WO2007125597A1 - Process for producing resin particulate - Google Patents

Process for producing resin particulate Download PDF

Info

Publication number
WO2007125597A1
WO2007125597A1 PCT/JP2006/308998 JP2006308998W WO2007125597A1 WO 2007125597 A1 WO2007125597 A1 WO 2007125597A1 JP 2006308998 W JP2006308998 W JP 2006308998W WO 2007125597 A1 WO2007125597 A1 WO 2007125597A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
isobutylene
producing
weight
rosin
Prior art date
Application number
PCT/JP2006/308998
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Hayashi
Tomoyuki Yoshimi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to PCT/JP2006/308998 priority Critical patent/WO2007125597A1/en
Publication of WO2007125597A1 publication Critical patent/WO2007125597A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08J2323/22Copolymers of isobutene; butyl rubber

Definitions

  • the present invention relates to a method for producing a cocoa powder granule, and more particularly to a method for producing a cocoa powder granule having an isobutylene block copolymer power.
  • Patent Document 4 discloses a method of dusting powdered minerals and organic substances after drying
  • Patent Document 5 discloses a method of dusting polypropylene fine particles.
  • the blocking property of the product is the same for the isobutylene-based block copolymer.
  • the powdered resin is recovered without any surface modifier, there is clogging in the recovery hopper! Blocking occurred and troubles such as inability to pay out occurred, and clogging troubles occurred in the process before dehydration and drying of the powdered resin slurry.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 64-26644
  • Patent Document 2 Japanese Patent Laid-Open No. 4-300947
  • Patent Document 3 Japanese Patent Laid-Open No. 7-3106
  • Patent Document 4 JP-A-10-330404
  • Patent Document 5 JP 2002-371136 A
  • the present invention stably provides a resin particle having excellent blocking properties without deterioration of quality, in particular, transparency, particularly a resin particle of an isobutylene block copolymer.
  • the object is to provide a method that can be manufactured.
  • the present invention relates to a method for producing a coconut powder granule, characterized in that colloidal silica having a particle size of 0.1 to 0.3 m is added to an aqueous solution containing rosin powder particles.
  • a preferred embodiment is a method for producing a rosin powder granule, characterized in that 0.01 to 5 parts by weight of colloidal silica is added to 100 parts by weight of the polymer in the rosin powder granule. .
  • a preferred embodiment is a method for producing an isobutylene-based greaves powder, which is a polymer-powered sobutylene-based polymer.
  • the isobutylene polymer is
  • Examples thereof include a method for producing a coconut powder granule, which is a powerful block copolymer.
  • the invention's effect include a method for producing a coconut powder granule, which is a powerful block copolymer.
  • water is added to a polymer solution obtained by polymerizing one or more monomer components, and then the solution is heated and agitated, whereby the polymer is powdered.
  • the present invention can be widely applied to the manufacturing method of sallow powder granules.
  • the polymer to which the method according to the present invention is applied is not particularly limited, and can be applied to polymers obtained by various polymerization methods such as cationic polymerization, cation polymerization and radical polymerization. In particular, because of its high viscoelasticity, it can be used for isobutylene polymers for which it is difficult to obtain a powder having a good balance between blocking properties and transparency by conventional methods.
  • the isobutylene polymer comprises (A) a polymer block mainly composed of isobutylene, and (B) an isobutylene copolymer composed mainly of a polymer block mainly composed of an aromatic vinyl monomer.
  • a polymer obtained by cationic polymerization of a monomer such as isoprene and an aromatic vinyl monomer together with an initiator in the presence of a Lewis acid catalyst is preferable.
  • the polymer block composed mainly of isobutylene of (A) is usually a polymer block containing 60% by weight or more, preferably 80% by weight or more of isobutylene units.
  • the polymer block composed mainly of the aromatic bulle monomer (B) is usually a polymer containing 60% by weight or more, preferably 80% by weight or more of the aromatic bule monomer unit. It is a block.
  • the aromatic bur monomer is not particularly limited, and examples thereof include styrene, o-, m- or P-methylstyrene, a-methylstyrene, and indene. These may be used alone or in combination of two or more. Of these, styrene, p-methylstyrene, a- methylstyrene or a mixture thereof is particularly preferable from the viewpoint of cost.
  • the Lewis acid catalyst used in the polymerization is not particularly limited as long as it can be used for cationic polymerization, and examples thereof include metal halides such as TiCl, BC1, BF, A1C1, and SnCl. Among these forces, tetrasalt-titanium (TiCl 3) is preferable.
  • the polymerization solvent used in the cationic polymerization is not particularly limited, and a solvent composed of a halogenated hydrocarbon, a non-halogen solvent, or a mixture thereof can be used.
  • a solvent composed of a halogenated hydrocarbon, a non-halogen solvent, or a mixture thereof can be used.
  • it is a mixed solvent of primary and Z or secondary monohalogen hydrocarbons having 3 to 8 carbon atoms and aliphatic and Z or aromatic hydrocarbons.
  • the primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms are not particularly limited, and examples thereof include methyl chloride, methylene chloride, 1 chlorobutane, and black benzene. .
  • 1-chlorobutane is preferable from the standpoint of the solubility of the isobutylene block copolymer, the ease of detoxification by decomposition, the cost, and the like.
  • the aliphatic and Z or aromatic hydrocarbons are not particularly limited, and examples thereof include pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, and toluene. Can be mentioned. One or more selected from the group consisting of methylcyclohexane, ethylcyclohexane and toluene power are particularly preferred.
  • X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group.
  • R 1 and R 2 are the same or different and each represents a monovalent hydrocarbon group hydrogen atom or 1 to 6 carbon atoms, R 1 and R 2 may be different even in the same.
  • R 3 represents a polyvalent aromatic hydrocarbon group or a polyvalent aliphatic hydrocarbon group.
  • n represents a natural number from 1 to 6.
  • Specific examples of the compound represented by the general formula (I) include 1,4 bis (chloroisopropyl) benzene [C H (C (CH) C1)].
  • Propyl) benzene is also called dicumulant mouth ride.
  • an electron donor component may be further present if necessary.
  • electron donor component examples include pyridines, amines, amides, sulfoxides, esters, or metal compounds having an oxygen atom bonded to a metal atom.
  • each component is cooled, for example, 100 ° C or higher and lower than 0 ° C.
  • Mix at the temperature of In order to balance the energy cost and the stability of the polymerization, it is particularly preferred that the temperature range is from 80 ° C to 1-30 ° C.
  • the number average molecular weight of the isobutylene block copolymer is not particularly limited.
  • the polymer solution obtained by polymerizing the monomer component by a predetermined method is brought into contact with water or alkali water to deactivate the catalyst to stop the reaction, and then washed with water.
  • the catalyst residue extracts and removes metal ions. Thereby, a purified dope can be obtained.
  • the temperature of catalyst deactivation and water washing is not particularly limited, but is preferably in the range of room temperature to 100 ° C. Further, the amount of water used for deactivation and washing is not particularly limited, but the volume ratio of water to the polymer solution is preferably in the range of 1 Z 10 to 10.
  • the purified polymer solution obtained in this manner is subsequently subjected to the powder and granulation step (1) (also referred to as a crumbization step).
  • the concentration of the resin in the polymer solution is 10 to 60% by weight by adding the solvent used for the polymerization as necessary.
  • the concentration can be adjusted to a desired concentration by using one or more evaporators such as flash evaporation, thin film evaporation, stirring tank, and wet wall type.
  • the polymer solution concentration is high, it can be adjusted to a desired concentration by diluting with a solvent.
  • the purified polymer solution thus obtained ie, the catalyst solution deactivated and the polymer solution removed is added with a surfactant and water, and the solution is dispersed in a liquid and liquid state by stirring, and the solvent is removed by heating.
  • a surfactant and water By the step (1) of removing, an aqueous solution containing rosin powder particles can be obtained.
  • the amount of water to be added is not particularly limited, but is preferably added in a volume of 0.5 to 4 times that of the polymer solution in view of liquid-liquid dispersion.
  • a nonionic surfactant is preferably used because of its low foaming.
  • the nonionic surfactant include glycerin fatty acid ester, sorbitan ester, propylene glycol fatty acid ester, Sucrose fatty acid ester, Cenoic acid mono (or di or tri) stearic ester, Pentaerystol fatty acid ester, Trimethylo Propropane fatty acid ester, Polyglycerin fatty acid ester, Polyoxyethylene glycerin fatty acid ester, Polyester, Polyoxyethylene sorbitan fatty acid ester, Polyethylene glycol fatty acid ester, Polypropylene glycol fatty acid ester, Polyoxyethylene glycol fatty alcohol ether, Polyoxyethylene alkyl Examples include phenol ether, N, N bis (2-hydroxyethylene) fattyamine, condensation product of fatty acid and ethanol, block polymer of polyoxyethylene and polyoxypropylene, polyethylene glycol, and polypropylene
  • the amount of the surfactant to be added is not particularly limited, but is preferably 0.05 to 5 parts by weight based on the polymer. If the amount is less than 0.05 parts by weight, the properties as a surfactant cannot be sufficiently exhibited, and particles are not formed. On the other hand, when the amount exceeds 5 parts by weight, the physical properties of the polymer are deteriorated, and the problem of foaming at the time of granulation becomes remarkable.
  • a container equipped with a stirrer is preferably used as an apparatus used for liquid-liquid dispersion by stirring and solvent removal.
  • Arbitrary blades such as screw blades, probe blades, anchor blades, paddle blades, inclined paddle blades, turbine blades, and large lattice blades can be used.
  • liquid-liquid dispersion operation and solvent removal operation can be performed using the same stirring tank, and after the liquid-liquid dispersion operation is performed in advance to form a dispersion, a plurality of solvent removals are subsequently performed. It can also be carried out using a stirring tank.
  • the liquid temperature in the step (1) is not particularly limited, but is preferably equal to or higher than the azeotropic point of the solvent and water. However, even if the azeotropic point is less than that, the solvent can be easily removed by reducing the pressure in the container. Specifically, it is preferably 70 ° C or higher and lower than 130 ° C, more preferably 80 ° C or higher and lower than 110 ° C. If it is 70 ° C or lower, the solvent removal rate is lowered, which is not preferable in terms of production efficiency. If the temperature is 130 ° C or higher, the function of the nonionic surfactant is lost and a stable liquid-liquid dispersion system cannot be formed.
  • the obtained aqueous solution containing rosin powder particles is charged with 0.1 to 0.3 / zm of colloidal silica and heated with stirring.
  • the steam stripping step (2) By passing through the steam stripping step (2), the remaining solvent can be further removed, and at the same time, the added colloidal silica can be efficiently attached to the surface of the resin powder granules. This improves the blocking properties of the powder after dehydration. Therefore, it is possible to perform the dispensing without having to be blocked by a recovery hopper or piping.
  • the dehydrated greaves powder particles are not clogged in the process before being dried, and can be stably produced without deteriorating the quality of the obtained product, in particular, without losing transparency.
  • the heating temperature during the treatment is preferably 70 to 180 ° C. in order to effectively attach colloidal silica to the surface of the resin particle.
  • the temperature is 70 ° C or lower, colloidal silica does not adhere to the resin efficiently, and the blocking effect is not sufficient.
  • the temperature is 180 ° C. or higher, fusion between the cocoons becomes remarkable and coarse particles are generated, which is preferable.
  • colloidal silica examples include colloidal liquid in which silica is dispersed in a solvent. Solvents are good for handling. Dispersed in water is preferred. Silica is preferably nearly spherical.
  • the amount of colloidal silica to be added is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the polymer in the resin particles. Less than 01 parts by weight, the effect as an antiblocking agent is not sufficient. On the other hand, when the amount exceeds 5 parts by weight, the physical properties of the polymer are deteriorated, particularly the mechanical properties such as the tensile strength are markedly reduced.
  • Colloidal silica having a particle size of 0.1 to 0.3 ⁇ m is used.
  • the particle size is 0.1 m or less, the transparency of the resin after drying is good, but the effect of improving the blocking property is insufficient.
  • the particle size is 0.3 m or more, the blocking effect is sufficiently improved, but the transparency of the resin after drying is impaired.
  • the vessel used for the steam stripping step (2) is preferably used as a method for introducing steam into the stirring vessel as in the case of suspension and solvent removal operation, as long as piping for introducing steam is connected.
  • the Further, the steam stripping operation can be performed by ventilating steam in the same tank following the solvent removal, or can be performed by separately providing a stripping tank.
  • stripping can be performed by contacting steam and a resin slurry in a shelf manner.
  • the aqueous solution containing the rosin powder particles after the steam stripping is dehydrated and dried by the step (3) described below.
  • a dehydration operation using various filters, centrifuges, or the like can be used.
  • the water content of the resin particles after dehydration by this operation is not particularly limited, but it should be 10 to 50% by weight. It is effective in terms of energy efficiency in drying.
  • the obtained hydrous greaves powder granulate is a conductive heat transfer dryer such as a grooved stirrer or dryer.
  • the rice cake powder is dried by using a hot air heat receiving dryer such as a fluid dryer, etc. It can be a granule.
  • Molecular weight GPC system manufactured by Waters (column: Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form). The number average molecular weight is expressed in terms of polystyrene.
  • the mortar was dried with a box dryer at 100 ° C, and then filled with 30 g in a cylinder with an inner diameter of 5 cm, and 0.03 MPa was obtained with a piston. After applying a load and storing in an atmosphere of 85 ° C for 2 hours, evaluation was performed by the method of loosening when loosened by hand.
  • the obtained polymer solution was poured into a large amount of water to stop the reaction. After the reaction was stopped, the polymer solution phase and the aqueous phase were separated with a separating funnel. After washing the polymer solution phase twice with the same method, confirm that the aqueous phase is neutral, and then pay off the polymer solution phase in terms of force. A coalesced solution was obtained.
  • a pressure-resistant stirrer with a tank volume of 50 liters and an inner diameter of 30 cm was charged with 12.5 liters of pure water and 12.5 liters of the polymer solution obtained in the production example, and 5. lg of a surfactant (polyethylene glycol monostearate), Added and sealed.
  • the stirrer blade was heated in a jacket while stirring at 400 rpm using a two-stage four-padded paddle with a blade diameter of 15 cm.
  • the solvent gas was introduced into a capacitor attached to the pressure-resistant stirring apparatus, and the solvent was sequentially recovered.
  • the internal pressure was increased or decreased while paying attention to foaming, and the heating and solvent evaporation were stopped when the internal pressure dropped to normal pressure and the stirring tank internal temperature reached 95 ° C.
  • the agitation was stopped after the internal temperature decreased to room temperature, and the resin slurry produced in the agitation tank was recovered (step (1)).
  • the granular material in the collected resin slurry was a good particle having a particle size of 1 to 2 mm.
  • the recovered rosin slurry is returned to the agitation tank again, and 4 g of colloidal silica (Nissan Chemical MP-2040, average particle size 0.19 m, active ingredient content 40%) (0.1 part by weight) was added, sealed and steam stripped (step (2)).
  • the stripping conditions were as follows: steam was blown from the bottom of the stirring tank while maintaining 120 ° C for 60 minutes.
  • This resin slurry was centrifugally dehydrated and dried in a box dryer at 100 ° C for 2 hours to obtain a resin powder.
  • Example 1 0 .1 0 .1 9 ⁇ ⁇ Example 2 0 .3 0 .1 9 ⁇ ⁇ Comparative Example 1 None X ⁇ Comparative Example 2 0 .3 0 .0 8 ⁇ ⁇ Comparative Example 3 0. 4 5 ⁇ X
  • step (2) colloidal silica (MP-2040, Nissan Chemical Co., Ltd., average particle size 0.19 m, active ingredient content 40%) 12 g (0.3 parts by weight of active ingredient relative to rosin)
  • colloidal silica MP-2040, Nissan Chemical Co., Ltd., average particle size 0.19 m, active ingredient content 40%
  • step (2) 12 g of colloidal silica (Nissan Chemical's Snowtex ZL, active ingredient content 40%) with an average particle size of 0.08 ⁇ m (the active ingredient content is 0.3 wt. Part
  • Example 2 The same procedure as in Example 1 was carried out except for addition.
  • step (2) colloidal silica with an average particle size of 0.45 ⁇ m (MP—
  • Example 4540 40% active ingredient content was carried out in the same manner as in Example 1 except that 4 g (the active ingredient content was 0.1 parts by weight relative to rosin) was added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A process for producing resin particulates, in which resin particulates are recovered from an aqueous solution containing resin particulates. In particular, it is intended to provide a process for stably producing resin particulates of an isobutylene polymer, especially an isobutylene block copolymer, excelling in transparency and in blocking property. Such a process can be provided by pulverizing a polymer and thereafter adding a colloidal silica of 0.1 to 0.3 μm particle diameter to an aqueous solution containing the resultant resin particulates.

Description

明 細 書  Specification
樹脂粉粒体の製造方法  Method for producing resin powder
技術分野  Technical field
[0001] 本発明は、榭脂粉粒体の製造方法、特にイソブチレン系ブロック共重合体力 なる 榭脂粉粒体の製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing a cocoa powder granule, and more particularly to a method for producing a cocoa powder granule having an isobutylene block copolymer power.
背景技術  Background art
[0002] 榭脂粉粒体水溶液力も榭脂を粉粒体として分離'回収する方法としては、一般的に 、各種濾過機や遠心脱水機を用いて水分を除去する方法が採用されているケース が多い。  [0002] As a method of separating and recovering rosin powder as a granular material, a method of removing water using various filters and centrifugal dehydrators is generally employed. Many.
[0003] 榭脂がゴム状重合体の場合、得られる粉粒体が軟質かつ不定形であるが故に、回 収の際にしばしばブロッキングの問題が生じる。粉粒体のブロッキング性の改善には 、滑剤添加がもっとも一般的で、熱可塑性榭脂に対しては、特開昭 64— 26644号公 報 (特許文献 1)に、エチレンビスアミド、ソルビタンモノステアレート等の滑剤添加に よる方法が開示されている。同じく熱可塑性榭脂に対して、特開平 4— 300947号公 報 (特許文献 2)ゃ特開平 7— 3106号公報 (特許文献 3)に、硬質の乳化重合ポリマ 一を添加する方法も開示されている。また、水添スチレン系エラストマ一に対しては、 特開平 10— 330404号公報 (特許文献 4)に粉状の鉱物や有機物を乾燥後に打粉 する方法、特開 2002— 371136号公報 (特許文献 5)にポリプロピレン微粒子を粉打 ちする方法が開示されている。  [0003] When the resin is a rubber-like polymer, the obtained granular material is soft and irregular in shape, so that often a blocking problem occurs during collection. Addition of a lubricant is the most common method for improving the blocking property of powders. For thermoplastic resin, JP-A 64-26644 (Patent Document 1) describes ethylene bisamide and sorbitan monostearate. A method by adding a lubricant such as a rate is disclosed. Similarly, JP-A-4-300947 (Patent Document 2) and JP-A-7-3106 (Patent Document 3) also disclose a method for adding a hard emulsion polymerization polymer to a thermoplastic resin. ing. For hydrogenated styrene elastomers, Japanese Patent Application Laid-Open No. 10-330404 (Patent Document 4) discloses a method of dusting powdered minerals and organic substances after drying, Japanese Patent Application Laid-Open No. 2002-371136 (Patent Document 5). ) Discloses a method of dusting polypropylene fine particles.
[0004] 製品のブロッキング性に関してはイソブチレン系ブロック共重合体でも同様であり、 何ら表面改質剤なくして粉粒体榭脂を回収すると、回収ホッパーでの閉塞ある!/ヽはフ レコン内でのブロッキングが発生し、払い出しできないなどのトラブルが発生したり、 粉粒体榭脂スラリーを脱水、乾燥するまでに工程内で閉塞トラブルを発生させたりし ていた。  [0004] The blocking property of the product is the same for the isobutylene-based block copolymer. When the powdered resin is recovered without any surface modifier, there is clogging in the recovery hopper! Blocking occurred and troubles such as inability to pay out occurred, and clogging troubles occurred in the process before dehydration and drying of the powdered resin slurry.
[0005] しかし、滑剤添加法では、十分なブロッキング性を維持しょうとすると、製品の透明 性を損なう恐れがあり、透明性を維持するためにシリカなどの超微粒子を添加しても 、効率的に榭脂表面に付着しないなど、効果的な滑剤添加方法が確立されていなか つた o [0005] However, in the lubricant addition method, if sufficient blocking property is maintained, the transparency of the product may be impaired, and even if ultrafine particles such as silica are added to maintain transparency, it is efficient. Hasn't established an effective method for adding lubricants, such as not adhering to the surface of the resin? I
[0006] このため、榭脂粉粒体を製造するにあたって、特に、イソブチレン系ブロック共重合 体力も成る榭脂粉粒体を製造するにあたって、品質の劣化なぐ透明性が高ぐプロ ッキング性に優れた製品を安定的に生産する製造プロセスの開発が望まれていた。 特許文献 1:特開昭 64 - 26644号公報  [0006] For this reason, when producing a rosin powder granule, particularly when producing a coconut powder granule having an isobutylene block copolymer strength, a product with excellent transparency and high transparency without deterioration in quality. Development of a manufacturing process that stably produces the material has been desired. Patent Document 1: Japanese Patent Application Laid-Open No. 64-26644
特許文献 2:特開平 4— 300947号公報  Patent Document 2: Japanese Patent Laid-Open No. 4-300947
特許文献 3:特開平 7— 3106号公報  Patent Document 3: Japanese Patent Laid-Open No. 7-3106
特許文献 4:特開平 10— 330404号公報  Patent Document 4: JP-A-10-330404
特許文献 5 :特開 2002— 371136号公報  Patent Document 5: JP 2002-371136 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、上記現状に鑑み、品質の劣化なぐ特に透明性を損なうことなぐブロッ キング性に優れた榭脂粉粒体、特にイソブチレン系ブロック共重合体の榭脂粉粒体 を安定的に製造できる方法を提供することを目的とするものである。 [0007] In view of the above-described situation, the present invention stably provides a resin particle having excellent blocking properties without deterioration of quality, in particular, transparency, particularly a resin particle of an isobutylene block copolymer. The object is to provide a method that can be manufactured.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、榭脂粉粒体含有水溶液に粒子径 0. 1〜0. 3 mのコロイダルシリカを 添加することを特徴とする榭脂粉粒体の製造方法に関する。 [0008] The present invention relates to a method for producing a coconut powder granule, characterized in that colloidal silica having a particle size of 0.1 to 0.3 m is added to an aqueous solution containing rosin powder particles.
[0009] 好ましい実施態様としては、コロイダルシリカを榭脂粉粒体中の重合体 100重量部 に対して 0. 01〜5重量部添加することを特徴とする榭脂粉粒体の製造方法が挙げ られる。 [0009] A preferred embodiment is a method for producing a rosin powder granule, characterized in that 0.01 to 5 parts by weight of colloidal silica is added to 100 parts by weight of the polymer in the rosin powder granule. .
[0010] 好ましい実施態様としては、重合体力 ソブチレン系重合体であることを特徴とする イソブチレン系榭脂粉粒体の製造方法が挙げられる。  [0010] A preferred embodiment is a method for producing an isobutylene-based greaves powder, which is a polymer-powered sobutylene-based polymer.
[0011] さらに好ましい実施態様としては、イソブチレン系重合体が、 [0011] In a more preferred embodiment, the isobutylene polymer is
(A)イソブチレンを主体として構成される重合体ブロックと、  (A) a polymer block composed mainly of isobutylene;
(B)芳香族ビニル系単量体を主体として構成される重合体ブロック、  (B) a polymer block composed mainly of an aromatic vinyl monomer,
力 なるブロック共重合体であることを特徴とする榭脂粉粒体の製造方法が挙げられ る。 発明の効果 Examples thereof include a method for producing a coconut powder granule, which is a powerful block copolymer. The invention's effect
[0012] 本発明にかかる製造方法によれば、榭脂粉粒体を品質劣化させることなぐ特に透 明性を損なうことなぐブロッキング性を改善することができる。  [0012] According to the production method of the present invention, it is possible to improve the blocking property without deteriorating the quality of the resin particles, particularly without impairing the transparency.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明にかかる方法は、一以上の単量体成分を重合させて得られた重合体溶液 に水を添加した後、この溶液を加熱'撹拌することにより重合体を粉粒ィ匕する榭脂粉 粒体の製造方法に広範に適用することができる。本発明にかかる方法を適用する重 合体としては特に限定されるものではなぐカチオン重合ゃァ-オン重合、ラジカル 重合等各種重合方法により得られる重合体に対して適用することができる。特に、そ の粘弾性の高さ故に従来の方法ではブロッキング性と透明性のバランスのよい粉粒 体を得ることが困難なイソブチレン系重合体に使用することができる。  [0013] In the method according to the present invention, water is added to a polymer solution obtained by polymerizing one or more monomer components, and then the solution is heated and agitated, whereby the polymer is powdered. The present invention can be widely applied to the manufacturing method of sallow powder granules. The polymer to which the method according to the present invention is applied is not particularly limited, and can be applied to polymers obtained by various polymerization methods such as cationic polymerization, cation polymerization and radical polymerization. In particular, because of its high viscoelasticity, it can be used for isobutylene polymers for which it is difficult to obtain a powder having a good balance between blocking properties and transparency by conventional methods.
[0014] 以下にイソブチレン系重合体の製造方法について具体的に記載する。  [0014] Hereinafter, a method for producing an isobutylene polymer will be specifically described.
[0015] イソブチレン系重合体は、(A)イソブチレンを主体として構成される重合体ブロック と、(B)芳香族ビニル系単量体を主体として構成される重合体ブロックからなるイソブ チレン系共重合体が好ましぐ具体的には、イソプチレンと芳香族ビニル系単量体な どの単量体をルイス酸触媒の存在下で開始剤と共にカチオン重合して得られるもの が好適である。  [0015] The isobutylene polymer comprises (A) a polymer block mainly composed of isobutylene, and (B) an isobutylene copolymer composed mainly of a polymer block mainly composed of an aromatic vinyl monomer. Specifically, a polymer obtained by cationic polymerization of a monomer such as isoprene and an aromatic vinyl monomer together with an initiator in the presence of a Lewis acid catalyst is preferable.
[0016] (A)のイソブチレンを主体として構成される重合体ブロックは、通常、イソブチレン単 位を 60重量%以上、好ましくは 80重量%以上含有する重合体ブロックである。また、 (B)の芳香族ビュル系単量体を主体として構成される重合体ブロックは、通常、芳香 族ビュル系単量体単位を 60重量%以上、好ましくは 80重量%以上含有する重合体 ブロックである。  [0016] The polymer block composed mainly of isobutylene of (A) is usually a polymer block containing 60% by weight or more, preferably 80% by weight or more of isobutylene units. In addition, the polymer block composed mainly of the aromatic bulle monomer (B) is usually a polymer containing 60% by weight or more, preferably 80% by weight or more of the aromatic bule monomer unit. It is a block.
[0017] 芳香族ビュル系単量体としては特に限定されず、例えば、スチレン、 o—、 m—又は P—メチルスチレン、 a—メチルスチレン、インデン等が挙げられる。これらは単独で 用いてもよぐ 2種以上を併用してもよい。なかでも、コストの面から、スチレン、 p—メ チルスチレン、 aーメチルスチレン又はこれらの混合物が特に好ましい。 [0017] The aromatic bur monomer is not particularly limited, and examples thereof include styrene, o-, m- or P-methylstyrene, a-methylstyrene, and indene. These may be used alone or in combination of two or more. Of these, styrene, p-methylstyrene, a- methylstyrene or a mixture thereof is particularly preferable from the viewpoint of cost.
[0018] 重合の際に用いられるルイス酸触媒は、カチオン重合に使用できるものであれば特 に限定されず、 TiCl、 BC1、 BF、 A1C1、 SnCl等のハロゲン化金属を挙げること ができる力 なかでも四塩ィ匕チタン (TiCl )が好ましい。 [0018] The Lewis acid catalyst used in the polymerization is not particularly limited as long as it can be used for cationic polymerization, and examples thereof include metal halides such as TiCl, BC1, BF, A1C1, and SnCl. Among these forces, tetrasalt-titanium (TiCl 3) is preferable.
4  Four
[0019] 上記カチオン重合において用いられる重合溶媒としては特に限定されず、ハロゲン 化炭化水素からなる溶媒、非ハロゲン系の溶媒又はこれらの混合物を用いることがで きる。好ましくは、炭素数 3〜8の 1級及び Z又は 2級のモノハロゲンィ匕炭化水素と脂 肪族及び Z又は芳香族炭化水素との混合溶媒である。  [0019] The polymerization solvent used in the cationic polymerization is not particularly limited, and a solvent composed of a halogenated hydrocarbon, a non-halogen solvent, or a mixture thereof can be used. Preferably, it is a mixed solvent of primary and Z or secondary monohalogen hydrocarbons having 3 to 8 carbon atoms and aliphatic and Z or aromatic hydrocarbons.
[0020] 上記炭素数 3〜8の 1級及び Z又は 2級のモノハロゲンィ匕炭化水素としては特に限 定されず、塩化メチル、塩化メチレン、 1 クロロブタン、クロ口ベンゼンなどを挙げる ことができる。この中でも、イソブチレン系ブロック共重合体の溶解度、分解による無 害化の容易さ、コスト等のバランスから、 1—クロロブタンが好適である。  [0020] The primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms are not particularly limited, and examples thereof include methyl chloride, methylene chloride, 1 chlorobutane, and black benzene. . Among these, 1-chlorobutane is preferable from the standpoint of the solubility of the isobutylene block copolymer, the ease of detoxification by decomposition, the cost, and the like.
[0021] また、上記脂肪族及び Z又は芳香族系炭化水素としては特に限定されず、例えば 、ペンタン、へキサン、ヘプタン、オクタン、シクロへキサン、メチルシクロへキサン、ェ チルシクロへキサン、トルエン等が挙げられる。メチルシクロへキサン、ェチルシクロ へキサン及びトルエン力もなる群より選ばれる 1種以上が特に好ましい。  [0021] The aliphatic and Z or aromatic hydrocarbons are not particularly limited, and examples thereof include pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, and toluene. Can be mentioned. One or more selected from the group consisting of methylcyclohexane, ethylcyclohexane and toluene power are particularly preferred.
[0022] なお、カチオン重合の際に用いる開始剤としては、下記式 (I)で表される化合物を 用いるのが好ましい。 [0022] As the initiator used in the cationic polymerization, a compound represented by the following formula (I) is preferably used.
[0023] (CR'^X) R3 (I) [0023] (CR '^ X) R 3 (I)
[式中、 Xは、ハロゲン原子又は炭素数 1〜6のアルコキシ基若しくはァシロキシ基 を表す。 R1及び R2は、同一又は異なって、水素原子又は炭素数 1〜6の 1価炭化水 素基を表し、 R1と R2は同一であっても異なっていてもよい。 R3は多価芳香族炭化水 素基又は多価脂肪族炭化水素基を表す。 nは 1〜6の自然数を示す。 ] [Wherein, X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group. R 1 and R 2 are the same or different and each represents a monovalent hydrocarbon group hydrogen atom or 1 to 6 carbon atoms, R 1 and R 2 may be different even in the same. R 3 represents a polyvalent aromatic hydrocarbon group or a polyvalent aliphatic hydrocarbon group. n represents a natural number from 1 to 6. ]
上記一般式 (I)の化合物の具体例としては、 1, 4 ビス(ひ クロル イソプロピル )ベンゼン [C H (C (CH ) C1) ]が挙げられる [なお、 1, 4 ビス —クロル イソ  Specific examples of the compound represented by the general formula (I) include 1,4 bis (chloroisopropyl) benzene [C H (C (CH) C1)].
6 4 3 2 2  6 4 3 2 2
プロピル)ベンゼンはジクミルク口ライドとも呼ばれる]。  Propyl) benzene is also called dicumulant mouth ride].
[0024] イソブチレン系ブロック共重合体の重合に際しては、更に必要に応じて電子供与体 成分を共存させることもできる。このような化合物として、例えば、ピリジン類、アミン類 、アミド類、スルホキシド類、エステル類、又は、金属原子に結合した酸素原子を有す る金属化合物等を挙げることができる。  [0024] In the polymerization of the isobutylene block copolymer, an electron donor component may be further present if necessary. Examples of such compounds include pyridines, amines, amides, sulfoxides, esters, or metal compounds having an oxygen atom bonded to a metal atom.
[0025] 実際の重合を行うに当たっては、各成分を冷却下、例えば 100°C以上 0°C未満 の温度で混合する。エネルギーコストと重合の安定性を釣り合わせるために、特に好 まし 、温度範囲は 80°C〜一 30°Cである。 [0025] In carrying out the actual polymerization, each component is cooled, for example, 100 ° C or higher and lower than 0 ° C. Mix at the temperature of In order to balance the energy cost and the stability of the polymerization, it is particularly preferred that the temperature range is from 80 ° C to 1-30 ° C.
[0026] またイソブチレン系ブロック共重合体の数平均分子量にも特に制限はないが、流動[0026] The number average molecular weight of the isobutylene block copolymer is not particularly limited.
'性、カロ工'性、物'性等の面力ら、 30000〜500000であること力 S好ましく、 50000〜40Ability to be 30000-500000 S, preferably 50000-40
0000であることが特に好まし!/、。 Especially preferred to be 0000! /.
[0027] 単量体成分を所定の方法により重合させて得られた重合体溶液は、水またはアル カリ水と接触させることで触媒を失活させて反応を停止させた後、引き続き水洗を行 い、触媒残渣ゃ金属イオンを抽出、除去する。これにより、精製ドープを得ることがで きる。 [0027] The polymer solution obtained by polymerizing the monomer component by a predetermined method is brought into contact with water or alkali water to deactivate the catalyst to stop the reaction, and then washed with water. The catalyst residue extracts and removes metal ions. Thereby, a purified dope can be obtained.
[0028] 触媒の失活及び水洗の温度は特に限定するものではないが、常温〜 100°Cの範 囲が好ましい。また、失活及び水洗に使用する水の量は、特に限定されるものではな いが、重合体溶液に対する水の体積比が 1 Z 10〜 10の範囲が好ましい。  [0028] The temperature of catalyst deactivation and water washing is not particularly limited, but is preferably in the range of room temperature to 100 ° C. Further, the amount of water used for deactivation and washing is not particularly limited, but the volume ratio of water to the polymer solution is preferably in the range of 1 Z 10 to 10.
[0029] このようにして得られた精製重合体溶液は、引き続き、粉粒体ィ匕工程(1)に供され る(クラム化工程とも呼ばれる)。粉粒体化の際は、重合体溶液中の榭脂濃度は、必 要に応じて重合に使用した溶媒を加えることにより、 10〜60重量%とすることが望ま しい。ドープ濃度が低い場合には、フラッシュ蒸発、薄膜式蒸発、撹拌槽、濡れ壁式 等の蒸発機を単独あるいは複数用いることにより所望濃度に調整することができる。 また、重合体溶液濃度が高い場合には、溶剤で希釈することにより所望濃度に調整 することができる。  [0029] The purified polymer solution obtained in this manner is subsequently subjected to the powder and granulation step (1) (also referred to as a crumbization step). At the time of granulation, it is desirable that the concentration of the resin in the polymer solution is 10 to 60% by weight by adding the solvent used for the polymerization as necessary. When the dope concentration is low, the concentration can be adjusted to a desired concentration by using one or more evaporators such as flash evaporation, thin film evaporation, stirring tank, and wet wall type. Further, when the polymer solution concentration is high, it can be adjusted to a desired concentration by diluting with a solvent.
[0030] このようにして得られた精製重合体溶液、すなわち触媒を失活させ、除去した重合 体溶液に、界面活性剤、水を加え、撹拌により液 液分散させながら、加熱により溶 媒を除去する工程(1)により榭脂粉粒体を含有する水溶液を得ることができる。加え る水の量は、特に制限はないが、液 液分散のしゃすさ等から、重合体溶液に対し 、 0. 5〜4倍の容積として加えるのが好ましい。  [0030] The purified polymer solution thus obtained, ie, the catalyst solution deactivated and the polymer solution removed is added with a surfactant and water, and the solution is dispersed in a liquid and liquid state by stirring, and the solvent is removed by heating. By the step (1) of removing, an aqueous solution containing rosin powder particles can be obtained. The amount of water to be added is not particularly limited, but is preferably added in a volume of 0.5 to 4 times that of the polymer solution in view of liquid-liquid dispersion.
[0031] 界面活性剤としては、その泡立ちの低さから非イオン界面活性剤が好適に用いら れ、非イオン界面活性剤の具体例としては、グリセリン脂肪酸エステル、ソルビタンェ ステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、クェン酸モノ( 又はジ又はトリ)ステアリンエステル、ペンタエリストール脂肪酸エステル、トリメチロー ルプロパン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレングリセ リン脂肪酸エステル、ポリエステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポ リエチレングリコール脂肪酸エステル、ポリプロピレングリコール脂肪酸エステル、ポリ ォキシエチレングリコール脂肪アルコールエーテル、ポリオキシエチレンアルキルフ ェ-ルエーテル、 N, N ビス(2—ヒドロキシエチレン)脂肪ァミン、脂肪酸とジェタノ ールとの縮合生成物、ポリオキシエチレンとポリオキシプロピレンとのブロックポリマー 、ポリエチレングリコール、ポリプロピレングリコールなどが挙げられる。これらは単独 で用いてもよいし、あるいは 2種以上組み合わせて用いてもよい。加える界面活性剤 の量は、特に限定されるものではないが、重合体に対し 0. 05重量部から 5重量部が 好ましい。 0. 05重量部以下では界面活性剤としての特性が十分発揮できず、粒子 が形成されない。また、 5重量部を超えると重合体の物性低下、粉粒体化の際の泡 立ちの問題が顕著になり好ましくない。 [0031] As the surfactant, a nonionic surfactant is preferably used because of its low foaming. Specific examples of the nonionic surfactant include glycerin fatty acid ester, sorbitan ester, propylene glycol fatty acid ester, Sucrose fatty acid ester, Cenoic acid mono (or di or tri) stearic ester, Pentaerystol fatty acid ester, Trimethylo Propropane fatty acid ester, Polyglycerin fatty acid ester, Polyoxyethylene glycerin fatty acid ester, Polyester, Polyoxyethylene sorbitan fatty acid ester, Polyethylene glycol fatty acid ester, Polypropylene glycol fatty acid ester, Polyoxyethylene glycol fatty alcohol ether, Polyoxyethylene alkyl Examples include phenol ether, N, N bis (2-hydroxyethylene) fattyamine, condensation product of fatty acid and ethanol, block polymer of polyoxyethylene and polyoxypropylene, polyethylene glycol, and polypropylene glycol. . These may be used alone or in combination of two or more. The amount of the surfactant to be added is not particularly limited, but is preferably 0.05 to 5 parts by weight based on the polymer. If the amount is less than 0.05 parts by weight, the properties as a surfactant cannot be sufficiently exhibited, and particles are not formed. On the other hand, when the amount exceeds 5 parts by weight, the physical properties of the polymer are deteriorated, and the problem of foaming at the time of granulation becomes remarkable.
[0032] 撹拌による液—液分散、及び溶媒除去に用いられる装置としては攪拌機を備えた 容器が好適に用いられる。攪拌翼の形状には特に制約はなぐスクリュー翼、プロべ ラ翼、アンカー翼、パドル翼、傾斜パドル翼、タービン翼、大型格子翼等の任意の翼 を使用することができる。これらは、同一の攪拌槽を用いて液一液分散操作と溶媒除 去操作を行うこともできるし、予め液 液分散操作を実施して分散液を形成させた後 に引き続き溶媒除去を複数の攪拌槽を用いて行うこともできる。  [0032] As an apparatus used for liquid-liquid dispersion by stirring and solvent removal, a container equipped with a stirrer is preferably used. Arbitrary blades such as screw blades, probe blades, anchor blades, paddle blades, inclined paddle blades, turbine blades, and large lattice blades can be used. In these, liquid-liquid dispersion operation and solvent removal operation can be performed using the same stirring tank, and after the liquid-liquid dispersion operation is performed in advance to form a dispersion, a plurality of solvent removals are subsequently performed. It can also be carried out using a stirring tank.
[0033] 工程(1)の液温度は、特に限定されないが、溶媒と水の共沸点以上であることが好 ましい。ただし、その共沸点未満でも容器内を減圧下にすれば容易に溶媒を除去す ることができる。具体的には、 70°C以上、 130°C未満が好ましぐ 80°C以上、 110°C 未満がさらに好ましい。 70°C以下であると、溶剤除去速度が低下し生産効率の面で 好ましくない。また 130°C以上であると非イオン界面活性剤の働きがなくなり安定した 液 液分散系を形成できな 、。  [0033] The liquid temperature in the step (1) is not particularly limited, but is preferably equal to or higher than the azeotropic point of the solvent and water. However, even if the azeotropic point is less than that, the solvent can be easily removed by reducing the pressure in the container. Specifically, it is preferably 70 ° C or higher and lower than 130 ° C, more preferably 80 ° C or higher and lower than 110 ° C. If it is 70 ° C or lower, the solvent removal rate is lowered, which is not preferable in terms of production efficiency. If the temperature is 130 ° C or higher, the function of the nonionic surfactant is lost and a stable liquid-liquid dispersion system cannot be formed.
[0034] 得られた榭脂粉粒体を含有する水溶液に 0. 1〜0. 3 /z mのコロイダルシリカをカロえ 、撹拌下、加熱処理する。スチームストリッピング工程(2)を経ることにより、残留する 溶媒をさらに除去すると同時に加えたコロイダルシリカを効率的に榭脂粉粒体表面に 付着させることができる。これにより、脱水後の粉粒体のブロッキング性を改良するこ とができ、回収ホッパーや配管等で閉塞させることなぐ良好に払い出しを行うことが 可能となる。また、脱水榭脂粉粒体を乾燥するまでに工程内で閉塞させることもなぐ 更に、得られる製品の品質劣化なぐ特に透明性を損なうことなく安定的に製造でき るようになる。なお、イソブチレン系ブロック共重合体の場合、コロイダルシリカを効果 的に榭脂粉粒体表面に付着させるため、処理時の加熱温度は、 70〜180°Cとする のが好ましい。 70°C以下であるとコロイダルシリカが効率的に榭脂に付着せず、ブロ ッキング性の効果が十分でない。 180°C以上であると榭脂同士の融着が顕著になり、 粗粒の発生をきたすため好ましくな 、。 [0034] The obtained aqueous solution containing rosin powder particles is charged with 0.1 to 0.3 / zm of colloidal silica and heated with stirring. By passing through the steam stripping step (2), the remaining solvent can be further removed, and at the same time, the added colloidal silica can be efficiently attached to the surface of the resin powder granules. This improves the blocking properties of the powder after dehydration. Therefore, it is possible to perform the dispensing without having to be blocked by a recovery hopper or piping. In addition, the dehydrated greaves powder particles are not clogged in the process before being dried, and can be stably produced without deteriorating the quality of the obtained product, in particular, without losing transparency. In the case of an isobutylene block copolymer, the heating temperature during the treatment is preferably 70 to 180 ° C. in order to effectively attach colloidal silica to the surface of the resin particle. When the temperature is 70 ° C or lower, colloidal silica does not adhere to the resin efficiently, and the blocking effect is not sufficient. When the temperature is 180 ° C. or higher, fusion between the cocoons becomes remarkable and coarse particles are generated, which is preferable.
[0035] コロイダルシリカの例としては、シリカを溶剤に分散したコロイド液などが挙げられる 。溶剤は取り扱いの面力 水に分散したものが好ましぐシリカは真球状に近いもの が好ましい。 [0035] Examples of colloidal silica include colloidal liquid in which silica is dispersed in a solvent. Solvents are good for handling. Dispersed in water is preferred. Silica is preferably nearly spherical.
[0036] 加えるコロイダルシリカの量は、榭脂粉粒体中の重合体 100重量部に対して 0. 01 重量部から 5重量部が好ましい。 0. 01重量部以下ではブロッキング防止剤としての 効果が十分でない。また、 5重量部を超えると重合体の物性低下、特に引張強度な どの機械物性低下が顕著になり好ましくな 、。  [0036] The amount of colloidal silica to be added is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the polymer in the resin particles. Less than 01 parts by weight, the effect as an antiblocking agent is not sufficient. On the other hand, when the amount exceeds 5 parts by weight, the physical properties of the polymer are deteriorated, particularly the mechanical properties such as the tensile strength are markedly reduced.
[0037] コロイダルシリカとしては、粒子径が 0. 1〜0. 3 μ mのものを用いる。粒子径が 0. 1 m以下の場合、乾燥後の榭脂の透明性は良好であるが、ブロッキング性の改良効 果が不十分となる。粒子径が 0. 3 m以上の場合、ブロッキング性の改良効果は十 分にあるが、乾燥後の樹脂の透明性が損なわれることとなる。  [0037] Colloidal silica having a particle size of 0.1 to 0.3 µm is used. When the particle size is 0.1 m or less, the transparency of the resin after drying is good, but the effect of improving the blocking property is insufficient. When the particle size is 0.3 m or more, the blocking effect is sufficiently improved, but the transparency of the resin after drying is impaired.
[0038] スチームストリッピング工程 (2)に用いる容器は蒸気を導入する配管が接続されて いればよぐ懸濁及び溶媒除去操作と同様に攪拌容器に蒸気を導入する方法が好 適に使用される。また、スチームストリツビングの操作は、溶媒除去に引き続き同一の 槽で蒸気を通気し実施することもできるし、別途ストリツピング槽を設けて引き続き実 施することもできる。また、連続方式として、通気攪拌槽を 1槽以上連結させる場合や 、棚段方式で蒸気と榭脂スラリーを接触させることによりストリツビングを行うこともでき る。  [0038] The vessel used for the steam stripping step (2) is preferably used as a method for introducing steam into the stirring vessel as in the case of suspension and solvent removal operation, as long as piping for introducing steam is connected. The Further, the steam stripping operation can be performed by ventilating steam in the same tank following the solvent removal, or can be performed by separately providing a stripping tank. In addition, as a continuous method, when one or more aeration and agitation tanks are connected, stripping can be performed by contacting steam and a resin slurry in a shelf manner.
[0039] スチームストリツビング後の榭脂粉粒体を含む水溶液は、以下説明する工程 (3)に より、脱水、乾燥される。榭脂粉粒体を含む水溶液力ゝら榭脂粉粒体を回収するため には、各種濾過機、遠心分離機などによる脱水操作を用いることができる。本操作に よる脱水後の榭脂粉粒体の含水率は、特に限定されるものではないが、 10〜50重 量%とすること力 乾燥でのエネルギー効率の点で有効である。 [0039] The aqueous solution containing the rosin powder particles after the steam stripping is dehydrated and dried by the step (3) described below. In order to recover greaves powder granules from aqueous solution containing greaves granules A dehydration operation using various filters, centrifuges, or the like can be used. The water content of the resin particles after dehydration by this operation is not particularly limited, but it should be 10 to 50% by weight. It is effective in terms of energy efficiency in drying.
[0040] 得られた含水榭脂粉粒体は、溝型撹拌乾燥機などの伝導伝熱式乾燥機ある ヽは 流動乾燥機などの熱風受熱式乾燥機などを用いて乾燥することにより、製品粉粒体 とすることができる。 [0040] The obtained hydrous greaves powder granulate is a conductive heat transfer dryer such as a grooved stirrer or dryer. The rice cake powder is dried by using a hot air heat receiving dryer such as a fluid dryer, etc. It can be a granule.
実施例  Example
[0041] 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例 のみに限定されるものではない。  [0041] Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[0042] 本実施例に示すブロック共重合体の分子量および引張強度は以下に示す方法で 測定した。 [0042] The molecular weight and tensile strength of the block copolymer shown in this example were measured by the following methods.
[0043] 分子量: Waters社製 GPCシステム(カラム:昭和電工 (株)製 Shodex K— 804 ( ポリスチレンゲル)、移動相:クロ口ホルム)。数平均分子量はポリスチレン換算で表記 した。  [0043] Molecular weight: GPC system manufactured by Waters (column: Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form). The number average molecular weight is expressed in terms of polystyrene.
[0044] 透明性にっ ヽては、 2mm厚プレスシートを作製し目視にて透明度を確認した。  [0044] For transparency, a 2 mm thick press sheet was prepared and the transparency was confirmed visually.
[0045] 得られた榭脂粉粒体のブロッキング性にっ ヽては、榭脂を 100°Cの箱型乾燥機で 乾燥後、内径 5cmのシリンダーに 30g充填してピストンにて 0. 03MPaの荷重をかけ て 85°C雰囲気下 2時間保管した後、手でほぐした時のほぐれ方で評価した。 [0045] Regarding the blocking property of the obtained rosin powder granules, the mortar was dried with a box dryer at 100 ° C, and then filled with 30 g in a cylinder with an inner diameter of 5 cm, and 0.03 MPa was obtained with a piston. After applying a load and storing in an atmosphere of 85 ° C for 2 hours, evaluation was performed by the method of loosening when loosened by hand.
[0046] (製造例) [0046] (Production example)
攪拌機付き 20L反応容器に、 1—クロロブタン (モレキュラーシーブスで乾燥したも の) 3. 70kg、へキサン(モレキュラーシーブスで乾燥したもの) 1. 92kg、p—ジクミル クロライド 2. 90gをカ卩えた。反応容器を— 70°Cに冷却した後、 N, N—ジメチルァセト アミド 2. 18g、イソブチレン 844gを添カロした。さらに四塩化チタン 85gを加えて重合 を開始し、—70°Cで溶液を攪拌しながら 2時間反応させた。次いで反応溶液にスチ レン 408gを添加し、さらに 30分間反応を続け、重合体溶液を得た。  In a 20 L reactor equipped with a stirrer, 1-chlorobutane (dried with molecular sieves) 3.70 kg, hexane (dried with molecular sieves) 1.92 kg, p-dicumyl chloride 2.90 g were charged. After the reaction vessel was cooled to -70 ° C, 2.18 g of N, N-dimethylacetamide and 844 g of isobutylene were added thereto. Furthermore, 85 g of titanium tetrachloride was added to initiate polymerization, and the solution was reacted at −70 ° C. with stirring for 2 hours. Next, 408 g of styrene was added to the reaction solution, and the reaction was further continued for 30 minutes to obtain a polymer solution.
[0047] 得られた重合体溶液を大量の水中へあけて反応を停止させた。反応停止後、分液 ロートで重合体溶液相と水相を分離した。同様の方法で重合体溶液相の水洗を 2回 行った後、水相が中性になっているのを確認して力も重合体溶液相を払い出し、重 合体溶液を得た。 [0047] The obtained polymer solution was poured into a large amount of water to stop the reaction. After the reaction was stopped, the polymer solution phase and the aqueous phase were separated with a separating funnel. After washing the polymer solution phase twice with the same method, confirm that the aqueous phase is neutral, and then pay off the polymer solution phase in terms of force. A coalesced solution was obtained.
[0048] GPC分析を行ったところ、数平均分子量が 100, 000、分子量分布が 1. 14であつ た。  [0048] As a result of GPC analysis, the number average molecular weight was 100,000 and the molecular weight distribution was 1.14.
[0049] (実施例 1)  [0049] (Example 1)
槽容積 50リットル、内径 30cmの耐圧攪拌装置に、純水 12. 5リットルおよび製造例 で得た重合体溶液 12. 5リットルを仕込み、界面活性剤(ポリエチレングリコールモノ ステアレート)を 5. lg、添加し密閉した。撹拌翼には翼径 15cmの 2段 4枚傾斜パド ルを用いて、 400rpmで攪拌しながらジャケットで昇温した。  A pressure-resistant stirrer with a tank volume of 50 liters and an inner diameter of 30 cm was charged with 12.5 liters of pure water and 12.5 liters of the polymer solution obtained in the production example, and 5. lg of a surfactant (polyethylene glycol monostearate), Added and sealed. The stirrer blade was heated in a jacket while stirring at 400 rpm using a two-stage four-padded paddle with a blade diameter of 15 cm.
[0050] 撹拌槽内温が 90°Cに到達した時点で溶媒ガスを耐圧攪拌装置に付設したコンデ ンサに導入し、逐次溶媒を回収した。発泡に注意しながら内圧を加減し、内圧が常 圧まで低下かつ撹拌槽内温が 95°Cとなった時点で加温および溶媒蒸発を停止した 。内温が室温まで低下するのを待って攪拌を停止し、撹拌槽内に生成した榭脂スラリ 一を回収した(工程(1) )。回収した榭脂スラリー中の粉粒体は l〜2mmの粒径を持 つ良好な粒子であった。回収した榭脂スラリーを再度撹拌槽に戻し、コロイダルシリカ (日産化学社製 MP— 2040、平均粒径 0. 19 m、有効成分含有量 40%)を 4g (榭 脂に対して有効成分量が 0. 1重量部)添加し、密閉してスチームストリツビングを行つ た (工程 (2) )。ストリツビング条件は 120°Cを 60分間維持しながら撹拌槽下部より蒸 気を吹き込む方法を採用した。  [0050] When the temperature in the stirring tank reached 90 ° C, the solvent gas was introduced into a capacitor attached to the pressure-resistant stirring apparatus, and the solvent was sequentially recovered. The internal pressure was increased or decreased while paying attention to foaming, and the heating and solvent evaporation were stopped when the internal pressure dropped to normal pressure and the stirring tank internal temperature reached 95 ° C. The agitation was stopped after the internal temperature decreased to room temperature, and the resin slurry produced in the agitation tank was recovered (step (1)). The granular material in the collected resin slurry was a good particle having a particle size of 1 to 2 mm. The recovered rosin slurry is returned to the agitation tank again, and 4 g of colloidal silica (Nissan Chemical MP-2040, average particle size 0.19 m, active ingredient content 40%) (0.1 part by weight) was added, sealed and steam stripped (step (2)). The stripping conditions were as follows: steam was blown from the bottom of the stirring tank while maintaining 120 ° C for 60 minutes.
[0051] この榭脂スラリーを遠心脱水し、箱型乾燥機で 100°C雰囲気下 2時間乾燥して榭脂 粉粒体を得た。  [0051] This resin slurry was centrifugally dehydrated and dried in a box dryer at 100 ° C for 2 hours to obtain a resin powder.
[0052] 表 1に示すように、得られた榭脂粉粒体はブロッキング性が良好でなおかつ透明性 も良好であった。  [0052] As shown in Table 1, the obtained greaves powder granules had good blocking properties and good transparency.
[0053] [表 1] プロッキング改良剤 [0053] [Table 1] Procking improver
コロイダノレシリ力 平均粒子径 プ口ッキング性 透明性  Colloidal resilient force Average particle size Packing property Transparency
[重量部] [ μ m ]  [Parts by weight] [μm]
実施例 1 0 . 1 0 . 1 9 ◎ 〇 実施例 2 0 . 3 0 . 1 9 ◎ 〇 比較例 1 なし X 〇 比較例 2 0 . 3 0 . 0 8 Δ 〇 比較例 3 0 . 1 0 . 4 5 〇 X Example 1 0 .1 0 .1 9 ◎ ○ Example 2 0 .3 0 .1 9 ◎ ○ Comparative Example 1 None X ○ Comparative Example 2 0 .3 0 .0 8 Δ ○ Comparative Example 3 0. 4 5 〇 X
(注) * 1 ◎ : ブロッキングしない (Note) * 1 ◎: No blocking
〇 : 手ですぐほぐれる。  〇: Can be loosened immediately by hand.
△ : 手でほぐれるが、 一部粗粒化したままになる。  Δ: Unraveled by hand, but partially coarsened.
X : 完全にプロッキングし、 樹脂間が融着している。  X: Completely locked and the resin is fused.
* 2 〇 : 白濁せず良好である。  * 2 ○: Good without cloudiness.
X : 白濁している。  X: Cloudy.
[0054] (実施例 2) [0054] (Example 2)
工程(2)において、コロイダルシリカ(日産化学社製 MP— 2040、平均粒径 0. 19 m、有効成分含有量 40%)を 12g (榭脂に対して有効成分量が 0. 3重量部)添カロ した以外は実施例 1と同様に実施した。  In step (2), colloidal silica (MP-2040, Nissan Chemical Co., Ltd., average particle size 0.19 m, active ingredient content 40%) 12 g (0.3 parts by weight of active ingredient relative to rosin) The same procedure as in Example 1 was performed except that supplementation was performed.
[0055] 表 1に示すように、得られた榭脂粉粒体はブロッキング性が良好で、なおかつ透明 性も良好であった。 [0055] As shown in Table 1, the obtained rosin powder granules had good blocking properties and good transparency.
[0056] (比較例 1) [0056] (Comparative Example 1)
工程(2)において、コロイダルシリカを添加しな力つたこと以外は実施例 1と同様に 実施した。  The same procedure as in Example 1 was performed except that in the step (2), colloidal silica was not added.
[0057] 表 1に示すように、得られた榭脂粉粒体はブロッキング性が悪ぐ榭脂同士が融着し ており、手でほぐしても完全にはほぐれな力つた。  [0057] As shown in Table 1, the obtained rosin powder granules had poor blocking properties and were fused with each other, and even when loosened by hand, they were completely loose.
[0058] (比較例 2) [0058] (Comparative Example 2)
工程(2)において、平均粒径が 0. 08 μ mのコロイダルシリカ(日産化学社製スノー テックス ZL、有効成分含有量 40%)を 12g (榭脂に対して有効成分量が 0. 3重量部 In step (2), 12 g of colloidal silica (Nissan Chemical's Snowtex ZL, active ingredient content 40%) with an average particle size of 0.08 μm (the active ingredient content is 0.3 wt. Part
)添加した以外は実施例 1と同様に実施した。 ) The same procedure as in Example 1 was carried out except for addition.
[0059] 表 1に示すように、得られた榭脂粉粒体は榭脂の透明性は問題な力つたが、ブロッ キング性が悪ぐ手でほぐれる力 一部粗粒ィ匕したままになった。 [0059] As shown in Table 1, the obtained rosin powder granules had a problem with the transparency of rosin, but the The ability to loosen with a hand with poor king characteristics.
[0060] (比較例 3)  [0060] (Comparative Example 3)
工程(2)において、平均粒径が 0. 45 μ mのコロイダルシリカ(日産化学社製 MP— In step (2), colloidal silica with an average particle size of 0.45 μm (MP—
4540、有効成分含有量 40%)を 4g (榭脂に対して有効成分量が 0. 1重量部)添加 した以外は実施例 1と同様に実施した。 4540, 40% active ingredient content) was carried out in the same manner as in Example 1 except that 4 g (the active ingredient content was 0.1 parts by weight relative to rosin) was added.
[0061] 表 1に示すように、得られた榭脂粉粒体はブロッキング性が改良されたが、榭脂の 透明性が悪ィ匕した。 [0061] As shown in Table 1, the obtained resin particles had improved blocking properties, but the transparency of the resin was poor.

Claims

請求の範囲 The scope of the claims
[1] 榭脂粉粒体を含有する水溶液から榭脂粉粒体を回収する際に、粒子径 0. 1〜0.  [1] When recovering rosin powder particles from an aqueous solution containing rosin particles, the particle size is 0.1-0.
3 μ mのコロイダルシリカを添加することを特徴とする榭脂粉粒体の製造方法。  A method for producing a greaves powder granule, comprising adding 3 μm of colloidal silica.
[2] コロイダルシリカを、榭脂粉粒体中の重合体 100重量部に対して 0. 01〜5重量部 添加することを特徴とする請求項 1に記載の榭脂粉粒体の製造方法。 [2] The method for producing a rosin powder granule according to claim 1, wherein the colloidal silica is added in an amount of 0.01 to 5 parts by weight with respect to 100 parts by weight of the polymer in the rosin powder granule.
[3] 重合体力イソブチレン系重合体であることを特徴とする、請求項 2に記載の榭脂粉 粒体の製造方法。 [3] The method for producing a coconut powder granule according to claim 2, wherein the polymer is an isobutylene polymer.
[4] イソブチレン系重合体が、 [4] The isobutylene polymer is
(A)イソブチレンを主体として構成される重合体ブロックと、  (A) a polymer block composed mainly of isobutylene;
(B)芳香族ビニル系単量体を主体として構成される重合体ブロック、  (B) a polymer block composed mainly of an aromatic vinyl monomer,
力 なるブロック共重合体であることを特徴とする請求項 3に記載の榭脂粉粒体の製 造方法。  4. The method for producing a coconut powder granule according to claim 3, wherein the block copolymer is a strong block copolymer.
PCT/JP2006/308998 2006-04-28 2006-04-28 Process for producing resin particulate WO2007125597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308998 WO2007125597A1 (en) 2006-04-28 2006-04-28 Process for producing resin particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308998 WO2007125597A1 (en) 2006-04-28 2006-04-28 Process for producing resin particulate

Publications (1)

Publication Number Publication Date
WO2007125597A1 true WO2007125597A1 (en) 2007-11-08

Family

ID=38655143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308998 WO2007125597A1 (en) 2006-04-28 2006-04-28 Process for producing resin particulate

Country Status (1)

Country Link
WO (1) WO2007125597A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049356A (en) * 1973-09-04 1975-05-02
JPS5224249A (en) * 1975-07-17 1977-02-23 Dunlop Co Ltd Method of manufacturing fluid rubber powder
JPS62240327A (en) * 1986-04-11 1987-10-21 Tosoh Corp Production of powdered rubber
JPS6310636A (en) * 1986-07-01 1988-01-18 Nippon Zeon Co Ltd Production of paraticulate rubber
JPS6426644A (en) * 1987-04-13 1989-01-27 Kanegafuchi Chemical Ind Method for improving powder characteristic of synthetic polymer powder
JPH04185646A (en) * 1990-11-20 1992-07-02 Mitsubishi Rayon Co Ltd Improvement of powder property
JPH10330404A (en) * 1997-05-28 1998-12-15 Jsr Corp Production of rubber-like polymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049356A (en) * 1973-09-04 1975-05-02
JPS5224249A (en) * 1975-07-17 1977-02-23 Dunlop Co Ltd Method of manufacturing fluid rubber powder
JPS62240327A (en) * 1986-04-11 1987-10-21 Tosoh Corp Production of powdered rubber
JPS6310636A (en) * 1986-07-01 1988-01-18 Nippon Zeon Co Ltd Production of paraticulate rubber
JPS6426644A (en) * 1987-04-13 1989-01-27 Kanegafuchi Chemical Ind Method for improving powder characteristic of synthetic polymer powder
JPH04185646A (en) * 1990-11-20 1992-07-02 Mitsubishi Rayon Co Ltd Improvement of powder property
JPH10330404A (en) * 1997-05-28 1998-12-15 Jsr Corp Production of rubber-like polymer

Similar Documents

Publication Publication Date Title
JP4894265B2 (en) Method for producing isobutylene resin particles
US3432483A (en) Continuous process for preparing finely divided polymers
TWI447010B (en) Process technology for recovering brominated styrenic polymers from reaction mixtures in which they are formed and/or converting such mixtures into pellets or into granules or pastilles
EP0084837B1 (en) Flocculation of latex particles and production of thermoplastic resin
CN101981091B (en) Process for producing fine particles of polyphenylene sulfide resin, fine particles of polyphenylene sulfide resin, and dispersion thereof
WO2006008902A1 (en) Process for producing polymer
US5246779A (en) Microfine propylene polymer powders and process for their preparation
WO2017170077A1 (en) Alkoxy magnesium, method for producing alkoxy magnesium, solid catalyst component for olefin polymerization use, catalyst for olefin polymerization use, and method for producing olefin polymer
JP4224284B2 (en) Method for producing isobutylene-based thermoplastic elastomer resin
EP0992520B1 (en) Dried porous crumbs of hydrogenated block copolymer
EP0445748A2 (en) Process for preparing polytetrafluoro-ethylene granular powder
KR100685331B1 (en) Method for Producing Phillips Catalysts for Polymerising Olefins with Better Productivity Rates in the Particle-Form Process
WO2007125597A1 (en) Process for producing resin particulate
JP4656965B2 (en) Method for producing resin powder
WO2007034660A1 (en) Process for producing particulate resin
EP0290149B1 (en) Particulate solid, production and use
WO2007007837A1 (en) Method for producing resin powder particle
JPH0247482B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
JP2008239642A (en) Method for producing resin granule
JP2005171074A (en) Production method of isobutylene resin granule
JP3115674B2 (en) Method for producing electrorheological fluid composition
JP5209925B2 (en) Method for producing resin powder
KR0177505B1 (en) Process for the manufacture of ethylene copolymers with a ziegler catalyst system, and odourless ethylene polymers prepared therefrom
JP2003105078A (en) Method for eliminating metal compound from crude polyether
EP3055337B1 (en) Process for coagulating sulfonated block copolymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06745857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06745857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP