JP4190260B2 - Surface treatment method for lead-containing copper alloy and water contact member made of copper alloy - Google Patents

Surface treatment method for lead-containing copper alloy and water contact member made of copper alloy Download PDF

Info

Publication number
JP4190260B2
JP4190260B2 JP2002330955A JP2002330955A JP4190260B2 JP 4190260 B2 JP4190260 B2 JP 4190260B2 JP 2002330955 A JP2002330955 A JP 2002330955A JP 2002330955 A JP2002330955 A JP 2002330955A JP 4190260 B2 JP4190260 B2 JP 4190260B2
Authority
JP
Japan
Prior art keywords
lead
copper alloy
chemical conversion
ions
containing copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002330955A
Other languages
Japanese (ja)
Other versions
JP2003239078A (en
Inventor
洋樹 林
慎之介 中野
三郎 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2002330955A priority Critical patent/JP4190260B2/en
Publication of JP2003239078A publication Critical patent/JP2003239078A/en
Application granted granted Critical
Publication of JP4190260B2 publication Critical patent/JP4190260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉛含有銅合金表面から鉛が溶出するのを防止するための表面処理方法および本発明により処理された銅合金製接水部材に関する。
【0002】
【従来の技術】
鉛含有銅合金からの鉛溶出防止処理は、接水部材に関連する銅合金部材、例えば水栓金具、水道配管、配管バルブ、水道メーター、給湯機用熱交換器、ポンプ用品、配管継ぎ手などで適用されている。これは、前述の部材には鋳造性、機械加工性ならびに経済性に優れた青銅等の銅合金が用いられており、これらの銅合金には機械加工性や切削性などの特性を良好にするため、鉛が所定量添加されていることに起因する。
【0003】
すなわち、接水部材から水道水などに微量の鉛が溶出し、人体や使用環境に影響を与えるため、この溶出防止技術が検討されるようになった。
【0004】
現状、銅合金に鉛を添加せずに良好な機械加工性や切削性を得ることは難しく、また鉛の代替金属も見つかっていない。
【0005】
【発明が解決しようとする課題】
本発明は、鉛を含有した機械加工性や切削性の優れた銅合金材から鉛が溶出するのを防止するための表面処理方法および表面処理された接水部材を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、かかる技術課題を達成するために鋭意検討した結果、鉛含有銅合金をZn,Fe,Mn,Ca,Ni,Cu,Co,Zr,Sn,Mg,およびAlから選ばれる1種あるいは2種以上の金属イオンと、亜硝酸イオンと、りん酸イオンおよび硝酸イオンを含有する化成処理液にて表面処理することにより、表面に存在する鉛を選択的なエッチングにより除去し、かつその表面に前述の金属を含有するりん酸塩皮膜を形成し、被覆することによりさらに深部に残存する鉛の溶出防止に効果があることを見出した。
【0007】
また、本発明者らの知見では、硝酸などによる鉛の選択エッチングによってもある程度の鉛の除去は可能であるが、この方法では孔の内部に残存した鉛の表面が露出しているため完全に鉛の溶出を防止することはできず、腐食環境下に曝された場合に表面に錆びを発生して変色する問題点もあった。しかし、本発明によればりん酸塩皮膜が基材表面を緻密に覆っているため鉛の溶出が殆どなく、発錆による変色も防止することができることを見出した。
【0008】
すなわち本発明は、鉛含有銅合金をZn,Fe,Mn,Ca,Ni,Cu,Co,Zr,Sn,Mg,およびAlから選ばれる1種あるいは2種以上の金属イオンと、亜硝酸イオンと、りん酸イオンおよび硝酸イオンを含有する化成処理液と接触させることにより、表面の鉛を除去し、かつその表面に前述の金属を含有するりん酸塩皮膜を形成することで、鉛含有銅合金からの鉛溶出を防止するとともに、変色防止効果を付与することを特徴とする。
【0009】
さらに前記化成処理液には、過酸化水素、およびペルオキソ化合物から選ばれる1種または2種以上を含有することがより好ましい。
【0010】
前記化成処理に先だって前処理として、脱脂、酸洗および表面調整の1工程あるいは2工程以上を実施することができる。
【0011】
前記化成処理に先だって前処理として行う酸洗が、フッ素イオンおよび硝酸イオンを含有する酸性水溶液であることがより好ましい。
【0012】
前記酸性水溶液がさらに界面活性剤および/またはキレート剤を含むものであることがさらに好ましい。
【0013】
本発明はまた、銅合金表面に、Zn,Fe,Mn,Ca,Ni,Cu,Co,Zr,Sn,Mg,およびAlから選ばれる1種あるいは2種以上の金属のりん酸塩皮膜を有することを特徴とする鉛含有銅合金製接水部材である。
【0014】
また、前記金属のりん酸塩皮膜がZn,Ca,Sn,Mgから選ばれる1種または2種以上の難溶性りん酸塩である鉛含有銅合金製接水部材である。
【0015】
【本発明の実施の形態】
以下に本発明の詳細を説明する。本発明が対象とする素材は加工性を向上させるために鉛を含有された銅合金材であり、銅合金製接水部材である。
【0016】
本発明で用いる化成処理(りん酸塩処理)は、金属素材をエッチングすると共に、そのときに生じる表面のpH上昇によって、不溶性のりん酸塩皮膜を素材表面に形成し、被覆する処理である。
【0017】
