JP6652548B2 - Electrodeposited copper foil having high corrosion resistance and excellent adhesion to active material, electrode including the same, secondary battery including the same, and method of manufacturing the same - Google Patents

Electrodeposited copper foil having high corrosion resistance and excellent adhesion to active material, electrode including the same, secondary battery including the same, and method of manufacturing the same Download PDF

Info

Publication number
JP6652548B2
JP6652548B2 JP2017242429A JP2017242429A JP6652548B2 JP 6652548 B2 JP6652548 B2 JP 6652548B2 JP 2017242429 A JP2017242429 A JP 2017242429A JP 2017242429 A JP2017242429 A JP 2017242429A JP 6652548 B2 JP6652548 B2 JP 6652548B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
active material
layer
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242429A
Other languages
Japanese (ja)
Other versions
JP2018109227A (en
Inventor
ヨン ウォク チェ
ヨン ウォク チェ
ジョン キュ アン
ジョン キュ アン
スン ホン チョイ
スン ホン チョイ
ジョン ギル イ
ジョン ギル イ
テ ヒュン キム
テ ヒュン キム
Original Assignee
ケイシーエフ テクノロジース カンパニー リミテッド
ケイシーエフ テクノロジース カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケイシーエフ テクノロジース カンパニー リミテッド, ケイシーエフ テクノロジース カンパニー リミテッド filed Critical ケイシーエフ テクノロジース カンパニー リミテッド
Publication of JP2018109227A publication Critical patent/JP2018109227A/en
Application granted granted Critical
Publication of JP6652548B2 publication Critical patent/JP6652548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法に関するもので、さらに具体的には、高い耐腐食性を有することによって優秀な商品性を有するだけでなく、活物質との接着力が優れているため高い容量維持率の二次電池を担保できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法に関するものである。   The present invention relates to an electrolytic copper foil, an electrode including the same, a secondary battery including the same, and a method for manufacturing the same. More specifically, the present invention not only has excellent commercial properties due to having high corrosion resistance, The present invention relates to an electrolytic copper foil capable of securing a secondary battery having a high capacity retention rate because of its excellent adhesive strength to an active material, an electrode including the same, a secondary battery including the same, and a method of manufacturing the same.

二次電池は、電気エネルギーを化学エネルギーの形態に変えて貯蔵してから電気が必要な時に前記化学エネルギーを電気エネルギーに変換させることによって電気を発生させるエネルギー変換機器の一種であって、携帯電話、ノートパソコンなどのような携帯用の家電はもちろん、電気自動車のエネルギー源として利用されている。   A secondary battery is a type of energy conversion device that generates electricity by converting electrical energy into chemical energy and storing it, and then converting the chemical energy to electrical energy when needed. It is used as an energy source for electric vehicles as well as portable home appliances such as notebook computers.

使い捨ての一次電池と比べ、経済的かつ環境的に利点を有している二次電池としては、鉛蓄電池、ニッケルカドミウム二次電池、ニッケル水素二次電池、リチウム二次電池などがある。   Secondary batteries that are economically and environmentally advantageous compared to disposable primary batteries include lead storage batteries, nickel cadmium secondary batteries, nickel hydride secondary batteries, and lithium secondary batteries.

リチウム二次電池は、他の二次電池と比べて大きさおよび重量対比相対的に多くのエネルギーを貯蔵することができる。したがって、携帯性および移動性が重要な情報通信機器分野の場合、リチウム二次電池が好まれており、ハイブリッド自動車および電気自動車のエネルギー貯蔵装置にもその応用範囲が拡大している。   Lithium secondary batteries can store relatively more energy relative to size and weight than other secondary batteries. Therefore, in the field of information and communication equipment in which portability and mobility are important, lithium secondary batteries are preferred, and their applications are expanding to energy storage devices for hybrid vehicles and electric vehicles.

リチウム二次電池の陰極集電体として利用される電解銅箔は、腐食防止のためにその表面に防錆物質で形成された皮膜を有する。   Electrolytic copper foil used as a cathode current collector of a lithium secondary battery has a film formed of a rust preventive substance on its surface for corrosion prevention.

前記防錆皮膜が過度に薄いと、高温多湿な環境下で電解銅箔の銅層の表面の酸化が急激に進行して外観の不良を招くようになり、このような外観の不良は電解銅箔の商品性を落とす。   If the rust-preventive film is excessively thin, the oxidation of the surface of the copper layer of the electrolytic copper foil proceeds rapidly in a high-temperature and high-humidity environment, leading to poor appearance. Decreases the commercial value of foil.

その反面、前記防錆皮膜が厚いほど電解銅箔の耐腐食性は高まるものの、電解銅箔の銅層と陰極活物質の間で前記皮膜が異物として作用するので前記銅層と陰極活物質の間の接着力を落として前記陰極活物質間の剥離の危険性をさらに増加させる。   On the other hand, although the corrosion resistance of the electrolytic copper foil increases as the rust-preventive film is thicker, the film acts as a foreign substance between the copper layer of the electrolytic copper foil and the cathode active material, so that the copper layer and the cathode active material have a larger thickness. The adhesive force between the cathode active materials is reduced to further increase the risk of peeling between the cathode active materials.

特に、リチウム二次電池の容量を増加させるために、炭素活物質にSiまたはSnが添加された複合活物質を陰極活物質として使うことが提案された。しかし、このような複合活物質は通常の陰極活物質と比べて相対的に大きい熱膨張率を有する。リチウム二次電池の充放電による前記複合活物質の急激な収縮および膨張は前記電解銅箔と陰極活物質間の分離を促進させてリチウム二次電池の充放電容量維持率を低下させる。また、電解銅箔に陰極活物質をコーティングした後、80℃以上の高温で1時間以上乾燥する時に電解銅箔の表面が酸化して前記陰極活物質の脱離を促進させる。銅箔と陰極活物質間の接着強度が弱いほどリチウム二次電池の充放電容量維持率が深刻に低下する。   In particular, it has been proposed to use a composite active material obtained by adding Si or Sn to a carbon active material as a cathode active material in order to increase the capacity of a lithium secondary battery. However, such a composite active material has a relatively large coefficient of thermal expansion as compared with a normal cathode active material. The rapid contraction and expansion of the composite active material due to charge and discharge of the lithium secondary battery promotes separation between the electrodeposited copper foil and the cathode active material, thereby lowering the charge / discharge capacity retention rate of the lithium secondary battery. In addition, when the electrodeposited copper foil is coated with the cathode active material and then dried at a high temperature of 80 ° C. or more for 1 hour or more, the surface of the electrodeposited copper foil is oxidized to promote the desorption of the cathode active material. The lower the adhesive strength between the copper foil and the cathode active material, the more seriously the charge / discharge capacity retention rate of the lithium secondary battery decreases.

充電/放電サイクルが繰り返されるにつれて、二次電池の充電/放電容量が急激に減少するのであれば(すなわち、容量維持率が低いのであればまたは寿命が短いのであれば)、消費者は二次電池を頻繁に取り替える必要があり、それによって消費者に不便を与え、および資源の浪費をもたらしてしまうであろう。   If the charge / discharge capacity of the secondary battery decreases rapidly as the charge / discharge cycle is repeated (i.e., if the capacity retention rate is low or the life is short), the consumer will not be able to use the secondary battery. The batteries need to be replaced frequently, which will inconvenience consumers and result in wasted resources.

したがって、本発明は、前記のような関連技術の制限および短所に起因した問題点を防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法に関するものである。   Accordingly, the present invention relates to an electrolytic copper foil, an electrode including the same, a secondary battery including the same, and a method of manufacturing the same, which can prevent the problems caused by the limitations and disadvantages of the related art.

本発明の一観点は、高い耐腐食性を有することによって優秀な商品性を有するだけでなく、活物質との接着力が優れているため高い容量維持率の二次電池を担保できる電解銅箔を提供することである。   One aspect of the present invention is to provide an electrolytic copper foil that can secure a secondary battery having a high capacity retention rate because of not only having excellent merchantability by having high corrosion resistance, but also having excellent adhesion to an active material. It is to provide.

本発明の他の観点は、電解銅箔と活物質の間に高い接着力を有することによって、高い容量維持率の二次電池を担保できる電極を提供することである。   Another aspect of the present invention is to provide an electrode capable of securing a secondary battery having a high capacity retention rate by having a high adhesive force between an electrolytic copper foil and an active material.

本発明のさらに他の観点は、高い容量維持率を有する二次電池を提供することである。   Yet another aspect of the present invention is to provide a secondary battery having a high capacity retention rate.

本発明のさらに他の観点は、高い耐腐食性を有することによって優秀な商品性を有するだけでなく、活物質との接着力が優れているため高い容量維持率の二次電池を担保できる電解銅箔を製造する方法を提供することである。   Yet another aspect of the present invention is to provide a secondary battery having a high capacity retention rate due to its high corrosion resistance, which has not only excellent commercial properties, but also excellent adhesion to an active material. It is to provide a method for producing copper foil.

前述した本発明の観点の他にも、本発明の他の特徴および利点が以下で説明されるか、そのような説明から本発明が属する技術分野で通常の知識を有する者に明確に理解されるはずである。   In addition to the aspects of the invention described above, other features and advantages of the invention will be described hereinafter or will be apparent from such description to those of ordinary skill in the art to which this invention pertains. Should be.

前記のような本発明の一観点により、第1面とその反対側の第2面を有する電解銅箔であって、前記第1面に向かうマット面(matte surface)および前記第2面に向かうシャイニー面(shiny surface)を含む銅層;前記マット面上の第1保護層;および前記シャイニー面上の第2保護層を含み、前記第1および第2保護層のそれぞれはクロム(Cr)およびベンゾトリアゾール(BTA)を含み、温度70℃および相対湿度80%の加速試験条件下で24時間の間放置する恒温恒湿テストを行う直前および行った直後の前記第1面のCIE1976L色差(color difference)(ΔE)は5以下であり、温度70℃および相対湿度80%の加速試験条件下で24時間の間放置する恒温恒湿テストを行う直前および行った直後の前記第1面の60°入射角に対する光沢度の差は50以下であり、前記第1および第2保護層のそれぞれのクロム(Cr)含量は1〜5mg/mであることを特徴とする、電解銅箔が提供される。 According to one aspect of the present invention, there is provided an electrolytic copper foil having a first surface and a second surface opposite to the first surface, wherein the matte surface faces the first surface and the second surface. A copper layer including a shiny surface; a first protective layer on the matte surface; and a second protective layer on the shiny surface, wherein each of the first and second protective layers is chromium (Cr) and The CIE1976L * a * b of the first surface immediately before and immediately after performing a constant temperature and humidity test in which benzotriazole (BTA) is contained and left for 24 hours under an accelerated test condition of a temperature of 70 ° C. and a relative humidity of 80%. * The color difference (ΔE) is 5 or less, and the temperature is constant for 24 hours under the accelerated test conditions of a temperature of 70 ° C and a relative humidity of 80%. The difference in glossiness with respect to the 60 ° incident angle of the first surface immediately before and immediately after performing the humidity test is 50 or less, and the chromium (Cr) content of each of the first and second protective layers is 1 to 5. An electrolytic copper foil is provided, which is characterized by being 5 mg / m 2 .

前記第1保護層のクロム(Cr)含量と前記第2保護層のクロム(Cr)含量の差は2mg/m以下であり得る。 The difference between the chromium (Cr) content of the first protective layer and the chromium (Cr) content of the second protective layer may be 2 mg / m 2 or less.

前記第1および第2面のそれぞれの表面粗さRzは0.5〜2.5μmであり得る。   Each of the first and second surfaces may have a surface roughness Rz of 0.5 to 2.5 μm.

前記電解銅箔は常温で30kgf/mm以上の引張強度および2%以上の延伸率を有することができる。 The electro-deposited copper foil may have a tensile strength of 30 kgf / mm 2 or more and an elongation of 2% or more at room temperature.

前記電解銅箔は1〜70μmの厚さを有することができる。   The electrodeposited copper foil may have a thickness of 1 to 70 μm.

本発明の他の観点により、第1面とその反対側の第2面を有する電解銅箔;および前記第1面上の第1活物質層を含み、前記電解銅箔は、前記第1面に向かうマット面および前記第2面に向かうシャイニー面を含む銅層;前記マット面上の第1保護層;および前記シャイニー面上の第2保護層を含み、前記第1および第2保護層のそれぞれはクロム(Cr)およびベンゾトリアゾール(BTA)を含み、前記電解銅箔と前記第1活物質層の間の剥離強度は20N/mm以上であることを特徴とする、二次電池用電極が提供される。 According to another aspect of the present invention, there is provided an electrolytic copper foil having a first surface and a second surface opposite to the first surface; and a first active material layer on the first surface, wherein the electrolytic copper foil comprises the first surface. A first protective layer on the matte surface; and a second protective layer on the shiny surface, wherein the first and second protective layers include a copper layer including a matt surface toward the mating surface and a shiny surface toward the second surface. Each of the electrodes contains chromium (Cr) and benzotriazole (BTA), and the peel strength between the electrolytic copper foil and the first active material layer is 20 N / mm 2 or more, wherein the electrode for a secondary battery is provided. Is provided.

前記第1および第2保護層のそれぞれのクロム(Cr)含量は1〜5mg/mであり得、前記第1保護層のクロム(Cr)含量と前記第2保護層のクロム(Cr)含量の差は2mg/m以下であり得る。 The chromium (Cr) content of each of the first and second protective layers may be 1 to 5 mg / m 2 , and the chromium (Cr) content of the first protective layer and the chromium (Cr) content of the second protective layer May be less than or equal to 2 mg / m 2 .

前記第1および第2面のそれぞれの表面粗さRzは0.5〜2.5μmであり得る。   Each of the first and second surfaces may have a surface roughness Rz of 0.5 to 2.5 μm.

前記電解銅箔は常温で30kgf/mm以上の引張強度および2%以上の延伸率を有することができる。 The electro-deposited copper foil may have a tensile strength of 30 kgf / mm 2 or more and an elongation of 2% or more at room temperature.

前記電解銅箔は1〜70μmの厚さを有することができる。   The electrodeposited copper foil may have a thickness of 1 to 70 μm.

前記二次電池用電極は、前記第2面上の第2活物質層をさらに含むことができ、前記第1および第2活物質層は、互いに独立して、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択される一つ以上の活物質をそれぞれ含むことができる。   The secondary battery electrode may further include a second active material layer on the second surface, wherein the first and second active material layers are independent of each other; carbon; Si, Ge, Sn, One or more active materials selected from the group consisting of a metal of Li, Zn, Mg, Cd, Ce, Ni or Fe; an alloy containing the metal; an oxide of the metal; and a composite of the metal and carbon. Each can be included.

前記第1および第2活物質層はSiおよびSnのうち少なくとも一つを含むことができる。   The first and second active material layers may include at least one of Si and Sn.

本発明のさらに他の観点により、陽極(cathode);前記二次電池用電極で構成された陰極(anode);前記陽極と陰極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte);および前記陽極と前記陰極を電気的に絶縁させる分離膜(separator)を含むことを特徴とする、二次電池が提供される。   According to another aspect of the present invention, a cathode; an anode comprising the secondary battery electrode; an electrolyte that provides an environment in which lithium ions can move between the anode and the cathode; And a separator that electrically insulates the anode and the cathode from each other.

本発明のさらに他の観点により、銅層を形成する段階;および前記銅層上に保護層を形成する段階を含み、前記銅層形成段階は、60〜120g/Lの銅イオン、80〜150g/Lの硫酸、および50ppm以下の塩素を含む電解液を準備する段階;および40〜60℃の前記電解液内に互いに離隔して配置された電極板および回転電極ドラムを30〜80A/dmの電流密度で通電させることによって電気メッキを行う段階を含み、前記保護層形成段階は、クロム酸塩(chromate)溶液とベンゾトリアゾール(BTA)溶液を混合して防錆液を準備する段階;および前記防錆液内に前記銅層を浸漬させる段階を含むことを特徴とする、電解銅箔の製造方法が提供される。 According to yet another aspect of the present invention, the method includes forming a copper layer; and forming a protective layer on the copper layer, wherein the copper layer forming step includes 60 to 120 g / L copper ions, 80 to 150 g. / L sulfuric acid and 50 ppm or less of chlorine; and preparing an electrode plate and a rotating electrode drum spaced apart from each other in the electrolyte at 40 to 60 ° C. by 30 to 80 A / dm 2. Performing an electroplating by applying a current at a current density of: wherein the step of forming a protective layer comprises preparing a rust preventive solution by mixing a chromate solution and a benzotriazole (BTA) solution; and A method for producing an electrolytic copper foil is provided, comprising a step of immersing the copper layer in the rust preventive liquid.

前記電解液は、ヒドロキシエチルセルロース(HEC)、有機硫化物、有機窒化物、およびチオ尿素(thiourea)系化合物から構成されたグループから選択される少なくとも一つの有機添加剤をさらに含むことができる。   The electrolyte may further include at least one organic additive selected from the group consisting of hydroxyethylcellulose (HEC), organic sulfide, organic nitride, and thiourea-based compound.

前記防錆液は0.1〜2g/Lのクロム(Cr)および1〜100mg/Lのベンゾトリアゾール(BTA)を含むことができ、前記防錆液のpHは1.0〜3.0であり得る。   The rust preventive solution may include 0.1 to 2 g / L chromium (Cr) and 1 to 100 mg / L benzotriazole (BTA), and the rust preventive solution has a pH of 1.0 to 3.0. possible.

前記保護層が形成される時、前記防錆液の温度は20〜60℃で維持され得る。   When the protective layer is formed, the temperature of the rust preventive liquid may be maintained at 20 to 60C.

前記銅層は前記防錆液内に1〜10秒の間浸漬され得る。   The copper layer may be immersed in the rust preventive liquid for 1 to 10 seconds.

前記のような本発明に対する一般的な叙述は本発明を例示するか説明するためのものに過ぎず、本発明の権利範囲を制限しない。   The above general description of the present invention is only for illustrating or explaining the present invention, and does not limit the scope of the present invention.

本発明の電解銅箔は、高い耐腐食性を有することによって優秀な商品性を有するだけでなく、陰極活物質との接着力が優れているため高容量の二次電池、すなわちSiまたはSnが添加された複合活物質を陰極活物質として含む二次電池の製造に適合する。   The electrolytic copper foil of the present invention not only has excellent commercial properties due to having high corrosion resistance, but also has a high capacity secondary battery, that is, Si or Sn because of its excellent adhesive strength with the cathode active material. Suitable for manufacturing a secondary battery containing the added composite active material as a cathode active material.

特に、本発明によると、充放電サイクルの繰り返しにもかかわらず、高い充電/放電容量を長期間維持できる長寿名の二次電池を製造できるため、二次電池の頻繁な取り換えによる電子製品の消費者の不便および資源の浪費を最小化することができる。   In particular, according to the present invention, it is possible to manufacture a long-life secondary battery capable of maintaining a high charge / discharge capacity for a long period of time despite repeated charge / discharge cycles. User inconvenience and waste of resources can be minimized.

添付された図面は、本発明の理解を助け、本明細書の一部を構成するためのものである。以下、本発明の実施例を例示し、発明の詳細な説明と共に本発明の原理を説明する。
本発明の一実施例に係る二次電池用電極の断面図である。 本発明の一実施例に係る電解銅箔の製造装置を示している図面である。
The accompanying drawings are provided to aid in understanding the present invention and to constitute a part of the specification. Hereinafter, embodiments of the present invention will be exemplified, and the principle of the present invention will be described together with the detailed description of the present invention.
1 is a cross-sectional view of a secondary battery electrode according to an embodiment of the present invention. 1 is a drawing showing an apparatus for manufacturing an electrolytic copper foil according to one embodiment of the present invention.

以下、添付された図面を参照して本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明の技術的思想および範囲を逸脱しない範囲内で本発明の多様な変更および変形が可能であることは当業者に自明であろう。したがって、本発明は特許請求の範囲に記載された発明およびその均等物の範囲内に入る変更および変形をすべて含む。   It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Accordingly, this invention includes all modifications and variations that come within the scope of the invention as claimed and its equivalents.

