JP2002180267A - Treatment method for preventing elution of lead from lead-containing copper alloy - Google Patents

Treatment method for preventing elution of lead from lead-containing copper alloy

Info

Publication number
JP2002180267A
JP2002180267A JP2000404016A JP2000404016A JP2002180267A JP 2002180267 A JP2002180267 A JP 2002180267A JP 2000404016 A JP2000404016 A JP 2000404016A JP 2000404016 A JP2000404016 A JP 2000404016A JP 2002180267 A JP2002180267 A JP 2002180267A
Authority
JP
Japan
Prior art keywords
lead
benzotriazole
solution
elution
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000404016A
Other languages
Japanese (ja)
Inventor
Tatsusaburo Okumura
龍三郎 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOEI PERFUMERY
Koei Kogyo Co Ltd
Original Assignee
KOEI PERFUMERY
Koei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOEI PERFUMERY, Koei Kogyo Co Ltd filed Critical KOEI PERFUMERY
Priority to JP2000404016A priority Critical patent/JP2002180267A/en
Publication of JP2002180267A publication Critical patent/JP2002180267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing such a phenomenon that lead elutes from a metal piece for water supply pipe of a water feed apparatus made of a lead-containing copper alloy material into the water in use. SOLUTION: In the method for preventing the elution of lead into water, as pretreatment, the surface of a metal piece for water feed made of a lead- containing copper alloy material is cleaned with an alkaline degreasing solution containing caustic soda and a surfactant. After being plated by an ordinary nickel-chromium plating process, the metal piece is dipped into a chromium- containing chromate treatment solution containing an aromatic heterocyclic compound such as benzotriazole, or an aqueous solution of phosphoric acid and phosphate, or an acidic solution, or an alkaline solution, or a neutral solution so that a firm film is deposited on the surface.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は鉛含有銅合金製の水洗金
具等の部品から水道水中へ鉛が溶出するのを防止するた
めの鉛含有銅合金製の部品からの鉛の溶出防止法に関す
る。 【0002】 【従来の技術】給配水用金具は銅合金鋳物又は銅合金棒
材及び管材を切削加工等の工程を経て製造されており、
この切削加工時の加工性向上の目的で、これら銅合金に
は通常数%(例;BC−6約5%,快削黄銅2〜3%)
の鉛が添加されている。 【0003】銅合金に添加された鉛は一般の合金材のよ
うに混晶と呼ばれる固溶体を形成しているのではなく、
鉛及び鉛の酸化物などの化合物が粒状に分散して存在
し、そして鋳物の場合は合金の表面に集まると云われて
いる。この現象は比重差によるものと考えられている。 【0004】従って鉛含有銅合金で製造された給配水用
金具からは、これに水を通すことによって水中への鉛の
溶出は避けられず、これが人体に悪影響を与える懸念が
想定され、最近になって水道の給水栓からの鉛の溶出が
問題視されるに至った。 【0005】しかし鉛が添加されていない銅合金材は切
削加工が難しく、水栓金具の如き細部の加工の要するも
のには適せず、現在なお良好な快削性を有する鉛含有銅
合金材が用いられている。 【0006】これらの解決のため鉛含有銅合金製の部品
を強アルカリ液に浸漬し、軽度のエッチング処理をして
合金材表面付近の鉛及び鉛酸化物を溶出してしまう方法
もあるが、これでは鉛の溶出を完全に防止することは難
しい。 【0007】 【本発明が解決しようとする課題】本発明は鉛を含有し
た加工性良好な銅合金製給水用金具を処理液に浸漬し銅
合金表面に強固な皮膜を形成させ、鉛が給水時に水中に
溶出することを防止する方法を提供するものである。 【0008】 【課題を解決するための手段】本発明は鉛含有銅合金製
の給水用金具を前処理としてアルカリ性脱脂剤等で洗浄
し、通常の鍍金工程でメッキした後、ベンゾトリアゾー
ル系各種化合物等及びベンゾチアゾールとその塩などの
芳香族複素環式化合物等の芳香族複素環式化合物を含ん
だクロム化合物又はクロム化合物を含まない酸性液又は
同じくアルカリ性液又は同じく中性液に浸漬し、銅合金
表面に強固な皮膜を形成させて鉛の溶出を防止するもの
である。 【0009】 【本発明に至るまでの考察】銅と結合して皮膜を形成し
て表面を保護する可能性のある有機化合物は長鎖の脂肪
族硫化物から窒素又は硫黄を含むベンゼン誘導体に至る
まで多数存在する。 【0010】非共有電子対を有する窒素と銅が結合して
成る複素環式化合物で有名なのはフタロシアニン銅であ
るが、水や溶剤によっても容易に侵されない強固な皮膜
を形成し、又密着性に優れているものにベンゾトリアゾ
ールがある。その皮膜の構造はCotton,J.B
により次のようにその構造が明らかにされている。 a)第一銅塩の場合 b)第二銅塩の場合【0011】通常銅は大気中にある時第二銅になってい
るので、b)の様に網目状になって結合し、そのため強
固な皮膜を形成するものと考えられている。 【0012】発明者はこの点に注目しベンゾトリアゾー
ルを含有する処理液に浸漬することにより、銅とベンゾ
トリアゾールとの化合物による皮膜を形成させ、鉛の溶
出を防止することを思いついた。 【0013】ベンゾトリアゾールの構造と比較的類似し
ているものに、2−メルカプトベンゾイミダゾール,1
−ヒドロベンゾイミダゾール,ベンゾイミダゾール,グ
アニン,アデニン等があり、これらの化合物も銅と非共
有電子対を有する窒素との化合物を形成することは認め
られるが、ベンゾトリアゾールほどその皮膜が強固でな
いため鉛の溶出がわずかに認められる。なお上記類似化
合物の他に2−メルカブトベンゾチアゾール(C
NS)及びその塩があるが、これはベンゾトリアゾー
ルと同様に銅と反応し強固な保護皮膜を形成することが
知られており、本目的に沿って鉛溶出防止に大いに有効
であることが実験により確認された。但しこの物質は水
に難溶性で、クロム酸,硫酸等の酸化性酸に弱く、又人
に対して発ガン性物質として対象物質に選定されている
ので実用的ではない。 【0014】ベンゾトリアゾールと銅との結合はかなり
強固なもので、経験的にベンゾトリアゾールを約2%含
浸させた防錆紙に銅製品を包装することによって長期間
銅の防錆に役立つことが知られている。 【0015】又銅の合金からなる電気部品をベンゾトリ
アゾールの蒸気で処理すると長期間にわたって接触抵抗
が変化しないことも分かっている。 【0016】発明者はこれらの事実からベンゾトリアゾ
ールを含む液は酸性でもアルカリ性でも中性であって
も、銅との反応による皮膜を形成すると推察した。実際
にベンゾトリアゾールを含む液性の異なる各種水溶液を
作り鉛含有銅合金を浸漬処理したものは、含有しないも
のと比較して鉛の溶出の程度に大きな差があることを発
見した。 【0017】金属の防蝕は以前からクロメート処理によ
って耐蝕性の優れた皮膜を作る処理法があるが、これは
亜鉛やカドミゥムメッキの後処理、又はアルミニゥム及
びその合金材の防蝕処理として多く使われている。この
クロメート処理は銅や他の合金ではその保護皮膜の生成
は弱いが、黄銅には多少効果があるとされている。 【0018】そこで鉛含有銅合金にクロメート処理を行
ない、鉛の溶出の有無を調べたが未処理のものと比較し
て鉛溶出量はかなり少なくはなる。 【0019】このクロメート液にベンゾトリアゾールを
添加すると、鉛の溶出はほとんど無くなる。 【0020】即ち鉛溶出防止にはクロムの皮膜より、銅
とベンゾトリアゾール又はベンゾトリアゾールとクロム
の混合皮膜から成る化成皮膜の方がはるかに強固な皮膜
である証拠である。 【0021】次にベンゾトリアゾールと類似の構造を持
つグアニン,ベンゾイミダゾール,アデニンの3化合物
に付いて調べたが、それぞれに鉛溶出防止効果はみられ
たが、いずれもベンゾトリアゾールほどの効果は認めら
れなかった。 【0022】2−メルカプトベンゾチアゾール及びその
塩をクロム酸含有のクロメート液に添加して調べたとこ
ろかなりの効果がみられたが、液が褐色に変化し明らか
に分解が起こっていることが分かった。これは市販の亜
鉛用クロメート剤との併用、混合でも同様の変化が確認
された。このことはベンゾトリアゾールについても同様
の傾向があり、高濃度の無水クロム酸との混合又はクロ
ム酸の前工程よりの汲み込みは酸化分解を早めるので必
要最小限とする必要がある。実験によるとその管理基準
は大体10g/l以下とすることが望ましい。 【0023】さて前述のようにベンゾトリアゾールを含
む溶液の液性は酸性、アルカリ性更に中性でも銅と化成
皮膜を形成するので鉛の溶出防止に効果があり、又酸性
液にアルカリ、中性物質を添加し酸性液とし併用しても
効果が見られる。 【0024】酸性に付いてはクロム酸の効果はその濃度
によってベンゾトリアゾールの分解はあるが、皮膜形成
鉛溶出防止の効果は顕著に認められ、又硫酸、塩酸でも
効果はあるがクロム酸より劣る。 【0025】酸性液として燐酸及び燐酸基を有する酸、
硫酸及び硫酸基を有する酸、塩酸及び塩酸基を有する
酸、又グリコール酸や有機酸(例えば蓚酸、クエン酸、
リンゴ酸等)も効果がある。 【0026】アルカリ性液としては強塩基性酸、燐酸
塩、炭酸塩、珪酸塩等も効果が見受けられる。又中性の
液としては各種中性塩やベンゾトリアゾールの溶剤やそ
の組み合わせも考えられる。 【0027】次に燐酸であるが、燐酸は硫酸,塩酸と異
なり、金属を侵す危険が少なく、従って濃度が高くても
比較的安全である。偵察試験によれば、濃度10g/l
では効果は少なく、50g/l以上でベンゾトリアゾー
ルを加えた液では、鉛の溶出防止に大きな効果があり、
これはクロム酸に比較しても鉛の溶出量ははるかに少な
い。 【0028】酸性液の場合、素材の酸による腐蝕を考え
ると自ら濃度は限定されるが、燐酸の場合には100〜
150g/l程度の濃度であっても素材への影響は少な
い。温度は加温すれば反応は早く又強固となるが、常温
では5分で充分である。 【0029】又クロム酸を使用した場合、全くクロムの
溶出がないわけではなく、更に公害上及び安全衛生上の
観点から将来更に厳しい規制が考えられるが、燐酸には
こういう問題は少ない。 【0030】アルカリ性の場合はベンゾトリアゾールに
よる皮膜は形成するが酸性に比べて弱いため鉛の溶出量
は多い。 【0031】又中性ではアルカリ性より少々良い結果が
得られたが、これもやはり酸性の場合より鉛の溶出量は
多い。 【0032】この理由は酸性では金属表面が酸によって
活性化されることによるものと考えられる。 【0033】次に実施例によって本発明を具体的に説明
するが、本発明はこの実施例によって何ら限定されるも
のではない。 【0034】 【実施例−1】実施例には次の鉛含有銅合金を使用し
た。JIS H3250(C3604)快削黄銅丸棒切
削加工品(Cu:57.0〜61.0,Pb:1.8〜
3.7,Fe:0.5以下,Sn:0.7以下,Zn:
残部,単位%) 【0035】処理液は次の組成の水溶液を使用した。 A:重クロム酸ソーダ30g/l,硫酸6g/l,ベン
ゾトリアゾール5g/l B:硫酸6g/l,ベンゾトリアゾール5g/l C:燐酸50g/l,ベンゾトリアゾール5g/l D:燐酸50g/l,ベンゾトリアゾール10g/l E:燐酸100g/l,ベンゾトリアゾール10g/l F:水酸化ナトリゥム 2.5g/l,ベンゾトリアゾ
ール5g/l G:エチルアルコール 15g/l,ベンゾトリアゾー
ル5g/l 【0036】試験試料 材質;快削黄銅C3604BD,水栓金具部品;約33
g, 表面積;44.0cm 【0037】鉛溶出防止試験−1 試料を苛性ソーダ及び界面活性剤等を含有するアルカリ
性脱脂剤水溶液(50g/l)に50℃で10分間浸漬
し、試料の表面に付着した油脂類その他を取り除き、試
料表面を清浄化する。これを上記処理液A〜Gに50℃
で2分間浸漬した後水洗乾燥した。 【0038】鉛溶出試験−1 A〜Gの処理液で浸漬処理した試料の鉛溶出試験を行な
い効果の判定を行なった。比較のため未処理の試料(脱
脂処理のみ)も鉛溶出を行なった。 【0039】鉛の溶出には溶出を短時間で行なうため、
加速試験として0.01%の酢酸水溶液を用いた。溶出
条件は次の通りである。0.01%の酢酸水溶液:20
0ml,温度:室温,浸漬時間:5分 【0040】鉛溶出試験結果−1 上記処理液A〜Gで、鉛の溶出防止処理した試料を、
0.01%の酢酸水溶液200mlに室温で5分間浸漬
し、溶出した鉛量を測定した。 【0041】処理液A〜Gで処理した結果をみると、い
ずれも未処理のものに比較して鉛の溶出量は大幅に減少
している。 【0042】これらの結果を比較するとAはかなりの効
果はあるが、DEには及ばない。又鉛の溶出量は燐酸及
びベンゾトリアゾールの濃度に関係し、この例からみる
と燐酸濃度50g/l以上、ベンゾトリアゾール10g
/l程度の処理液が実用的と思われる。 【0043】鉛溶出試験−2 給水金具部品が実際に使用されるのは、一般上水道水用
としての用途がほとんどであることから、都市水道水に
よる鉛溶出試験を行なった。 【0044】鉛溶出試験結果−2 上記処理液A〜Gで、鉛の溶出防止処理した試料を、名
古屋市水道水200mlに浸漬して溶出した鉛量を測定
した。 0.01%の酢酸水溶液に比較して、鉛の溶出量は極め
て少なく、A〜Eについて処理した試料からは鉛は検出
できなかった。 【0045】 【実施例−2】ベンゾトリアゾールを含有せる処理液で
は、鉛の溶出防止にかなりの効果が見られた。さて次に
ベンゾトリアゾールと化学構造の類似した前述の化合物
のうちの3種について、その酸水溶液を処理液とし、実
施例−1と比較してみる。使用した化合物はグアニン,
ベンゾイミダゾール,アデニンの3化合物である。これ
らの構造はベンゾトリアゾールと類似しているが、全て
ジアゾール化合物である。 【0046】 【実施例−3】試験試料は実施例1と同じものを使用し
た。 【0047】処理液は次の組成の水溶液を使用した。 H:硫酸 6g/l,グアニン10g/l I:硫酸 6g/l,ベンゾイミダゾール10g/l J:硫酸 6g/l,アデニン10g/l 【0048】鉛溶出防止処理−2 試料の前処理は鉛溶出防止処理−1と同様に行なった。
これを上記処理液H〜Jに50℃で2分間浸漬し水洗乾
燥した。 【0049】鉛溶出試験−3 H〜Jの処理液で鉛溶出防止処理した試料を実施例−1
と同様0.01%の酢酸水溶液に浸漬し、鉛の溶出量を
測定した。 【0050】鉛溶出試験結果−3 【0051】実施例1のベンゾトリアゾールと比較する
と、鉛の溶出量はかなり多いが、未処理の試料と比較す
ると、1/10位に減少はしている。これは銅との皮膜
強度がベンゾトリアゾールに比べて弱いか、又は皮膜が
水に溶解することによるものと思われる。つまりジアゾ
ールではトリアゾールのような強固な皮膜は出来にくい
ものと推察される。しかしこれを水道水に浸漬した場合
は先の溶出試験結果−2から推定すると、水道水中に溶
出する量は同条件で20〜25ppb程度となると考え
られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-containing copper alloy for preventing lead from eluting into tap water from parts such as a flush fitting made of lead-containing copper alloy. To prevent the elution of lead from components. 2. Description of the Related Art Water supply / distribution fittings are manufactured through a process such as cutting a copper alloy casting or a copper alloy rod and a tube.
For the purpose of improving the workability at the time of cutting, these copper alloys usually contain several% (eg, BC-6 about 5%, free-cutting brass 2-3%)
Lead is added. [0003] Lead added to a copper alloy does not form a solid solution called a mixed crystal like a general alloy material,
It is said that compounds such as lead and oxides of lead are present in particulate form and, in the case of castings, collect on the surface of the alloy. This phenomenon is believed to be due to the specific gravity difference. [0004] Therefore, from the water supply and distribution metal fittings made of lead-containing copper alloy, it is inevitable that lead is eluted into water by passing water through the metal fittings. As a result, elution of lead from water taps became a problem. [0005] However, a copper alloy material to which lead is not added is difficult to cut and is not suitable for those requiring detailed processing such as faucet fittings. Is used. In order to solve these problems, there is a method in which a lead-containing copper alloy component is immersed in a strong alkaline solution and subjected to a slight etching treatment to elute lead and lead oxide near the surface of the alloy material. It is difficult to completely prevent the elution of lead. According to the present invention, a water-supplying metal fitting made of a copper alloy containing lead and having good workability is immersed in a treatment liquid to form a strong film on the surface of the copper alloy. It is intended to provide a method for preventing elution in water at times. SUMMARY OF THE INVENTION The present invention provides a water-supply fitting made of a lead-containing copper alloy, which is washed with an alkaline degreaser or the like as a pretreatment, plated in a usual plating step, and then treated with various benzotriazole compounds. Chromium compound containing an aromatic heterocyclic compound such as an aromatic heterocyclic compound such as benzothiazole and a salt thereof or a chromium compound-free acid solution or a chromium compound-free acid solution or an alkaline solution or a neutral solution, and copper It forms a strong film on the surface of the alloy to prevent the elution of lead. [0009] The organic compound which has the possibility of protecting the surface by forming a film by bonding with copper ranges from a long-chain aliphatic sulfide to a benzene derivative containing nitrogen or sulfur. There are many up to. A well-known heterocyclic compound formed by bonding nitrogen and copper having an unshared electron pair is copper phthalocyanine, which forms a strong film which is not easily attacked by water or a solvent, and has a high adhesion. One of the best is benzotriazole. The structure of the coating is described in Cotton, J. et al. B *
Clarifies the structure as follows. a) In the case of cuprous salt b) In the case of cupric salt Normally, copper is cupric when in the air, and is considered to form a strong film by bonding in a network as shown in b). The inventor paid attention to this point, and came up with the idea of forming a film of a compound of copper and benzotriazole by immersing it in a treatment solution containing benzotriazole and preventing elution of lead. Relatively similar to the structure of benzotriazole, 2-mercaptobenzimidazole, 1
-Hydrobenzimidazole, benzimidazole, guanine, adenine, etc. These compounds are also found to form compounds with copper and nitrogen having an unshared electron pair, but lead is not as strong as benzotriazole because its film is not as strong. Is slightly eluted. In addition, in addition to the above-mentioned similar compound, 2-mercaptobenzothiazole (C 7 H 5
NS 2 ) and salts thereof, which are known to react with copper to form a strong protective film like benzotriazole, and are very effective in preventing lead elution according to the present purpose. Confirmed by experiment. However, this substance is not practical because it is poorly soluble in water, is susceptible to oxidizing acids such as chromic acid and sulfuric acid, and is selected as a target substance as a carcinogen for humans. [0014] The bond between benzotriazole and copper is fairly strong, and empirically, by packaging copper products in rust-proof paper impregnated with about 2% benzotriazole, it is useful for long-term copper rust prevention. Are known. It has also been found that contact resistance does not change over a long period of time when electrical components made of copper alloy are treated with benzotriazole vapor. The inventors have inferred from these facts that a liquid containing benzotriazole, whether acidic, alkaline or neutral, forms a film by reaction with copper. In fact, it has been found that, when various aqueous solutions containing benzotriazole containing different liquid properties are prepared and immersion-treated with a lead-containing copper alloy, there is a large difference in the degree of elution of lead as compared with those not containing. For corrosion protection of metals, there has been a method of forming a film having excellent corrosion resistance by chromate treatment, which is widely used as a post-treatment of zinc or cadmium plating or as a corrosion treatment of aluminum and its alloy materials. . This chromate treatment is considered to be somewhat effective for brass, although the formation of a protective film on copper and other alloys is weak. Then, the lead-containing copper alloy was subjected to a chromate treatment to examine whether or not lead was eluted. The amount of lead eluted was considerably smaller than that of the untreated lead alloy. When benzotriazole is added to this chromate solution, elution of lead is almost eliminated. That is, it is evidence that a chemical conversion coating composed of copper and benzotriazole or a mixed coating of benzotriazole and chromium is much stronger than a chromium coating in preventing lead elution. Next, three compounds, guanine, benzimidazole and adenine, having a structure similar to that of benzotriazole were examined. Each of them was found to have an effect of preventing lead elution, but all were as effective as benzotriazole. I couldn't. When 2-mercaptobenzothiazole and a salt thereof were added to a chromate solution containing chromic acid and examined, a considerable effect was observed, but it was found that the solution turned brown and clearly decomposed. Was. The same change was confirmed in the combination and mixing with a commercially available chromating agent for zinc. This is the same tendency for benzotriazole, and mixing with high concentration of chromic anhydride or pumping in of chromic acid from the previous step hastens the oxidative decomposition, so that it is necessary to minimize it. According to experiments, it is desirable that the control standard be approximately 10 g / l or less. As described above, even if the solution containing benzotriazole is acidic, alkaline or even neutral, it forms a chemical conversion film with copper, which is effective in preventing the elution of lead. The effect can be seen even when the acid solution is added and used in combination. Regarding the acidity, the effect of chromic acid is that benzotriazole is decomposed depending on its concentration, but the effect of preventing lead elution of the film is remarkably recognized. . Phosphoric acid and an acid having a phosphoric acid group as the acidic liquid,
Sulfuric acid and acid having a sulfuric acid group, hydrochloric acid and acid having a hydrochloric acid group, glycolic acid and organic acids (for example, oxalic acid, citric acid,
Malic acid) is also effective. As the alkaline liquid, strong basic acids, phosphates, carbonates, silicates and the like are also effective. As the neutral liquid, various neutral salts, benzotriazole solvents and combinations thereof are also conceivable. Next, phosphoric acid, unlike sulfuric acid and hydrochloric acid, has a low risk of attacking metals and is therefore relatively safe even at a high concentration. According to reconnaissance tests, the concentration is 10 g / l
Is less effective, and a solution containing benzotriazole at a concentration of 50 g / l or more has a great effect in preventing the elution of lead.
This leads to much less lead elution than chromic acid. In the case of an acid solution, the concentration is limited by itself in consideration of the acid corrosion of the material.
Even at a concentration of about 150 g / l, there is little effect on the material. When the temperature is increased, the reaction becomes faster and stronger, but at room temperature, 5 minutes is sufficient. When chromic acid is used, chromium is not eluted at all, and stricter regulations may be considered in the future from the viewpoints of pollution and health and safety. However, phosphoric acid has few such problems. In the case of alkaline, a film of benzotriazole is formed, but the amount of lead eluted is large because it is weaker than acidic. In the case of neutral, a slightly better result was obtained than in the case of alkaline, but the amount of lead eluted was also larger than in the case of acid. It is considered that the reason for this is that in the case of an acid, the metal surface is activated by the acid. Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. Example 1 The following lead-containing copper alloy was used in the example. JIS H3250 (C3604) Free-cutting brass round bar cut product (Cu: 57.0 to 61.0, Pb: 1.8 to
3.7, Fe: 0.5 or less, Sn: 0.7 or less, Zn:
(Remainder, unit%) As the treatment liquid, an aqueous solution having the following composition was used. A: sodium dichromate 30 g / l, sulfuric acid 6 g / l, benzotriazole 5 g / l B: sulfuric acid 6 g / l, benzotriazole 5 g / l C: phosphoric acid 50 g / l, benzotriazole 5 g / l D: phosphoric acid 50 g / l E: phosphoric acid 100 g / l, benzotriazole 10 g / l F: sodium hydroxide 2.5 g / l, benzotriazole 5 g / l G: ethyl alcohol 15 g / l, benzotriazole 5 g / l Test sample material: Free-cutting brass C3604BD, faucet fittings; approx. 33
g, surface area: 44.0 cm 2 Lead elution prevention test-1 The sample was immersed in an alkaline degreasing agent aqueous solution (50 g / l) containing caustic soda and a surfactant at 50 ° C. for 10 minutes, and was placed on the surface of the sample. Remove the attached fats and oils and clean the sample surface. This is added to the above treatment liquids A to G at 50 ° C.
For 2 minutes and then washed with water and dried. Lead dissolution test-1 A sample which was immersed in the treatment solution of A to G was subjected to a lead dissolution test to determine the effect. For comparison, an untreated sample (only the degreasing treatment) was also subjected to lead elution. In order to elute lead in a short time,
As an acceleration test, a 0.01% acetic acid aqueous solution was used. The elution conditions are as follows. 0.01% acetic acid aqueous solution: 20
0 ml, temperature: room temperature, immersion time: 5 minutes Lead elution test result-1 A sample treated to prevent lead elution with the above-mentioned treatment liquids A to G was used.
It was immersed in 200 ml of a 0.01% acetic acid aqueous solution at room temperature for 5 minutes, and the amount of eluted lead was measured. The results of the treatment with the treatment liquids A to G show that the amount of lead eluted is greatly reduced as compared with the untreated one. Comparing these results, A has a considerable effect, but does not reach DE. The amount of lead eluted is related to the concentration of phosphoric acid and benzotriazole. According to this example, the concentration of phosphoric acid is 50 g / l or more and benzotriazole is 10 g.
It seems that a processing solution of about / l is practical. Lead dissolution test-2 Since most of the water supply fittings are actually used for general tap water, a lead dissolution test was performed using city tap water. Lead Elution Test Result-2 A sample treated to prevent lead elution with the above treatment liquids A to G was immersed in 200 ml of Nagoya city tap water to measure the amount of lead eluted. Compared to the 0.01% acetic acid aqueous solution, the elution amount of lead was extremely small, and no lead was detected from the samples treated for A to E. Example 2 The treatment solution containing benzotriazole had a considerable effect on preventing the elution of lead. Next, about three kinds of the above-mentioned compounds having similar chemical structures to benzotriazole, an acid aqueous solution is used as a treatment liquid, and comparison is made with Example-1. The compound used was guanine,
They are three compounds of benzimidazole and adenine. These structures are similar to benzotriazole, but are all diazole compounds. Example 3 The same test sample as in Example 1 was used. As the treatment liquid, an aqueous solution having the following composition was used. H: sulfuric acid 6 g / l, guanine 10 g / l I: sulfuric acid 6 g / l, benzimidazole 10 g / l J: sulfuric acid 6 g / l, adenine 10 g / l This was performed in the same manner as in Prevention treatment-1.
This was immersed in the above treatment liquids H to J at 50 ° C. for 2 minutes, washed with water and dried. Lead Elution Test-3 A sample treated to prevent lead elution with the treatment solutions of H to J was used in Example-1.
In the same manner as in the above, it was immersed in a 0.01% acetic acid aqueous solution, and the amount of lead eluted was measured. Lead elution test result-3 Compared with the benzotriazole of Example 1, the amount of lead eluted was considerably larger, but was reduced to about 1/10 of that of the untreated sample. This seems to be due to the fact that the film strength with copper is weaker than that of benzotriazole or the film is dissolved in water. That is, it is presumed that a strong film like triazole is hardly formed with diazole. However, when this is immersed in tap water, the amount eluted in tap water is estimated to be about 20 to 25 ppb under the same conditions, as estimated from the elution test result-2 described above.

Claims (1)

【特許請求の範囲】 【請求項1】鉛含有銅合金製の金属部品(多くは給水装
置の水道用器具に用いられる)を洗浄処理として表面の
油膜その他を除くため、苛性アルカリ系脱脂剤の浸漬又
は電解処理によって表面を清浄化した後、ベンゾトリア
ゾール,ベンゾトリアゾール系各種化合物等及びベンゾ
チアゾールとその塩などの芳香族複素環式化合物を含ん
だ溶液に浸漬処理することによる鉛の溶出防止法 【請求項2】 【請求項1】に於てニッケル,クロムメッキ後の製品
に、ベンゾトリアゾール,ベンゾトリアゾール系各種化
合物等、及びベンゾチアゾールとその塩などの各種化合
物等の芳香族複素環式化合物等の芳香族複素環式化合物
を含んだ、酸性又はアルカリ性又は中性液に浸漬処理す
ることによる鉛の溶出防止法
Claims 1. To remove metal film made of lead-containing copper alloy (mostly used for water supply equipment of a water supply device) as a cleaning treatment to remove an oil film or the like on the surface, a caustic alkaline degreasing agent is used. A method for preventing lead elution by immersing in a solution containing an aromatic heterocyclic compound such as benzotriazole, various benzotriazole compounds, and benzothiazole and its salts after cleaning the surface by immersion or electrolytic treatment. 2. An aromatic heterocyclic compound such as benzotriazole, various compounds such as benzotriazole, and various compounds such as benzothiazole and a salt thereof, on the product after nickel and chromium plating according to claim 1. Of leaching of lead by immersion treatment in acidic, alkaline or neutral solution containing aromatic heterocyclic compound such as
JP2000404016A 2000-12-08 2000-12-08 Treatment method for preventing elution of lead from lead-containing copper alloy Pending JP2002180267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404016A JP2002180267A (en) 2000-12-08 2000-12-08 Treatment method for preventing elution of lead from lead-containing copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404016A JP2002180267A (en) 2000-12-08 2000-12-08 Treatment method for preventing elution of lead from lead-containing copper alloy

Publications (1)

Publication Number Publication Date
JP2002180267A true JP2002180267A (en) 2002-06-26

Family

ID=18868035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404016A Pending JP2002180267A (en) 2000-12-08 2000-12-08 Treatment method for preventing elution of lead from lead-containing copper alloy

Country Status (1)

Country Link
JP (1) JP2002180267A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085500A1 (en) * 2004-03-05 2005-09-15 Kitz Corporation Method of preventing nickel leaching from copper alloy made liquid-contact equipment item, protective film forming agent for nickel leaching prevention and cleaner for nickel leaching prevention
WO2007136024A1 (en) * 2006-05-22 2007-11-29 Toto Ltd. Method of pretreatment for plating and water service instrument made of lead-containing copper alloy
JP2013083007A (en) * 2007-03-12 2013-05-09 Kitz Corp Method for managing treatment liquid for forming protective film, combination faucet, and method for producing faucet
CN108270016A (en) * 2017-01-04 2018-07-10 Ls美创有限公司 Electrolytic copper foil, electrode, secondary cell and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085500A1 (en) * 2004-03-05 2005-09-15 Kitz Corporation Method of preventing nickel leaching from copper alloy made liquid-contact equipment item, protective film forming agent for nickel leaching prevention and cleaner for nickel leaching prevention
EP1722010A1 (en) * 2004-03-05 2006-11-15 Kitz Corporation Method of preventing nickel leaching from copper alloy made liquid-contact equipment item, protective film forming agent for nickel leaching prevention and cleaner for nickel leaching prevention
JPWO2005085500A1 (en) * 2004-03-05 2008-04-24 株式会社キッツ Nickel elution prevention method, nickel elution prevention protective film forming agent, and nickel elution prevention detergent for copper alloy wetted parts
EP1722010A4 (en) * 2004-03-05 2010-02-24 Kitz Corp Method of preventing nickel leaching from copper alloy made liquid-contact equipment item, protective film forming agent for nickel leaching prevention and cleaner for nickel leaching prevention
AU2005219734B2 (en) * 2004-03-05 2010-07-01 Kitz Corporation Method of preventing nickel leaching from copper alloy made liquid-contact equipment item, protective film forming agent for nickel leaching prevention and cleaner for nickel leaching prevention
US8182879B2 (en) 2004-03-05 2012-05-22 Kitz Corporation Method for preventing elution of nickel from water-contact instrument of copper alloy by formation of a protective film
WO2007136024A1 (en) * 2006-05-22 2007-11-29 Toto Ltd. Method of pretreatment for plating and water service instrument made of lead-containing copper alloy
JP2013083007A (en) * 2007-03-12 2013-05-09 Kitz Corp Method for managing treatment liquid for forming protective film, combination faucet, and method for producing faucet
CN108270016A (en) * 2017-01-04 2018-07-10 Ls美创有限公司 Electrolytic copper foil, electrode, secondary cell and its manufacturing method
JP2018109227A (en) * 2017-01-04 2018-07-12 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil having high corrosion resistance and superior in adhesion with active material, electrode comprising the same, secondary battery comprising the same, and method for producing the same

Similar Documents

Publication Publication Date Title
JP4588698B2 (en) Method for preventing nickel elution of copper alloy wetted parts and protective film forming agent for preventing nickel elution
US20080220281A1 (en) Copper alloy plumbing hardware, such as valves and tube couplings, and the treatment method for reducing elution of lead
US20090014094A1 (en) Methods for Reducing Hexavalent Chromium in Trivalent Chromate Conversion Coatings
US6197210B1 (en) Process for treating brass components to substantially eliminate leachabale lead
JP5826739B2 (en) Management method of protective film forming agent
JP2002180267A (en) Treatment method for preventing elution of lead from lead-containing copper alloy
WO2012026490A1 (en) Method for preventing elution of bi from copper alloy
JP4825591B2 (en) Scale removal method
EP1134306B1 (en) Selective deleading process and bath for plumbing components made of a copper alloy
JP5180644B2 (en) Nickel elution prevention method for copper alloy wetted parts
EP4177317B1 (en) Use of a corrosion inhibition composition and method for inhibition of corrosion of metals or metal alloys
JP4717773B2 (en) Recycling method for copper alloy lumber such as water meters
JP4190260B2 (en) Surface treatment method for lead-containing copper alloy and water contact member made of copper alloy
JP7228973B2 (en) METAL MATERIAL WITH FILM AND MANUFACTURING METHOD THEREOF
JP4047188B2 (en) Lead elution reduction treatment method for copper alloy piping equipment such as valves and fittings
KR100477172B1 (en) Method for inhibiting piping fittings used drinking water from leaching of lead
JP4921001B2 (en) How to remove patina
EP0064295B1 (en) Method of improving the corrosion resistance of chemical conversion coated aluminum
JPH11323577A (en) Treatment of alloy surface and alloy excellent in resistance against surface deterioration with time
US20010010834A1 (en) Method for producing a tin film on the inner surface of hollow copper alloy components
JP3237593B2 (en) Method for producing double-layer plated steel
JP2967072B2 (en) How to control atomic hydrogen absorption of aluminum alloy processed products to facilitate hydrogen degassing
EP3704286A1 (en) Process and composition for treating metal surfaces using trivalent chromium compounds
JP2003160849A (en) Surface treatment method for article hot-dip plated
MURAKAMI et al. Improvement of Corrosion Resistance of Aluminum Alloy by a New Surface Treatment Technology ‘PAHP-Treatment’