本発明では、この化成処理の特徴を活かし、Zn,Fe,Mn,Ca,Ni,Cu,Co,Zr,Sn,Mg,Alから選ばれる1種あるいは2種以上の金属イオンと亜硝酸イオンと、りん酸イオンおよび硝酸イオンを含有する化成処理液で処理することにより、特に鉛含有銅合金の表面に存在している鉛を選択的にエッチング、除去すると同時に、鉛が除去された表面に前述の金属イオンを含むりん酸塩皮膜を表面に形成させる。表面をりん酸塩皮膜が被覆することで、鉛含有銅合金素材の深部に残存する鉛の溶出も防止することができる。
【0018】
即ち本発明は、鉛含有銅合金表面に存在する鉛の選択的エッチング除去効果と、表面にりん酸塩皮膜が形成されることにより、鉛含有銅合金材表面がりん酸塩皮膜で被覆されることによる素材からの溶出防止効果の2つの作用により、鉛溶出を防止するものであり、銅合金製接水部材に適用することができる。
【0019】
図1に鉛含有銅合金材(JIS H5111(BC6)青銅鋳物丸棒切削加工品のテストピース)をZn,Caの金属イオンとりん酸イオンおよび硝酸イオンを含有する化成処理液で処理したテストピースを、GDS(グロー放電発光分光分析装置:理学電機工業製システム3860型)にて深さ方向に元素分析した結果を示す。
【0020】
図1で明らかなように、鉛含有銅合金材表面には鉛は検出されず、Ca,Zn,P,Oのりん酸塩皮膜の存在が確認される。
【0021】
以下、本発明に用いる化成処理液について説明する。化成処理液中の金属イオンは、Zn,Fe,Mn,Ca,Ni,Cu,Co,Zr,Sn,Mg,Alから選ばれる1種あるいは2種以上で、それらのイオン量は特に限定されないが、経済性などを考慮すると、全金属イオン量は化成処理液1L中に0.5〜100gが好適であり、より好ましくは2〜40gである。
【0022】
りん酸イオン量は特に限定されないが、経済性などを考慮すると、化成処理液1L中に1〜100gが好適であり、より好ましくは10〜50gである。
【0023】
硝酸イオン量は特に限定されないが、化成処理液1L中に0.1〜100gが好適であり、より好ましくは5〜50gである。0.1g未満では皮膜形成時の表面エッチングが不足する可能性があり、100gを越えると皮膜形成時の表面エッチングが過多となり皮膜が形成されない可能性が生じるからである。
【0024】
成処理液には亜硝酸イオンを含有させる。また過酸化水素、およびペルオキソ化合物から選ばれる1種または2種以上を添加することにより、化成反応をより効率的に行うことができる。亜硝酸イオン、過酸化水素、およびペルオキソ化合物から選ばれる1種または2種以上の添加量は特に限定されないが、前記化成処理液1L中に添加量として0.1〜10gが好適である。
【0025】
本発明の前記化成処理液での処理条件としては、特に限定はしないが、反応性、経済性、安全性などを考慮すると、処理浴の処理温度は30〜100℃が好ましく、処理時間は1〜60分の範囲が好ましい。
【0026】
一般的に化成処理を行う場合、その前処理として、脱脂、酸洗および表面調整の1工程あるいは2工程以上を行う。表面調整工程以外の脱脂、酸洗の工程の後は水洗を行い、脱脂液および酸洗液の除去を行うのが慣例である。
【0027】
脱脂工程は、被処理物が切削油および防錆油などの有機物による表面汚染が顕著な場合に行うことが好ましい。このような有機物による表面汚染が顕著な場合、前記化成処理液と素材金属との接触が阻害され、十分な皮膜形成反応が起きない可能性があるからである。
【0028】
脱脂工程で使用する脱脂剤については特に限定はなく、市販のアルカリ脱脂剤などを使用することができる。
【0029】
酸洗工程は、被処理物表面に強固な酸化皮膜が形成されている場合に適用することが好ましい。被処理物表面に強固な酸化皮膜が存在すると、前記の化成処理液にて表面処理を行っても十分なエッチング反応が起こらずに、皮膜が形成できない可能性があるからである。酸洗によって、表面の鉛は一部溶解するが、本発明が目標とする鉛溶出防止量までは低減させることはできない。
【0030】
酸洗工程に使用できる酸については特に限定されないが、塩酸、硝酸および硫酸などの無機酸や、酢酸に代表される有機酸が好適であるが、フッ素イオンおよび硝酸イオンを含有する酸性水溶液で酸洗することがより好ましい。
【0031】
酸化皮膜の除去性および素材の溶解損失を考慮すると、酸性水溶液1L中にフッ素イオンとして0.1〜20g、硝酸イオンとして20〜90gの範囲がより好ましい。
【0032】
さらに酸化皮膜除去を効果的に行うために、前記酸性水溶液に界面活性剤および/またはキレート剤を添加することがより好ましい。界面活性剤および/またはキレート剤の種類は、酸性水溶液中で使用可能なものであれば、特に限定されない。
【0033】
酸洗の処理条件としては特に限定しないが、環境問題や安全性および経済性を考慮すると、5〜80℃で、3〜30分間処理することが好ましい。
【0034】
表面調整工程は、前記化成処理浴で表面処理を行う直前に、被処理物をチタン化合物コロイド系表面調整液やりん酸塩化合物コロイド系表面調整液と接触させ、水洗せずに次工程の化成処理を行う方法である。表面調整工程を採用することにより、りん酸塩皮膜をより迅速に形成させ、かつ緻密な皮膜を形成することができる。
【0035】
本発明の表面処理を行った後、被処理物を十分に水洗し、乾燥を行う。水洗工程における条件について、特に限定はしないが、接水部材に使用することを考慮すると、上水が好ましく、より好ましくはイオン交換水や蒸留水などを適宜使用できる。また、水洗時間も1〜60分の範囲が好ましく、水洗工程を多段で行うとさらに好ましい。
【0036】
乾燥温度は特に限定しないが、経済性を考慮すると40〜130℃の範囲が好ましい。
【0037】
上述の処理液および処理工程を銅合金製接水部材に適用することができ、それによって、Zn,Fe,Mn,Ca,Ni,Cu,Co,Zr,Sn,Mg,およびAlから選ばれる1種あるいは2種以上の金属のりん酸塩皮膜を有する鉛含有銅合金製接水部材を提供することができる。
【0038】
さらに、前記金属のりん酸塩皮膜がZn,Ca,Sn,Mgから選ばれる1種または2種以上の難溶性りん酸塩である鉛含有銅合金製接水部材であることが好ましい。
【0039】
以下に、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により限定されるものではない。なお、以下に示す実施例および比較例中ではすべて上水を用いた。
【0040】
(実施例1)
実施例には水栓金具などに使用されるJISH5111(BC6)青銅鋳物丸棒切削加工品(Cu:83.0〜87.0%、Pb:1.5〜2.0%、Zn:4.0〜6.0%、Sn:4.0〜6.0%、Ni:1.0%以下、Fe:0.3%以下、P:0.05%以下、Sb:0.2%以下、Al:0.01%以下)を輪切りにしてφ42.4×10mmの円盤試料としたものを素材として、各種表面処理を行い鉛の溶出量を試験した。
【0041】