リチウムイオン二次電池は、陽極(cathode)、陰極(anode)、前記陽極と陰極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte)、および一つの電極で発生した電子が二次電池の内部を通じて他の電極に移動することによって無駄に消耗することを防止するために、前記陽極と陰極を電気的に絶縁させる分離膜(separator)を含む。   Lithium ion secondary batteries include an anode, a cathode, an electrolyte that provides an environment where lithium ions can move between the anode and the cathode, and electrons generated at one electrode. In order to prevent the anode and the cathode from being wasted by moving to another electrode through the inside of the electrode, a separator is provided to electrically insulate the anode and the cathode.

図1は本発明の一実施例に係る二次電池用電極の断面図である。   FIG. 1 is a sectional view of a secondary battery electrode according to one embodiment of the present invention.

図1に例示された通り、本発明の一実施例に係る二次電池用電極100は、第1面S1とその反対側の第2面S2を有する電解銅箔110、前記第1面S1上の第1活物質層120a、および前記第2面S2上の第2活物質層120bを含む。図1は、前記電解銅箔110の第1および第2面S1、S2のすべての上に活物質層120a、120bがそれぞれ形成された例を示しているが、本発明はこれに限定されず、本発明の二次電池用電極100は活物質層として前記第1および第2活物質層120a、120bのうちいずれか一つだけを含むこともできる。   As illustrated in FIG. 1, an electrode 100 for a secondary battery according to an embodiment of the present invention includes an electrolytic copper foil 110 having a first surface S1 and a second surface S2 opposite to the first surface S1, on the first surface S1. And a second active material layer 120b on the second surface S2. FIG. 1 shows an example in which active material layers 120a and 120b are respectively formed on all of the first and second surfaces S1 and S2 of the electrolytic copper foil 110, but the present invention is not limited to this. In addition, the secondary battery electrode 100 of the present invention may include only one of the first and second active material layers 120a and 120b as an active material layer.

リチウム二次電池において、陽極(cathode)活物質と結合する陽極(cathode)集電体としてはアルミホイル(foil)が使われ、陰極(anode)活物質と結合する陰極(anode)集電体としては電解銅箔が使われるのが一般的である。   In a lithium secondary battery, an aluminum foil is used as a cathode current collector combined with a cathode active material, and is used as a cathode current collector combined with a cathode active material. In general, electrolytic copper foil is used.

本発明の一実施例によると、前記二次電池用電極100はリチウム二次電池の陰極として使われ、前記電解銅箔110は陰極集電体として機能し、前記第1および第2活物質層120a、120bは陰極活物質を含む。   According to an embodiment of the present invention, the secondary battery electrode 100 is used as a cathode of a lithium secondary battery, the electrolytic copper foil 110 functions as a cathode current collector, and the first and second active material layers are used. 120a and 120b contain a cathode active material.

図1に例示された通り、本発明の電解銅箔110は、マット面(matte surface)MSおよびシャイニー面(shiny surface)SSを含む銅層111、前記銅層111の前記マット面MS上の第1保護層112a、および前記銅層111の前記シャイニー面SS上の第2保護層112bを含む。   As illustrated in FIG. 1, the electrolytic copper foil 110 of the present invention includes a copper layer 111 including a matte surface MS and a shiny surface SS, and a copper layer 111 on the matte surface MS of the copper layer 111. A first protective layer 112a, and a second protective layer 112b on the shiny surface SS of the copper layer 111.

前記マット面MSは、前記電解銅箔110の第1面S1に向かう銅層111の面であり、前記シャイニー面SSは前記電解銅箔110の第2面S2に向かう銅層111の面である。すなわち、前記電解銅箔110の第1面S1は前記銅層111のマット面MSに隣接した表面であり、前記電解銅箔110の第2面S2は前記銅層111のシャイニー面SSに隣接した表面である。   The matte surface MS is a surface of the copper layer 111 toward the first surface S1 of the electrolytic copper foil 110, and the shiny surface SS is a surface of the copper layer 111 toward the second surface S2 of the electrolytic copper foil 110. . That is, the first surface S1 of the electrolytic copper foil 110 is a surface adjacent to the matte surface MS of the copper layer 111, and the second surface S2 of the electrolytic copper foil 110 is adjacent to the shiny surface SS of the copper layer 111. Surface.

本発明の銅層111は電気メッキを通じて回転電極ドラム上に形成され得るが、前記シャイニー面SSは電気メッキの過程で前記回転電極ドラムと接触した面を指し示して、前記マット面MSは前記シャイニー面SSの反対側の面を指し示す。   The copper layer 111 of the present invention may be formed on the rotating electrode drum through electroplating. The shiny surface SS indicates a surface that contacts the rotating electrode drum during the electroplating process, and the matte surface MS is the shiny surface. Points to the opposite side of the SS.

シャイニー面SSがマット面MSと比べてさらに低い表面粗さRzを有するのが一般的であるが、本発明はこれに限定されず、シャイニー面SSの表面粗さRzがマット面MSの表面粗さRzと同一であるかより高くてもよい。   Although the shiny surface SS generally has a lower surface roughness Rz than the matte surface MS, the present invention is not limited to this, and the shiny surface SS has a surface roughness Rz that is lower than the matte surface MS. It may be equal to or higher than Rz.

本発明の電解銅箔110は常温(25℃)で30kgf/mm以上の引張強度および2%以上の延伸率を有することができる。前記引張強度および延伸率は万能試験機(UTM)を利用して測定するが、この時、サンプルの幅は12.7mmであり、Grip間の距離は50mmであり、測定速度は50mm/minである。 The electrodeposited copper foil 110 of the present invention can have a tensile strength of 30 kgf / mm 2 or more at a normal temperature (25 ° C.) and a stretching ratio of 2% or more. The tensile strength and the stretching ratio are measured using a universal testing machine (UTM). At this time, the width of the sample is 12.7 mm, the distance between the grips is 50 mm, and the measuring speed is 50 mm / min. is there.

前記引張強度が30kgf/mm未満であるか前記延伸率が2%未満である場合、二次電池の充放電時に引き起こされる陰極活物質の膨張および収縮により電極100の変形および/または破断がもたらされる危険が大きい。 If the tensile strength is less than 30 kgf / mm 2 or the elongation is less than 2%, the electrode 100 may be deformed and / or broken due to expansion and contraction of the cathode active material caused during charging and discharging of the secondary battery. The danger is great.

本発明の電解銅箔110は1〜70μmの厚さを有することができる。   The electrodeposited copper foil 110 of the present invention may have a thickness of 1 to 70 μm.

前記第1および第2活物質層120a、120bは、互いに独立して、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択される一つ以上を陰極活物質として含むことができる。   The first and second active material layers 120a and 120b are independently of each other carbon; a metal of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; an alloy containing the metal; At least one selected from the group consisting of a metal oxide; and a composite of the metal and carbon may be included as a cathode active material.

二次電池の充放電容量を増加させるために、前記第1および第2活物質層120a、120bはSiおよびSnのうち少なくとも一つを含むことができる。   In order to increase the charge / discharge capacity of the secondary battery, the first and second active material layers 120a and 120b may include at least one of Si and Sn.

前述した通り、二次電池の充放電が繰り返されるにつれて、活物質層120a、120bの収縮および膨張が交互に発生し、これは前記活物質層120a、120bと前記電解銅箔110の分離を誘発して二次電池の充放電効率を低下させる。したがって、二次電池が一定水準以上の容量維持率および寿命を確保するためには(すなわち、二次電池の充放電効率の低下を抑制するためには)、前記電解銅箔110が前記活物質に対して優れたコーティング性を有することによって前記電解銅箔110と活物質層120a、120b間の接着強度が高くなければならない。   As described above, as the charging and discharging of the secondary battery are repeated, the contraction and expansion of the active material layers 120a and 120b alternately occur, which causes the active material layers 120a and 120b to separate from the electrolytic copper foil 110. As a result, the charge / discharge efficiency of the secondary battery is reduced. Therefore, in order for the secondary battery to secure a capacity retention rate and a service life that are equal to or higher than a certain level (that is, to suppress a decrease in the charge / discharge efficiency of the secondary battery), the electrolytic copper foil 110 uses the active material. The adhesive strength between the electrodeposited copper foil 110 and the active material layers 120a and 120b must be high by having excellent coating properties.

前記電解銅箔110の表面粗さRzの制御を通じて電解銅箔110と活物質層120a、120b間の接着強度を向上させることができる。前記表面粗さRzは、例えばMahr社のMahrsurf M300粗さ計を利用してJISB0601(1994)規格に沿って測定され得る[測定長さ:4mm(cut off区間は除外)]。   By controlling the surface roughness Rz of the electrolytic copper foil 110, the adhesive strength between the electrolytic copper foil 110 and the active material layers 120a and 120b can be improved. The surface roughness Rz can be measured in accordance with, for example, a JIS B0601 (1994) standard using a Mahrsurf M300 roughness meter manufactured by Mahr [measurement length: 4 mm (excludes cut off section)].

本発明の一実施例によると、前記電解銅箔110の第1および第2面S1、S2のそれぞれの表面粗さRzは0.5〜2.5μmであり得る。前記表面粗さRzが0.5μm未満の場合、陰極活物質との接着面積が小さ過ぎるため前記電解銅箔110と陰極活物質の間に十分な接着力を確保することができない。その反面、前記表面粗さRzが2.5μmを超過する場合には、電解銅箔110の第1および第2面S1、S2が過度に不均一であるため陰極活物質のコーティング均一性が低下し、これによって電解銅箔110と第1および第2活物質層120a、120bの間の密着力が顕著に低下する。   According to an embodiment of the present invention, the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 may have a surface roughness Rz of 0.5 to 2.5 μm. When the surface roughness Rz is less than 0.5 μm, a sufficient adhesive force between the electrodeposited copper foil 110 and the cathode active material cannot be ensured because the adhesion area with the cathode active material is too small. On the other hand, when the surface roughness Rz exceeds 2.5 μm, the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 are excessively uneven, so that the coating uniformity of the cathode active material decreases. Accordingly, the adhesion between the electrodeposited copper foil 110 and the first and second active material layers 120a and 120b is significantly reduced.

しかし、実際には、表面粗さRzが適切に調整された電解銅箔110が仕様で要求される電解銅箔110と活物質層120a、120b間の接着力を必ずしも満足させることはない。すなわち、0.5〜2.5μmの表面粗さRzを有する電解銅箔110が業界で要求される90%以上の二次電池の容量維持率(50回充/放電後)を常に担保できることはない。   However, in practice, the electrolytic copper foil 110 having the appropriately adjusted surface roughness Rz does not necessarily satisfy the adhesive force between the electrolytic copper foil 110 and the active material layers 120a and 120b required in the specification. That is, the electrolytic copper foil 110 having a surface roughness Rz of 0.5 to 2.5 μm can always ensure the capacity retention rate (after 50 charge / discharge) of the secondary battery of 90% or more required in the industry. Absent.

特に、二次電池の高容量化のために前記活物質層120a、120bがSiとSnのうち少なくとも一つを含む場合、電解銅箔110の表面粗さRzと二次電池の容量維持率の間の関連性がさらに低いと示された。   In particular, when the active material layers 120a and 120b include at least one of Si and Sn in order to increase the capacity of the secondary battery, the surface roughness Rz of the electrolytic copper foil 110 and the capacity retention of the secondary battery are reduced. The association between them was shown to be even lower.

本発明によると、90%以上の二次電池の容量維持率を担保できる程度に十分に大きな電解銅箔110と活物質層120a、120b間の接着力を確保するにおいて、前記電解銅箔110の第1および第2保護層112a、112bの物質およびその含量は重要な因子であることが確認された。   According to the present invention, in securing the adhesive force between the electrolytic copper foil 110 and the active material layers 120a and 120b large enough to ensure a capacity maintenance ratio of the secondary battery of 90% or more, the electrolytic copper foil 110 It was confirmed that the materials and the contents of the first and second protective layers 112a and 112b were important factors.

本発明の第1および第2保護層112a、112bは前記銅層111の腐食を防止し、耐熱性を向上させるためのものであって、クロム(Cr)を含む。   The first and second protective layers 112a and 112b of the present invention prevent corrosion of the copper layer 111 and improve heat resistance, and include chromium (Cr).

前記第1および第2保護層112a、112bのそれぞれのクロム(Cr)含量は1〜5mg/mであることが好ましく、前記第1保護層112aのクロム(Cr)含量と前記第2保護層112bのクロム(Cr)含量の差は2mg/m以下であることが好ましい。 The chromium (Cr) content of each of the first and second protective layers 112a and 112b is preferably 1 to 5 mg / m 2 , and the chromium (Cr) content of the first protective layer 112a and the second protective layer The difference in chromium (Cr) content of 112b is preferably 2 mg / m 2 or less.

前記第1および第2保護層112a、112bのクロム(Cr)含量が1mg/m未満であると、電解銅箔110上に陰極活物質をコーティングした後、80℃以上の高温で1時間以上乾燥する時に酸素が第1および第2保護層112a、112bを容易に通過して銅層111の表面の酸化を誘発するようになるだけでなく、前記銅層111の表面の酸化によって電解銅箔110と陰極活物質の間に十分な化学的結合を提供できなくなるため電解銅箔110と前記活物質層120a、120bの間の接着力も低くならざるを得ない。反面、前記クロム(Cr)含量が5mg/mを超過すると、電解銅箔110の耐腐食性は優秀であるが、電解銅箔110の表面の疏水性(hydrophobicity)が増加して陰極活物質に対する化学的親和度が落ちるようになり、その結果、電解銅箔110と陰極活物質の間の十分な化学的結合を提供できなくなり、電解銅箔110と前記活物質層120a、120bの間に十分な接着力を確保することができない。 If the chromium (Cr) content of the first and second protective layers 112a and 112b is less than 1 mg / m 2 , the cathode active material is coated on the electrodeposited copper foil 110 and then at a high temperature of 80 ° C. or more for 1 hour or more. When drying, oxygen easily passes through the first and second protective layers 112a and 112b to induce oxidation of the surface of the copper layer 111, and also oxidizes the surface of the copper layer 111 to form an electrolytic copper foil. Since a sufficient chemical bond cannot be provided between the electrode 110 and the cathode active material, the adhesive strength between the electrolytic copper foil 110 and the active material layers 120a and 120b must be reduced. On the other hand, if the chromium (Cr) content exceeds 5 mg / m 2 , the corrosion resistance of the electrodeposited copper foil 110 is excellent, but the hydrophobicity of the surface of the electrodeposited copper foil 110 increases, and the cathode active material increases. , A sufficient chemical bond between the electrodeposited copper foil 110 and the cathode active material cannot be provided, and between the electrodeposited copper foil 110 and the active material layers 120a and 120b. Sufficient adhesive strength cannot be secured.

前記第1保護層112aのクロム(Cr)含量と前記第2保護層112bのクロム(Cr)含量の差が2mg/mを超過すると、電解銅箔110のカールによる作業性の低下が誘発され得るだけでなく、陰極活物質との接着力の側面で電解銅箔110の第1および第2面S1、S2の間に大きな差が発生して二次電池の容量維持率の低下を引き起こす。 If the difference between the chromium (Cr) content of the first protective layer 112a and the chromium (Cr) content of the second protective layer 112b exceeds 2 mg / m 2 , curl of the electrolytic copper foil 110 may cause a reduction in workability. In addition to the above, a large difference occurs between the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 on the side of the adhesive force with the cathode active material, causing a decrease in the capacity retention of the secondary battery.

本発明によると、前記第1および第2保護層112a、112bはクロム(Cr)他にベンゾトリアゾール(BTA)をさらに含む。前記第1および第2保護層112a、112bがクロム(Cr)と共にベンゾトリアゾール(BTA)を含むことによって、クロム(Cr)のみが適用された電解銅箔110と比べてさらに高い耐腐食性を確保できるだけでなく、陰極活物質との接着力もさらに向上させることができる。   According to the present invention, the first and second protective layers 112a and 112b further include benzotriazole (BTA) in addition to chromium (Cr). Since the first and second protective layers 112a and 112b include benzotriazole (BTA) together with chromium (Cr), higher corrosion resistance is ensured compared to the electrolytic copper foil 110 to which only chromium (Cr) is applied. Not only that, the adhesive strength with the cathode active material can be further improved.

電解銅箔110の耐腐食性は恒温恒湿テストによって引き起こされるCIE1976L色差(color difference)(ΔE)および光沢度(入射角:60°)差を通じて計量化され得る。 The corrosion resistance of the electrodeposited copper foil 110 can be quantified through a CIE1976L * a * b * color difference (ΔE) and gloss (incident angle: 60 °) difference caused by a constant temperature and humidity test.

本発明において、前記恒温恒湿テストは、温度70℃および相対湿度80%の加速試験条件下で24時間の間電解銅箔110を放置することによって行われる。   In the present invention, the constant temperature / humidity test is performed by leaving the electrolytic copper foil 110 for 24 hours under an accelerated test condition of a temperature of 70 ° C. and a relative humidity of 80%.

前記CIE1976L色差(ΔE)は、2個の知覚色(perceived color)の知覚的相違を数値で表わしたもので、L色空間(CIE 1976)内の2点間の幾何学的距離を次の式1によって算出することによって求めることができる。 The CIE1976 L * a * b * color difference (ΔE) is a numerical representation of the perceived difference between two perceived colors (perceived color). Two points in the L * a * b * color space (CIE 1976) It can be obtained by calculating the geometric distance between them by the following equation 1.

式1:ΔE={(ΔL+(Δa+(Δb1/2
前記恒温恒湿テストの直前および直後に分光側色計(spectrophotometer)を利用して電解銅箔110の表面の知覚色をそれぞれ測定し、前記測定値を利用してCIE1976L色差(ΔE)を算出する。
Equation 1: ΔE = {(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 } 1/2
Immediately before and immediately after the temperature and humidity test, the perceived color of the surface of the electrolytic copper foil 110 is measured using a spectrophotometer, and the CIE1976L * a * b * color difference ( ΔE) is calculated.

また、前記恒温恒湿テストの直前および直後に光沢計(glossmeter)を利用して電解銅箔110の表面の60°入射角に対する光沢度をそれぞれ測定し、前記測定値の差を算出する。   In addition, immediately before and after the constant temperature and humidity test, the glossiness of the surface of the electrolytic copper foil 110 with respect to a 60 ° incident angle is measured using a gloss meter, and the difference between the measured values is calculated.

前記第1および第2保護層112a、112bがクロム(Cr)と共にベンゾトリアゾール(BTA)をさらに含むことによって、前記恒温恒湿テストの直前および直後の前記電解銅箔110の表面S1、S2のCIE1976L色差(ΔE)は5以下であり、前記恒温恒湿テストの直前および直後の前記電解銅箔110の表面S1、S2の60°入射角に対する光沢度の差は50以下であるほど、本発明の電解銅箔110は優秀な耐腐食性を有する。 Since the first and second protective layers 112a and 112b further include benzotriazole (BTA) together with chromium (Cr), CIE1976L of the surfaces S1 and S2 of the electrolytic copper foil 110 immediately before and immediately after the constant temperature and humidity test. * A * b * The color difference (ΔE) is 5 or less, and the difference in glossiness with respect to the 60 ° incident angle on the surfaces S1 and S2 of the electrolytic copper foil 110 immediately before and immediately after the constant temperature and humidity test is 50 or less. Thus, the electrolytic copper foil 110 of the present invention has excellent corrosion resistance.

したがって、本発明によると、電解銅箔110上に陰極活物質をコーティングした後、80℃以上の高温で1時間以上乾燥する時にも銅層111の表面の酸化が防止され得るため、前記電解銅箔110と陰極活物質の間に十分な化学的結合を提供することができる。   Therefore, according to the present invention, the surface of the copper layer 111 can be prevented from being oxidized even when the cathode active material is coated on the electrolytic copper foil 110 and then dried at a high temperature of 80 ° C. or more for 1 hour or more. A sufficient chemical bond between the foil 110 and the cathode active material can be provided.

電解銅箔110と活物質層120a、120b間の接着力は、電解銅箔110と活物質層120a、120b間の剥離強度を測定することによって確認することができる。   The adhesive strength between the electrolytic copper foil 110 and the active material layers 120a, 120b can be confirmed by measuring the peel strength between the electrolytic copper foil 110 and the active material layers 120a, 120b.

本発明によると、前記第1および第2保護層112a、112bがクロム(Cr)と共にベンゾトリアゾール(BTA)をさらに含むことによって、前記電解銅箔110と前記活物質層120a、120bの間の剥離強度は20N/mm以上である。 According to the present invention, the first and second protective layers 112a and 112b further include benzotriazole (BTA) together with chromium (Cr), thereby separating the electrodeposited copper foil 110 and the active material layers 120a and 120b. The strength is 20 N / mm 2 or more.

以下では、図2を参照して本発明の電解銅箔110の製造方法を具体的に説明する。   Hereinafter, a method for manufacturing the electrolytic copper foil 110 of the present invention will be specifically described with reference to FIG.

本発明の方法は、銅層111を形成する段階および前記銅層111上に保護層112a、112bを形成する段階を含む。   The method includes forming a copper layer 111 and forming protective layers 112 a and 112 b on the copper layer 111.

まず、60〜120g/Lの銅イオン、80〜150g/Lの硫酸、および50ppm以下の塩素を含む電解液20を電解槽10内に準備する。   First, an electrolytic solution 20 containing 60 to 120 g / L of copper ions, 80 to 150 g / L of sulfuric acid, and 50 ppm or less of chlorine is prepared in the electrolytic cell 10.

前記電解液20はヒドロキシエチルセルロース(HEC)、有機硫化物(例えば、SPS)、有機窒化物、およびチオ尿素(thiourea)系化合物から構成されたグループから選択される少なくとも一つの有機添加剤をさらに含むことができる。前記電解液20内の前記有機添加剤の含量は1〜10ppmであり得る。   The electrolyte solution 20 further includes at least one organic additive selected from the group consisting of hydroxyethylcellulose (HEC), organic sulfide (eg, SPS), organic nitride, and thiourea-based compound. be able to. The content of the organic additive in the electrolyte solution 20 may be 1 to 10 ppm.

引き続き、40〜60℃の前記電解液20内に互いに離隔して配置された電極板30および回転電極ドラム40を30〜80A/dmの電流密度で通電させて電気メッキを行うことによって前記銅層111を前記回転電極ドラム40上に形成させる。 Subsequently, the electrode plate 30 and the rotating electrode drum 40, which are spaced apart from each other in the electrolytic solution 20 at 40 to 60 ° C., are energized at a current density of 30 to 80 A / dm 2 to perform electroplating. A layer 111 is formed on the rotating electrode drum 40.

図2に例示された通り、前記電極板30は互いに電気的に絶縁された第1および第2電極板31、32を含むことができる。   As illustrated in FIG. 2, the electrode plate 30 may include first and second electrode plates 31 and 32 that are electrically insulated from each other.

前記銅層111形成段階は、前記第1電極板31と前記回転電極ドラム40の間の通電によってシード層を形成し、引き続き前記第2電極板32と前記回転電極ドラム40の間の通電によって前記シード層を成長させることによって行われ得る。   In the step of forming the copper layer 111, a seed layer is formed by energizing the first electrode plate 31 and the rotating electrode drum 40, and then the seed layer is formed by energizing the second electrode plate 32 and the rotating electrode drum 40. This can be done by growing a seed layer.

前記回転電極ドラム40の表面(電気メッキによって銅が析出される面)の研磨の程度は電解銅箔110の第2面S2の表面粗さRzおよびクロム(Cr)付着量を制御する一つの要素である。本発明によると、#800〜#1500の粒度(Grit)を有する研磨ブラシで前記回転電極ドラム40の表面が研磨される。   The degree of polishing of the surface of the rotating electrode drum 40 (the surface on which copper is deposited by electroplating) is one factor that controls the surface roughness Rz of the second surface S2 of the electrolytic copper foil 110 and the amount of chromium (Cr) attached. It is. According to the present invention, the surface of the rotary electrode drum 40 is polished with a polishing brush having a grain size (Grit) of # 800 to # 1500.

前記電気メッキが行われる間前記電解液20から固形不純物を除去するための連続(または循環)濾過を31〜45m/hrの流量で行うことができる。前記流量が31m/hr未満であると、流速が低くなって過電圧が増加し、銅層111が不均一に形成される。反面、前記流量が45m/hrを超過すると、フィルタの損傷が誘発されて電解液内に異物が流入され得る。 During the electroplating, continuous (or circulating) filtration for removing solid impurities from the electrolytic solution 20 may be performed at a flow rate of 31 to 45 m 3 / hr. If the flow rate is less than 31 m 3 / hr, the flow rate is reduced, the overvoltage is increased, and the copper layer 111 is formed unevenly. On the other hand, if the flow rate exceeds 45 m 3 / hr, the filter may be damaged and foreign matter may flow into the electrolyte.

前記銅層111上に保護層112a、112bを形成するために、処理槽50内に防錆液60を準備する。前記防錆液は0.1〜2g/Lのクロム(Cr)および1〜100mg/Lのベンゾトリアゾール(BTA)を含むことができる。   In order to form the protective layers 112a and 112b on the copper layer 111, a rust preventive liquid 60 is prepared in the processing bath 50. The rust preventive liquid may include 0.1 to 2 g / L chromium (Cr) and 1 to 100 mg / L benzotriazole (BTA).

前記クロム(Cr)濃度が0.1g/L未満であると、防錆処理を長時間にわたって行わなければならないので生産性の側面で好ましくない。反面、前記クロム(Cr)濃度が2g/Lを超過すると、前記保護層112a、112bの厚さが増加して耐腐食性は向上するものの、活物質との接着力が低下する。   If the chromium (Cr) concentration is less than 0.1 g / L, rust prevention treatment must be performed for a long time, which is not preferable in terms of productivity. On the other hand, when the chromium (Cr) concentration exceeds 2 g / L, the thickness of the protective layers 112a and 112b increases and the corrosion resistance improves, but the adhesive strength with the active material decreases.

前記ベンゾトリアゾール(BTA)の濃度が1mg/L未満であると、ベンゾトリアゾール(BTA)の添加に伴われる本発明の効果が微少である。反面、前記ベンゾトリアゾール(BTA)の濃度が100mg/Lを超過すると、過量のベンゾトリアゾール(BTA)が保護層112a、112b形成を抑制して電解銅箔110の耐腐食性および活物質との接着力をすべて低下させる。   When the concentration of the benzotriazole (BTA) is less than 1 mg / L, the effect of the present invention accompanying the addition of the benzotriazole (BTA) is very small. On the other hand, when the concentration of the benzotriazole (BTA) exceeds 100 mg / L, an excessive amount of the benzotriazole (BTA) suppresses the formation of the protective layers 112a and 112b, and the corrosion resistance of the electrolytic copper foil 110 and the adhesion to the active material. Reduce all power.

前記防錆液60のpHは1.0〜3.0であり得る。防錆液60のpHが1.0未満であると、保護層112a、112bに起工および/または欠陥が発生するため電解銅箔110の耐腐食性および活物質との接着力がすべて悪くなる。反面、前記防錆液60のpHが3.0を超過すると、保護層112a、112bの形成速度が遅くなるため生産性の側面で好ましくない。   The pH of the rust preventive liquid 60 may be 1.0 to 3.0. When the pH of the rust preventive liquid 60 is less than 1.0, groundwork and / or defects are generated in the protective layers 112a and 112b, so that the corrosion resistance of the electrolytic copper foil 110 and the adhesive strength with the active material are all deteriorated. On the other hand, if the pH of the rust preventive liquid 60 exceeds 3.0, the formation speed of the protective layers 112a and 112b becomes slow, which is not preferable in terms of productivity.

引き続き、前記防錆液60内に前記銅層111を浸漬させる。前記銅層111が前記防錆液60に浸漬される時に前記防錆液60内に配置されたガイドロール(guide roll)70によって案内され得る。   Subsequently, the copper layer 111 is immersed in the rust preventive liquid 60. When the copper layer 111 is immersed in the rust preventive liquid 60, the copper layer 111 may be guided by a guide roll 70 disposed in the rust preventive liquid 60.

前記保護層112a、112bが形成される時、前記防錆液60の温度は20〜60℃に維持され得る。前記防錆液60の温度が20℃未満であると、保護層112a、112bの形成速度が遅くなるため生産性の側面で好ましくない。反面、前記防錆液60温度が60℃を超過すると、前記保護層112a、112bの厚さが増加して耐腐食性は向上するものの、厚さ均一性および活物質との接着力が低下する。   When the protective layers 112a and 112b are formed, the temperature of the rust preventive liquid 60 may be maintained at 20 to 60C. If the temperature of the rust preventive liquid 60 is lower than 20 ° C., the formation speed of the protective layers 112a and 112b becomes slow, which is not preferable in terms of productivity. On the other hand, when the temperature of the rust preventive liquid 60 exceeds 60 ° C., the thickness of the protective layers 112a and 112b increases and the corrosion resistance improves, but the uniformity of the thickness and the adhesive force with the active material decrease. .

前記銅層111は前記防錆液60内に1〜10秒の間浸漬され得る。浸漬時間が1秒未満であると、保護層112a、112bがほとんど形成されないため前記銅層111の表面が容易に酸化する。反面、前記浸漬時間が10秒を超過すると、電解銅箔110の耐腐食性および活物質との接着力がそれ以上増加しなくなり、得られる効果対比生産性の低下がより大きい。   The copper layer 111 may be immersed in the rust preventive liquid 60 for 1 to 10 seconds. If the immersion time is less than 1 second, the surface of the copper layer 111 is easily oxidized because the protective layers 112a and 112b are hardly formed. On the other hand, if the immersion time exceeds 10 seconds, the corrosion resistance of the electrodeposited copper foil 110 and the adhesive force with the active material will not increase any more, and the reduction in productivity relative to the obtained effect will be greater.

前記防錆液60に浸漬された銅層111の一部が溶解して水素を発生させ、この水素は6価のクロム(Cr)を3価のクロム(Cr)に還元させ、前記3価のクロム(Cr)がクロム酸と反応することによって前記銅層111上にゲル化水和物が沈積され、前記ゲル化水和物にベンゾトリアゾール(BTA)が吸着することによって本発明の保護層112a、112bが形成される。   A part of the copper layer 111 immersed in the rust preventive solution 60 is dissolved to generate hydrogen, and this hydrogen reduces hexavalent chromium (Cr) to trivalent chromium (Cr), The chromium (Cr) reacts with chromic acid to deposit a gelled hydrate on the copper layer 111, and benzotriazole (BTA) is adsorbed on the gelled hydrate to form a protective layer 112a of the present invention. , 112b are formed.

前記防錆液60内の銅濃度が一定水準以上になると、保護層112a、112bが円滑に形成され得ない。したがって、前記防錆液60を周期的に取り替えることが好ましい。   If the copper concentration in the rust preventive liquid 60 is higher than a certain level, the protective layers 112a and 112b cannot be formed smoothly. Therefore, it is preferable that the rust preventive liquid 60 is periodically replaced.

前記のような方法を通じて製造された本発明の電解銅箔110の一面または両面上に、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属(Me);前記金属(Me)を含む合金;前記金属(Me)の酸化物(MeO);および前記金属(Me)と炭素の複合体からなる群から選択される一つ以上の陰極活物質をコーティングすることによって本発明の二次電池用電極(すなわち、陰極)が製造され得る。 One side or both sides of the electrodeposited copper foil 110 of the present invention manufactured by the above-described method, carbon; a metal (Me) of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; An alloy containing the metal (Me); an oxide of the metal (Me) (MeO x ); and at least one cathode active material selected from the group consisting of a composite of the metal (Me) and carbon. Thereby, the electrode (that is, the cathode) for the secondary battery of the present invention can be manufactured.

例えば、陰極活物質用の炭素100重量部に対して1〜3重量部のスチレンブタジエンゴム(SBR)および1〜3重量部のカルボキシメチルセルロース(CMC)を混合した後、蒸溜水を溶剤に使ってスラリーを調製する。引き続き、ドクターブレードを利用して前記電解銅箔110上に20〜60μm厚さに前記スラリーを塗布し、110〜130℃で0.5〜1.5、ton/cmの圧力でプレスする。 For example, 1 to 3 parts by weight of styrene butadiene rubber (SBR) and 1 to 3 parts by weight of carboxymethyl cellulose (CMC) are mixed with 100 parts by weight of carbon for a cathode active material, and then distilled water is used as a solvent. Prepare a slurry. Subsequently, the slurry is applied on the electrolytic copper foil 110 to a thickness of 20 to 60 μm using a doctor blade, and pressed at 110 to 130 ° C. at a pressure of 0.5 to 1.5 and ton / cm 2 .

以上の方法で製造された本発明の二次電池用電極(陰極)と共に通常の陽極、電解質、および分離膜を利用してリチウム二次電池を製造することができる。   A lithium secondary battery can be manufactured using the usual anode, electrolyte, and separator together with the secondary battery electrode (cathode) of the present invention manufactured by the above method.

以下では、実施例および比較例を通じて本発明を具体的に説明する。ただし、下記の実施例は本発明の理解を助けるためのものに過ぎず、本発明の権利範囲はこれらの実施例に制限されない。   Hereinafter, the present invention will be specifically described through examples and comparative examples. However, the following examples are only for helping to understand the present invention, and the scope of the present invention is not limited to these examples.

実施例1〜4および比較例1〜5
電解液内に互いに離隔して配置された電極板および回転電極ドラムを60A/dmの電流密度で通電させることによって銅層を形成した。前記電解液は、75g/Lの銅イオン、100g/Lの硫酸、20ppmの塩素を含んでおり、55℃に維持された。電気メッキが行われる間、前記電解液から固形不純物を除去するための連続濾過が37 m/hrの流量で行われた。
Examples 1-4 and Comparative Examples 1-5
A copper layer was formed by applying a current density of 60 A / dm 2 to the electrode plate and the rotating electrode drum which were disposed apart from each other in the electrolytic solution. The electrolyte contained 75 g / L of copper ions, 100 g / L of sulfuric acid, and 20 ppm of chlorine, and was maintained at 55 ° C. During the electroplating, continuous filtration was performed at a flow rate of 37 m 3 / hr to remove solid impurities from the electrolyte.

引き続き、防錆液内に前記銅層を浸漬させた後、乾燥させることによって電解銅箔を完成した。前記防錆液のクロム(Cr)濃度、前記防錆液のベンゾトリアゾール(BTA)濃度、前記防錆液の温度、前記防錆液のpH、および浸漬時間は下記の表1のとおりである。   Subsequently, the copper layer was immersed in a rust preventive liquid, and then dried to complete an electrolytic copper foil. The chromium (Cr) concentration of the rust preventive solution, the benzotriazole (BTA) concentration of the rust preventive solution, the temperature of the rust preventive solution, the pH of the rust preventive solution, and the immersion time are as shown in Table 1 below.

前記のように製造された実施例および比較例の電解銅箔の第1面(銅層のマット面に隣接した電解銅箔の面)およびその反対側の第2面のクロム(Cr)付着量(すなわち、第1および第2面上に形成された保護層のクロム含量)、恒温恒湿テスト前後の前記第1面の色差(ΔE)および光沢度の差(ΔGs60°)を下記のようにそれぞれ求めた。また、実施例および比較例の電解銅箔で製造された陰極活物質の剥離強度および前記陰極を含む二次電池の容量維持率を下記のようにそれぞれ求めた。前記測定結果を下記の表2に表わした。   Amount of chromium (Cr) deposited on the first surface (the surface of the electrolytic copper foil adjacent to the matte surface of the copper layer) and the second surface on the opposite side of the electrolytic copper foils of Examples and Comparative Examples manufactured as described above. (That is, the chromium content of the protective layer formed on the first and second surfaces), the color difference (ΔE) and the gloss difference (ΔGs60 °) of the first surface before and after the constant temperature and humidity test are as follows. I asked for each. In addition, the peel strength of the cathode active materials manufactured from the electrolytic copper foils of the examples and the comparative examples and the capacity retention of the secondary battery including the cathode were determined as follows. The measurement results are shown in Table 2 below.

クロム(Cr)付着量(mg/m
電解銅箔の第2面をテープでマスキングし切断することによって10cm×10cmのサンプルを得た。引き続き、前記電解銅箔に孔ができないように注意しながら前記電解銅箔の第1面を硝酸水溶液(硝酸と水を1:1で混合)で溶かした。このように生成された溶液を水で希釈して50mLの希釈液を得た。引き続き、前記希釈液を25℃でICP−OES(Inductively Coupled Plasma Optical Emission Spectroscopy)(Agilent社、720ES model)で分析して前記電解銅箔の第1面のクロム付着量を測定した。引き続き、同じ方法で前記電解銅箔の第2面のクロム付着量を測定した。
Chromium (Cr) adhesion amount (mg / m 2 )
A 10 cm × 10 cm sample was obtained by masking and cutting the second side of the electrolytic copper foil with a tape. Subsequently, the first surface of the electrolytic copper foil was dissolved with a nitric acid aqueous solution (mixing of nitric acid and water at a ratio of 1: 1) while taking care not to form a hole in the electrolytic copper foil. The solution thus formed was diluted with water to obtain a diluted solution of 50 mL. Subsequently, the diluted solution was analyzed at 25 ° C. by ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) (Agilent, 720ES model) to measure the amount of chromium adhering to the first surface of the electrolytic copper foil. Subsequently, the amount of chromium deposited on the second surface of the electrolytic copper foil was measured in the same manner.

色差(ΔE)および光沢度の差(ΔGs60°)
電解銅箔を切断して10cm×10cmのサンプルを得た。前記サンプルを第1面が上にくるようにアクリル板に付着した後、恒温恒湿器(日本ESPEC社、SH−221)に入れて温度70℃および相対湿度80%の加速試験条件下で24時間の間放置した。
Color difference (ΔE) and gloss difference (ΔGs60 °)
The sample of 10 cm × 10 cm was obtained by cutting the electrolytic copper foil. After attaching the sample to an acrylic plate so that the first surface is on the upper side, the sample is put in a thermo-hygrostat (SH-221, ESPEC Japan) under an accelerated test condition of 70 ° C. and 80% relative humidity. Left for hours.

前記恒温恒湿テストの直前および直後に分光側色計(日本Konika Minolta社、CM−5)で前記第1面の知覚色(L)をそれぞれ測定し、前記測定値を利用してCIE1976L色差(ΔE)を下記の式1によって算出した。 Immediately before and immediately after the temperature and humidity test, the perceived color (L * a * b * ) of the first surface was measured with a spectral colorimeter (Konica Minolta, Japan, CM-5), and the measured values were used. Then, CIE1976L * a * b * color difference (ΔE) was calculated by the following equation 1.

[式1]:ΔE={(ΔL+(Δa+(Δb1/2
また、前記恒温恒湿テストの直前および直後にJIS Z 8741規格に沿って光沢計(Nippon Denshoku社、VG7000)を利用して前記第1面の60°入射角に対する光沢度(Gs60°)をそれぞれ測定し、前記測定値の差(ΔGs60°)を算出した。
[Equation 1]: ΔE = {(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 } 1/2
Immediately before and after the temperature and humidity test, the glossiness (Gs60 °) of the first surface with respect to a 60 ° incident angle was measured using a gloss meter (Nippon Denshoku, VG7000) in accordance with JIS Z8741 standard. The measurement was performed, and the difference (ΔGs60 °) between the measured values was calculated.

剥離強度(N/mm
陰極活物質用として、市販されているカーボン100重量部に対してSBR(スチレンブタジエンゴム)2重量部およびCMC(カルボキシメチルセルロース)2重量部を混合した。引き続き、この混合物に溶剤である蒸溜水を添加することによってスラリーを製造した。ドクターブレードを利用して前記スラリーを約60μm厚さに電解銅箔(幅:10cm)の表面上に塗布し、120℃で10分の間乾燥させた後、プレッシング工程(圧力:1ton/cm)を行うことによって陰極を製造した。
Peel strength (N / mm 2 )
For a cathode active material, 2 parts by weight of SBR (styrene butadiene rubber) and 2 parts by weight of CMC (carboxymethyl cellulose) were mixed with 100 parts by weight of commercially available carbon. Subsequently, a slurry was produced by adding distilled water as a solvent to the mixture. The slurry is applied to a thickness of about 60 μm on a surface of an electrolytic copper foil (width: 10 cm) using a doctor blade, dried at 120 ° C. for 10 minutes, and then subjected to a pressing step (pressure: 1 ton / cm 2). ) To produce a cathode.

陰極サンプル(幅:12.7mm)の活物質付着面を両面テープで付着させた後、IPC−TM−650規格に沿って万能試験機(UTM)を利用して銅箔を90°で剥離しながら電解銅箔と活物質の間の剥離強度を測定した(測定速度:50mm/min)。   After attaching the active material attachment surface of the cathode sample (width: 12.7 mm) with a double-sided tape, the copper foil was peeled at 90 ° using a universal testing machine (UTM) in accordance with the IPC-TM-650 standard. The peel strength between the electrolytic copper foil and the active material was measured while measuring (measuring speed: 50 mm / min).

二次電池の容量維持率(%)
陰極活物質用として、市販されているカーボン100重量部に対してSBR(スチレンブタジエンゴム)2重量部およびCMC(カルボキシメチルセルロース)2重量部を混合した。引き続き、この混合物に溶剤である蒸溜水を添加することによってスラリーを製造した。ドクターブレードを利用して前記スラリーを約60μm厚さに電解銅箔(幅:10cm)の表面上に塗布し、120℃で10分の間乾燥させた後、プレッシング工程(圧力:1ton/cm)を行うことによって陰極を製造した。
Secondary battery capacity retention rate (%)
For a cathode active material, 2 parts by weight of SBR (styrene butadiene rubber) and 2 parts by weight of CMC (carboxymethyl cellulose) were mixed with 100 parts by weight of commercially available carbon. Subsequently, a slurry was produced by adding distilled water as a solvent to the mixture. The slurry is applied to a thickness of about 60 μm on a surface of an electrolytic copper foil (width: 10 cm) using a doctor blade, dried at 120 ° C. for 10 minutes, and then subjected to a pressing step (pressure: 1 ton / cm 2). ) To produce a cathode.

リチウムマンガン酸化物(Li1.1Mn1.85Al0.05)とorthorhombic結晶構造のリチウムマンガン酸化物(o−LiMnO)を90:10の重量比で混合して陽極活物質を製造した。前記陽極活物質、カーボンブラック、およびポリビニリデンフルオライド(PVDF)を85:10:5の重量比で有機溶媒であるNMPと混合してスラリーを製造した。前記スラリーを厚さ20μmのアルミホイルの両面に塗布した後、乾燥させることによって陽極を製造した。 A lithium manganese oxide (Li 1.1 Mn 1.85 Al 0.05 O 4 ) and a lithium manganese oxide having an orthohombic crystal structure (o-LiMnO 2 ) were mixed at a weight ratio of 90:10 to prepare an anode active material. Manufactured. The slurry was prepared by mixing the anode active material, carbon black, and polyvinylidene fluoride (PVDF) in a weight ratio of 85: 10: 5 with NMP as an organic solvent. The slurry was applied on both sides of a 20 μm-thick aluminum foil and then dried to produce an anode.

また、エチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)を1:2の重量比で混合した非水性有機溶媒に溶質としてLiPFを1M溶解させたものを基本電解液とし、この基本電解液99.5重量%と琥珀酸無水物(succinic anhydride)0.5重量%を混合して電解液を製造した。 In addition, a non-aqueous organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a weight ratio of 1: 2 and 1 M of LiPF 6 dissolved as a solute as a solute was used as a basic electrolyte. An electrolyte was prepared by mixing 0.5 wt% of succinic anhydride and 0.5 wt% of succinic anhydride.

このように製造された陰極、陽極、および電解液で二次電池を製造した。   A secondary battery was manufactured using the cathode, the anode, and the electrolyte thus manufactured.

引き続き、このように製造された二次電池に対し、4.3Vの充電作動電圧および3.4Vの放電作動電圧で陽極のg当たりの容量を測定し、50℃で0.2Cの充/放電速度で50回の充/放電実験を行い、二次電池の容量維持率を下記の式2により算出した。   Subsequently, the capacity per gram of the anode was measured at a charging operating voltage of 4.3 V and a discharging operating voltage of 3.4 V, and the charge / discharge of 0.2 C was performed at 50 ° C. A charge / discharge experiment was performed 50 times at a speed, and the capacity retention ratio of the secondary battery was calculated by the following equation 2.

[式2]:容量維持率(%)=(50回目の放電容量/1回目の放電容量)×100   [Equation 2]: Capacity retention rate (%) = (50th discharge capacity / first discharge capacity) × 100

上の表2からわかるように、電解銅箔の第1および第2面のうちいずれか一つでもクロム(Cr)付着量が1mg/m未満の場合(比較例1および2)はもちろん、防錆液にベンゾトリアゾール(BTA)が添加されなかった場合(比較例5)にも、電解銅箔の耐腐食性が悪くてCIE1976L色差(ΔE)が5を超過しただけでなく、光沢度の差も50を超過し、剥離強度が13N/mmにも達しない程度に電解銅箔と活物質の間の剥離強度が低く、二次電池の容量維持率が業界で要求される90%を満足させることができなかった。 As can be seen from Table 2 above, when the amount of chromium (Cr) deposited on any one of the first and second surfaces of the electrolytic copper foil is less than 1 mg / m 2 (Comparative Examples 1 and 2), Even when benzotriazole (BTA) was not added to the rust preventive liquid (Comparative Example 5), the corrosion resistance of the electrolytic copper foil was poor, and only CIE1976L * a * b * color difference (ΔE) exceeded 5. In addition, the difference in glossiness exceeds 50, the peel strength between the electrolytic copper foil and the active material is so low that the peel strength does not reach 13 N / mm 2 , and the capacity maintenance rate of the secondary battery is required in the industry. 90% was not satisfied.

また、電解銅箔の第1および第2面でのクロム(Cr)付着量が5mg/mを超過した場合(比較例3および4)、電解銅箔の耐腐食性は良好であったものの、剥離強度が13N/mmにも達しない程度に電解銅箔と活物質の間の剥離強度が低く、二次電池の容量維持率が業界で要求される90%を満足させることができなかった。 When the amount of chromium (Cr) adhered on the first and second surfaces of the electrolytic copper foil exceeded 5 mg / m 2 (Comparative Examples 3 and 4), the corrosion resistance of the electrolytic copper foil was good. The peel strength between the electrodeposited copper foil and the active material is so low that the peel strength does not reach 13 N / mm 2 , and the capacity retention of the secondary battery cannot satisfy 90% required in the industry. Was.

10:電解槽
20:電解液
30:電極板
40:回転電極ドラム
50:処理槽
60:防錆液
70:ガイドロール
100:二次電池用電極
110:電解銅箔
111:銅層
112a:第1保護層
112b:第2保護層
120a:第1活物質層
120b:第2活物質層
Reference Signs List 10: electrolytic cell 20: electrolytic solution 30: electrode plate 40: rotating electrode drum 50: processing tank 60: rust preventive liquid 70: guide roll 100: electrode for secondary battery 110: electrolytic copper foil 111: copper layer 112a: first Protective layer 112b: Second protective layer 120a: First active material layer 120b: Second active material layer

Claims (15)

第1面とその反対側の第2面を有する電解銅箔において、
前記第1面に向かうマット面(matte surface)および前記第2面に向かうシャイニー面(shiny surface)を含む銅層;
前記マット面上の第1保護層;および
前記シャイニー面上の第2保護層を含み、
前記第1および第2保護層のそれぞれはクロム(Cr)およびベンゾトリアゾール(BTA)を含み、
温度70℃および相対湿度80%の加速試験条件下で24時間の間放置する恒温恒湿テストを行う直前および行った直後の前記第1面のCIE1976L 差(color difference)(ΔE)は5以下であり、
温度70℃および相対湿度80%の加速試験条件下で24時間の間放置する恒温恒湿テストを行う直前および行った直後の前記第1面の60°入射角に対する光沢度の差は50以下であり、
前記第1および第2保護層のそれぞれのクロム(Cr)含量は1〜5mg/mであることを特徴とする、電解銅箔。
In an electrolytic copper foil having a first surface and a second surface opposite to the first surface,
A copper layer including a matte surface facing the first surface and a shiny surface facing the second surface;
A first protective layer on the matte surface; and a second protective layer on the shiny surface;
Each of the first and second protective layers includes chromium (Cr) and benzotriazole (BTA);
CIE1976L * a * b * color difference (color difference) of the first surface immediately before and immediately after performing the constant temperature / humidity test which is left for 24 hours under the accelerated test condition of a temperature of 70 ° C. and a relative humidity of 80% ( ΔE) is 5 or less;
The difference in glossiness with respect to the 60 ° incident angle of the first surface immediately before and immediately after performing the constant temperature and humidity test, which is left for 24 hours under the accelerated test conditions of a temperature of 70 ° C. and a relative humidity of 80%, is 50 or less. Yes,
Wherein each of the chromium (Cr) content of the first and second protective layer is characterized by a 1 to 5 mg / m 2, an electrolytic copper foil.
前記第1保護層のクロム(Cr)含量と前記第2保護層のクロム(Cr)含量の差は2mg/m以下であることを特徴とする、請求項1に記載の電解銅箔。 Wherein the difference between the chromium (Cr) content of chromium (Cr) content and the second protective layer of the first protective layer is 2 mg / m 2 or less, the electrolytic copper foil according to claim 1. 前記第1および第2面のそれぞれの表面粗さRzは0.5〜2.5μmであることを特徴とする、請求項1に記載の電解銅箔。   2. The electrolytic copper foil according to claim 1, wherein each of the first and second surfaces has a surface roughness Rz of 0.5 to 2.5 μm. 3. 前記電解銅箔は常温で30kgf/mm以上の引張強度および2%以上の延伸率を有することを特徴とする、請求項1に記載の電解銅箔。 2. The electrolytic copper foil according to claim 1, wherein the electrolytic copper foil has a tensile strength of 30 kgf / mm 2 or more and an elongation of 2% or more at room temperature. 3. 前記電解銅箔は1〜70μmの厚さを有することを特徴とする、請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the electrolytic copper foil has a thickness of 1 to 70 m. 第1面とその反対側の第2面を有する電解銅箔;および
前記第1面上の第1活物質層を含み、
前記電解銅箔は、
前記第1面に向かうマット面および前記第2面に向かうシャイニー面を含む銅層;
前記マット面上の第1保護層;および
前記シャイニー面上の第2保護層を含み、
前記第1および第2保護層のそれぞれはクロム(Cr)およびベンゾトリアゾール(BTA)を含み、
前記電解銅箔と前記第1活物質層の間の剥離強度は20N/mm以上であることを特徴とする、二次電池用電極。
An electrolytic copper foil having a first surface and a second surface opposite to the first surface; and a first active material layer on the first surface,
The electrolytic copper foil,
A copper layer including a matte surface facing the first surface and a shiny surface facing the second surface;
A first protective layer on the matte surface; and a second protective layer on the shiny surface;
Each of the first and second protective layers includes chromium (Cr) and benzotriazole (BTA);
An electrode for a secondary battery, wherein a peel strength between the electrolytic copper foil and the first active material layer is 20 N / mm 2 or more.
前記第1および第2保護層のそれぞれのクロム(Cr)含量は1〜5mg/mであり、
前記第1保護層のクロム(Cr)含量と前記第2保護層のクロム(Cr)含量の差は2mg/m以下であることを特徴とする、請求項6に記載の二次電池用電極。
The first and second protective layers have a chromium (Cr) content of 1 to 5 mg / m 2 ,
Wherein the difference between the chromium (Cr) content of chromium (Cr) content and the second protective layer of the first protective layer is 2 mg / m 2 or less, a secondary battery electrode according to claim 6 .
前記第1および第2面のそれぞれの表面粗さRzは0.5〜2.5μmであることを特徴とする、請求項6に記載の二次電池用電極。   The electrode of claim 6, wherein the first and second surfaces have a surface roughness Rz of 0.5 to 2.5 m. 前記電解銅箔は常温で30kgf/mm以上の引張強度および2%以上の延伸率を有することを特徴とする、請求項6に記載の二次電池用電極。 The electrolytic copper foil is characterized by having a room temperature at 30 kgf / mm 2 or more tensile strength and 2% or more elongation, secondary cell electrode according to claim 6. 前記電解銅箔は1〜70μmの厚さを有することを特徴とする、請求項6に記載の二次電池用電極。   The electrode of claim 6, wherein the electrodeposited copper foil has a thickness of 1 to 70 m. 前記第2面上の第2活物質層をさらに含み、
前記第1および第2活物質層は、互いに独立して、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択される一つ以上の活物質をそれぞれ含むことを特徴とする、請求項6に記載の二次電池用電極。
A second active material layer on the second surface;
The first and second active material layers are independently formed of carbon; a metal of Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; an alloy containing the metal; The electrode for a secondary battery according to claim 6, further comprising one or more active materials selected from the group consisting of a substance and a composite of the metal and carbon.
前記第1および第2活物質層はSiおよびSnのうち少なくとも一つを含むことを特徴とする、請求項11に記載の二次電池用電極。   The electrode of claim 11, wherein the first and second active material layers include at least one of Si and Sn. 陽極(cathode);
請求項6〜請求項12のいずれか一項に記載された二次電池用電極で構成された陰極(anode);
前記陽極と陰極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte);および
前記陽極と前記陰極を電気的に絶縁させる分離膜(separator)を含むことを特徴とする、二次電池。
Anode;
A cathode comprising the electrode for a secondary battery according to any one of claims 6 to 12.
A secondary battery, comprising: an electrolyte that provides an environment in which lithium ions can move between the anode and the cathode; and a separator that electrically insulates the anode and the cathode.
銅層を形成する段階;および
前記銅層上に保護層を形成する段階を含み、
前記銅層形成段階は、
60〜120g/Lの銅イオン、80〜150g/Lの硫酸、および50ppm以下の塩素を含む電解液を準備する段階;および
40〜60℃の前記電解液内に互いに離隔して配置された電極板および回転電極ドラムを30〜80A/dmの電流密度で通電させることによって電気メッキを行う段階を含み、
前記保護層形成段階は、
クロム酸塩(chromate)溶液とベンゾトリアゾール(BTA)溶液を混合して防錆液を準備する段階;および
前記防錆液内に前記銅層を浸漬させる段階を含み、
前記防錆液は0.1〜2g/Lのクロム(Cr)および1〜100mg/Lのベンゾトリアゾール(BTA)を含み、前記防錆液のpHは1.0〜3.0であり、
前記保護層が形成される時、前記防錆液の温度は20〜60℃に維持され、
前記銅層は前記防錆液内に1〜10秒の間浸漬されることを特徴とする、電解銅箔の製造方法。
Forming a copper layer; and forming a protective layer on the copper layer;
The copper layer forming step includes:
Preparing an electrolyte solution containing 60 to 120 g / L of copper ions, 80 to 150 g / L of sulfuric acid, and 50 ppm or less of chlorine; and electrodes spaced apart from each other in the electrolyte solution at 40 to 60 ° C. Performing electroplating by energizing the plate and rotating electrode drum at a current density of 30-80 A / dm 2 ,
The protection layer forming step includes:
Step chromate (chromate) solution and benzotriazole (BTA) solution were mixed to prepare a rust preventive solution; the step of immersing the copper layer and the rust-liquid seen including,
The rust preventive solution contains 0.1 to 2 g / L of chromium (Cr) and 1 to 100 mg / L of benzotriazole (BTA), and the pH of the rust preventive solution is 1.0 to 3.0,
When the protective layer is formed, the temperature of the rust preventive liquid is maintained at 20 to 60C,
The method for producing an electrolytic copper foil, wherein the copper layer is immersed in the rust preventive liquid for 1 to 10 seconds .
前記電解液はヒドロキシエチルセルロース(HEC)、有機硫化物、有機窒化物、およびチオ尿素(thiourea)系化合物から構成されたグループから選択される少なくとも一つの有機添加剤をさらに含むことを特徴とする、請求項14に記載の電解銅箔の製造方法。   The electrolyte further includes at least one organic additive selected from the group consisting of hydroxyethylcellulose (HEC), organic sulfide, organic nitride, and thiourea-based compound. A method for producing an electrolytic copper foil according to claim 14.
JP2017242429A 2017-01-04 2017-12-19 Electrodeposited copper foil having high corrosion resistance and excellent adhesion to active material, electrode including the same, secondary battery including the same, and method of manufacturing the same Active JP6652548B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170001310A KR20180080514A (en) 2017-01-04 2017-01-04 Electrolytic Copper Foil Having High Corrosion Resistance and Excellent Adhesiveness with Active Material, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
KR10-2017-0001310 2017-01-04

Publications (2)

Publication Number Publication Date
JP2018109227A JP2018109227A (en) 2018-07-12
JP6652548B2 true JP6652548B2 (en) 2020-02-26

Family

ID=62773423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242429A Active JP6652548B2 (en) 2017-01-04 2017-12-19 Electrodeposited copper foil having high corrosion resistance and excellent adhesion to active material, electrode including the same, secondary battery including the same, and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP6652548B2 (en)
KR (1) KR20180080514A (en)
CN (1) CN108270016B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180083515A (en) * 2017-01-13 2018-07-23 케이씨에프테크놀로지스 주식회사 Electrolytic Copper Foil Substantially Free Of Wrinkle Problem, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
US10581081B1 (en) 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
CN110029373A (en) * 2019-05-24 2019-07-19 山东金宝电子股份有限公司 A kind of compound additive for eliminating the unusual coarsening crystallization of electrolytic copper foil
NL2023642B1 (en) * 2019-08-14 2021-02-24 Leydenjar Tech B V Silicon composition material for use as battery anode
TWI700393B (en) * 2019-08-27 2020-08-01 長春石油化學股份有限公司 Electrolytic copper foil and electrode and lithium ion cell comprising the same
CN110658135B (en) * 2019-09-29 2022-03-11 东莞市易赛能新能源科技有限公司 Characterization method and characterization device for electrode plate bonding performance
US10991948B1 (en) * 2020-03-20 2021-04-27 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil for lithium-ion secondary batteries

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180267A (en) * 2000-12-08 2002-06-26 Koei Kogyo Kk Treatment method for preventing elution of lead from lead-containing copper alloy
TW200403358A (en) * 2002-08-01 2004-03-01 Furukawa Circuit Foil Electrodeposited copper foil and electrodeposited copper foil for secondary battery collector
JP5427752B2 (en) * 2010-11-02 2014-02-26 Jx日鉱日石金属株式会社 Copper foil for lithium-ion battery current collector
KR102158241B1 (en) * 2015-06-24 2020-09-21 에스케이넥실리스 주식회사 Electrolytic Copper Foil, Current Collector Comprising The Same, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
KR101897474B1 (en) * 2015-06-26 2018-09-12 케이씨에프테크놀로지스 주식회사 Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same
CN105039947A (en) * 2015-07-07 2015-11-11 安徽铜冠铜箔有限公司 Oxidation prevention process used for lithium ion battery copper foil

Also Published As

Publication number Publication date
CN108270016B (en) 2021-03-26
CN108270016A (en) 2018-07-10
KR20180080514A (en) 2018-07-12
JP2018109227A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6652548B2 (en) Electrodeposited copper foil having high corrosion resistance and excellent adhesion to active material, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP6619457B2 (en) Electrolytic copper foil, current collector including the same, electrode including the same, secondary battery including the same, and manufacturing method thereof
EP3288101B1 (en) Electrolytic copper foil capable of improving capacity retention rate of secondary battery, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP6527219B2 (en) Electrodeposited copper foil having optimized peak roughness, electrode containing the same, secondary battery containing the same, and method of manufacturing the same
JP6510601B2 (en) Electrolytic copper foil easy to handle, electrode containing it, secondary battery containing it and method of manufacturing the same
TWI659557B (en) Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
JP6600023B2 (en) Copper foil having excellent adhesion, electrode including the same, secondary battery including the same, and manufacturing method thereof
KR20180090532A (en) High Strength Electrolytic Copper Foil with Minimized Wrinkle and Curl, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
JP6822629B2 (en) Copper foil, its manufacturing method, electrodes containing it, and secondary batteries containing it
TWI747626B (en) Electrolytic copper foil to be prevented from being torn and wrinkled, electrode including the electrolytic copper foil, secondary battery including the electrode, and method of manufacturing the electrolytic copper foil
JP2024081615A (en) Copper foil, electrode including same, secondary battery including same, and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200123

R150 Certificate of patent or registration of utility model

Ref document number: 6652548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250