JP2011231395A - Anodic oxidation device - Google Patents

Anodic oxidation device Download PDF

Info

Publication number
JP2011231395A
JP2011231395A JP2010162693A JP2010162693A JP2011231395A JP 2011231395 A JP2011231395 A JP 2011231395A JP 2010162693 A JP2010162693 A JP 2010162693A JP 2010162693 A JP2010162693 A JP 2010162693A JP 2011231395 A JP2011231395 A JP 2011231395A
Authority
JP
Japan
Prior art keywords
power supply
supply drum
strip
anodizing
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010162693A
Other languages
Japanese (ja)
Other versions
JP4723041B1 (en
Inventor
Shigenori Yuya
重徳 祐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010162693A priority Critical patent/JP4723041B1/en
Priority to PCT/JP2011/002088 priority patent/WO2011125336A1/en
Priority to CN201180018267.8A priority patent/CN102834550B/en
Application granted granted Critical
Publication of JP4723041B1 publication Critical patent/JP4723041B1/en
Publication of JP2011231395A publication Critical patent/JP2011231395A/en
Priority to US13/648,060 priority patent/US20130026045A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/005Apparatus specially adapted for electrolytic conversion coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To form at a high speed an anodic oxidation film as an insulating layer on one side of a metal substrate.SOLUTION: The anodic oxidation device comprises a power supply drum 2 that supports through close contact a band-shaped material 1 made from an anodically oxidizable metal or a band-shaped material 1 having at least one surface made from a compounded conductive metal foil, which is an anodically oxidizable metal, and has a part 2a where at least the band-shaped material 1 is adhered is made from a conductive material; an opposing electrode 3 disposed facing the power supply drum 2; an electrolysis tank 5 filled with an electrolyte 4 in which the opposing electrode 3 and part of the power supply drum 2 that supports through close contact the band-shaped material 1 are immersed; a protective member 6 that is made from a nonconductive material that overlaps the end part in the width direction of the band-shaped material 1, which is closely supported by the power supply drum 2, and the part of the power supply drum 2 to which the band-shaped material 1 is not adhered, to thereby protect these parts from the electrolyte 4; and a drive unit that is synchronized with the circumferential speed of the power supply drum 2 and which forces the protective member 6 and the band-shaped material 1, which is in close contact with the power supply drum 2, to travel together in the electrolyte 4.

Description

本発明は、太陽電池、薄膜トランジスタ回路、ディスプレイ(画像表示装置)等の半導体装置の用途に有用な半導体素子用基板や電解コンデンサー用電極を製造するのに適した陽極酸化装置に関するものである。   The present invention relates to an anodizing apparatus suitable for manufacturing a substrate for a semiconductor element and an electrode for an electrolytic capacitor that are useful for applications of a semiconductor device such as a solar cell, a thin film transistor circuit, and a display (image display device).

金属製の基板を用いた薄膜太陽電池は、基板の軽量性および可撓性(フレキシビリティー)という観点から、ガラス基板を用いたものに比較して、広い用途への適用の可能性がある。さらに、金属製の基板は高温プロセスにも耐えうるという点で、光電変換特性が向上するため太陽電池の高効率化が期待できる。   Thin film solar cells using a metal substrate may be applicable to a wider range of applications than those using a glass substrate from the viewpoint of lightness and flexibility of the substrate. . Furthermore, since the metal substrate can withstand high-temperature processes, the photoelectric conversion characteristics are improved, so that high efficiency of the solar cell can be expected.

太陽電池モジュ−ルは、同一基板上で太陽電池セルを直列接続し集積化することで、モジュール効率を向上させる。このとき、太陽電池モジュ−ルの金属基板には絶縁層を形成し、この上に光電変換を行う半導体回路層を設ける必要がある。例えば、ステンレス等の鉄系素材を基板に用いた場合は、CVD等の気相法やゾルゲル法等の液相法によりSiやアルミニウムの酸化物を被覆し絶縁層を形成する必要がある。しかし、これらの手法は、製法的にピンホールやクラックを発生し易く、大面積の薄膜絶縁層を安定に作製する手法としては本質的な課題を抱えている(特許文献1)。   The solar cell module improves the module efficiency by connecting the solar cells in series on the same substrate and integrating them. At this time, it is necessary to form an insulating layer on the metal substrate of the solar cell module and provide a semiconductor circuit layer for performing photoelectric conversion thereon. For example, when an iron-based material such as stainless steel is used for the substrate, it is necessary to form an insulating layer by coating Si or aluminum oxide by a vapor phase method such as CVD or a liquid phase method such as sol-gel method. However, these methods are prone to pinholes and cracks in the manufacturing process, and have an essential problem as a method for stably producing a large-area thin film insulating layer (Patent Document 1).

一方、アルミニウムの場合には陽極酸化膜(AAO)を形成することにより、ピンホールが無く密着性良好な絶縁被膜を得ることができる(特許文献2)。しかし、アルミニウム上のAAOは、120℃以上に加熱するとクラックが発生することが知られており(非特許文献1)、絶縁性、特にリーク電流が増大してしまうという問題を抱えている。また、アルミニウムは200℃程度で軟化するため、この温度以上を経たアルミニウムは極めて強度が小さく、クリープ変形や座屈変形といった永久変形(塑性変形)を生じ易く、これを用いる半導体装置の製造時にはハンドリングに厳しい制限が必要である。これは屋外用太陽電池などへの適用を困難なものにしている。   On the other hand, in the case of aluminum, by forming an anodic oxide film (AAO), an insulating film having no pinholes and good adhesion can be obtained (Patent Document 2). However, AAO on aluminum is known to generate cracks when heated to 120 ° C. or higher (Non-Patent Document 1), and has a problem of increasing insulation, particularly leakage current. In addition, since aluminum softens at about 200 ° C., aluminum having a temperature higher than this temperature has extremely low strength and tends to cause permanent deformation (plastic deformation) such as creep deformation and buckling deformation. Strict restrictions are necessary. This makes it difficult to apply to outdoor solar cells.

上記問題を解決するため、所謂アルミニウムクラッド材からなる基板に絶縁層としてAAOを形成し、その上に光吸収層である化合物半導体層や電極層を形成する方法が提案されている。この方法では金属基板と化合物半導体層の線膨張係数の差を小さく設計することが可能であり、500℃以上の高温製膜となる化合物半導体層の形成工程においても、絶縁層のクラックや化合物半導体の剥離などの問題を生じない。またアルミニウムと複合させる金属基材は、アルミニウムに比較して比強度や高温強度が大きいため、製造時のハンドリングも容易である。   In order to solve the above problem, a method has been proposed in which AAO is formed as an insulating layer on a substrate made of a so-called aluminum clad material, and a compound semiconductor layer or an electrode layer which is a light absorption layer is formed thereon. In this method, the difference in coefficient of linear expansion between the metal substrate and the compound semiconductor layer can be designed to be small. Even in the formation process of the compound semiconductor layer that forms a high-temperature film at 500 ° C. or higher, cracks in the insulating layer and the compound semiconductor Does not cause problems such as peeling. In addition, since the metal base material combined with aluminum has a higher specific strength and higher temperature strength than aluminum, handling during manufacture is easy.

絶縁層としてのAAOは、電池モジュールとした時の高い電圧で絶縁破壊しないだけでなく、電圧印加時のリーク電流も小さいこと、すなわち体積抵抗が高い必要がある。リーク電流が大きいと、発電した電流が個々の電池間で漏れ電流となり、モジュール発電効率が低下する。従って、AAOは前述の性能を担保するため、1μm以上、好ましくは5μm以上の厚さが必要となる。   AAO as an insulating layer needs not only to have a dielectric breakdown at a high voltage when used as a battery module, but also to have a small leakage current when a voltage is applied, that is, a high volume resistance. When the leak current is large, the generated current becomes a leak current between the individual batteries, and the module power generation efficiency decreases. Therefore, AAO requires a thickness of 1 μm or more, preferably 5 μm or more in order to ensure the above-mentioned performance.

帯状アルミニウムを連続的に陽極酸化するときの一般的な装置は、電解槽の前部に給電ロールまたは給電槽を置き、アルミニウムに電流を供給する構成であり、給電部分から電解槽にかけてのアルミニウムにも電流が流れる。陽極酸化とは電解酸化(アルミニウムの場合は3電子反応)であり、AAOの厚さは流した電気量に比例する。従って、帯状アルミニウムを連続的に陽極酸化する装置の場合、ライン速度(帯状アルミニウムの走行速度)にも比例した電流を給電する必要がある。このとき、給電部分から電解槽にかけてのアルミニウムにも同様に比例した電流が流れることになるので、AAO厚が厚いほど、またライン速度が大きくなるほど、電圧降下が大きくなって電力ロスが発生する。さらに給電部分から電解槽にかけてのアルミニウムはIR発熱により溶断する可能性があり、生成するAAO厚とライン速度には上限が存在する。発熱と溶断限界電流は帯状アルミニウムの単位断面積あたりの抵抗によって決まるので、薄いアルミニウム箔ほど、生成可能なAAO厚とライン速度の上限は小さくなる。   A general device for continuously anodizing strip-shaped aluminum is a structure in which a feeding roll or feeding tank is placed in the front part of the electrolytic cell and current is supplied to the aluminum. Even current flows. Anodization is electrolytic oxidation (three-electron reaction in the case of aluminum), and the thickness of AAO is proportional to the amount of electricity passed. Therefore, in the case of an apparatus that continuously anodizes strip-shaped aluminum, it is necessary to supply a current proportional to the line speed (running speed of the strip-shaped aluminum). At this time, since a proportional current also flows in the aluminum from the feeding portion to the electrolytic cell, the voltage drop increases and power loss occurs as the AAO thickness increases and the line speed increases. Furthermore, aluminum from the power feeding portion to the electrolytic cell may be melted by IR heat generation, and there is an upper limit to the AAO thickness to be generated and the line speed. Since the heat generation and the fusing limit current are determined by the resistance per unit cross-sectional area of the strip-shaped aluminum, the lower the upper limit of the AAO thickness and the line speed that can be generated, the thinner the aluminum foil.

一方で、帯状の薄いアルミニウム箔の片面にのみ厚いAAOを形成したいという要求があり、一例は前述の絶縁層付金属基板である。この場合、片面にマスキングフィルムを貼り、前述の装置で製造することは可能であるが、AAO厚とライン速度には上限が存在する。また、メッキなどのadditive被膜と異なり、AAOはsubtractive被膜であり、マスキングフィルム端面からの電解液侵入が生じると、容易に被膜形成する。従って高粘着力のマスキングフィルムを選定する必要がある。さらにクラッド材のような異種金属が接合された帯状金属箔の場合は、局部電池作用による副反応を防止するため、異種金属同士が露出した幅方向の側端面もマスキングフィルムを貼り、電気化学的に不活性にしておく必要がある。   On the other hand, there is a demand to form a thick AAO only on one side of a strip-like thin aluminum foil, and an example is the above-described metal substrate with an insulating layer. In this case, it is possible to apply a masking film on one side and manufacture with the above-mentioned apparatus, but there is an upper limit to the AAO thickness and the line speed. Further, unlike additive films such as plating, AAO is a subtractive film, and when the electrolyte enters from the end face of the masking film, the film is easily formed. Therefore, it is necessary to select a masking film having a high adhesive strength. Furthermore, in the case of a strip-shaped metal foil joined with dissimilar metals such as clad material, a masking film is also applied to the side edges in the width direction where the dissimilar metals are exposed in order to prevent side reactions due to local cell action. Must be inactive.

帯状アルミニウムの片面にのみAAOを製膜する装置は種々提案されている。代表例は、陽極酸化槽に断面円上の支持ドラムを置き、それにアルミニウム箔を密着させてアルミニウム箔の片面のみを陽極酸化させる手法である(特許文献3)。また、支持ドラムに導電性を持たせ、ドラムに給電する手法も提案されている(特許文献4)。後者の場合は、アルミニウム箔の裏面から直接給電することになるので、前述の電圧降下や発熱を無視できるレベルにまで低下させることが可能である。   Various apparatuses for forming AAO on only one side of a strip-shaped aluminum have been proposed. A typical example is a method in which a support drum on a cross-sectional circle is placed in an anodizing tank, and an aluminum foil is brought into close contact therewith to anodize only one side of the aluminum foil (Patent Document 3). In addition, a method has been proposed in which the support drum is made conductive and power is supplied to the drum (Patent Document 4). In the latter case, since power is supplied directly from the back surface of the aluminum foil, it is possible to reduce the voltage drop and heat generation to a level that can be ignored.

しかしながら、この手法では、支持ドラムとアルミニウム箔の間に電解液の染込みが容易に生じる。陽極酸化槽側はAAO被膜が形成され過電圧が高くなっているので、支持ドラムに電解液が染込むと支持ドラムと対向電極間の直接電流が大きくなり、陽極酸化槽側のAAO被膜形成電流に対する電流ロスとなる。また、このロス電流は、給電ドラムの密着面に電気化学的作用を及ぼすことになり、密着面側のアルミニウムに対しても陽極酸化被膜を形成したり、給電ドラムが金属である場合はその表面が陽極酸化されたりアノード溶解したりして、いずれも密着面の接触抵抗が高くなって、スパーク等の局部不良を生じる可能性がある。   However, in this method, the electrolyte solution is easily infiltrated between the support drum and the aluminum foil. Since the AAO film is formed on the anodizing tank side and the overvoltage is high, if the electrolyte is infiltrated into the support drum, the direct current between the support drum and the counter electrode increases, and the AAO film forming current on the anodizing tank side is increased. Current loss occurs. In addition, this loss current has an electrochemical action on the contact surface of the power supply drum, and an anodized film is formed on the aluminum on the contact surface side, or the surface of the power supply drum is made of metal. As a result of anodization or anodic dissolution, the contact resistance of the contact surface increases, and local defects such as sparks may occur.

上記のような問題を解決するため、特許文献4では給電ドラムの材質をタンタル、ニオブ等のいわゆるバルブメタルとする装置が提案されているが、この方法では電解操業時間に伴いバルブメタル表面に陽極酸化被膜が成長する。従って接触抵抗が徐々に増加するため、頻繁に交換する必要があるが、これらの材質は高価であり実用性に欠ける。一方、特許文献5では、アルミニウム箔と支持ローラーとの密着面に水を供給することで密着面の電気化学的作用を防止する方法が提案されている。また、特許文献6では、アルミニウム箔の両端をテンションをかけた不導体の圧接バンドで覆い、接触面に電解液が流入することがないようにした構成が記載されている。   In order to solve the above problems, Patent Document 4 proposes a device in which the material of the power supply drum is a so-called valve metal such as tantalum or niobium. In this method, an anode is formed on the surface of the valve metal along with the electrolytic operation time. An oxide film grows. Accordingly, since the contact resistance gradually increases and needs to be replaced frequently, these materials are expensive and lack practicality. On the other hand, Patent Document 5 proposes a method for preventing the electrochemical action of the contact surface by supplying water to the contact surface between the aluminum foil and the support roller. Further, Patent Document 6 describes a configuration in which both ends of an aluminum foil are covered with a non-conductive pressure-contact band with tension so that the electrolyte does not flow into the contact surface.

特開2001−339081号公報JP 2001-339081 A 特開2000−49372号公報JP 2000-49372 A 特開平4−371892号公報JP-A-4-371789 特開昭60−210931号公報JP-A-60-210931 特開平6−108289号公報JP-A-6-108289 特開昭46−39441号公報JP-A-46-39441

茅島,他,東京都立産業技術研究所研究報告3(2000)p21Takashima, et al., Tokyo Metropolitan Industrial Technology Research Institute Research Report 3 (2000) p21

しかし、特許文献5は装置が複雑になるばかりでなく、電解液がドラム密着面の水によって薄められるため、常に電解液の濃度管理を行う必要がある。また、密着面上の薄層の水が電気分解によりガス発生すると、薄層が気膜となって接触抵抗が上がり、返ってスパーク等の原因になる可能性もある。一方、特許文献6に記載されているテンションをかけたバンドで覆う方法では、バンドは給電ドラムやアルミニウム箔と常に褶動することになり、バンドがアルミニウム箔の端部から位置ズレし易く、連続操業が困難である。また、圧接したテンションをかけることによって、薄いアルミニウム箔の場合はしわが入ってしまい、そのしわ部分から電解液が流入する可能性がある。   However, in Patent Document 5, not only the apparatus becomes complicated, but also the electrolyte solution is diluted by the water on the drum contact surface, so it is necessary to always manage the concentration of the electrolyte solution. In addition, when the thin layer of water on the contact surface generates gas by electrolysis, the thin layer becomes a gas film and the contact resistance increases, which may cause a spark or the like. On the other hand, in the method of covering with a tensioned band described in Patent Document 6, the band always swings with the feeding drum and the aluminum foil, and the band is easily displaced from the end of the aluminum foil, and is continuously Operation is difficult. In addition, by applying a pressure contact, wrinkles are generated in the case of a thin aluminum foil, and there is a possibility that the electrolytic solution flows from the wrinkled part.

このように、いずれの方法によっても、密着面側の陽極酸化被膜形成は完全には防止出来ないため、接触抵抗が不安定になるという問題は解決できない。
本発明は、上記事情に鑑みなされたものであり、薄いあるいは抵抗の高い金属基板の片面に高速で製膜することが可能な陽極酸化装置を提供することを目的とするものである。
As described above, the formation of the anodic oxide film on the contact surface side cannot be completely prevented by any method, and thus the problem that the contact resistance becomes unstable cannot be solved.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an anodizing apparatus capable of forming a film on one surface of a thin or highly resistant metal substrate at high speed.

本発明の陽極酸化装置は、陽極酸化可能な金属からなる帯状物または少なくとも片面が陽極酸化可能な金属である複合導電金属箔からなる帯状物を密着支持し、少なくとも該帯状物が密着する部分は導電性材料で構成された給電ドラムと、該給電ドラムに対向して設けられた対向電極と、前記帯状物を密着支持した給電ドラムの一部と前記対向電極とを浸漬する電解液で満たされた電解槽と、前記給電ドラムに密着支持された帯状物の短手方向端部と前記給電ドラムのうち前記帯状物が密着しない部分とをオーバーラップして前記電解液から保護する非導電性材料からなる保護部材と、前記給電ドラムの周速に同期させて前記給電ドラムに密着させた前記帯状物と前記保護部材を前記電解液中で共走行させる駆動部とを有することを特徴とするものである。   The anodizing apparatus of the present invention closely supports a band made of a metal that can be anodized or a band made of a composite conductive metal foil that is a metal that can be anodized at least on one side. Filled with an electrolytic solution that immerses a power supply drum made of a conductive material, a counter electrode provided to face the power supply drum, a part of the power supply drum that closely supports the belt-like material, and the counter electrode. A non-conductive material that overlaps the electrolytic cell, a short-side end portion of the belt-like material that is closely supported by the power supply drum, and a portion of the power supply drum where the belt-like material does not adhere to each other and protects from the electrolytic solution And a drive unit for causing the protective member to co-run in the electrolyte solution, and a belt-like object closely attached to the power supply drum in synchronization with a peripheral speed of the power supply drum. It is intended.

前記給電ドラムには前記帯状物が内接走行する凹部が設けられていることが好ましい。
前記保護部材を前記給電ドラムに圧接するガイドローラーを設ける態様としてもよい。
前記対向電極は多数の貫通孔を有することが好ましい。
It is preferable that the power supply drum is provided with a recess in which the belt-like object runs inscribed.
It is good also as an aspect which provides the guide roller which press-contacts the said protection member to the said electric power feeding drum.
The counter electrode preferably has a large number of through holes.

前記給電ドラムに支持された帯状物が前記電解液に接液する部分および/または離液する部分における前記給電ドラムと前記対向電極との間隔が、前記帯状物の前記電解液浸液中央部分における前記給電ドラムと前記対向電極との間隔よりも大きいことが好ましい。   The distance between the power supply drum and the counter electrode in the portion where the strip supported by the power supply drum is in contact with the electrolyte and / or the portion where the strip is separated is at the central portion of the electrolyte immersion liquid of the strip. It is preferable that the distance between the power supply drum and the counter electrode is larger.

前記保護部材は非導電ゴムまたは非導電ゴムで覆われた金属箔であることが好ましい。
前記給電ドラムの導電性材料は導電プラスチックまたは導電ゴムであることが好ましい。
The protective member is preferably non-conductive rubber or a metal foil covered with non-conductive rubber.
The conductive material of the power supply drum is preferably a conductive plastic or a conductive rubber.

前記対向電極の電位がグランドに対して負極性であることが好ましい。
とりわけ、前記帯状物をグランドと同電位とし、かつ陽極酸化のための電解用電源をグランドに対して絶縁出力とすることが好ましい。
前記グランドの電位に対する前記給電ドラムの電圧を監視する監視部を備えていることがさらに好ましい。
本発明の連続陽極酸化装置は、上記記載の陽極酸化装置を直列に多数配置したことを特徴とするものである。
It is preferable that the potential of the counter electrode is negative with respect to the ground.
In particular, it is preferable that the strip is set to the same potential as the ground, and the electrolysis power source for anodization is an insulated output with respect to the ground.
It is further preferable that a monitoring unit that monitors the voltage of the power supply drum with respect to the potential of the ground is provided.
The continuous anodizing apparatus of the present invention is characterized in that a large number of the anodizing apparatuses described above are arranged in series.

本発明の陽極酸化装置は、陽極酸化可能な金属からなる帯状物または少なくとも片面が陽極酸化可能な金属である複合導電金属箔からなる帯状物を密着支持し、少なくともこの帯状物が密着する部分は導電性材料で構成された給電ドラムと、この給電ドラムに対向して設けられた対向電極と、帯状物を密着支持した給電ドラムの一部と対向電極とを浸漬する電解液で満たされた電解槽と、給電ドラムに密着支持された帯状物の短手方向端部と給電ドラムのうち帯状物が密着しない部分とをオーバーラップして電解液から保護する非導電性材料からなる保護部材と、給電ドラムの周速に同期させて給電ドラムに密着させた帯状物と保護部材を電解液中で共走行させる駆動部とを有するので、給電ドラムと帯状物との密着面側の陽極酸化被膜形成を完全に防止することが可能となり、安定した接触抵抗により、帯状物の片面に陽極酸化被膜を製膜することができる。   The anodizing apparatus of the present invention closely supports and supports a band made of a metal that can be anodized or a band made of a composite conductive metal foil that is a metal that can be anodized on at least one side. Electrolysis filled with an electrolyte solution that immerses a power supply drum made of a conductive material, a counter electrode provided opposite to the power supply drum, and a part of the power supply drum that closely supports the belt-like material and the counter electrode. A protective member made of a non-conductive material that overlaps the tank, the short-side end of the belt-like object that is closely supported by the power supply drum, and the portion of the power supply drum that the belt-like object does not adhere, and protects from the electrolyte solution; Since it has a belt-like object closely attached to the power supply drum in synchronism with the peripheral speed of the power supply drum and a drive unit for causing the protective member to co-run in the electrolyte, an anodic oxide film is formed on the contact surface side of the power supply drum and the belt-like object It is possible to completely prevent, the stable contact resistance can be film anodic oxide coating on one surface of the web.

また、帯状物は給電ドラムに密着支持されているため、帯状物の裏面から直接給電することができるので、電圧降下や発熱を無視できるレベルにまで低下させることが可能となり、ライン速度を上げることができるため、単位幅における長さあたりの抵抗が高い帯状物であっても、高速で陽極酸化被膜を製膜することができる。   In addition, since the strip is closely supported by the power supply drum, power can be supplied directly from the back of the strip, so voltage drop and heat generation can be reduced to a negligible level, and line speed can be increased. Therefore, an anodic oxide film can be formed at a high speed even if it is a strip having a high resistance per unit width.

さらに、給電ドラムに帯状物が内接走行する凹部が設ける態様、あるいは保護部材を給電ドラムに圧接するガイドローラーを設ける態様とした場合には、保護部材による帯状物の短手方向端部と給電ドラムのうち帯状物が密着しない部分とのオーバーラップの水密性をより向上させることが可能となり、より安定した接触抵抗により、帯状物の片面に陽極酸化被膜を製膜することができる。   Further, when the power supply drum is provided with a recess in which the belt-shaped object is inscribed, or the protection member is provided with a guide roller that press-contacts the power supply drum, the power supply drum and the short-side end of the belt-like material are fed with the power supply drum. It becomes possible to further improve the watertightness of the overlap with the portion of the drum where the strip does not adhere, and an anodized film can be formed on one side of the strip due to more stable contact resistance.

また、本発明の連続陽極酸化装置は上記記載の陽極酸化装置を直列に多数配置したものであるので、個々の陽極酸化装置における給電ドラムでの面電流密度を陽極酸化不良の生じない最大に保ったまま、設置数のN倍のライン速度で製造が可能となり、抵抗の高いアルミニウムからなる薄い帯状物または少なくとも片面がアルミニウムである複合導電金属箔からなる帯状物に対して、5μm以上の厚いAAO膜を高速で製造することができる。   In addition, since the continuous anodizing device of the present invention includes a large number of the above-described anodizing devices arranged in series, the surface current density at the power supply drum in each anodizing device is kept at the maximum so that no anodizing failure occurs. It is possible to manufacture at a line speed N times the number of installations, and a thick AAO of 5 μm or more for a thin strip made of aluminum having high resistance or a strip made of a composite conductive metal foil having at least one side made of aluminum. The membrane can be manufactured at high speed.

本発明の陽極酸化装置の一実施の形態を示す概略斜視図である。It is a schematic perspective view which shows one Embodiment of the anodizing apparatus of this invention. 図1に示す本発明の陽極酸化装置の概略断面図である。It is a schematic sectional drawing of the anodizing apparatus of this invention shown in FIG. 帯状物が内接走行する凹部を設けた給電ドラムの概略正面模式図である。It is a schematic front schematic diagram of the power supply drum provided with the recessed part which a strip | belt-shaped object carries out inscribed running. 給電ドラムの幅と径および帯状物と保護部材との関係を示す概略模式図である。It is a schematic diagram which shows the relationship between the width | variety and diameter of an electric power feeding drum, and a strip | belt shaped object and a protection member. ガイドローラーが設けられた陽極酸化装置の一実施の形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the anodizing apparatus provided with the guide roller. 図5のガイドローラーが設けられた給電ドラムの概略正面図である。FIG. 6 is a schematic front view of a power supply drum provided with the guide roller of FIG. 5. 対向電極の電位をグランドに対して負極性とする場合の陽極酸化装置の概略斜視図である。It is a schematic perspective view of the anodizing device when the potential of the counter electrode is negative with respect to the ground. 本発明の陽極酸化装置を直列に多数配置した連続陽極酸化装置の概略模式図である。It is a schematic diagram of a continuous anodizing device in which a large number of anodizing devices of the present invention are arranged in series. 走行速度とAAO製膜速度の関係を示したグラフである。It is the graph which showed the relationship between a running speed and AAO film forming speed.

以下、本発明の陽極酸化装置を図面を用いて詳細に説明する。図1は本発明の陽極酸化装置の一実施の形態を示す概略斜視図、図2は図1に示す本発明の陽極酸化装置の概略断面図である。図1および図2に示すように、本発明の陽極酸化装置10は、陽極酸化可能な金属からなる帯状物または少なくとも片面が陽極酸化可能な金属である複合導電金属箔からなる帯状物1(以下、単に帯状物1ともいう)を密着支持し、少なくとも帯状物1が密着する部分2aは導電性材料で構成された給電ドラム2と、給電ドラム2に対向して設けられた対向電極3(図1において対向電極は他の部分を視認しやすくするために省略している)と、帯状物1を密着支持した給電ドラム2の一部と対向電極3とを浸漬する電解液4で満たされた電解槽5と、給電ドラム2に密着支持された帯状物1の短手方向端部(両側)と、給電ドラム2のうち帯状物1が密着しない部分2b(2bは導電性の無い表面である)とをオーバーラップして電解液4から保護する非導電性材料からなる保護部材6とを有する。   Hereinafter, the anodizing apparatus of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic perspective view showing an embodiment of the anodizing apparatus of the present invention, and FIG. 2 is a schematic sectional view of the anodizing apparatus of the present invention shown in FIG. As shown in FIG. 1 and FIG. 2, the anodizing apparatus 10 of the present invention is a band 1 made of a metal that can be anodized or a band 1 made of a composite conductive metal foil that is a metal that can be anodized on at least one side (hereinafter referred to as a band 1). , Which is also simply referred to as a belt 1), at least a portion 2 a where the belt 1 is in close contact with each other is provided with a power supply drum 2 made of a conductive material, and a counter electrode 3 (see FIG. In FIG. 1, the counter electrode is omitted in order to make it easy to see other portions), and a part of the power supply drum 2 that closely supports the belt 1 and the counter electrode 3 are filled with the electrolyte 4. The electrolytic cell 5, the short-side end portions (both sides) of the belt-like object 1 closely supported by the power supply drum 2, and the portion 2 b of the power supply drum 2 where the belt-shaped object 1 does not adhere (2 b is a non-conductive surface. ) And electrolyte 4 And a protective member 6 made of a non-conductive material to al protection.

さらに、給電ドラム2の上流側には帯状物1をロール状に巻回する巻出しロール21が、下流側には給電ドラム2に送りだされた帯状物1の片面に陽極酸化を実施した後の帯状物1を巻き取る巻取りロール22が設けられている。また、給電ドラム2と巻出しロール21の間には、保護部材6をロール状に巻回する巻出しロール23が、給電ドラム2と巻取りロール22の間には、保護部材6を巻き取る巻取りロール24が、保護部材6によって帯状物1と帯状物1が密着しない部分2bとをオーバーラップできるように帯状物1の両側にそれぞれ設けられている。巻取りロール22および24にはそれぞれ駆動部(図示せず)が設けられており、給電ドラム2の周速に同期させて給電ドラム2に密着させた帯状物1と保護部材6を電解液4中で共走行させることができるようになっている。   Further, an unwinding roll 21 for winding the strip 1 in a roll shape on the upstream side of the power supply drum 2, and anodization is performed on one side of the strip 1 sent to the power supply drum 2 on the downstream side. The winding roll 22 which winds up the strip | belt-shaped object 1 is provided. An unwinding roll 23 that winds the protective member 6 in a roll shape is provided between the power supply drum 2 and the unwinding roll 21, and the protective member 6 is wound between the power supply drum 2 and the take-up roll 22. Winding rolls 24 are provided on both sides of the belt 1 so that the belt 1 and the portion 2b where the belt 1 does not adhere can be overlapped by the protection member 6. Each of the take-up rolls 22 and 24 is provided with a drive unit (not shown), and the strip 1 and the protective member 6 that are in close contact with the power supply drum 2 in synchronism with the peripheral speed of the power supply drum 2 are connected to the electrolyte 4. It is possible to run together.

なお、ここでは巻取りロール22および24に設けられた駆動部が巻取りロール22および24のそれぞれを駆動して、陽極酸化実施後の帯状物1および保護部材6が巻取りロール22および24に巻取られる態様について説明しているが、巻取りロール22および24は単に回転自在な構成で、帯状物1および保護部材6を送り出すだけの機能を有し、その下流にそれぞれ別の駆動部で制御された巻取りロールが配置されている構成であってもよい。なおこの構成の場合には、巻取りロール22と駆動部で制御された別の巻取りロールとの間に、陽極酸化された帯状物を水洗する水洗槽や水洗後に乾燥するための乾燥槽を設置してもよい。   In addition, the drive part provided in the winding rolls 22 and 24 drives each of the winding rolls 22 and 24 here, and the strip | belt-shaped object 1 and protection member 6 after anodizing are carried out to the winding rolls 22 and 24, respectively. Although the winding mode is described, the winding rolls 22 and 24 are simply rotatable and have a function of feeding the belt-like object 1 and the protective member 6. The structure by which the controlled winding roll is arrange | positioned may be sufficient. In the case of this configuration, a washing tank for washing the anodized belt-like material with water or a drying tank for drying after washing between the winding roll 22 and another winding roll controlled by the drive unit. May be installed.

給電ドラム2そのものは単に回転自在な構成となっており、上記で説明した駆動部を駆動することによって給電ドラム2は、帯状物1の一方の面のみを電解液4に浸漬した状態で搬送するようになっている。但し、給電ドラム2は駆動源が設けられていてそれ自身が回転するものであってもかまわない。   The power supply drum 2 itself is simply rotatable, and the power supply drum 2 is transported in a state where only one surface of the belt 1 is immersed in the electrolytic solution 4 by driving the drive unit described above. It is like that. However, the power supply drum 2 may have a drive source and rotate itself.

給電ドラム2の直径は生産規模と陽極酸化の製膜速度にもよるが、一般的に50cm〜500cmの範囲で適宜選択することができる。給電ドラム2の帯状物1が密着する部分2aは導電性材料で構成されており、この導電性材料の幅は、必ずしも帯状物1の幅と一致させておく必要はなく、帯状物1の蛇行を許容できる限りの導電材料幅としておけばよい。導電性材料の幅は好ましくは帯状物1に対して50〜100%、さらには70〜90%とすることが望ましい。   Although the diameter of the power supply drum 2 depends on the production scale and the film formation speed of anodization, it can generally be selected appropriately within a range of 50 cm to 500 cm. The portion 2a of the power supply drum 2 where the strip 1 is in close contact is made of a conductive material, and the width of the conductive material does not necessarily have to be equal to the width of the strip 1; The conductive material width may be set as long as possible. The width of the conductive material is preferably 50 to 100%, more preferably 70 to 90% with respect to the strip 1.

陽極酸化は面電流密度が一般に500mA/cm2以下であるため、給電ドラムの導電部分はそれ程高い導電性は必要無い。また、給電ドラムの導電性材料が金属の場合、電解液のミストにより酸化膜を形成する等して接触抵抗の経時変化が生じることがあるので、給電ドラムの導電部分は導電性プラスチックや導電ゴムであることが好ましい。これらの材質は表面が軟らかいために、陽極酸化されない面の傷防止にも効果的である。導電性プラスチックや導電ゴムは、通常の汎用材料に対してカーボンを混入させることにより導電性を持たせたものを使用することができる。これらの厚さは、所望とする強度や導電性によっても異なるが0.1mmから10mm程度が好ましい。給電ドラム2のうち帯状物1が密着しない部分2bは非導電性材料で構成される。非導電性材料としては、非導電性プラスチックや非導電ゴム等が好ましい。 Since the anodization generally has a surface current density of 500 mA / cm 2 or less, the conductive portion of the power supply drum does not need to have a high conductivity. Further, when the conductive material of the power supply drum is a metal, the contact resistance may change with time due to the formation of an oxide film due to the mist of the electrolytic solution. Therefore, the conductive portion of the power supply drum may be made of conductive plastic or conductive rubber. It is preferable that Since these materials have a soft surface, they are also effective in preventing scratches on surfaces that are not anodized. As the conductive plastic and the conductive rubber, those made conductive by mixing carbon into a general general-purpose material can be used. These thicknesses vary depending on the desired strength and conductivity, but are preferably about 0.1 mm to 10 mm. A portion 2b of the power supply drum 2 where the strip 1 does not adhere is made of a non-conductive material. As the non-conductive material, non-conductive plastic, non-conductive rubber or the like is preferable.

保護部材は非導電ゴムまたは非導電ゴムで覆われた金属箔であることが好ましい。より水密性を上げるために、帯状物1に密着する側に粘着性を有する材質を塗布したものであってもよい。
給電ドラムの直径にもよるが、共走行させる保護部材は水密性を確保するため、張力を掛けておくことが好ましく、大径給電ドラムの場合は、鋼芯入りの非導電ゴムベルトなどをより好ましく使用することができる。
The protective member is preferably non-conductive rubber or a metal foil covered with non-conductive rubber. In order to further improve water tightness, a material having adhesiveness may be applied to the side that is in close contact with the strip 1.
Depending on the diameter of the power supply drum, it is preferable to apply tension to the co-traveling protection member to ensure watertightness. In the case of a large diameter power supply drum, a non-conductive rubber belt with a steel core is more preferable. Can be used.

帯状物は、陽極酸化可能な金属からなる帯状物または少なくとも片面が陽極酸化可能な金属である複合導電金属箔からなる。陽極酸化可能な金属としては、アルミニウム、Nb、Ta、Tiからなる帯状物、または少なくとも片面がこれらの金属である複合導電金属箔からなる。これらの金属は合金であってもよい。例えば、アルミニウムの場合、純アルミニウムの他にアルミニウム合金を使用することができる。アルミニウム合金は一般に90%以上の純度を有するものが好ましく用いられ、陽極酸化被膜を絶縁膜として利用する場合は、金属Si粒子を析出物として含まない方が好ましい。   The strip is made of a strip made of an anodizable metal or a composite conductive metal foil at least one surface of which is an anodizable metal. The metal that can be anodized is a strip made of aluminum, Nb, Ta, or Ti, or a composite conductive metal foil having at least one surface of these metals. These metals may be alloys. For example, in the case of aluminum, an aluminum alloy can be used in addition to pure aluminum. In general, an aluminum alloy having a purity of 90% or more is preferably used. When an anodized film is used as an insulating film, it is preferable not to include metal Si particles as a precipitate.

複合導電金属箔として陽極酸化可能な金属に複合させる金属は、鉄、炭素鋼、ステンレス鋼、Ti等を好ましく挙げることができる。帯状物の厚みは、一般に、0.02〜0.5mmの範囲である。このような単位幅における長さあたりの抵抗が高い帯状物であっても、帯状物を給電ドラムに密着支持して、帯状物の裏面から直接給電することができるので、より高速で陽極酸化被膜を形成することができる。   Preferred examples of the metal to be combined with the anodizable metal as the composite conductive metal foil include iron, carbon steel, stainless steel, and Ti. The thickness of the strip is generally in the range of 0.02 to 0.5 mm. Even if it is a strip having a high resistance per unit width in such a unit width, the strip can be closely supported on the power supply drum, and power can be directly fed from the back of the strip, so that the anodic oxide coating can be performed at a higher speed. Can be formed.

電解液としては、例えば、硫酸、リン酸、クロム酸、シュウ酸、酒石酸、マロン酸、スルファミン酸、ベンゼンスルホン酸、およびアミドスルホン酸等の酸またはそれらの塩の水溶液、あるいはそれらの混合液が挙げられるが、所望の品質を得るために最適なものを選べばよい。電解液の濃度、温度も適宜選択することができる。   Examples of the electrolytic solution include sulfuric acid, phosphoric acid, chromic acid, oxalic acid, tartaric acid, malonic acid, sulfamic acid, benzenesulfonic acid, an aqueous solution of a salt thereof, or a mixture thereof. Although it is mentioned, what is necessary is just to select an optimal thing in order to obtain desired quality. The concentration and temperature of the electrolytic solution can also be appropriately selected.

本発明の陽極酸化装置は、給電ドラム2に密着支持された帯状物1の短手方向の両端部と帯状物1が密着しない部分2bとを、保護部材6がオーバーラップして給電ドラム2の周速に同期させて給電ドラム2に密着させた帯状物1と保護部材6を電解液4中で共走行させることができるので、従来、片面に陽極酸化被膜を形成する際に必要とされていたマスキングフィルムを用いなくても、電解液4の染込みを防止することができる。また、帯状物1の短手方向の両端部は保護部材6によって完全に保護されているので、クラッド材の様な異種金属が接合された帯状物に陽極酸化を行う場合であっても、局部電池作用による副反応が起こることがない。そして、給電ドラムと帯状物との密着面側の陽極酸化被膜形成を完全に防止することが可能となり、安定した接触抵抗により、金属基板の片面に高速に陽極酸化被膜を製膜することができる。   In the anodizing apparatus of the present invention, the protective member 6 overlaps both ends in the short direction of the strip 1 that is closely supported by the power supply drum 2 and the portion 2b where the strip 1 does not adhere to the power supply drum 2. Since the strip 1 and the protective member 6 that are in close contact with the power supply drum 2 in synchronism with the peripheral speed can run together in the electrolyte solution 4, it has been conventionally required when an anodized film is formed on one side. Even without using a masking film, the electrolyte solution 4 can be prevented from being soaked. In addition, since both ends of the strip 1 in the short direction are completely protected by the protective member 6, even when anodizing is performed on the strip in which a dissimilar metal such as a clad material is joined, Side reactions due to battery action do not occur. And it becomes possible to completely prevent the formation of the anodic oxide film on the contact surface side between the power supply drum and the belt-like material, and the anodic oxide film can be formed on one side of the metal substrate at a high speed by the stable contact resistance. .

本発明の陽極酸化装置は、帯状物1とオーバーラップさせる保護部材6との水密性をさらに向上させるべく、帯状物1とオーバーラップさせる保護部材6の蛇行を抑制するために、帯状物1と保護部材6の走行部分の給電ドラム2の径を小さくする態様としてもよい。図3および図4を用いて説明する。図3は給電ドラムに帯状物と保護部材がそれぞれ内接走行する凹部を設けた給電ドラムの概略正面模式図、図4は給電ドラムの幅と径および帯状物と保護部材の関係を説明するための概略模式図である。なお、この図3および図4において図1および図2中の構成要素と同等の構成要素には同番号を付し、それらについての説明は特に必要のない限り省略する(以下、他の図面においても同様)。   In order to further improve the watertightness of the protective member 6 that overlaps the strip 1 with the strip 1, the anodizing device of the present invention is designed to suppress meandering of the protective member 6 that overlaps the strip 1. It is good also as an aspect which makes the diameter of the electric power feeding drum 2 of the driving | running | working part of the protection member 6 small. This will be described with reference to FIGS. FIG. 3 is a schematic front view of the power supply drum provided with recesses in which the belt-like object and the protection member run inscribed on the power supply drum. FIG. 4 is a diagram for explaining the width and diameter of the power supply drum and the relationship between the belt-like object and the protection member. FIG. 3 and 4, the same reference numerals are given to the same components as those in FIGS. 1 and 2, and description thereof will be omitted unless otherwise necessary (hereinafter, in other drawings). The same).

図3および図4に示すように、給電ドラム2には帯状物1が内接走行する凹部(切欠け部)と保護部材6が内接走行する凹部が設けられている。図4において、W3およびD3は給電ドラム2の全幅とドラム径を、W2およびD2は保護部材6が給電ドラム2に接触する外側の幅とドラム径を、W1およびD1は帯状物1の幅とドラム径を、W0は給電ドラムの導電材料部分の幅を示している。ドラム径の関係をD3>D2>D1とすることにより、帯状物1とオーバーラップさせる保護部材6とはそれぞれ給電ドラム2に設けられた凹部によって蛇行が抑制され、上記ドラム幅の関係をW3>W2>W1>W0とすることにより、保護部材6によって帯状物1は水密性よくオーバーラップされることとなり、帯状物1の裏面への電解液の侵入をより効果的に阻止することができる。なお、ここでは給電ドラム2に、帯状物1が内接走行する凹部と保護部材6が内接走行する凹部がそれぞれ設けられている態様を示したが、帯状物1が内接走行する凹部のみを設ける態様としてもよい。 As shown in FIGS. 3 and 4, the power supply drum 2 is provided with a recess (notch portion) in which the strip 1 travels inward and a recess in which the protection member 6 travels inward. In FIG. 4, W 3 and D 3 are the entire width and drum diameter of the power supply drum 2, W 2 and D 2 are the outer width and drum diameter of the protective member 6 contacting the power supply drum 2, and W 1 and D 1 are The width of the strip 1 and the drum diameter are indicated, and W 0 indicates the width of the conductive material portion of the power supply drum. By setting the relationship of the drum diameters to D 3 > D 2 > D 1 , the meandering of the protective member 6 that overlaps the belt-like object 1 is suppressed by the recesses provided in the power supply drum 2, and the relationship between the drum widths described above. When W 3 > W 2 > W 1 > W 0 , the band 1 is overlapped with the protective member 6 with good water tightness, and the penetration of the electrolyte into the back surface of the band 1 is more effective. Can be prevented. Here, the power supply drum 2 is shown with a recess in which the strip 1 is inscribed and a recess in which the protective member 6 is inscribed, but only the recess in which the strip 1 is inscribed is shown. It is good also as an aspect which provides.

本発明の陽極酸化装置は、保護部材6を給電ドラム2に圧接するガイドローラーが設けられている態様としてもよい。図5および図6を用いて説明する。図5はガイドローラーが設けられた陽極酸化装置の一実施の形態を示す概略断面図、図6は図5のガイドローラーが設けられた給電ドラムの概略正面図である。図5および図6に示すように、この陽極酸化装置には、帯状物1の短手方向の両端部と帯状物1が密着しない部分2bとをオーバーラップする保護部材6を給電ドラム2に圧接するためのガイドローラー7を4か所に設けている。なお、ガイドローラー7の表面は絶縁処理がなされている。このようなガイドローラー7を設けることにより、保護部材6によって帯状物1はより水密性よくオーバーラップされて、帯状物1の裏面(給電ドラムと密着している面)への電解液の侵入を阻止することができる。   The anodizing apparatus of the present invention may be configured such that a guide roller that presses the protective member 6 against the power supply drum 2 is provided. This will be described with reference to FIGS. FIG. 5 is a schematic cross-sectional view showing an embodiment of an anodizing apparatus provided with a guide roller, and FIG. 6 is a schematic front view of a power supply drum provided with the guide roller of FIG. As shown in FIGS. 5 and 6, in this anodizing apparatus, a protective member 6 that overlaps both ends of the strip 1 in the short direction and a portion 2 b where the strip 1 does not adhere is pressed against the power supply drum 2. Guide rollers 7 are provided at four locations. The surface of the guide roller 7 is insulated. By providing such a guide roller 7, the strip 1 is overlapped with better water tightness by the protective member 6, and the intrusion of the electrolyte into the back surface (the surface in close contact with the power supply drum) of the strip 1. Can be blocked.

なお、ここではガイドローラー7を、給電ドラム2の電解液4に浸漬している部分にのみ設けた態様を示しているが、ガイドローラー7は給電ドラム2の電解液4に浸漬していない部分にも設ける態様としてもよい。例えば、ガイドローラー7を、給電ドラム2の電解液3に浸漬していない部分(保護部材6の巻出し巻取りロール23と電解液4との間)にのみ設けても、保護部材6の蛇行を防止できるため、帯状物1と帯状物1が密着しない部分2bとを水密性よくオーバーラップさせることが可能である。   In addition, although the aspect which provided the guide roller 7 only in the part immersed in the electrolyte solution 4 of the power supply drum 2 here is shown, the guide roller 7 is the part which is not immersed in the electrolyte solution 4 of the power supply drum 2 It is good also as an aspect provided. For example, even if the guide roller 7 is provided only in a portion (between the unwinding and winding roll 23 of the protective member 6 and the electrolytic solution 4) that is not immersed in the electrolytic solution 3 of the power supply drum 2, the meandering of the protective member 6 is performed. Therefore, it is possible to overlap the belt-like object 1 and the portion 2b where the belt-like object 1 does not adhere with good water tightness.

陽極酸化においては反応中に対向電極からは多量の水素ガスが発生し、浮力で帯状物の陽極酸化面に到達する。陽極酸化面に気膜ができると陽極酸化不良を生じるので、電解槽内で電解液を撹拌する必要があるが、この撹拌の効率化を図るために、対向電極は多数の貫通孔を有することが好ましい。貫通孔の形状は電解液の撹拌形式(小型の装置の場合には撹拌子(スターラー)を選択したり、大型の装置の場合には電解液に流れを発生させて撹拌を行う)によっても異なるが、円形、角形やスリット状あるいはメッシュ状等から適宜選択することができる。個々の開口サイズは、給電ドラムと対向電極間の距離によっても異なるが、陽極酸化面に均一電界を印加するという観点からすれば大きすぎることは好ましくなく、例えば、給電ドラムと対向電極間の距離が10cmの場合には、円形開口で直径2cm以下とすることが好ましい。なお、対向電極としてはカーボンやアルミニウム等の汎用のものを使用することができる。   In the anodic oxidation, a large amount of hydrogen gas is generated from the counter electrode during the reaction, and reaches the anodized surface of the strip by buoyancy. If a film is formed on the anodized surface, defective anodic oxidation will occur. Therefore, it is necessary to stir the electrolyte in the electrolytic cell. To increase the efficiency of this stirring, the counter electrode must have a large number of through-holes. Is preferred. The shape of the through-hole varies depending on the type of stirring of the electrolyte (for small devices, a stirrer (stirrer) is selected, or for large devices, a flow is generated in the electrolyte to stir) However, it can be appropriately selected from circular, square, slit, mesh, and the like. The individual opening size varies depending on the distance between the power supply drum and the counter electrode, but is not preferable from the viewpoint of applying a uniform electric field to the anodized surface. For example, the distance between the power supply drum and the counter electrode is not preferable. Is 10 cm, the diameter is preferably 2 cm or less with a circular opening. A common electrode such as carbon or aluminum can be used as the counter electrode.

陽極酸化時の電源波形としては、直流の場合が一般的であるが、他にも直流を重畳させた交流波形など所望の品質を得るために最適なものを選択できる。陽極酸化時の電流密度としては、自由に選択できる。例えば、処理時間中常に一定値としてもよいし、次第に電流密度を上げていくようにしてもよい。陽極酸化時の電解方式は定電流方式であっても定電圧方式であってもよい。   As the power supply waveform at the time of anodization, a direct current is generally used, but an optimal waveform such as an alternating current waveform in which direct current is superimposed can be selected. The current density during anodization can be freely selected. For example, it may be a constant value during the processing time, or the current density may be gradually increased. The electrolytic method at the time of anodization may be a constant current method or a constant voltage method.

陽極酸化は、対向電極に対し正極性の電位とすることで酸化被膜形成するが、対向電極の電位はグランドに対して負極性電圧を印加することが好ましい。これにより帯状物の電位をグランド電位近傍とすることができ、ロールツーロールで帯状物をハンドリングする設備全体をグランド電位にすることが可能となる。逆の場合は、設備全体をグランドに対して電位を持たせる必要があり、危険なばかりでなく、帯状物と設備の間でスパーク等の異常放電を生じ、製品不良を生じる可能性もある。   In the anodic oxidation, an oxide film is formed by setting a positive potential to the counter electrode, and it is preferable to apply a negative voltage to the ground as the potential of the counter electrode. As a result, the potential of the strip can be made close to the ground potential, and the entire facility for handling the strip by roll-to-roll can be set to the ground potential. In the opposite case, it is necessary to make the entire facility have a potential with respect to the ground, which is not only dangerous, but also an abnormal discharge such as a spark between the strip and the facility, which may cause a product defect.

とりわけ、帯状物をグランド電位に一致させ、電解用電源の正極及び負極出力共に、グランドに対し絶縁出力とすることがより好ましい。これにより、電解槽以外のロールツーロール部分で帯状物と設備の異常放電を完全に防止することができる。これを模式的に示したのが、図7である。帯状物1をグランド電位に一致させるには、電解槽5以外のロールツーロール部分に、少なくとも1つの導電性ロール30を置き、そのロールを電気的にグランド接続することにより可能である。   In particular, it is more preferable that the strip is made to coincide with the ground potential, and both the positive electrode and the negative electrode output of the electrolysis power supply have an insulating output with respect to the ground. Thereby, the abnormal discharge of a strip | belt-shaped object and an installation can be prevented completely in roll-to-roll parts other than an electrolytic cell. This is schematically shown in FIG. In order to make the strip 1 coincide with the ground potential, it is possible to place at least one conductive roll 30 in a roll-to-roll portion other than the electrolytic cell 5 and electrically connect the roll to the ground.

さらに、電解方式(給電ドラムと対向電極との間に電流を流す方式)が定電流方式若しくは定電圧方式の場合は、グランド電位に対する給電ドラムの電圧を監視することが好ましい。これにより、前述の保護部材の水密性が一時的に低下してリーク電流を生じたり、帯状物と給電ドラムの接触抵抗が変化したりするような、帯状物上の陽極酸化被膜の長手方向の品質変動要因を監視することができる。   Furthermore, when the electrolysis method (the method in which a current flows between the power supply drum and the counter electrode) is a constant current method or a constant voltage method, it is preferable to monitor the voltage of the power supply drum with respect to the ground potential. As a result, the watertightness of the protective member described above is temporarily reduced to cause a leakage current, or the contact resistance between the belt and the feeding drum is changed in the longitudinal direction of the anodized film on the belt. Quality fluctuation factors can be monitored.

対向電極3は、電解液4に浸漬させた給電ドラム2に密着した帯状物1と対向する全面に略等間隔で設けられることが好ましく、その形状は給電ドラム2と同芯円状の湾曲板形状であることが好ましい。但し、対向電極3が給電ドラム2に完全に等間隔の配置で電解液4中にあると、陽極酸化される帯状物が電解液4に接液する部分および電解液4から離液する部分において、電界集中による電流集中を生じて、陽極酸化不良の原因にもなるため、実効的な電界が小さくなるようにしておくことが好ましい。このように実効電界を小さくするには、電解液抵抗を利用することが簡便であり、接液部分におよび/または離液部分において、給電ドラムと対向電極間との距離を大きくする配置や、接液部分および/または離液部分には対向電極を設けない配置、あるいはそれらを併用した配置とすることができる。   The counter electrode 3 is preferably provided at substantially equal intervals on the entire surface facing the strip 1 that is in close contact with the power supply drum 2 immersed in the electrolytic solution 4, and the shape thereof is a curved plate concentric with the power supply drum 2. The shape is preferred. However, when the counter electrode 3 is located in the electrolytic solution 4 at a completely equal interval on the power supply drum 2, the portion of the anodized strip that comes into contact with the electrolytic solution 4 and the portion that separates from the electrolytic solution 4 are used. It is preferable to make the effective electric field small because current concentration due to electric field concentration causes anodic oxidation failure. In order to reduce the effective electric field in this way, it is easy to use the electrolytic solution resistance, an arrangement that increases the distance between the power supply drum and the counter electrode in the liquid contact portion and / or the liquid separation portion, An arrangement in which the counter electrode is not provided in the liquid contact portion and / or the liquid separation portion, or an arrangement using them in combination can be employed.

図2においては、接液部分および離液部分において給電ドラム2と対向電極3間の距離を大きくする対向電極配置を示している。すなわち、給電ドラム2に支持された帯状物1が電解液4に接液する部分における給電ドラム2と対向電極3との間隔P1および帯状物1が電解液4から離液する部分における給電ドラム2と対向電極3との間隔P2を、帯状物1の電解液4に浸液している中央部分における給電ドラム2と対向電極3との間隔P3よりも大きくしている。ここで、間隔P1〜P3は給電ドラムと対向電極とを結ぶ最短距離である。このような対向電極配置とすることにより、実効電界を小さくすることができ、陽極酸化不良の発生を抑制することができる。なお、接液部分および離液部分に対向電極を設けない配置は図5に示すような配置である。 FIG. 2 shows a counter electrode arrangement in which the distance between the power supply drum 2 and the counter electrode 3 is increased in the liquid contact portion and the liquid separation portion. In other words, the interval P 1 between the power supply drum 2 and the counter electrode 3 in the portion where the strip 1 supported by the power supply drum 2 is in contact with the electrolytic solution 4 and the power supply drum in the portion where the strip 1 is separated from the electrolytic solution 4. the interval P 2 between the 2 and the counter electrode 3 is made larger than the distance P 3 between the power supply drum 2 and the counter electrode 3 in the central part that immersion in the electrolyte solution 4 of the web 1. Here, the intervals P 1 to P 3 are the shortest distances connecting the power supply drum and the counter electrode. By adopting such a counter electrode arrangement, the effective electric field can be reduced, and the occurrence of defective anodic oxidation can be suppressed. The arrangement in which the counter electrode is not provided in the liquid contact portion and the liquid separation portion is as shown in FIG.

陽極酸化処理の前段階において、帯状物は通常、洗浄処理が施される。この洗浄処理はアルミニウム表面の汚れを除去するためであり、簡便には自然酸化被膜を溶解させつつ汚れを除去する効果をもつアルカリ溶液に浸漬する等の公知の方法が用いられる。また必要に応じて、粗面化処理を施しても良い。この粗面化処理は、陽極酸化被膜の表面に凹凸を設けることにより、その上に設ける層との密着性を向上させるためのもので、機械的粗面化法、化学的粗面化法、電気化学的粗面化法又はそれらを組み合わせた公知の方法により行われる。本発明の陽極酸化装置においても、このような前処理を行う前処理槽と、前処理液を洗浄除去する水洗槽を巻出しロール21の上流に設けてもよい。
一方、陽極酸化処理後のAAO膜が製膜された帯状物は、通常、電解液を洗浄除去する水洗層を経過した後に、乾燥処理が施される。
In the previous stage of the anodizing treatment, the strip is usually subjected to a washing treatment. This cleaning treatment is for removing dirt on the aluminum surface, and a known method such as immersing in an alkaline solution having the effect of removing dirt while dissolving the natural oxide film is used. Moreover, you may perform a roughening process as needed. This roughening treatment is for improving the adhesion with the layer provided on the surface of the anodic oxide coating by providing irregularities on the surface, mechanical roughening method, chemical roughening method, It is carried out by an electrochemical roughening method or a known method combining them. Also in the anodizing apparatus of the present invention, a pretreatment tank for performing such pretreatment and a water washing tank for washing and removing the pretreatment liquid may be provided upstream of the unwinding roll 21.
On the other hand, the band-like material on which the AAO film after the anodic oxidation treatment is formed is usually subjected to a drying treatment after passing through a washing layer for washing and removing the electrolytic solution.

続いて本発明の陽極酸化装置の動作について図1および図2を参照して説明する。まず、巻出しロール21からロール状に巻回された帯状物1を送りだして、給電ドラムに密着支持させた後、巻取りロール22に巻回する。同様に、巻出しロール23からロール状に巻回された保護部材6を送りだして、巻取りロール24に巻回する。このとき、給電ドラム2に密着支持された帯状物1の短手方向端部と、給電ドラム2のうち帯状物1が密着しない部分2bとを、保護部材6によって帯状物1の裏面への電解液の侵入を阻止することができるようにオーバーラップさせる。この状態としたところで、電解槽5内の電解液4に給電ドラム2の一部、例えばドラム中心までを浸漬させる。ここで駆動部を駆動し、給電ドラム2の周速に同期させて給電ドラム2に密着させた帯状物1と保護部材6を電解液4中で共走行させ、陽極酸化装置1の電源を入れて、給電ドラム2と対向電極3との間に電流が流れるようにすると、帯状物1の給電ドラム2に密着していない片表面に陽極酸化膜が形成される。   Next, the operation of the anodizing apparatus of the present invention will be described with reference to FIG. 1 and FIG. First, the belt-like object 1 wound in a roll shape is fed out from the unwinding roll 21, closely supported by the power supply drum, and then wound around the winding roll 22. Similarly, the protective member 6 wound in a roll shape is fed from the unwinding roll 23 and wound around the winding roll 24. At this time, an electrolysis of the end in the short direction of the strip 1 that is tightly supported by the power supply drum 2 and the portion 2b of the power supply drum 2 where the strip 1 is not in close contact with the back surface of the strip 1 by the protective member 6 is performed. It is made to overlap so that the penetration | invasion of a liquid can be blocked | prevented. In this state, a part of the power supply drum 2, for example, the center of the drum is immersed in the electrolytic solution 4 in the electrolytic cell 5. Here, the drive unit is driven, and the belt 1 and the protective member 6 closely adhered to the power supply drum 2 in synchronism with the peripheral speed of the power supply drum 2 are allowed to co-run in the electrolyte 4 and the anodizing device 1 is turned on. When a current flows between the power supply drum 2 and the counter electrode 3, an anodic oxide film is formed on one surface of the strip 1 that is not in close contact with the power supply drum 2.

図8に示す連続陽極酸化装置は、陽極酸化装置10a、10b、10cを3つ直列に配置した構成となっており、帯状物1は巻出しロール21から送りだされて陽極酸化装置10a、10b、10cの間を送出しロール25a、26a、25b、26b、25cおよび26cを経由して巻取りロール22に巻き取られるように構成され、保護部材6は巻出しロール23から送りだされて陽極酸化装置10a、10b、10cの間を送出しロール27a、28a、27b、28b、27cおよび28cを経由して巻取りロール24に巻き取られるように構成されている。   The continuous anodizing apparatus shown in FIG. 8 has a configuration in which three anodizing apparatuses 10a, 10b, and 10c are arranged in series, and the strip 1 is fed from the unwinding roll 21 to be anodized apparatus 10a, 10b. 10c, and is wound around the take-up roll 22 via the rolls 25a, 26a, 25b, 26b, 25c and 26c, and the protective member 6 is fed from the unwind roll 23 to the anode. It is configured to be wound around the winding roll 24 via the feed rolls 27a, 28a, 27b, 28b, 27c and 28c between the oxidizers 10a, 10b and 10c.

巻出しロール21と送出しロール25aの間には帯状物1を前処理するための前処理層11が設けられ、送出しロール26cと巻取りロール22の間には、陽極酸化された帯状物を水洗する水洗槽12と水洗後に乾燥するための乾燥槽13が設置されている。なお、図8に示す連続陽極酸化装置においては、陽極酸化装置10a、10b、10cの3台直列で保護部材6を一括して用いる態様を示しているが、各陽極酸化装置10a、10b、10cのそれぞれにおいて個別に巻出しロール23と巻取りロール24を設ける態様としてもよい。   Between the unwinding roll 21 and the feeding roll 25a, a pretreatment layer 11 for preprocessing the band 1 is provided. Between the feeding roll 26c and the winding roll 22, an anodized band is provided. A washing tank 12 for washing water and a drying tank 13 for drying after washing are installed. In addition, in the continuous anodizing apparatus shown in FIG. 8, although the protection member 6 is collectively shown in series of three anodizing apparatuses 10a, 10b, and 10c, each anodizing apparatus 10a, 10b, and 10c is shown. It is good also as an aspect which provides the unwinding roll 23 and the winding roll 24 in each of each.

アルミニウムの陽極酸化は電解液と電解条件にもよるが、電解酸化のクーロン効率は3C/(cm2・μm)程度であり、面電流密度100mA/cm2の通電電流あたりで2μm/min程度の製膜速度となる。このとき、面電流密度をD1(mA/cm2)、電解時間をT(min)、必要なAAO膜の厚さをH(μm)とすると、T=50×H/D1(min)となる。また、製膜速度をSとすると、S=0.02×D1なので、T=H/Sとなる。帯状物の電解液浸漬長をL(m)、帯状物の走行速度をLS(m/min)とすると、LS=L/T=0.02×L×D1/H=L×S/Hであり、走行速度LSはLとD1またはSに比例し、Hに反比例することとなる。 Although the anodic oxidation of aluminum depends on the electrolytic solution and electrolysis conditions, the Coulomb efficiency of electrolytic oxidation is about 3 C / (cm 2 · μm), and about 2 μm / min per energizing current with a surface current density of 100 mA / cm 2 . It becomes the film forming speed. At this time, assuming that the surface current density is D1 (mA / cm 2 ), the electrolysis time is T (min), and the required AAO film thickness is H (μm), T = 50 × H / D1 (min). . If the film forming speed is S, S = 0.02 × D1, and T = H / S. Assuming that the electrolyte immersion length of the strip is L (m) and the running speed of the strip is LS (m / min), LS = L / T = 0.02 × L × D1 / H = L × S / H Yes, the traveling speed LS is proportional to L and D1 or S, and inversely proportional to H.

図9に、AAO厚さHを10μmとした場合の走行速度とAAO製膜速度の関係を示したグラフを示す。図中の(a)、(b)、(c)は、各々電解槽長Lが5、10、15mの場合である。走行速度LSは、AAO製膜速度Sに比例して大きくすることができる。本発明の場合、電解槽長Lは給電ドラムが電解液に浸漬している距離である。例えば、給電ドラムの直径が3m程度の場合、ドラム中心より少し大きく浸漬させると、電解槽長は5mとすることができる。AAO膜は片面にのみ形成され、もう片面は金属のままなので、引続き同様のドラム給電で陽極酸化することが可能である。従って、この電解槽を直列にN個配置すれば、走行速度をN倍とすることが可能となる。図9(b)と(c)は、夫々、電解槽を直列に2台と3台配置した場合の走行速度を図示したものである。なお、図9の右側の縦軸は、後述する全浸漬方式の電解装置における帯状物の幅1cmあたりの走行方向に流れる電解電流であり、本発明の場合は、前述の通りこの電流は流れず、帯状物の裏面から直接給電される。   FIG. 9 is a graph showing the relationship between the running speed and the AAO film forming speed when the AAO thickness H is 10 μm. (A), (b), and (c) in the figure are cases where the electrolytic cell length L is 5, 10, and 15 m, respectively. The traveling speed LS can be increased in proportion to the AAO film forming speed S. In the case of the present invention, the electrolytic cell length L is the distance at which the power supply drum is immersed in the electrolytic solution. For example, in the case where the diameter of the power supply drum is about 3 m, the electrolytic cell length can be set to 5 m when immersed slightly larger than the center of the drum. Since the AAO film is formed only on one side and the other side remains a metal, it can be subsequently anodized by the same drum power feeding. Therefore, if N electrolytic cells are arranged in series, the traveling speed can be increased N times. FIGS. 9B and 9C illustrate the traveling speed when two and three electrolytic cells are arranged in series, respectively. The vertical axis on the right side of FIG. 9 is the electrolytic current flowing in the traveling direction per 1 cm width of the strip in the all-immersion type electrolysis apparatus described later. In the present invention, this current does not flow as described above. Power is supplied directly from the back of the belt.

従来の帯状物を全浸漬する方式の電解装置においては、前述の通り、給電部分から電解槽にかけての帯状物の走行方向に電解電流を流す必要がある。このとき、帯状物の幅1cmあたりの走行方向に流れる電解電流をD2(A/cm)とすると、単位時間に電解槽に浸漬する帯状物面積に必要厚さ分のAAOを成長させるのに必要な電流は、走行速度LS(m/min)とAAO厚さH(μm)、及びクーロン効率3C/(cm2・μm)から、D2=LS×H×[クーロン効率]×100/60=5×LS×Hとなる。従って、D2は、AAO製膜速度や電解槽長によらず走行速度とAAO厚さに比例した電流となる。図9の右の縦軸に示した値は、AAO厚さ10μmの場合なので、左の縦軸LSに対して、D2=50×LSとなる。 In the conventional electrolyzer that immerses the entire strip, it is necessary to pass an electrolytic current in the running direction of the strip from the feeding portion to the electrolytic cell as described above. At this time, when the electrolytic current flowing in the running direction per 1 cm width of the strip is D2 (A / cm), it is necessary to grow AAO of the necessary thickness on the strip area immersed in the electrolytic cell per unit time. From the traveling speed LS (m / min), the AAO thickness H (μm), and the Coulomb efficiency 3 C / (cm 2 · μm), D2 = LS × H × [Coulomb efficiency] × 100/60 = 5 × LS × H. Therefore, D2 is a current proportional to the traveling speed and the AAO thickness regardless of the AAO film forming speed and the electrolytic cell length. Since the value shown on the right vertical axis in FIG. 9 is the case where the AAO thickness is 10 μm, D2 = 50 × LS with respect to the left vertical axis LS.

一方、帯状物の給電部分から電解槽にかけて流す電流には上限があり、アルミニウム箔が100μmでは、水冷シャワー等で充分冷却したとしても、150A/cmを超えるとアルミニウムの抵抗によるIR発熱により、熱暴走を生じ、溶断する危険性が高まる。従って、図9においてどの様な製膜速度や電解槽長で電解するにせよ、幅方向の電解電流は150A/cm以下、即ち走行速度3m/min以下とする必要がある。帯状物のIR発熱と溶断限界電流は、単位断面積あたりの抵抗によって決まるので、薄いアルミニウム箔ほど幅1cmあたりの限界電流は小さくなる。また、鉄鋼、ステンレス及びTi等の高強度ではあるが高抵抗の金属と薄いアルミニウムとを複合したクラッド材では、同様に限界電流は小さくなり、走行速度も小さくする必要がある。   On the other hand, there is an upper limit to the current that flows from the feeding portion of the strip to the electrolytic cell. When the aluminum foil is 100 μm, even if it is sufficiently cooled by a water-cooled shower or the like, if it exceeds 150 A / cm, it is heated due to IR heat generation due to the resistance of aluminum. Runaway and increased risk of fusing. Therefore, regardless of the film forming speed and electrolytic cell length in FIG. 9, the electrolysis current in the width direction needs to be 150 A / cm or less, that is, the traveling speed is 3 m / min or less. Since the IR heat generation and fusing limit current of the strip are determined by the resistance per unit cross-sectional area, the limit current per 1 cm width becomes smaller as the aluminum foil becomes thinner. Further, in a clad material in which a high-strength but high-resistance metal such as steel, stainless steel, and Ti is combined with thin aluminum, the limit current is similarly reduced, and the traveling speed needs to be reduced.

なお、従来の帯状物を全浸漬する方式の電解装置においても、直列多段設置によりライン速度を向上させることは原理的には可能である。しかしながら、片面AAO製膜の場合は、各電解装置毎に給電するために、マスキングフィルムの貼り付け工程と剥がし工程が加わるため、現実的でない。また、全浸漬する方式の電解装置において、給電方法を間接給電とする場合は、給電槽を設け、陽極酸化とは逆極性電圧を印加する。従って電解槽を多段設置し間接給電を行うと、前段の装置で製膜されたAAO膜に給電過程で逆電圧が加わることになり、AAO膜の剥離等の異常を生じる。帯状物の両面にAAOを製膜する場合は、マスキングフィルムが不要であるが、AAO被膜は絶縁性であるので両面にAAO被膜を形成してしまうと、そもそも多段給電が不可能であるばかりでなく、前述の計算のとおり走行方向に流れる電解電流は片面製膜の場合の倍の電流が必要であり、走行速度を大きくすることはさらに困難である。従って、この連続陽極酸化装置は、抵抗の高い薄いアルミニウム箔やクラッド材に対して1μm以上の厚いAAO膜を片面に製造する場合に極めて有効な装置構成である。   In principle, it is also possible to improve the line speed by installing in series in multiple stages in the conventional electrolyzer that immerses the entire strip. However, in the case of single-sided AAO film formation, a masking film affixing step and a peeling step are added to supply power to each electrolysis device, which is not realistic. Moreover, in the electrolyzing apparatus of the whole immersion method, when the power feeding method is indirect power feeding, a power feeding tank is provided and a voltage having a polarity opposite to that of anodization is applied. Therefore, when indirect power feeding is performed by installing multiple stages of electrolytic cells, a reverse voltage is applied to the AAO film formed by the preceding apparatus during the power feeding process, and abnormalities such as peeling of the AAO film occur. When AAO is formed on both sides of a strip, a masking film is not necessary. However, since the AAO film is insulative, if an AAO film is formed on both sides, multistage power feeding is not possible in the first place. However, as described above, the electrolytic current flowing in the traveling direction requires a current twice that of the single-side film formation, and it is more difficult to increase the traveling speed. Therefore, this continuous anodizing apparatus is an extremely effective apparatus configuration when a thick AAO film having a thickness of 1 μm or more is manufactured on one side of a thin aluminum foil or cladding material having high resistance.

1 帯状物
2 給電ドラム
2a 帯状物密着部分
3 対向電極
4 電解液
5 電解槽
6 保護部材
7 ガイドローラー
10 陽極酸化装置
DESCRIPTION OF SYMBOLS 1 Band-shaped object 2 Feeding drum 2a Band-shaped object contact | adhering part 3 Counter electrode 4 Electrolytic solution 5 Electrolytic tank 6 Protection member 7 Guide roller 10 Anodizing device

Claims (11)

陽極酸化可能な金属からなる帯状物または少なくとも片面が陽極酸化可能な金属である複合導電金属箔からなる帯状物を密着支持し、少なくとも該帯状物が密着する部分は導電性材料で構成された給電ドラムと、
該給電ドラムに対向して設けられた対向電極と、
前記帯状物を密着支持した給電ドラムの一部と前記対向電極とを浸漬する電解液で満たされた電解槽と、
前記給電ドラムに密着支持された帯状物の短手方向端部と、前記給電ドラムのうち前記帯状物が密着しない部分とをオーバーラップして前記電解液から保護する非導電性材料からなる保護部材と、
前記給電ドラムの周速に同期させて前記給電ドラムに密着させた前記帯状物と前記保護部材を前記電解液中で共走行させる駆動部と、
を有することを特徴とする陽極酸化装置。
A power supply comprising a band made of an anodizable metal or a band made of a composite conductive metal foil which is an anodizable metal on at least one side, and at least a portion where the band is in close contact is made of a conductive material. Drums,
A counter electrode provided to face the power supply drum;
An electrolytic cell filled with an electrolytic solution for immersing a part of the power supply drum that closely supports the belt-like object and the counter electrode;
A protective member made of a non-conductive material that overlaps a short-side end portion of a belt-like object that is closely supported by the power supply drum and a portion of the power supply drum that the belt-like object does not adhere to protect from the electrolytic solution. When,
A drive unit for causing the belt-like object closely attached to the power supply drum in synchronization with the peripheral speed of the power supply drum and the protection member to co-run in the electrolyte;
An anodic oxidation apparatus characterized by comprising:
前記給電ドラムに前記帯状物が内接走行する凹部が設けられていることを特徴とする請求項1記載の陽極酸化装置。   The anodizing apparatus according to claim 1, wherein the power supply drum is provided with a recess in which the belt-like object runs inscribed. 前記保護部材を前記給電ドラムに圧接するガイドローラーが設けられていることを特徴とする請求項1または2記載の陽極酸化装置。   The anodizing apparatus according to claim 1, wherein a guide roller that presses the protective member against the power supply drum is provided. 前記対向電極が多数の貫通孔を有することを特徴とする請求項1、2または3記載の陽極酸化装置。   4. The anodizing device according to claim 1, wherein the counter electrode has a plurality of through holes. 前記給電ドラムに支持された帯状物が前記電解液に接液する部分および/または離液する部分における前記給電ドラムと前記対向電極との間隔が、前記帯状物の前記電解液浸液中央部分における前記給電ドラムと前記対向電極との間隔よりも大きいことを特徴とする請求項1〜4いずれか1項記載の陽極酸化装置。   The distance between the power supply drum and the counter electrode in the portion where the strip supported by the power supply drum is in contact with the electrolyte and / or the portion where the strip is separated is at the central portion of the electrolyte immersion liquid of the strip. The anodizing device according to claim 1, wherein the anodizing device is larger than an interval between the power supply drum and the counter electrode. 前記保護部材が非導電ゴムまたは非導電ゴムで覆われた金属箔であることを特徴とする請求項1〜5いずれか1項記載の陽極酸化装置。   The anodizing apparatus according to claim 1, wherein the protective member is a non-conductive rubber or a metal foil covered with a non-conductive rubber. 前記給電ドラムの導電性材料が導電プラスチックまたは導電ゴムであることを特徴とする請求項1〜6いずれか1項記載の陽極酸化装置。   The anodizing apparatus according to claim 1, wherein the conductive material of the power supply drum is a conductive plastic or a conductive rubber. 前記対向電極の電位がグランドに対して負極性であることを特徴とする請求項1〜7いずれか1項記載の陽極酸化装置。   The anodizing apparatus according to claim 1, wherein the potential of the counter electrode is negative with respect to the ground. 前記帯状物をグランドと同電位とし、かつ電解用電源がグランドに対して絶縁出力であることを特徴とする請求項1〜8いずれか1項記載の陽極酸化装置。   The anodizing apparatus according to claim 1, wherein the strip has the same potential as the ground, and the power source for electrolysis has an insulated output with respect to the ground. 前記グランドの電位に対する前記給電ドラムの電圧を監視する監視部を備えていることを特徴とする請求項8または9記載の陽極酸化装置。   The anodizing apparatus according to claim 8, further comprising a monitoring unit that monitors a voltage of the power supply drum with respect to the ground potential. 請求項1〜10いずれか1項記載の陽極酸化装置を直列に多数配置したことを特徴とする連続陽極酸化装置。   A continuous anodizing device in which a large number of anodizing devices according to any one of claims 1 to 10 are arranged in series.
JP2010162693A 2010-04-09 2010-07-20 Anodizing equipment Active JP4723041B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010162693A JP4723041B1 (en) 2010-04-09 2010-07-20 Anodizing equipment
PCT/JP2011/002088 WO2011125336A1 (en) 2010-04-09 2011-04-08 Anodic oxidation device
CN201180018267.8A CN102834550B (en) 2010-04-09 2011-04-08 Anodic oxidation device
US13/648,060 US20130026045A1 (en) 2010-04-09 2012-10-09 Anodizing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010089983 2010-04-09
JP2010089983 2010-04-09
JP2010162693A JP4723041B1 (en) 2010-04-09 2010-07-20 Anodizing equipment

Publications (2)

Publication Number Publication Date
JP4723041B1 JP4723041B1 (en) 2011-07-13
JP2011231395A true JP2011231395A (en) 2011-11-17

Family

ID=44350518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162693A Active JP4723041B1 (en) 2010-04-09 2010-07-20 Anodizing equipment

Country Status (4)

Country Link
US (1) US20130026045A1 (en)
JP (1) JP4723041B1 (en)
CN (1) CN102834550B (en)
WO (1) WO2011125336A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173144A1 (en) * 2011-06-14 2012-12-20 富士フイルム株式会社 Anodizing device, continuous anodizing device, and film forming method
EP2832898A1 (en) * 2014-02-05 2015-02-04 ThyssenKrupp Steel Europe AG Component coated by means of plasma electrolytic oxidation and method for manufacturing the same
ES2898508T3 (en) * 2015-06-22 2022-03-07 Brigham & Womens Hospital Inc Home evaluation of the quality of semen samples
CN108839352B (en) * 2018-07-03 2023-10-03 华玻视讯(珠海)科技有限公司 Multistage film laminating machine for protecting IR holes of display glass screen
CN111793816B (en) * 2020-07-31 2022-03-25 常州费曼生物科技有限公司 Continuous anodizing equipment and process for single-side anodizing porous infusion apparatus filter membrane
CN112813477A (en) * 2020-12-24 2021-05-18 西比里电机技术(苏州)有限公司 Method and equipment for moving workpiece type thermoelectric chemical oxidation

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105733A (en) * 1973-02-13 1974-10-07
JPH05279893A (en) * 1992-03-30 1993-10-26 Toyo Kohan Co Ltd Plating device for extremely thin metallic foil
JPH06108289A (en) * 1992-09-25 1994-04-19 Fuji Photo Film Co Ltd Method and device for electrolytic treatment
JPH06207299A (en) * 1991-07-26 1994-07-26 Fuji Photo Film Co Ltd Device for anodizing support for lithographic printing plate
JPH06235089A (en) * 1993-02-10 1994-08-23 Fuji Photo Film Co Ltd Anodic oxidation treatment device for base for lithographic printing plate
JPH11193496A (en) * 1997-12-26 1999-07-21 Nippon Mining & Metals Co Ltd Stripe plating device for metallic strip
JP2001200393A (en) * 2000-01-18 2001-07-24 Fuji Photo Film Co Ltd Surface treatment device and surface treatment method for aluminum material
JP2001262393A (en) * 2000-03-23 2001-09-26 Kawaguchiko Seimitsu Co Ltd Casing part of watch
JP2001262395A (en) * 2000-03-21 2001-09-26 Fuji Photo Film Co Ltd Anodic oxidation method of aluminum material and manufacturing method of lithographc printing plate
JP2001262394A (en) * 2000-03-23 2001-09-26 Fuji Photo Film Co Ltd Surface treating device for aluminum material and manufacturing method of lithographic printing plate
JP2005008972A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Surface roughening method and surface roughening device for copper foil
JP2009097032A (en) * 2007-10-15 2009-05-07 Mitsubishi Alum Co Ltd Method for producing surface treated aluminum material, and surface treated aluminum material production device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431500A (en) * 1981-12-15 1984-02-14 Vanguard Research Associates, Inc. Selective electroplating apparatus
TW200641189A (en) * 2005-02-25 2006-12-01 Applied Materials Inc Counter electrode encased in cation exchange membrane tube for electroplating cell

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105733A (en) * 1973-02-13 1974-10-07
JPH06207299A (en) * 1991-07-26 1994-07-26 Fuji Photo Film Co Ltd Device for anodizing support for lithographic printing plate
JPH05279893A (en) * 1992-03-30 1993-10-26 Toyo Kohan Co Ltd Plating device for extremely thin metallic foil
JPH06108289A (en) * 1992-09-25 1994-04-19 Fuji Photo Film Co Ltd Method and device for electrolytic treatment
JPH06235089A (en) * 1993-02-10 1994-08-23 Fuji Photo Film Co Ltd Anodic oxidation treatment device for base for lithographic printing plate
JPH11193496A (en) * 1997-12-26 1999-07-21 Nippon Mining & Metals Co Ltd Stripe plating device for metallic strip
JP2001200393A (en) * 2000-01-18 2001-07-24 Fuji Photo Film Co Ltd Surface treatment device and surface treatment method for aluminum material
JP2001262395A (en) * 2000-03-21 2001-09-26 Fuji Photo Film Co Ltd Anodic oxidation method of aluminum material and manufacturing method of lithographc printing plate
JP2001262393A (en) * 2000-03-23 2001-09-26 Kawaguchiko Seimitsu Co Ltd Casing part of watch
JP2001262394A (en) * 2000-03-23 2001-09-26 Fuji Photo Film Co Ltd Surface treating device for aluminum material and manufacturing method of lithographic printing plate
JP2005008972A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Surface roughening method and surface roughening device for copper foil
JP2009097032A (en) * 2007-10-15 2009-05-07 Mitsubishi Alum Co Ltd Method for producing surface treated aluminum material, and surface treated aluminum material production device

Also Published As

Publication number Publication date
CN102834550A (en) 2012-12-19
CN102834550B (en) 2015-05-06
WO2011125336A1 (en) 2011-10-13
US20130026045A1 (en) 2013-01-31
JP4723041B1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2012173144A1 (en) Anodizing device, continuous anodizing device, and film forming method
JP4723041B1 (en) Anodizing equipment
US8822308B2 (en) Methods and apparatus for transfer of films among substrates
JP6859850B2 (en) Manufacturing method and manufacturing equipment for copper-clad laminated resin film
JP6652548B2 (en) Electrodeposited copper foil having high corrosion resistance and excellent adhesion to active material, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP3705457B2 (en) Method for anodizing aluminum material
TWI553163B (en) Method for manufacturing metal foil and manufacturing device
US9315916B2 (en) Electrode structure, substrate holder, and method for forming anodic oxidation layer
CN207918996U (en) A kind of plating foil machine
JP2013249490A (en) Anodization apparatus and method for manufacturing metal substrate with anodic oxide film
KR102333203B1 (en) Manufacturing apparatus for metal sheet
CN114318457A (en) Aluminum foil single-side thermoelectric chemical oxidation treatment device
JP2020152933A (en) Electrolytic aluminum foil manufacturing apparatus and electrolytic aluminum foil manufacturing method
CN215887252U (en) Novel electrolytic copper foil production device with multiple electrolytic tanks
JP2008174794A (en) Pretreatment method to plating for printed circuit board
CN217650913U (en) Graphene film coiled material auxiliary preparation device and electrolysis device
WO2009119186A1 (en) Electrolyzer and electrolyzation method
KR102638746B1 (en) Apparatus for Manufacturing Copper Foil
CN113529140B (en) Novel electrolytic copper foil production method
JP2016141833A (en) Method and apparatus for producing metal foil, and method and apparatus for producing battery and battery element
CN219547130U (en) Titanium anode for electrolytic copper foil raw foil machine reaction tank
KR101353862B1 (en) METHOD OF MANUFACTURING Fe/Cr SUBSTRATE FOR SOLAR CELL
JPS624894A (en) Manufacturing device for electrolytic copper foil
JPH11154626A (en) Method and device of manufacture of electrode foil for aluminum electrolytic capacitor
JP2002343685A (en) Formation method of electrode foil for aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250