化成処理液として、まずりん酸と硝酸の水溶液に酸化亜鉛を溶解し、Zn:12g/L、りん酸:12g/L、硝酸:20g/Lの濃度となるような水溶液を調製し、さらにその後亜硝酸イオンとして亜硝酸ナトリウムを2g/L添加したものを用意した。
【0042】
表面処理工程は、まず試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄し、前述の化成処理液にて50℃、5分間浸漬処理を行った。その後流水にて水洗し、90℃の乾燥炉にて10分間乾燥した。
【0043】
(実施例2)
化成処理液として、まずりん酸と硝酸の水溶液に酸化亜鉛および硝酸カルシウムを溶解し、Zn:3.3g/L、Ca:6.8g/L、りん酸:12g/L、硝酸:25g/Lの濃度となるような水溶液を調製し、さらにその後亜硝酸イオンとして亜硝酸ナトリウムを1g/L添加したものを用いた。
【0044】
表面処理工程は、まず試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄し、前述の化成処理液にて70℃、10分間浸漬処理を行った。その後流水にて水洗し、90℃の乾燥炉にて10分間乾燥した。
【0045】
(実施例3)
化成処理液として、まずりん酸と硝酸の水溶液に酸化亜鉛および硝酸マグネシウムを溶解し、Zn:3.3g/L、Mg:2g/L、りん酸:12g/L、硝酸:20g/Lの濃度となるような水溶液を調製し、さらにその後亜硝酸イオンとして亜硝酸ナトリウムを2g/L添加したものを用いた。
【0046】
表面処理工程は、まず試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて50℃、5分間浸漬処理した。その後流水にて十分に洗浄し、前述の化成処理液にて70℃、10分間浸漬処理を行った。その後流水にて水洗し、90℃の乾燥炉にて10分間乾燥した。
【0047】
(実施例4)
化成処理液として、まずりん酸と硝酸の水溶液に硝酸マグネシウムを溶解し、Mg:5g/L、りん酸:12g/L、硝酸:20g/Lの濃度となるような水溶液を調製し、さらにその後亜硝酸イオンとして亜硝酸ナトリウムを2g/L添加したものを用いた。
【0048】
表面処理工程は、まず試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、10分間浸漬処理した。その後流水にて十分に洗浄し、前述の化成処理液にて70℃、10分間浸漬処理を行った。その後流水にて水洗し、90℃の乾燥炉にて10分間乾燥した。
【0049】
(実施例5)
化成処理液として、まずりん酸と硝酸の水溶液に重りん酸マンガンを溶解し、Mn:5g/L、りん酸:20g/L、硝酸:25g/Lの濃度となるような水溶液を調製し、さらにその後亜硝酸イオンとして亜硝酸ナトリウムを1g/L添加したものを用いた。
【0050】
表面処理工程は、まず試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄し、前述の化成処理液にて90℃、10分間浸漬処理を行った。その後流水にて水洗し、90℃の乾燥炉にて10分間乾燥した。
【0051】
(実施例6)
化成処理液として、まずりん酸と硝酸の水溶液に酸化亜鉛および重りん酸マンガンを溶解し、Zn:5g/L、Mn:2g/L、りん酸:15g/L、硝酸:25g/Lの濃度となるような水溶液を調製し、さらにその後亜硝酸イオンとして亜硝酸ナトリウムを2g/L添加したものを用いた。
【0052】
表面処理工程は、まず試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄し、前述の化成処理液にて60℃、10分間浸漬処理を行った。その後流水にて水洗し、90℃の乾燥炉にて10分間乾燥した。
【0053】
(実施例7)
化成処理液として、まずりん酸と硝酸の水溶液に酸化亜鉛を溶解し、Zn:12g/L、りん酸:12g/L、硝酸:20g/Lの濃度となるような水溶液を調製し、さらにその後亜硝酸イオンとして亜硝酸ナトリウムを2g/L添加したものを用意した。
【0054】
表面処理工程は、まず試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄した後、酸洗として硝酸60g/Lに調整した酸性水溶液にて、30℃、10分間浸漬処理した。その後流水にて十分に洗浄し、前述の化成処理液にて50℃、5分間浸漬処理を行った。その後流水にて水洗し、90℃の乾燥炉にて10分間乾燥した。
【0055】
(実施例8)
化成処理液として、まずりん酸と硝酸の水溶液に酸化亜鉛および硝酸カルシウムを溶解し、Zn:3.3g/L、Ca:6.8g/L、りん酸:12g/L、硝酸:25g/Lの濃度となるような水溶液を調製し、さらにその後亜硝酸イオンとして亜硝酸ナトリウムを1g/L添加したものを用いた。
【0056】
表面処理工程は、まず試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄した後、酸洗として硝酸50g/L、フッ酸3g/Lに調整した酸性水溶液にて20℃、10分間浸漬処理した。その後流水にて十分に洗浄し、前述の化成処理液にて70℃、10分間浸漬処理を行った。その後流水にて水洗し、90℃の乾燥炉にて10分間乾燥した。
【0057】
(比較例1)
実施例と同様の試験材を常温のアセトンに10分間浸漬し、その後自然乾燥させることにより脱脂を行った。
【0058】
(比較例2)
実施例と同様の試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄し、90℃の乾燥炉にて10分間乾燥した。
【0059】
(比較例3)
実施例と同様の試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄した。その後水酸化ナトリウム50g/L、界面活性剤(アルカリベンゼンスルホン酸ソーダ)2g/Lの処理液にて80℃、10分間浸漬し、アルカリエッチングを行った。その後、流水にて十分に洗浄し、90℃の乾燥炉にて10分間乾燥した。
【0060】
(比較例4)
実施例と同様に試験材を日本パーカライジング(株)製ファインクリーナー4360を20g/Lに調整した脱脂液にて60℃、5分間浸漬処理した。その後流水にて十分に洗浄した。その後、5%硝酸水溶液に常温で5分間浸漬し、酸エッチングを行った。その後、流水にて十分に洗浄し、90℃の乾燥炉にて10分間乾燥した。
【0061】
実施例1〜6および比較例1〜4の試料を用いて鉛溶出試験を実施した。試験は、pHがほぼ7であることを確認した脱イオン水100mLをビーカーに入れたものを試料分だけ用意して温度25℃に設定したウォーターバスに設置し、その中にそれぞれの試料が全没するように浸漬して1日間保持することにより行った。試験終了後、それぞれの脱イオン水中に溶出した鉛量をICP(誘導結合高周波プラズマ分光分析装置)により測定した。その結果を表1に示す。
【0062】
【表1】

Figure 0004190260
【0063】
表1からも明らかなように、比較例に比べて本発明の方法を用いることにより鉛溶出量をきわめて微量に抑えることができる。溶剤脱脂の比較例1やアルカリ脱脂の比較例2は鉛溶出量がきわめて大きい。アルカリエッチングの比較例3や酸エッチング比較例4ではエッチングにより表面の鉛が除去されるので鉛溶出量は減少している。しかし、実施例1〜8の本発明を行うと、エッチングと同時に形成されるりん酸塩皮膜の遮蔽効果により比較例3,4の1/2〜1/4まで鉛溶出量が減少していることが判る。
【0064】
【発明の効果】
水栓金具、水道配管、配管バルブ、水道メーター、給湯機用熱交換器、ポンプ用品、配管継ぎ手などで適用されている鉛含有銅合金に本発明の方法を適用することにより、表面の鉛の除去と、深部の鉛溶出を防止するりん酸塩皮膜の形成を同時に行うことができる。このように本発明により有害物質の溶出を極めて経済的に防止することができる。
【図面の簡単な説明】
【図1】は本発明の表面処理を鉛含有銅合金に適用した場合の表面の深さ方向分析をGDSにより行った図。この表面処理は実施例2に相当する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface treatment method for preventing lead from eluting from the surface of a lead-containing copper alloy and a water contact member made of copper alloy treated according to the present invention.
[0002]
[Prior art]
Lead elution prevention treatment from lead-containing copper alloys is performed on copper alloy members related to water contact members, such as faucet fittings, water pipes, pipe valves, water meters, heat exchangers for water heaters, pump supplies, pipe joints, etc. Has been applied. This is because copper alloys such as bronze, which are excellent in castability, machinability and economy, are used for the above-mentioned members, and these copper alloys have good characteristics such as machinability and machinability. For this reason, a predetermined amount of lead is added.
[0003]
That is, since a very small amount of lead is eluted from the water contact member into tap water and the like, and this affects the human body and the use environment, this elution prevention technique has been studied.
[0004]
At present, it is difficult to obtain good machinability and machinability without adding lead to a copper alloy, and no alternative metal for lead has been found.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a surface treatment method and a surface-treated water contact member for preventing lead from eluting from a copper alloy material excellent in machinability and machinability containing lead. .
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the technical problem, the present inventor has selected one of the lead-containing copper alloys selected from Zn, Fe, Mn, Ca, Ni, Cu, Co, Zr, Sn, Mg, and Al. Alternatively, surface treatment with a chemical conversion treatment solution containing two or more kinds of metal ions, nitrite ions, phosphate ions and nitrate ions removes lead existing on the surface by selective etching, and It has been found that the formation of a phosphate film containing the above-mentioned metal on the surface and covering it further has the effect of preventing the elution of lead remaining in the deep part.
[0007]
In addition, according to the knowledge of the present inventors, it is possible to remove a certain amount of lead by selective etching of lead with nitric acid or the like, but this method completely exposes the surface of lead remaining inside the hole. The elution of lead cannot be prevented, and when exposed to a corrosive environment, the surface is rusted and discolored. However, according to the present invention, it has been found that since the phosphate coating covers the substrate surface densely, there is almost no elution of lead, and discoloration due to rusting can be prevented.
[0008]
That is, in the present invention, the lead-containing copper alloy is made of one or more metal ions selected from Zn, Fe, Mn, Ca, Ni, Cu, Co, Zr, Sn, Mg, and Al, nitrite ions, by contact with a chemical conversion solution containing phosphate ions and nitrate ions, to remove lead on the surface, and by forming a phosphate film containing the aforementioned metal on the surface thereof, a lead-containing copper alloy In addition to preventing elution of lead from water, it is characterized by imparting a discoloration preventing effect.
[0009]
Furthermore wherein the chemical conversion treatment liquid, hydrogen peroxide, and more preferably contains one or more selected from peroxo compounds.
[0010]
Prior to the chemical conversion treatment, one step or two or more steps of degreasing, pickling and surface adjustment can be performed as a pretreatment.
[0011]
The pickling performed as a pretreatment prior to the chemical conversion treatment is more preferably an acidic aqueous solution containing fluorine ions and nitrate ions.
[0012]
More preferably, the acidic aqueous solution further contains a surfactant and / or a chelating agent.
[0013]
The present invention also has a phosphate film of one or more metals selected from Zn, Fe, Mn, Ca, Ni, Cu, Co, Zr, Sn, Mg, and Al on the surface of the copper alloy. This is a lead-containing copper alloy-made wetted member.
[0014]
Moreover, it is a lead-containing copper alloy wetted member in which the metal phosphate film is one or more poorly soluble phosphates selected from Zn, Ca, Sn, and Mg.
[0015]
[Embodiments of the Invention]
Details of the present invention will be described below. The material targeted by the present invention is a copper alloy material containing lead in order to improve workability, and is a copper alloy wetted member.
[0016]
The chemical conversion treatment (phosphate treatment) used in the present invention is a treatment in which a metal material is etched and an insoluble phosphate film is formed on the surface of the material due to the increase in pH of the surface that occurs at that time.
[0017]
In the present invention, taking advantage of this chemical conversion treatment, one or more metal ions selected from Zn, Fe, Mn, Ca, Ni, Cu, Co, Zr, Sn, Mg, and Al, and nitrite ions, In addition, by treating with a chemical conversion treatment solution containing phosphate ions and nitrate ions, lead existing on the surface of the lead-containing copper alloy is selectively etched and removed, and at the same time, the surface from which the lead has been removed is removed. A phosphate film containing metal ions is formed on the surface. By covering the surface with the phosphate film, it is possible to prevent the elution of lead remaining in the deep part of the lead-containing copper alloy material.
[0018]
That is, according to the present invention, the lead-containing copper alloy material surface is coated with a phosphate film by selectively removing lead existing on the surface of the lead-containing copper alloy and forming a phosphate film on the surface. Due to the two effects of preventing elution from the raw material, lead elution is prevented and can be applied to a water contact member made of copper alloy.
[0019]
FIG. 1 shows a test piece obtained by treating a lead-containing copper alloy material (JIS H5111 (BC6) bronze cast round bar cut product) with a chemical conversion solution containing Zn, Ca metal ions, phosphate ions and nitrate ions. Is a result of elemental analysis in the depth direction using GDS (Glow Discharge Emission Spectrometer: System 3860, manufactured by Rigaku Corporation).
[0020]
As is apparent from FIG. 1, lead is not detected on the surface of the lead-containing copper alloy material, and the presence of a Ca, Zn, P, O phosphate film is confirmed.
[0021]
Hereinafter, the chemical conversion treatment solution used in the present invention will be described. The metal ions in the chemical conversion solution are one or more selected from Zn, Fe, Mn, Ca, Ni, Cu, Co, Zr, Sn, Mg, and Al, and the amount of these ions is not particularly limited. In view of economy and the like, the total metal ion amount is preferably 0.5 to 100 g, more preferably 2 to 40 g in 1 L of the chemical conversion treatment liquid.
[0022]
Although the amount of phosphate ions is not particularly limited, 1 to 100 g is preferable in 1 L of the chemical conversion treatment liquid, and more preferably 10 to 50 g in view of economy.
[0023]
The amount of nitrate ions is not particularly limited, but is preferably 0.1 to 100 g, more preferably 5 to 50 g, in 1 L of the chemical conversion solution. If it is less than 0.1 g, surface etching at the time of film formation may be insufficient, and if it exceeds 100 g, surface etching at the time of film formation will be excessive and a film may not be formed.
[0024]
It is to contain nitrite ion of conversion treatment solution. Further , the chemical reaction can be performed more efficiently by adding one or more selected from hydrogen peroxide and peroxo compounds. The addition amount of one or more selected from nitrite ions, hydrogen peroxide, and a peroxo compound is not particularly limited, but is preferably 0.1 to 10 g as the addition amount in 1 L of the chemical conversion treatment liquid.
[0025]
The treatment conditions in the chemical conversion treatment solution of the present invention are not particularly limited, but considering the reactivity, economy, safety, etc., the treatment temperature of the treatment bath is preferably 30 to 100 ° C., and the treatment time is 1 A range of ˜60 minutes is preferred.
[0026]
In general, when chemical conversion treatment is performed, one step or two or more steps of degreasing, pickling and surface adjustment are performed as pretreatment. After the degreasing and pickling steps other than the surface adjustment step, it is customary to perform water washing and remove the degreasing and pickling solutions.
[0027]
The degreasing step is preferably performed when the object to be treated is markedly contaminated with organic substances such as cutting oil and rust preventive oil. This is because, when such surface contamination due to organic substances is significant, the contact between the chemical conversion treatment liquid and the material metal is hindered, and there is a possibility that a sufficient film forming reaction does not occur.
[0028]
There is no limitation in particular about the degreasing agent used at a degreasing process, A commercially available alkali degreasing agent etc. can be used.
[0029]
The pickling step is preferably applied when a strong oxide film is formed on the surface of the object to be processed. This is because if a strong oxide film is present on the surface of the object to be processed, there is a possibility that a film cannot be formed without causing a sufficient etching reaction even if the surface treatment is performed with the chemical conversion treatment liquid. The surface lead partially dissolves by pickling, but it cannot be reduced to the target lead elution prevention amount of the present invention.
[0030]
The acid that can be used in the pickling step is not particularly limited, but inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids typified by acetic acid are suitable. However, the acid can be used in an acidic aqueous solution containing fluorine ions and nitrate ions. It is more preferable to wash.
[0031]
In consideration of the removability of the oxide film and the dissolution loss of the material, the range of 0.1 to 20 g as fluorine ions and 20 to 90 g as nitrate ions is more preferable in 1 L of acidic aqueous solution.
[0032]
Furthermore, in order to effectively remove the oxide film, it is more preferable to add a surfactant and / or a chelating agent to the acidic aqueous solution. The type of surfactant and / or chelating agent is not particularly limited as long as it can be used in an acidic aqueous solution.
[0033]
Although it does not specifically limit as a processing condition of pickling, It is preferable to process for 3 to 30 minutes at 5-80 degreeC when an environmental problem, safety | security, and economical efficiency are considered.
[0034]
In the surface conditioning step, immediately before performing the surface treatment in the chemical conversion treatment bath, the object to be treated is brought into contact with a titanium compound colloidal surface conditioning liquid or a phosphate compound colloidal surface conditioning liquid, and the chemical conversion of the next process is performed without washing with water. This is a method of processing. By employing the surface adjustment step, the phosphate film can be formed more quickly and a dense film can be formed.
[0035]
After performing the surface treatment of the present invention, the object to be treated is sufficiently washed with water and dried. Although there is no particular limitation on the conditions in the water washing step, in consideration of the use in the water contact member, clean water is preferable, and ion exchange water, distilled water, or the like can be appropriately used. Further, the washing time is preferably in the range of 1 to 60 minutes, and more preferably when the washing step is performed in multiple stages.
[0036]
The drying temperature is not particularly limited, but is preferably in the range of 40 to 130 ° C. in consideration of economy.
[0037]
The above-described treatment liquid and treatment step can be applied to a copper alloy wetted member, whereby 1 selected from Zn, Fe, Mn, Ca, Ni, Cu, Co, Zr, Sn, Mg, and Al. A lead-containing copper alloy wetted member having a phosphate film of seeds or two or more metals can be provided.
[0038]
Furthermore, it is preferable that the metal phosphate coating is a lead-containing copper alloy wetted member which is one or more hardly soluble phosphates selected from Zn, Ca, Sn, and Mg.
[0039]
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In all of the following examples and comparative examples, clean water was used.
[0040]
(Example 1)
In the examples, a JISH5111 (BC6) bronze cast round bar machined product (Cu: 83.0-87.0%, Pb: 1.5-2.0%, Zn: 4. 0 to 6.0%, Sn: 4.0 to 6.0%, Ni: 1.0% or less, Fe: 0.3% or less, P: 0.05% or less, Sb: 0.2% or less, A surface of a disk sample having a diameter of 42.4 × 10 mm made by cutting Al: 0.01% or less) was used as a raw material, and various amounts of surface treatment were performed to test the elution amount of lead.
[0041]
As a chemical conversion treatment solution, first, zinc oxide is dissolved in an aqueous solution of phosphoric acid and nitric acid to prepare an aqueous solution having concentrations of Zn: 12 g / L, phosphoric acid: 12 g / L, nitric acid: 20 g / L, and then What added sodium nitrite 2g / L as nitrite ion was prepared.
[0042]
In the surface treatment step, first, the test material was immersed in a degreasing solution adjusted to 20 g / L of Fine Cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. at 60 ° C. for 5 minutes. Thereafter, it was sufficiently washed with running water, and immersed in the above chemical conversion solution at 50 ° C. for 5 minutes. Thereafter, it was washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0043]
(Example 2)
As a chemical conversion treatment solution, zinc oxide and calcium nitrate are first dissolved in an aqueous solution of phosphoric acid and nitric acid, Zn: 3.3 g / L, Ca: 6.8 g / L, phosphoric acid: 12 g / L, nitric acid: 25 g / L Then, an aqueous solution with a concentration of 1 liter / L of sodium nitrite was added as nitrite ions.
[0044]
In the surface treatment step, first, the test material was immersed in a degreasing solution adjusted to 20 g / L of Fine Cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. at 60 ° C. for 5 minutes. Thereafter, it was sufficiently washed with running water, and immersed in the above chemical conversion solution at 70 ° C. for 10 minutes. Thereafter, it was washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0045]
(Example 3)
As a chemical conversion treatment solution, zinc oxide and magnesium nitrate are first dissolved in an aqueous solution of phosphoric acid and nitric acid, and Zn: 3.3 g / L, Mg: 2 g / L, phosphoric acid: 12 g / L, nitric acid: 20 g / L. Then, an aqueous solution with 2 g / L of sodium nitrite added as nitrite ions was used.
[0046]
In the surface treatment step, first, the test material was immersed in a degreasing solution prepared by adjusting Fine Tester 4360 manufactured by Nippon Parkerizing Co., Ltd. to 20 g / L at 50 ° C. for 5 minutes. Thereafter, it was sufficiently washed with running water, and immersed in the above chemical conversion solution at 70 ° C. for 10 minutes. Thereafter, it was washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0047]
Example 4
As a chemical conversion treatment solution, first, magnesium nitrate is dissolved in an aqueous solution of phosphoric acid and nitric acid to prepare an aqueous solution having concentrations of Mg: 5 g / L, phosphoric acid: 12 g / L, nitric acid: 20 g / L, and then What added sodium nitrite 2g / L as nitrite ion was used.
[0048]
In the surface treatment step, the test material was first subjected to immersion treatment at 60 ° C. for 10 minutes with a degreasing solution in which Fine Cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. was adjusted to 20 g / L. Thereafter, it was sufficiently washed with running water, and immersed in the above chemical conversion solution at 70 ° C. for 10 minutes. Thereafter, it was washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0049]
(Example 5)
First, manganese phosphate is dissolved in an aqueous solution of phosphoric acid and nitric acid as a chemical conversion treatment solution to prepare an aqueous solution having a concentration of Mn: 5 g / L, phosphoric acid: 20 g / L, nitric acid: 25 g / L, Further, after that, 1 g / L of sodium nitrite was added as nitrite ion.
[0050]
In the surface treatment step, first, the test material was immersed in a degreasing solution adjusted to 20 g / L of Fine Cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. at 60 ° C. for 5 minutes. Thereafter, it was sufficiently washed with running water, and immersed in the above chemical conversion solution at 90 ° C. for 10 minutes. Thereafter, it was washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0051]
(Example 6)
As a chemical conversion treatment solution, zinc oxide and manganese biphosphate are first dissolved in an aqueous solution of phosphoric acid and nitric acid, and Zn: 5 g / L, Mn: 2 g / L, phosphoric acid: 15 g / L, nitric acid: 25 g / L. Then, an aqueous solution with 2 g / L of sodium nitrite added as nitrite ions was used.
[0052]
In the surface treatment step, first, the test material was immersed in a degreasing solution adjusted to 20 g / L of Fine Cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. at 60 ° C. for 5 minutes. Thereafter, it was sufficiently washed with running water, and immersed in the above chemical conversion solution at 60 ° C. for 10 minutes. Thereafter, it was washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0053]
(Example 7)
As a chemical conversion treatment solution, first, zinc oxide is dissolved in an aqueous solution of phosphoric acid and nitric acid to prepare an aqueous solution having concentrations of Zn: 12 g / L, phosphoric acid: 12 g / L, nitric acid: 20 g / L, and then What added sodium nitrite 2g / L as nitrite ion was prepared.
[0054]
In the surface treatment step, first, the test material was immersed in a degreasing solution adjusted to 20 g / L of Fine Cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. at 60 ° C. for 5 minutes. Thereafter, the plate was sufficiently washed with running water, and then immersed in an acidic aqueous solution adjusted to 60 g / L of nitric acid for pickling at 30 ° C. for 10 minutes. Thereafter, it was sufficiently washed with running water, and immersed in the above chemical conversion solution at 50 ° C. for 5 minutes. Thereafter, it was washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0055]
(Example 8)
As a chemical conversion treatment solution, zinc oxide and calcium nitrate are first dissolved in an aqueous solution of phosphoric acid and nitric acid, Zn: 3.3 g / L, Ca: 6.8 g / L, phosphoric acid: 12 g / L, nitric acid: 25 g / L Then, an aqueous solution with a concentration of 1 liter / L of sodium nitrite was added as nitrite ions.
[0056]
In the surface treatment step, first, the test material was immersed in a degreasing solution adjusted to 20 g / L of Fine Cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. at 60 ° C. for 5 minutes. Then, after sufficiently washing with running water, immersion treatment was performed at 20 ° C. for 10 minutes in an acidic aqueous solution adjusted to 50 g / L nitric acid and 3 g / L hydrofluoric acid as pickling. Thereafter, it was sufficiently washed with running water, and immersed in the above chemical conversion solution at 70 ° C. for 10 minutes. Thereafter, it was washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0057]
(Comparative Example 1)
Degreasing was performed by immersing a test material similar to the example in normal temperature acetone for 10 minutes and then allowing it to air dry.
[0058]
(Comparative Example 2)
The same test material as in the example was immersed in a degreasing solution prepared by adjusting fine cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. to 20 g / L at 60 ° C. for 5 minutes. Thereafter, it was sufficiently washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0059]
(Comparative Example 3)
The same test material as in the example was immersed in a degreasing solution prepared by adjusting fine cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. to 20 g / L at 60 ° C. for 5 minutes. Thereafter, it was thoroughly washed with running water. Thereafter, it was immersed in a treatment solution of 50 g / L of sodium hydroxide and 2 g / L of a surfactant (sodium alkenyl sulfonate) at 80 ° C. for 10 minutes for alkali etching. Thereafter, it was sufficiently washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0060]
(Comparative Example 4)
In the same manner as in the examples, the test material was immersed in a degreasing solution prepared by adjusting fine cleaner 4360 manufactured by Nippon Parkerizing Co., Ltd. to 20 g / L at 60 ° C. for 5 minutes. Thereafter, it was thoroughly washed with running water. Then, it was immersed in 5% nitric acid aqueous solution for 5 minutes at room temperature, and acid etching was performed. Thereafter, it was sufficiently washed with running water and dried in a drying furnace at 90 ° C. for 10 minutes.
[0061]
Lead elution tests were performed using the samples of Examples 1 to 6 and Comparative Examples 1 to 4. In the test, 100 mL of deionized water whose pH was confirmed to be approximately 7 was placed in a beaker and placed in a water bath set at a temperature of 25 ° C. It was carried out by immersing so as to immerse and holding for one day. After completion of the test, the amount of lead eluted in each deionized water was measured by ICP (Inductively Coupled High Frequency Plasma Spectrometer). The results are shown in Table 1.
[0062]
[Table 1]
Figure 0004190260
[0063]
As is clear from Table 1, the amount of lead elution can be suppressed to a very small amount by using the method of the present invention as compared with the comparative example. Comparative Example 1 for solvent degreasing and Comparative Example 2 for alkaline degreasing have very large lead elution amounts. In the alkaline etching comparative example 3 and the acid etching comparative example 4, the lead elution amount is reduced because the lead on the surface is removed by the etching. However, when the present invention of Examples 1 to 8 is carried out, the lead elution amount is reduced to 1/2 to 1/4 of Comparative Examples 3 and 4 due to the shielding effect of the phosphate film formed simultaneously with the etching. I understand that.
[0064]
【The invention's effect】
By applying the method of the present invention to lead-containing copper alloys applied to faucet fittings, water pipes, pipe valves, water meters, water heater heat exchangers, pump supplies, pipe joints, etc. Removal and formation of a phosphate film that prevents deep lead elution can be performed simultaneously. As described above, the elution of harmful substances can be extremely economically prevented by the present invention.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram in which a surface depth direction analysis is performed by GDS when a surface treatment of the present invention is applied to a lead-containing copper alloy. This surface treatment corresponds to Example 2.

Claims (7)

鉛含有銅合金を、Zn,Fe,Mn,Ca,Ni,Cu,Co,Zr,Sn,Mg,およびAlから選ばれる1種あるいは2種以上の金属イオンと、亜硝酸イオンと、りん酸イオンおよび硝酸イオンを含有する化成処理液と接触させることにより、表面の鉛を除去し、かつその表面に前述の金属を含有するりん酸塩皮膜を形成することを特徴とする鉛溶出を防止する鉛含有銅合金の表面処理方法。Lead-containing copper alloy is made of one or more metal ions selected from Zn, Fe, Mn, Ca, Ni, Cu, Co, Zr, Sn, Mg, and Al, nitrite ions, and phosphate ions. Lead that prevents lead elution, characterized by removing lead on the surface and contacting the surface with a chemical conversion treatment solution containing nitrate ions and forming a phosphate film containing the aforementioned metal on the surface A surface treatment method for a copper alloy. 前記化成処理液がさらに過酸化水素、およびペルオキソ化合物から選ばれる1種または2種以上を含有するものである、請求項1に記載の鉛含有銅合金の表面処理方法。The chemical conversion treatment solution of hydrogen peroxide in the further, and those containing one or more selected from peroxo compounds, the surface treatment method of the lead-containing copper alloy according to claim 1. 前記化成処理に先だって前処理として、脱脂、酸洗および表面調整の1工程あるいは2工程以上を実施する請求項1または請求項2に記載の鉛含有銅合金の表面処理方法。The surface treatment method for a lead-containing copper alloy according to claim 1 or 2, wherein one or two or more steps of degreasing, pickling and surface adjustment are performed as pretreatment prior to the chemical conversion treatment. 前記化成処理に先だって前処理として行う酸洗が、フッ素イオンおよび硝酸イオンを含有する酸性水溶液を用いる酸洗である請求項3に記載の鉛含有銅合金の表面処理方法。The surface treatment method for a lead-containing copper alloy according to claim 3, wherein the pickling performed as a pretreatment prior to the chemical conversion treatment is pickling using an acidic aqueous solution containing fluorine ions and nitrate ions. 前記酸性水溶液がさらに界面活性剤および/またはキレート剤を含む酸洗水溶液である請求項4に記載の鉛含有銅合金の表面処理方法。The lead-containing copper alloy surface treatment method according to claim 4, wherein the acidic aqueous solution is a pickling aqueous solution further containing a surfactant and / or a chelating agent. 請求項1〜5の何れかの表面処理方法を用いて製造した、表面に、Zn,Fe,Mn,Ca,Ni,Cu,Co,Zr,Sn,Mg,およびAlから選ばれる1種あるいは2種以上の金属のりん酸塩皮膜を有することを特徴とする鉛含有銅合金製接水部材。One or two selected from Zn, Fe, Mn, Ca, Ni, Cu, Co, Zr, Sn, Mg, and Al on the surface produced by the surface treatment method according to claim 1. A lead-containing copper alloy wetted member comprising a phosphate film of a metal of at least one species. 前記金属のりん酸塩皮膜がZn,Ca,Sn,Mgから選ばれる1種または2種以上の難溶性りん酸塩である請求項6に記載の鉛含有銅合金製接水部材。The water contact member made of lead-containing copper alloy according to claim 6, wherein the metal phosphate film is one or more hardly soluble phosphates selected from Zn, Ca, Sn, and Mg.
JP2002330955A 2001-12-12 2002-11-14 Surface treatment method for lead-containing copper alloy and water contact member made of copper alloy Expired - Fee Related JP4190260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330955A JP4190260B2 (en) 2001-12-12 2002-11-14 Surface treatment method for lead-containing copper alloy and water contact member made of copper alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-378049 2001-12-12
JP2001378049 2001-12-12
JP2002330955A JP4190260B2 (en) 2001-12-12 2002-11-14 Surface treatment method for lead-containing copper alloy and water contact member made of copper alloy

Publications (2)

Publication Number Publication Date
JP2003239078A JP2003239078A (en) 2003-08-27
JP4190260B2 true JP4190260B2 (en) 2008-12-03

Family

ID=27790718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330955A Expired - Fee Related JP4190260B2 (en) 2001-12-12 2002-11-14 Surface treatment method for lead-containing copper alloy and water contact member made of copper alloy

Country Status (1)

Country Link
JP (1) JP4190260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419125C (en) * 2004-11-19 2008-09-17 中国科学院金属研究所 Pickler of copper alloy materials

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662969A (en) * 1979-10-26 1981-05-29 Mitsubishi Gas Chem Co Inc Preventing method for corrosion of metal surface
JPS6036473B2 (en) * 1981-09-14 1985-08-20 本田技研工業株式会社 Pre-painting treatment agent and method for steel materials
JPS60194035A (en) * 1984-03-16 1985-10-02 Sanpo Shindo Kogyo Kk Corrosion resistant copper alloy
JPS63235483A (en) * 1987-03-24 1988-09-30 Nippon Parkerizing Co Ltd Surface regulating solution for chemical treatment of steel material
JPH01294870A (en) * 1988-02-29 1989-11-28 Nippon Parkerizing Co Ltd Phosphating bath for copper-based material, its phosphating method, and humidity sensor produced by using the same bath
JPH02143585A (en) * 1988-11-25 1990-06-01 Nippon Parkerizing Co Ltd Manufacture of printed wiring substrate
JP3399548B2 (en) * 1991-03-30 2003-04-21 株式会社東洋伸銅所 Alloy for hot forging
JPH0768595B2 (en) * 1991-11-14 1995-07-26 三宝伸銅工業株式会社 Corrosion resistant copper base alloy material
JPH10183275A (en) * 1996-11-01 1998-07-14 Toto Ltd Copper alloy, member in contact with water, composed of copper alloy, and production of copper alloy
JP2001032087A (en) * 1999-07-23 2001-02-06 Toto Ltd Water-contacting member

Also Published As

Publication number Publication date
JP2003239078A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP4538490B2 (en) Metal substitution treatment liquid on aluminum or aluminum alloy and surface treatment method using the same
JP3490457B2 (en) Piping member made of lead-containing copper alloy with low lead release and method for producing the same
EP1126049A2 (en) Composition for desmutting aluminum
US7384901B2 (en) Process for cleaning aluminum and aluminum alloy surfaces with nitric acid and chromic acid-free compositions
KR102555554B1 (en) Near-neutral pH pickling solution for multi-metals
US5919519A (en) Potable water supply components
US5958257A (en) Process for treating brass components to reduce leachable lead
EP2519660B1 (en) Pretreatment process for aluminum and high etch cleaner used therein
US6197210B1 (en) Process for treating brass components to substantially eliminate leachabale lead
JP5290079B2 (en) Metal surface treatment liquid and metal material surface treatment method
CZ216697A3 (en) Method of coating metal surfaces with a highly hydrophilic, biologically resistant odorless coating exhibiting high resistance to corrosion
US3692583A (en) Desmutting etched aluminum alloys
JPWO2002036856A1 (en) Lead removal method and faucet fitting for lead-containing copper alloy plated product having tubular portion, lead leaching prevention method for lead-containing copper alloy product and faucet fitting
JP4190260B2 (en) Surface treatment method for lead-containing copper alloy and water contact member made of copper alloy
JPH06228766A (en) Method of forming phosphate film
JP3839362B2 (en) Methods for cleaning and passivating light alloy surfaces
EP1134306B1 (en) Selective deleading process and bath for plumbing components made of a copper alloy
JPH044397B2 (en)
US6830629B2 (en) Method for treating brass
JP3252186B2 (en) Etching agent
JPS6345474B2 (en)
RU2096526C1 (en) Composition for removing scale from surface of non- ferrous metals or alloys thereof
JP4921001B2 (en) How to remove patina
CN1425801A (en) Surface treating method for anti-lead stripping from lead-copper conbaining alloy
US20030098041A1 (en) Method for treating brass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees