is a primary having 3 to 8 carbon atoms and A mixed solvent of Z or secondary monohalogen 匕 hydrocarbons and aliphatic and Z or aromatic hydrocarbons containing a polymer in which the catalyst is deactivated and removed from the solution after completion of polymerization. grain In obtaining the body, a surfactant and water are added to the solution, and the liquid is liquid-dispersed by stirring, and the solvent is removed by heating in step (1). The present invention relates to a method for producing a polymer, characterized by heating in the range represented
(P1/P2X 1. 10 (P1 / P2X 1.10
Pl =実際の缶内気相部の圧力(MPa)  Pl = Actual pressure in the gas phase inside the can (MPa)
P2=内温から計算された飽和水蒸気圧(MPa)  P2 = saturated water vapor pressure (MPa) calculated from internal temperature
好ましい実施態様としては、重合体が、イソブチレン系ブロック共重合体であること を特徴とする重合体の製造方法に関する。  In a preferred embodiment, the present invention relates to a method for producing a polymer, wherein the polymer is an isobutylene block copolymer.
[0012] 好ましい実施態様としては、工程(1)の溶媒除去温度力 70°C以上、 130°C未満 であることを特徴とするイソブチレン系ブロック共重合体の製造方法に関する。 [0012] A preferred embodiment relates to a process for producing an isobutylene block copolymer, wherein the solvent removal temperature power in step (1) is 70 ° C or higher and lower than 130 ° C.
[0013] 好ましい実施態様としては、工程(1)に引き続き、スチームを吹き込み、残存溶媒を 除去するスチームストリッピング工程(2)において、内温が 100°C以上、 160°C未満 であることを特徴とするイソブチレン系ブロック共重合体の製造方法に関する。 [0013] In a preferred embodiment, following the step (1), in the steam stripping step (2) in which steam is blown and the residual solvent is removed, the internal temperature is 100 ° C or higher and lower than 160 ° C. The present invention relates to a method for producing a characteristic isobutylene-based block copolymer.
[0014] 好ましい実施態様としては、イソブチレン系ブロック共重合体力 (A)イソブチレン を主体として構成される重合体ブロックと(B)芳香族ビニル系単量体を主体として構 成される重合体ブロック力 なる重合体であることを特徴とするイソブチレン系ブロック 共重合体の製造方法に関する。 As a preferred embodiment, isobutylene block copolymer force (A) polymer block mainly composed of isobutylene and (B) polymer block force mainly composed of an aromatic vinyl monomer It is related with the manufacturing method of the isobutylene type block copolymer characterized by the above-mentioned.
[0015] 好ま 、実施態様としては、イソブチレン系ブロック共重合体溶液の溶媒力 塩ィ匕 ブチルを含む溶媒であることを特徴とするイソブチレン系ブロック共重合体の製造方 法に関する。 [0015] Preferably, the present invention relates to a method for producing an isobutylene block copolymer, which is a solvent containing butyl butyl chloride and a solvent power of an isobutylene block copolymer solution.
発明の効果  The invention's effect
[0016] 本発明によると、製品中の残存溶媒を低減しながら、重合体、特にイソブチレン系 ブロック共重合体の榭脂粉粒体あるいは榭脂ペレットを得るにあたって、ストリツピン グ工程におけるモノハロゲンィ匕炭化水素溶媒の分解を抑制することができる。すなわ ち、モノハロゲンィ匕炭化水素溶媒の分解に伴うアルコールの生成を抑制することがで き、回収した溶媒の再利用を可能とすることができる。  [0016] According to the present invention, a monohalogen carbonization in a stripping process is performed in order to obtain a polymer, in particular, an isobutylene block copolymer resin powder or resin pellet, while reducing the residual solvent in the product. The decomposition of the hydrogen solvent can be suppressed. In other words, it is possible to suppress the production of alcohol associated with the decomposition of the monohalogen hydrocarbon solvent, and to make it possible to reuse the recovered solvent.
図面の簡単な説明 [0017] [図 1]本発明の溶媒除去およびスチームストリツビングを行う装置の説明図である。 符号の説明 Brief Description of Drawings FIG. 1 is an explanatory diagram of an apparatus for performing solvent removal and steam stripping according to the present invention. Explanation of symbols
[0018] 1 攪拌槽 [0018] 1 stirring tank
2 原料仕込みライン  2 Raw material preparation line
3、 4 ジャケット温水ライン  3, 4 Jacket hot water line
5 コンデンサ  5 capacitors
6 溶媒回収ライン  6 Solvent recovery line
7 蒸気吹き込みライン  7 Steam blowing line
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明の重合体は、溶液重合できるものであれば特に制限はな 、が、特にイソブ チレン系重合体が好ましく使用される。  [0019] The polymer of the present invention is not particularly limited as long as it can be solution-polymerized, but an isobutylene polymer is particularly preferably used.
[0020] 本発明のイソブチレン系重合体は、イソブチレンを含む重合体であれば特に限定 はないが、(A)イソブチレンを主体として構成される重合体ブロックと、(B)芳香族ビ -ル系単量体を主体として構成される重合体ブロック力 なるイソブチレン系共重合 体が好ましぐ具体的には、イソプチレンと芳香族ビニル系単量体などの単量体をル イス酸触媒の存在下で開始剤と共にカチオン重合して得られるものが好適に使用で きる。  [0020] The isobutylene polymer of the present invention is not particularly limited as long as it is a polymer containing isobutylene, but (A) a polymer block mainly composed of isobutylene, and (B) an aromatic vinyl system. The polymer block power isobutylene copolymer composed mainly of monomers is preferred. More specifically, monomers such as isoprene and aromatic vinyl monomers are added in the presence of a Lewis acid catalyst. Those obtained by cationic polymerization together with an initiator can be preferably used.
[0021] (A)のイソブチレンを主体として構成される重合体ブロックは、通常、イソブチレン単 位を 60重量%以上、好ましくは 80重量%以上含有する重合体ブロックである。また、 (B)の芳香族ビュル系単量体を主体として構成される重合体ブロックは、通常、芳香 族ビュル系単量体単位を 60重量%以上、好ましくは 80重量%以上含有する重合体 ブロックである。  [0021] The polymer block composed mainly of isobutylene in (A) is usually a polymer block containing 60% by weight or more, preferably 80% by weight or more of isobutylene units. In addition, the polymer block composed mainly of the aromatic bulle monomer (B) is usually a polymer containing 60% by weight or more, preferably 80% by weight or more of the aromatic bule monomer unit. It is a block.
[0022] 芳香族ビュル系単量体としては特に限定されず、例えば、スチレン、 o—、 m—又は P—メチルスチレン、 a—メチルスチレン、インデン等が挙げられる。これらは単独で 用いてもよぐ 2種以上を併用してもよい。なかでも、コストの面から、スチレン、 p—メ チルスチレン、 aーメチルスチレン又はこれらの混合物が特に好ましい。 [0022] The aromatic bur monomer is not particularly limited, and examples thereof include styrene, o-, m- or P-methylstyrene, a-methylstyrene, and indene. These may be used alone or in combination of two or more. Of these, styrene, p-methylstyrene, a- methylstyrene or a mixture thereof is particularly preferable from the viewpoint of cost.
[0023] 本発明におけるルイス酸触媒は、カチオン重合に使用できるものであれば特に限 定されず、 TiCl、 BC1、 BF、 A1C1、 SnCl等のハロゲン化金属を挙げることができ る力 なかでも四塩ィ匕チタン (TiCl )が好ましい。 [0023] The Lewis acid catalyst in the present invention is not particularly limited as long as it can be used for cationic polymerization, and examples thereof include metal halides such as TiCl, BC1, BF, A1C1, and SnCl. Of these, tetrasalt-titanium (TiCl 3) is preferable.
4  Four
[0024] 上記カチオン重合において用いられる重合溶媒としては、炭素数 3〜8の 1級及び Z又は 2級のモノハロゲン化炭化水素と脂肪族及び Z又は芳香族炭化水素との混 合溶媒が使用できる。  [0024] As the polymerization solvent used in the cationic polymerization, a mixed solvent of primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms and aliphatic and Z or aromatic hydrocarbons is used. it can.
[0025] 上記炭素数 3〜8の 1級及び Z又は 2級のモノハロゲンィ匕炭化水素としては特に限 定されず、塩化メチル、塩化メチレン、塩化ブチル(1 クロロブタン)、クロ口ベンゼン などを挙げることができる。この中でも、イソブチレン系ブロック共重合体の溶解度、 分解による無害化の容易さ、コスト等のバランスから、塩化ブチルが好適である。  [0025] The primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms are not particularly limited, and include methyl chloride, methylene chloride, butyl chloride (1 chlorobutane), black benzene, and the like. Can be mentioned. Of these, butyl chloride is preferred in terms of the balance of the solubility of the isobutylene block copolymer, the ease of detoxification by decomposition, the cost, and the like.
[0026] また、上記脂肪族及び Z又は芳香族系炭化水素としては特に限定されず、例えば 、ペンタン、へキサン、ヘプタン、オクタン、シクロへキサン、メチルシクロへキサン、ェ チルシクロへキサン、トルエン等が挙げられる。メチルシクロへキサン、ェチルシクロ へキサン及びトルエン力もなる群より選ばれる 1種以上が特に好ましい。  [0026] The aliphatic and Z or aromatic hydrocarbons are not particularly limited, and examples thereof include pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, and toluene. Can be mentioned. One or more selected from the group consisting of methylcyclohexane, ethylcyclohexane and toluene power are particularly preferred.
[0027] なお、カチオン重合の際に用いる開始剤としては、下記式 (I)で表される化合物を 用いるのが好ましい。 [0027] As the initiator used in the cationic polymerization, a compound represented by the following formula (I) is preferably used.
[0028] (CR'R'X) R3 (I) [0028] (CR'R'X) R 3 (I)
[式中、 Xは、ハロゲン原子又は炭素数 1〜6のアルコキシ基若しくはァシロキシ基 を表す。 R1及び R2は、同一又は異なって、水素原子又は炭素数 1〜6の 1価炭化水 素基を表し、 R1と R2は同一であっても異なっていてもよい。 R3は多価芳香族炭化水 素基又は多価脂肪族炭化水素基を表す。 nは 1〜6の自然数を示す。 ] [Wherein, X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group. R 1 and R 2 are the same or different and each represents a monovalent hydrocarbon group hydrogen atom or 1 to 6 carbon atoms, R 1 and R 2 may be different even in the same. R 3 represents a polyvalent aromatic hydrocarbon group or a polyvalent aliphatic hydrocarbon group. n represents a natural number from 1 to 6. ]
上記一般式 (I)の化合物の具体例としては、 1 , 4 ビス(ひ クロル イソプロピル )ベンゼン [C H (C (CH ) C1) ]が挙げられる [なお、 1, 4 ビス(α—クロル一イソ  Specific examples of the compound represented by the general formula (I) include 1,4 bis (chloroisopropyl) benzene [CH (C (CH) C1)] [note that 1,4 bis (α-chloromonoiso)
6 4 3 2 2  6 4 3 2 2
プロピル)ベンゼンはジクミルク口ライドとも呼ばれる]。  Propyl) benzene is also called dicumulant mouth ride].
[0029] イソブチレン系ブロック共重合体の重合に際しては、更に必要に応じて電子供与体 成分を共存させることもできる。このような化合物として、例えば、ピリジン類、アミン類 、アミド類、スルホキシド類、エステル類、又は、金属原子に結合した酸素原子を有す る金属化合物等を挙げることができる。  [0029] In the polymerization of the isobutylene block copolymer, an electron donor component may be allowed to coexist if necessary. Examples of such compounds include pyridines, amines, amides, sulfoxides, esters, or metal compounds having an oxygen atom bonded to a metal atom.
[0030] 実際の重合を行うに当たっては、各成分を冷却下、例えば 100°C以上 0°C未満 の温度で混合する。エネルギーコストと重合の安定性を釣り合わせるために、特に好 まし 、温度範囲は 80°C〜一 30°Cである。 [0030] In carrying out the actual polymerization, the respective components are mixed under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C. Especially good for balancing energy costs and polymerization stability. Furthermore, the temperature range is 80 ° C to 1-30 ° C.
[0031] またイソブチレン系ブロック共重合体の数平均分子量にも特に制限はないが、流動 '性、カロ工'性、物'性等の面力ら、 30000〜500000であること力 S好ましく、 50000〜40 0000であることが特に好まし!/、。  [0031] Further, the number average molecular weight of the isobutylene block copolymer is not particularly limited, but the surface strength such as fluidity, calorific properties, physical properties, etc. is preferably 30000-500000. Especially preferred to be between 50000 and 40 0000! /.
[0032] 重合後のイソブチレン系ブロック共重合体を含有する重合体溶液は、水またはアル カリ水と接触させて、触媒を失活して反応を停止させた後、引き続き水洗を行い、触 媒残查や金属イオンを抽出、除去して、精製ドープを得ることができる。  [0032] After the polymerization, the polymer solution containing the isobutylene block copolymer is brought into contact with water or alkali water to deactivate the catalyst to stop the reaction, and then washed with water to obtain a catalyst. A refined dope can be obtained by extracting and removing residues and metal ions.
[0033] 失活及び水洗温度は特に制限されるものではないが、常温〜 100°Cの範囲が好ま しい。また、失活及び水洗に使用する水量は、特に限定されるものではないが、重合 体溶液に対する水の体積比が 1Z10〜10の範囲が好ましい。  [0033] The temperature for deactivation and washing with water is not particularly limited, but is preferably in the range of room temperature to 100 ° C. The amount of water used for deactivation and rinsing is not particularly limited, but the volume ratio of water to the polymer solution is preferably in the range of 1Z10-10.
[0034] このようにして得られた精製重合体溶液は、引き続き、粉粒体ィ匕工程(1)に供され る(クラム化工程とも呼ばれる)。重合体溶液中の榭脂濃度は、必要に応じて重合に 使用した溶媒を加え、 10〜60重量%として粉粒体ィ匕することが望ましい。ドープ濃 度が低い場合には、フラッシュ蒸発、薄膜式蒸発、撹拌槽、濡れ壁式等の蒸発機を 単独あるいは複数用いることにより所望濃度に調整することができる。また、重合体溶 液濃度が高い場合には、溶剤を希釈することにより所望濃度に調整することができる  [0034] The purified polymer solution obtained in this manner is subsequently subjected to the powder and granule step (1) (also referred to as a crumbization step). The concentration of the resin in the polymer solution is preferably 10-60% by weight by adding the solvent used for polymerization as necessary. When the dope concentration is low, the concentration can be adjusted to a desired concentration by using one or more evaporators such as flash evaporation, thin film evaporation, stirring tank, and wet wall type. In addition, when the polymer solution concentration is high, it can be adjusted to a desired concentration by diluting the solvent.
[0035] このようにして得られた精製重合体溶液、すなわち触媒を失活、除去したイソブチレ ン系ブロック共重合体を含有する重合終了後の溶液に、界面活性剤及び水を加え、 撹拌により液 液分散させながら、加熱により溶媒を除去する工程(1)により榭脂粉 粒体を得ることができる。加える水の量は、特に制限はないが、液 液分散のしゃす さ等力も重合体溶液に対し、 0. 5〜4倍の容積としてカ卩えるのが好ましい。 [0035] A surfactant and water are added to the purified polymer solution thus obtained, that is, the solution containing the isobutylene block copolymer from which the catalyst has been deactivated and removed, and the mixture is stirred. The resin particles can be obtained by the step (1) in which the solvent is removed by heating while liquid-liquid dispersion. The amount of water to be added is not particularly limited, but it is preferable that the liquid-liquid dispersion has a strength of 0.5 to 4 times that of the polymer solution.
[0036] 界面活性剤としては、 70°C以上の高温下で重合体溶液を安定した液 液分散さ せ、かつ溶媒揮発による泡立ちを低減させる必要があるため、溶媒除去温度以上の 曇点を有する非イオン界面活性剤を使用することが好ましい。具体例としては、グリセ リン脂肪酸エステル、ソルビタンエステル、プロピレングリコール脂肪酸エステル、ショ 糖脂肪酸エステル、クェン酸モノ (ジ又はトリ)ステアリンエステル、ペンタエリストール 脂肪酸エステル、トリメチロールプロパン脂肪酸エステル、ポリグリセリン脂肪酸エステ ル、ポリオキシエチレングリセリン脂肪酸エステル、ポリエステル、ポリオキシエチレン ソルビタン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリプロピレング リコール脂肪酸エステル、ポリオキシエチレングリコール脂肪アルコールエーテル、ポ リオキシエチレンアルキルフエ-ルエーテル、 N, N ビス(2—ヒドロキシエチレン)脂 肪ァミン、脂肪酸とジエタノールとの縮合生成物、ポリオキシエチレンとポリオキシプロ ピレンとのブロックポリマー、ポリエチレングリコール、ポリプロピレングリコールなどが 挙げられる。これらは単独で用いてもよいし、あるいは 2種以上組み合わせて用いて もよい。加える非イオン界面活性剤の量は、特に制限はないが、重合体に対し 0. 05 重量部から 5重量部が好ましい。 0. 05重量部以下では界面活性剤としての特性が 十分発揮できず、粒子が形成されない。また、 5重量部を超えると重量体の物性低下 、粉粒体ィ匕における泡立ちの問題が顕著になり好ましくない。 [0036] As the surfactant, it is necessary to stably disperse the polymer solution at a high temperature of 70 ° C or higher, and to reduce foaming due to solvent volatilization. It is preferable to use the nonionic surfactant which has. Specific examples include glycerin fatty acid ester, sorbitan ester, propylene glycol fatty acid ester, sucrose fatty acid ester, citrate mono (di or tri) stearate ester, pentaerythritol fatty acid ester, trimethylolpropane fatty acid ester, polyglycerin fatty acid ester. Polyoxyethylene glycerin fatty acid ester, polyester, polyoxyethylene sorbitan fatty acid ester, polyethylene glycol fatty acid ester, polypropylene glycol fatty acid ester, polyoxyethylene glycol fatty alcohol ether, polyoxyethylene alkylphenol ether, N, N bis Examples thereof include (2-hydroxyethylene) fatty amines, condensation products of fatty acids and diethanol, block polymers of polyoxyethylene and polyoxypropylene, polyethylene glycol, and polypropylene glycol. These may be used alone or in combination of two or more. The amount of the nonionic surfactant to be added is not particularly limited, but is preferably 0.05 to 5 parts by weight with respect to the polymer. If the amount is less than 0.05 parts by weight, the properties as a surfactant cannot be sufficiently exhibited, and particles are not formed. On the other hand, when the amount exceeds 5 parts by weight, the physical properties of the weight body are deteriorated and the problem of foaming in the granular material becomes remarkable, which is not preferable.
[0037] 本発明で精製重合体溶液と水を非イオン界面活性剤存在下で液 液分散させ、 引き続き、加熱による溶媒の除去を行う工程(1)により、粉粒体が良好に形成される。 撹拌による液—液分散、及び溶媒除去に用いられる装置としては攪拌機を備えた容 器が好適に用いられる。攪拌翼の形状には特に制約はなぐスクリュー翼、プロペラ 翼、アンカー翼、パドル翼、傾斜パドル翼、タービン翼、大型格子翼等の任意の翼を 使用することができる。これらは、同一の攪拌槽を用いて液一液分散操作と溶媒除去 操作を行うこともできるし、予め液 液分散操作を実施して分散液を形成させた後に 引き続き溶媒除去を複数の攪拌槽を用いて行うこともできる。  [0037] In the present invention, the refined polymer solution and water are liquid-liquid dispersed in the presence of a nonionic surfactant, and then the solvent is removed by heating (1), whereby fine particles are formed. . A vessel equipped with a stirrer is preferably used as the device used for liquid-liquid dispersion by stirring and solvent removal. Arbitrary blades such as screw blades, propeller blades, anchor blades, paddle blades, inclined paddle blades, turbine blades, and large lattice blades can be used. These can be used for the liquid-liquid dispersion operation and the solvent removal operation using the same stirring tank, or after the liquid-liquid dispersion operation is performed in advance to form the dispersion liquid, the solvent removal is subsequently performed in a plurality of stirring tanks. Can also be used.
[0038] 工程(1)における圧力に関しては、実際の缶内気相部の圧力が以下の式で表され る範囲で加熱する必要がある。  [0038] Regarding the pressure in the step (1), it is necessary to heat the actual pressure inside the can in the range represented by the following formula.
(P1/P2X 1. 10  (P1 / P2X 1.10
Pl =実際の缶内気相部の圧力(MPa)  Pl = Actual pressure in the gas phase inside the can (MPa)
P2=内温から計算された飽和水蒸気圧(MPa)  P2 = saturated water vapor pressure (MPa) calculated from internal temperature
すなわち、工程(1)の払い出しは、内圧が、(内温から計算された飽和水蒸気圧)に 対し 1. 10倍未満であり、 1. 04倍未満であることが好ましい。缶内に水があるため 1. 00倍未満にはなり得ず、 1. 10倍以上であると飽和水蒸気圧に対する差圧分のモノ ノ、ロゲンィ匕炭化水素溶媒がスチームストリッピング工程 (2)によって分解してアルコー ルが多く生成するため、好ましくない。 That is, in the dispensing in step (1), the internal pressure is preferably less than 1.10 times and less than 1.04 times (saturated water vapor pressure calculated from the internal temperature). Since the water is in the can, it cannot be less than 1.000 times. 1. When it is 10 times or more, the mono- and logene 匕 hydrocarbon solvent for the differential pressure with respect to the saturated water vapor pressure is steam stripping process (2) Disassembled by alcohol This is not preferable because a large amount of sulfite is generated.
[0039] 工程(1)の液温度は、特に限定されないが、溶媒と水の共沸点以上であることが好 ま 、。ただしその共沸点未満でも容器内を減圧下にすれば容易に溶媒を除去する ことができる。具体的には、 70°C以上、 130°C未満が好ましぐ 80°C以上、 110°C未 満がさらに好ましい。 70°C未満であると、溶剤除去速度が低下し生産効率の面で好 ましくな 、。また 130°C以上であると非イオン界面活性剤の働きがなくなり安定した液 液分散系を形成できな 、。  [0039] The liquid temperature in the step (1) is not particularly limited, but is preferably equal to or higher than the azeotropic point of the solvent and water. However, even below the azeotropic point, the solvent can be easily removed by reducing the pressure in the container. Specifically, it is preferably 70 ° C or higher and lower than 130 ° C, more preferably 80 ° C or higher and less than 110 ° C. If it is less than 70 ° C, the solvent removal rate decreases, which is preferable in terms of production efficiency. If the temperature is 130 ° C or higher, the function of the nonionic surfactant is lost and a stable liquid-liquid dispersion system cannot be formed.
[0040] 得られた榭脂粉粒体を含む水溶液は、引き続きスチームを通気させるスチームスト リツビング操作による工程 (2)を経ることにより、残留する溶媒をさらに除去することも できる。スチームストリツビングに用いる容器は蒸気を導入する配管が接続されて ヽ ればよぐ懸濁及び溶媒除去操作と同様に攪拌容器に蒸気を導入する方法が好適 に使用される。また、スチームストリツビングの操作は、溶媒除去に引き続き同一の槽 で蒸気を通気し実施することもできるし、別途ストリツピング槽を設けて引き続き実施 することもできる。また、連続方式として、通気攪拌槽を 1槽以上連結させる場合や、 棚段方式で蒸気と榭脂スラリーを接触させることによりストリツビングを行うこともできる  [0040] The aqueous solution containing the obtained rosin powder particles can be further removed by passing through step (2) by a steam stripping operation in which steam is continuously passed through. The vessel used for steam stripping is preferably connected to a pipe for introducing steam, and the method of introducing steam into the stirring vessel is preferably used in the same manner as suspension and solvent removal operations. Further, the steam stripping operation can be carried out by venting steam in the same tank following the removal of the solvent, or can be continued by separately providing a stripping tank. In addition, as a continuous method, when one or more aeration and stirring tanks are connected, stripping can be performed by bringing steam and a resin slurry into contact with each other by a shelf method.
[0041] 工程(2)の液温度は、特に限定されないが、 100°C以上、 160°C未満であることが 好ましぐ 120°C以上、 160°C未満がさらに好ましい。 100°C未満であると、溶剤除去 速度が低下し生産効率の面で好ましくない。 160°C以上であると、榭脂間の融着が 促進され良好な粉粒体が得られな ヽ。 [0041] The liquid temperature in the step (2) is not particularly limited, but is preferably 100 ° C or higher and lower than 160 ° C, more preferably 120 ° C or higher and lower than 160 ° C. If it is less than 100 ° C, the solvent removal rate decreases, which is not preferable in terms of production efficiency. If the temperature is 160 ° C or higher, the fusion between the fats and oils is promoted, and a good granular material cannot be obtained.
[0042] スチームストリツビング後の榭脂粉粒体を含む水溶液は、以下説明する工程 (3)に より、脱水、乾燥される。榭脂粉粒体を含む水溶液力ゝら榭脂粉粒体を回収するため には、各種濾過機、遠心分離機などによる脱水操作を用いることができる。本操作に よる脱水後の榭脂粉粒体の含水率は、特に制限されるものではないが、 10〜50重 量%とすること力 乾燥ある 、はペレツトイ匕でのエネルギー効率の点で有効である。  [0042] The aqueous solution containing the rosin powder particles after the steam stripping is dehydrated and dried by the step (3) described below. In order to recover the rosin powder particles including the aqueous solution containing the rosin powder particles, dehydration operations using various filters, centrifuges, and the like can be used. The water content of the dehydrated fat particles after dehydration by this operation is not particularly limited, but it is effective to make it 10 to 50% by weight. is there.
[0043] 得られた含水榭脂粉粒体は、溝型撹拌乾燥機などの伝導伝熱式乾燥機ある ヽは 流動乾燥機などの熱風受熱式乾燥機などを用いて乾燥することにより、製品粉粒体 とすることができる。製品粉粒体中の水分は特に制限されるものではないが、 1%未 満とするのが好ましい。 [0043] The obtained hydrous greaves powder granule is a conductive heat transfer dryer such as a grooved agitator dryer. The rice cake powder is dried by using a hot air heat receiving dryer such as a fluid dryer, etc. It can be a granule. The moisture content in the product powder is not particularly limited, but less than 1% It is preferable to be full.
[0044] また、上述した脱水後の含水榭脂粉粒体、または乾燥後の製品粉粒体を脱揮機構 を有する押出機を用いて榭脂ペレットとして製品化することができる。脱揮機構を有 する押出機としては、ベント機構を有する単軸、二軸押出機を用いることができ、特に 、二軸押出機が脱溶媒、脱モノマー効率の点から好適に使用される。押出機より排 出される榭脂は、ストランドカット、水中カット、ホットカット方式等により最終製品とする ことちでさる。  [0044] In addition, the above-described dehydrated water-containing greaves powder particles or dried product pulverulent particles can be commercialized as rosin pellets using an extruder having a devolatilization mechanism. As the extruder having a devolatilization mechanism, a single-screw or twin-screw extruder having a vent mechanism can be used. In particular, the twin-screw extruder is preferably used from the viewpoint of solvent removal and monomer removal efficiency. The resin discharged from the extruder can be made into a final product by strand cutting, underwater cutting, hot cutting, etc.
実施例  Example
[0045] 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例 のみに限定されるものではない。  [0045] Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[0046] 本実施例に示すブロック共重合体の分子量および引張強度は以下に示す方法で 測定した。 [0046] The molecular weight and tensile strength of the block copolymer shown in this example were measured by the following methods.
[0047] 分子量: Waters社製 GPCシステム(カラム:昭和電工 (株)製 Shodex K— 804 ( ポリスチレンゲル)、移動相:クロ口ホルム)。数平均分子量はポリスチレン換算で表記 した。  [0047] Molecular weight: GPC system manufactured by Waters (column: Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form). The number average molecular weight is expressed in terms of polystyrene.
[0048] (製造例)  [0048] (Production example)
攪拌機付き 20L反応容器に、塩化ブチル (モレキュラーシーブスで水分除去したも の) 3. 70kg、へキサン(モレキュラーシーブスで水分除去したもの) 1. 92kg、p—ジ タミルクロライド 2. 90gを加えた。反応容器を— 70°Cに冷却した後、 N, N—ジメチル ァセトアミド 2. 18g、イソブチレン 844gを添カ卩した。さらに四塩化チタン 85gをカ卩えて 重合を開始し、—70°Cで溶液を攪拌しながら 2時間反応させた。次いで反応溶液に スチレン 408gを添加し、さらに 30分間反応を続け、重合体溶液を得た。  To a 20 L reactor equipped with a stirrer, 3.70 kg of butyl chloride (water removed by molecular sieves), 1.92 kg of hexane (water removed by molecular sieves), 1.92 kg, and 2.90 g of p-dimethyl milk chloride were added. After the reaction vessel was cooled to -70 ° C, 2.18 g of N, N-dimethylacetamide and 844 g of isobutylene were added. Further, 85 g of titanium tetrachloride was added to initiate polymerization, and the reaction was allowed to proceed for 2 hours while stirring the solution at -70 ° C. Next, 408 g of styrene was added to the reaction solution, and the reaction was further continued for 30 minutes to obtain a polymer solution.
[0049] 得られた重合体溶液を大量の水中へあけて反応を停止させた。反応停止後、分液 ロートで重合体溶液相と水相を分離した。同様の方法で重合体溶液相の水洗を 2回 行った後、水層が中性になっているのを確認して力も重合体溶液相を払い出し、重 合体溶液を得た。 [0049] The obtained polymer solution was poured into a large amount of water to stop the reaction. After the reaction was stopped, the polymer solution phase and the aqueous phase were separated with a separating funnel. After the polymer solution phase was washed twice with the same method, it was confirmed that the aqueous layer was neutral, and the polymer solution phase was discharged with a sufficient force to obtain a polymer solution.
[0050] GPC分析を行ったところ、数平均分子量が 100, 000、分子量分布が 1. 14であつ [0051] (実施例 1) [0050] GPC analysis showed that the number average molecular weight was 100,000 and the molecular weight distribution was 1.14. [0051] (Example 1)
槽容積 50リットル、内径 30cmの耐圧攪拌装置に、純水 12. 5リットルおよび製造例 で得た重合体溶液 12. 5リットルを仕込み、非イオン界面活性剤(ポリエチレングリコ ールモノステアレート)を 5. lg添加し密閉した。撹拌翼には翼径 15cmの 2段 4枚傾 斜パドルを用いて、 400rpmで攪拌しながらジャケットで昇温した。  A pressure-resistant stirrer with a tank volume of 50 liters and an inner diameter of 30 cm is charged with 12.5 liters of pure water and 12.5 liters of the polymer solution obtained in the production example, and 5 parts of nonionic surfactant (polyethylene glycol monostearate) is added. Add lg and seal. The stirrer blade was heated by a jacket while stirring at 400 rpm using a two-stage tilted four-paddle paddle with a blade diameter of 15 cm.
[0052] 撹拌槽内温が 90°Cに到達した時点で溶媒ガスを耐圧攪拌装置に付設したコンデ ンサに導入し、逐次溶媒を回収した。発泡に注意しながら内圧を加減し、内圧 (絶対 圧力) 0. 1013MPa、内温 99°C (飽和水蒸気圧 0. 0978MPa)となった時点で撹拌 槽を密閉して引き続きスチームストリツビングを行った (工程 (2) )。ストリツビング条件 は 150°Cを 60分間維持しながら撹拌槽下部より蒸気を吹き込む方法を採用した。  [0052] When the internal temperature of the stirring tank reached 90 ° C, solvent gas was introduced into a capacitor attached to the pressure-resistant stirrer, and the solvent was sequentially recovered. The internal pressure was adjusted while paying attention to foaming. When the internal pressure (absolute pressure) reached 0.113 MPa and the internal temperature reached 99 ° C (saturated water vapor pressure 0.0978 MPa), the stirring tank was sealed and steam stripping continued. (Process (2)). For the stripping conditions, steam was blown from the bottom of the stirring tank while maintaining 150 ° C for 60 minutes.
[0053] これら工程(1)、 (2)を通して得られる凝縮液の溶媒中のブタノール濃度を測定し、 表 1に示すように、得られた凝縮液(回収溶媒)中のブタノール濃度は 2ppmであった  [0053] The concentration of butanol in the solvent of the condensate obtained through these steps (1) and (2) was measured. As shown in Table 1, the butanol concentration in the obtained condensate (recovered solvent) was 2 ppm. there were
[0054] (実施例 2) [0054] (Example 2)
工程(2)においてストリツビング条件を 160°Cとした以外は実施例 1と同様に実施し た。  The same procedure as in Example 1 was performed except that the stripping condition was changed to 160 ° C in the step (2).
[0055] 表 1に併せて示すように、得られた凝縮液(回収溶媒)中のブタノール濃度は 18pp mであった。  [0055] As also shown in Table 1, the butanol concentration in the obtained condensate (recovered solvent) was 18 ppm.
[0056] (比較例 1) [0056] (Comparative Example 1)
工程(1)において内圧(絶対圧力) 0. 1013MPa、内温 90°C (飽和水蒸気圧 0. 0 In process (1), internal pressure (absolute pressure) 0.11013 MPa, internal temperature 90 ° C (saturated water vapor pressure 0.0
701MPa)となった時点で撹拌槽を密閉して引き続きスチームストリツビングを行った 以外は実施例 1と同様に実施した。 When the pressure reached 701 MPa, the same procedure as in Example 1 was performed, except that the stirring vessel was sealed and steam stripping was subsequently performed.
[0057] 表 1に併せて示すように、得られた凝縮液(回収溶媒)中のブタノール濃度は 136p pmであつ 7こ。 [0057] As shown in Table 1, the concentration of butanol in the resulting condensate (recovered solvent) is 136 ppm, which is 7 pieces.
[0058] (比較例 2) [0058] (Comparative Example 2)
工程(2)においてストリツビング条件を 160°Cとした以外は比較例 1と同様に実施し た。  The same procedure as in Comparative Example 1 was performed except that the stripping condition was changed to 160 ° C in the step (2).
[0059] 表 1に併せて示すように、得られた凝縮液(回収溶媒)中のブタノール濃度は 427p pmであった。 [0059] As shown in Table 1, the butanol concentration in the resulting condensate (recovered solvent) was 427p. It was pm.
[0060] [表 1][0060] [Table 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0061] 表 1から、本発明による実施例おいて、比較例よりも、回収溶媒中のブタノールが少 なぐ再利用に適した溶媒を得ることができる。  [0061] From Table 1, in the examples according to the present invention, it is possible to obtain a solvent suitable for reuse with less butanol in the recovered solvent than in the comparative example.

Claims

請求の範囲 The scope of the claims
[1] 重合体溶液の溶媒が、炭素数 3〜8の 1級及び Z又は 2級のモノハロゲンィ匕炭化水 素と脂肪族及び Z又は芳香族炭化水素との混合溶媒であって、触媒を失活、除去し た重合体を含有する重合終了後の溶液から、榭脂粉粒体を得るにあたって、該溶液 に、界面活性剤、及び水を加え、撹拌により液 液分散させながら、加熱により溶媒 を除去する工程(1)において実際の缶内気相部の圧力が以下の式で表される範囲 で加熱することを特徴とする重合体の製造方法。  [1] The solvent of the polymer solution is a mixed solvent of primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms and aliphatic and Z or aromatic hydrocarbons. In order to obtain a coconut powder granule from the solution after completion of polymerization containing the polymer which has been deactivated and removed, a surfactant and water are added to the solution, and the mixture is dispersed in a liquid and liquid state by stirring, followed by heating. A method for producing a polymer, wherein in the step (1) for removing the solvent, the actual pressure in the gas phase in the can is heated in the range represented by the following formula.
(P1/P2X 1. 10  (P1 / P2X 1.10
Pl =実際の缶内気相部の圧力(MPa)  Pl = Actual pressure in the gas phase inside the can (MPa)
P2=内温から計算された飽和水蒸気圧(MPa)  P2 = saturated water vapor pressure (MPa) calculated from internal temperature
[2] 重合体が、イソブチレン系ブロック共重合体であることを特徴とする請求項 1記載の 重合体の製造方法。 2. The method for producing a polymer according to claim 1, wherein the polymer is an isobutylene block copolymer.
[3] 工程(1)の溶媒除去温度が、 70°C以上、 130°C未満であることを特徴とする請求 項 2に記載の重合体の製造方法。  [3] The method for producing a polymer according to claim 2, wherein the solvent removal temperature in the step (1) is 70 ° C. or higher and lower than 130 ° C.
[4] 工程(1)に引き続き、スチームを吹き込み、残存溶媒を除去するスチームストリッピ ング工程(2)において、内温が 100°C以上、 160°C未満であることを特徴とする請求 項 2または 3に記載の重合体の製造方法。 [4] In the steam stripping step (2) in which steam is blown after the step (1) to remove the residual solvent, the internal temperature is 100 ° C or higher and lower than 160 ° C. 4. A method for producing a polymer as described in 2 or 3.
[5] イソブチレン系ブロック共重合体力 (A)イソブチレンを主体として構成される重合 体ブロックと (B)芳香族ビニル系単量体を主体として構成される重合体ブロックからな る重合体であることを特徴とする請求項 2から 4のいずれか 1項に記載の重合体の製 造方法。 [5] Strength of isobutylene-based block copolymer (A) A polymer composed of a polymer block mainly composed of isobutylene and (B) a polymer block mainly composed of an aromatic vinyl monomer. The method for producing a polymer according to any one of claims 2 to 4, wherein:
[6] イソブチレン系ブロック共重合体溶液の溶媒力 塩ィ匕ブチルを含む溶媒であること を特徴とする請求項 2から 5のいずれか 1項に記載の重合体の製造方法。  6. The method for producing a polymer according to any one of claims 2 to 5, wherein the solvent power of the isobutylene block copolymer solution is a solvent containing butyl chloride.
PCT/JP2005/011332 2004-07-16 2005-06-21 Process for producing polymer WO2006008902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528535A JPWO2006008902A1 (en) 2004-07-16 2005-06-21 Method for producing polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-209434 2004-07-16
JP2004209434 2004-07-16

Publications (1)

Publication Number Publication Date
WO2006008902A1 true WO2006008902A1 (en) 2006-01-26

Family

ID=35785027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011332 WO2006008902A1 (en) 2004-07-16 2005-06-21 Process for producing polymer

Country Status (2)

Country Link
JP (1) JPWO2006008902A1 (en)
WO (1) WO2006008902A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712569A1 (en) * 2004-01-29 2006-10-18 Kaneka Corporation Method for producing isobutylene resin powder
JP2009249463A (en) * 2008-04-03 2009-10-29 Kaneka Corp Method for producing powder for surface skin molding for automobile interior
WO2016136908A1 (en) * 2015-02-26 2016-09-01 旭硝子株式会社 Method for producing aqueous liquid containing vinyl polymer and method for producing water-resistant and oil-resistant agent
EP3246341A4 (en) * 2015-01-16 2018-08-01 C&Cpel Co., Ltd. Apparatus for separating solvent from metallocene catalyst-based solution polymerization step of polyolefin series, and method therefor
WO2020203811A1 (en) * 2019-04-04 2020-10-08 日本ゼオン株式会社 Polymer solution desolvation method
KR20220012156A (en) * 2020-07-22 2022-02-03 주식회사 엘지화학 Solvent recovery method and solvent recovery apparatus
EP3971221A4 (en) * 2020-07-22 2022-09-07 Lg Chem, Ltd. Method and apparatus for recovering solvent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725309A (en) * 1980-07-23 1982-02-10 Sumitomo Chem Co Ltd Recovery of rubbery polymer from polymer solution
JP2002030192A (en) * 2000-02-09 2002-01-31 Sekisui Chem Co Ltd Manufacturing method of resin composition for toner
JP2004155880A (en) * 2002-11-06 2004-06-03 Kanegafuchi Chem Ind Co Ltd Method for producing thermoplastic isobutylene elastomer resin
JP2004269711A (en) * 2003-03-10 2004-09-30 Kanegafuchi Chem Ind Co Ltd Production method for resin granular powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725309A (en) * 1980-07-23 1982-02-10 Sumitomo Chem Co Ltd Recovery of rubbery polymer from polymer solution
JP2002030192A (en) * 2000-02-09 2002-01-31 Sekisui Chem Co Ltd Manufacturing method of resin composition for toner
JP2004155880A (en) * 2002-11-06 2004-06-03 Kanegafuchi Chem Ind Co Ltd Method for producing thermoplastic isobutylene elastomer resin
JP2004269711A (en) * 2003-03-10 2004-09-30 Kanegafuchi Chem Ind Co Ltd Production method for resin granular powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712569A4 (en) * 2004-01-29 2008-11-12 Kaneka Corp Method for producing isobutylene resin powder
EP1712569A1 (en) * 2004-01-29 2006-10-18 Kaneka Corporation Method for producing isobutylene resin powder
JP2009249463A (en) * 2008-04-03 2009-10-29 Kaneka Corp Method for producing powder for surface skin molding for automobile interior
EP3246341A4 (en) * 2015-01-16 2018-08-01 C&Cpel Co., Ltd. Apparatus for separating solvent from metallocene catalyst-based solution polymerization step of polyolefin series, and method therefor
WO2016136908A1 (en) * 2015-02-26 2016-09-01 旭硝子株式会社 Method for producing aqueous liquid containing vinyl polymer and method for producing water-resistant and oil-resistant agent
JPWO2016136908A1 (en) * 2015-02-26 2017-12-07 旭硝子株式会社 Method for producing vinyl polymer-containing aqueous liquid and method for producing water- and oil-resistant agent
CN107406533A (en) * 2015-02-26 2017-11-28 旭硝子株式会社 The manufacture method of waterborne liquid containing polyvinyl and the manufacture method of waterproofing/oilproofing agent
US10246604B2 (en) 2015-02-26 2019-04-02 AGC Inc. Method for producing vinyl polymer-containing aqueous liquid and method for producing water/oil resistant agent
WO2020203811A1 (en) * 2019-04-04 2020-10-08 日本ゼオン株式会社 Polymer solution desolvation method
KR20220012156A (en) * 2020-07-22 2022-02-03 주식회사 엘지화학 Solvent recovery method and solvent recovery apparatus
EP3971221A4 (en) * 2020-07-22 2022-09-07 Lg Chem, Ltd. Method and apparatus for recovering solvent
KR102535166B1 (en) 2020-07-22 2023-05-22 주식회사 엘지화학 Solvent recovery method and solvent recovery apparatus
US11970558B2 (en) 2020-07-22 2024-04-30 Lg Chem, Ltd. Method of recovering solvent and solvent recovery apparatus

Also Published As

Publication number Publication date
JPWO2006008902A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4894265B2 (en) Method for producing isobutylene resin particles
WO2006008902A1 (en) Process for producing polymer
MX2008000998A (en) Process for the recycling of expanded polystyrene.
JP4291775B2 (en) Method for removing volatile components from polymer compositions
TW200817447A (en) Terminating bromination of styrenic polymer in a bromination reaction mixture
JP5628187B2 (en) Process for obtaining an elastomer in a solid phase starting from its polymer solution
WO2023074651A1 (en) Hollow particle, method for producing hollow particle, resin composition, and molded body
CN110894249A (en) Homogeneous polymerization method and device for butene-1
CN105164165A (en) Apparatus for mass polymerization of vinyl chloride resin and method for mass polymerization of vinyl chloride resin
JP4224284B2 (en) Method for producing isobutylene-based thermoplastic elastomer resin
KR850000174B1 (en) Method of stabilizing isoolefin polymer slurries
JP4656965B2 (en) Method for producing resin powder
WO2007034660A1 (en) Process for producing particulate resin
JP4001530B2 (en) Process for producing block copolymer
JP2008239642A (en) Method for producing resin granule
JPS6010041B2 (en) How to obtain rubbery polymers
JP4256697B2 (en) Method for producing resin powder
CN114316090A (en) Low-solvent-residue polymer and preparation method thereof
JPS61218614A (en) Method of recovering block copolymer
JPWO2007007837A1 (en) Method for producing resin powder
WO2007125597A1 (en) Process for producing resin particulate
JP2004339281A (en) Preparation method for block copolymer
JP2003277496A (en) Method of producing ethylene oxide-based copolymer
CN114316095B (en) Polymer coagulation method
JP2005171074A (en) Production method of isobutylene resin granule

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528535

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase