WO2007136024A1 - Method of pretreatment for plating and water service instrument made of lead-containing copper alloy - Google Patents

Method of pretreatment for plating and water service instrument made of lead-containing copper alloy Download PDF

Info

Publication number
WO2007136024A1
WO2007136024A1 PCT/JP2007/060330 JP2007060330W WO2007136024A1 WO 2007136024 A1 WO2007136024 A1 WO 2007136024A1 JP 2007060330 W JP2007060330 W JP 2007060330W WO 2007136024 A1 WO2007136024 A1 WO 2007136024A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
copper alloy
containing copper
electrolysis
plating
Prior art date
Application number
PCT/JP2007/060330
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Takamatsu
Masashi Kawamoto
Mitsuo Imamoto
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to US11/887,781 priority Critical patent/US20090250354A1/en
Publication of WO2007136024A1 publication Critical patent/WO2007136024A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching

Definitions

  • the present invention is obtained by applying a plating pretreatment method in which lead existing in the surface layer of a lead-containing copper alloy is removed in advance before plating the surface of the lead-containing copper alloy and this plating pretreatment method.
  • the present invention relates to a lead-containing copper alloy water supply device.
  • Lead-containing copper alloys having excellent processability and corrosion resistance are generally used as materials for water supply equipment. Since this lead-containing copper alloy contains lead harmful to the human body, the surface is plated in the process shown in Fig. 3 so that lead does not elute!
  • a lead-containing copper alloy is immersed in an alkaline etching solution to remove lead on the surface layer of the lead-containing copper alloy, and thereafter, nickel plating, chromium plating, and chrome plating are performed. After being treated with water, it is washed with water.
  • the pretreatment described above is a treatment for facilitating the formation of a plating layer by removing dirt on the surface and preventing lead from elution.
  • the present applicant has proposed a method of removing lead with both alkali and acid by adding an oxidizing agent to an alkaline etching solution by paying attention to the characteristic that lead is an amphoteric metal. (Patent Document 1)
  • Electrolysis methods include cathodic electrolysis using lead-containing copper alloy as the negative electrode and anodic electrolysis using lead-containing copper alloy as the positive electrode. Cathodic electrolysis generates oxygen gas on the surface of the lead-containing copper alloy, and this oxygen gas decomposes and removes organic soil on the surface, so it has a great cleaning effect.
  • lead-containing copper alloys are melted (etched) by electrical action, so lead-containing copper alloys are ground (over-etched).
  • the cathode electrolysis method is also used in which the lead-containing copper alloy does not dissolve and hydrogen gas is generated on the surface of the lead-containing copper alloy. Also known is the PR electrolysis method, in which cathodic electrolysis and positive electrolysis are repeated alternately.
  • Patent Document 1 Japanese Patent No. 3182765
  • Patent Document 2 JP-A-2-274900
  • the present invention is a plating pretreatment method that removes lead existing in the surface layer of a lead-containing copper alloy before nickel plating or chromium plating is applied to the surface of the lead-containing copper alloy.
  • the lead-containing copper alloy is used as either a positive electrode or a negative electrode, and the lead-containing copper alloy is used as either a positive electrode or a negative electrode.
  • the other electrolysis was performed alternately (PR electrolysis).
  • the lead-containing copper alloy is finally used as a positive electrode.
  • the current density is lAZdm 2 or more and 25AZdm 2 or less, and the current switching time is 2 seconds or more and 30 seconds or less.
  • the alkaline etch It is also preferable to add an oxidizing agent to the working solution.
  • the lead-containing copper alloy water supply device has a surface that has been fitted, and the lead-containing copper alloy is immersed in an alkaline etching solution as a pretreatment of the plating.
  • a process in which the electrolysis using the lead-containing copper alloy as either the positive electrode or the negative electrode and the electrolysis using the lead-containing copper alloy as either the positive electrode or the negative electrode alternately was performed. is there.
  • the lead-containing copper alloy water supply device it is preferable that the lead-containing copper alloy is finally used as a positive electrode as described above. Further, as conditions for PR electrolysis, it is preferable that the current density is lAZdm 2 or more and 25AZdm 2 or less, and the current switching time is 2 seconds or more and 30 seconds or less. It is also preferable to add an oxidizing agent to the alkaline etching solution.
  • the plating pretreatment method of the present invention lead or the like dissolved in the etching solution is electrodeposited (re-deposited) on the lead-containing copper alloy, and sufficient degreasing cleaning is performed. Therefore, a defect such as cloudiness does not occur on the surface after plating, and a chelating agent that forms a more inactive inactive binder is not used, which is effective for cost reduction.
  • the lead-containing copper alloy as the positive electrode for the last electrolysis in PR electrolysis, it is effective to deposit (reattach) lead etc. on the surface of the metal object Can be prevented.
  • FIG. 1 Process diagram of plating applying the plating pretreatment method according to the present invention.
  • FIG. 1 is a process diagram of plating applying the pretreatment method according to the present invention
  • FIG. 2 is a conceptual diagram of PR electrolysis.
  • PR is performed in parallel.
  • ultrasonic cleaning is not always necessary, and only PR electrolysis using an alkaline cleaning solution may be used. Further, following the PR electrolysis using an alkaline cleaning solution, negative electrolysis and anodic electrolysis may be performed alone or in combination as necessary. By doing so, the surface of the object to be covered (lead-containing alloy) is further cleaned and the adhesion of the plating is improved.
  • Alkaline etchant alkali cleaning
  • the plating process usually includes a degreasing process and a plating process power.
  • the main component of the alkaline etching solution used in the present invention is a process of removing dirt such as oil components adhering to the material.
  • Sodium hydroxide, potassium hydroxide, Use an alkaline solution in which sodium carbonate, sodium phosphate, sodium tripolyphosphate, sodium metasilicate, sodium orthosilicate, etc. are used alone or in solution.
  • the concentration is generally from several g / L to several tens of g / L, and is determined appropriately depending on the combination of components used.
  • a surfactant is added to reduce the surface tension of the solution.
  • an anionic surfactant or a non-ionic surfactant is often used, and these are used alone or in combination.
  • the surfactants include higher fatty acid sodium, sulfated oil, sodium higher alcohol sulfate, sodium alkylbenzene sulfate, sodium higher alkyl ether sulfate, and sodium a-olefin sulfate.
  • Nonionic surfactants include alkyl polyoxyethylene ether, alkylphenyl polyoxyethylene ether, fatty acid ethylene oxide adduct, polypropylene glycol ethylene oxide. There is an adjunct (pull mouth nick). The addition amount is generally several g / L to several tens g / L.
  • Chelating agents can be added to prevent lead from re-depositing as hydroxide and to promote lead dissolution.
  • the chelating agent for example, it is easy to form a complex with lead such as EDTA, ethylene diamine, triethanolamine, thiourea, Rossiel salt, tartaric acid, etc., and a compound is desirable.
  • the concentration should be several g / L to several tens g / L for each component.
  • Chelating agents that form insoluble inactive products with heavy metals such as lead can also be added.
  • a chelating agent that forms an insoluble inactive product sodium dimethyldithiocarbamate or sodium jetyldithiocarbamate is desirable.
  • the concentration of each component is preferably several gZL to several lOgZL.
  • oxidizing agent examples include organic acid-soluble compounds such as sodium meta-trobenzenesulfonate and sodium nitrate nitrobenzoate, hypochlorite, bleaching powder, hydrogen peroxide, potassium permanganate, persulfate, An inorganic compound such as perchlorate is used.
  • concentration of each component is preferably several g / L to several tens g / L.
  • chromium bath generally known sergeant baths having chromic anhydride and sulfuric acid power can be used.
  • a chromium fluoride bath may be used in which part or all of the sulfuric acid in the Sargent bath is replaced with fluoride.
  • chrome plating is performed in a chrome plating solution, the outer surface is chrome plated, and the inner surface is a strong acidity of the chrome plating solution. Dissolve.
  • precipitates may remain as lead and chromate, but fluoride plays a role in dissolving it, so that it can be applied in a chromium fluoride bath.
  • the preferred temperature is 40 to 60 ° C, and the immersion time is several tens of seconds to several minutes.
  • fluoride most of the fluorine compounds can be used such as sodium fluoride, potassium fluoride, ammonium fluoride, hydrofluoric acid, borofluoric acid, kafluoric acid 'sodium fluoride', potassium potassium fluoride, and chromium borofluoride.
  • Additives used for chromate treatment may be added or replaced with nitric acid, hydrofluoric acid, acetic acid, oxalic acid, chromate, etc. depending on the power based on chromic anhydride, phosphoric acid and sulfuric acid.
  • a commercially available chromate agent such as zinc plating may be used.
  • the concentration of each component is preferably several g / L to several tens g / L.
  • the treatment temperature and treatment time are preferably from room temperature to 60 ° C and from several seconds to several minutes.
  • the 21.2 thermal shock test specified in JIS H8504 “Plating adhesion test method” was conducted (test method for examining plating adhesion by thermal shock by heating and quenching the sample). As shown in the following (Table 1), there was no problem in adhesion except for negative electrolysis without a chelating agent that forms an insoluble inactive binder.
  • Table 3 shows the experimental results of anodic electrolysis with a chelating agent that forms an insoluble inactive binder.
  • the adhesion was all good, but the appearance was poor.
  • the electrolysis conditions were ultrasonic cleaning (1 minute) with ultrasonic waves followed by alkali cleaning (2 minutes).

Abstract

[PROBLEMS] To provide a method of pretreatment for plating in which lead, etc. dissolved in an etchant are prevented from being electrodeposited (readhering) to a lead-containing copper alloy as a work to be plated without the necessity of adding a chelating agent which forms an insoluble inert compound. [MEANS FOR SOLVING PROBLEMS] A lead-containing copper alloy as a work to be plated is immersed in an alkaline etchant containing no chelating agent which forms an insoluble inert compound. The lead-containing copper alloy in this state is subjected alternately to electrolysis in which the lead-containing copper alloy is used as one of the positive and negative poles and electrolysis in which the lead-containing copper alloy is used as the other pole (PR electrolysis).

Description

明 細 書  Specification
めっき前処理法及び鉛含有銅合金製水道用器具  Plating pretreatment method and lead-containing copper alloy water supply equipment
技術分野  Technical field
[0001] 本発明は、鉛含有銅合金の表面にめっきを施す前に予め鉛含有銅合金の表層に 存在する鉛を除去するめつき前処理法と、このめつき前処理法を適用して得られた鉛 含有銅合金製水道用器具に関する。  The present invention is obtained by applying a plating pretreatment method in which lead existing in the surface layer of a lead-containing copper alloy is removed in advance before plating the surface of the lead-containing copper alloy and this plating pretreatment method. The present invention relates to a lead-containing copper alloy water supply device.
背景技術  Background art
[0002] 水道用器具の素材として加工性および耐腐食性に優れた鉛含有銅合金が一般に 用いられている。この鉛含有銅合金は人体に有害な鉛を含んでいるため、図 3に示 す工程で表面にめっきを施し、鉛が溶出しな 、ようにして!/、る。  [0002] Lead-containing copper alloys having excellent processability and corrosion resistance are generally used as materials for water supply equipment. Since this lead-containing copper alloy contains lead harmful to the human body, the surface is plated in the process shown in Fig. 3 so that lead does not elute!
[0003] 具体的には、前処理として鉛含有銅合金をアルカリエッチング液に浸漬して、鉛含 有銅合金表層部の鉛を除去し、この後、ニッケルめっき、クロムめつき更にはクロメ一 ト処理を施した後に、水洗するようにしている。  [0003] Specifically, as a pretreatment, a lead-containing copper alloy is immersed in an alkaline etching solution to remove lead on the surface layer of the lead-containing copper alloy, and thereafter, nickel plating, chromium plating, and chrome plating are performed. After being treated with water, it is washed with water.
[0004] 上記前処理は表面の汚れを落としてめっき層を形成しやすくするとともに、鉛の溶 出が生じないようにするための処理である。この前処理として、鉛が両性金属であると いう特性に着目し、アルカリエッチング液に酸化剤を添加し、アルカリと酸の両方で鉛 を除去する方法を本出願人は提案している。(特許文献 1)  [0004] The pretreatment described above is a treatment for facilitating the formation of a plating layer by removing dirt on the surface and preventing lead from elution. As the pretreatment, the present applicant has proposed a method of removing lead with both alkali and acid by adding an oxidizing agent to an alkaline etching solution by paying attention to the characteristic that lead is an amphoteric metal. (Patent Document 1)
[0005] また、鉛含有銅合金をアルカリエッチング液に浸漬するとともに電解によって表面の 汚れを除去するアルカリ電解洗浄法も知られて!/ヽる。電解法としては鉛含有銅合金 をマイナス極とした陰極電解カゝ鉛含有銅合金をプラス極とした陽極電解、がある。陽 極電解は鉛含有銅合金の表面に酸素ガスが発生し、この酸素ガスによって表面の有 機性汚れを分解して除去するため洗浄効果は大である。しかしながら、電気的作用 で鉛含有銅合金を溶解させる(エッチング)ため、鉛含有銅合金が素地あれ (オーバ 一エッチング)しゃすい。そのため、鉛含有銅合金の溶解が発生せず、鉛含有銅合 金の表面に水素ガスが発生する、陰極電解法も利用されている。また、陰極電解と陽 極電解を交互に繰り返す PR電解法も知られて ヽる。  [0005] Also known is an alkaline electrolytic cleaning method in which a lead-containing copper alloy is immersed in an alkaline etchant and surface contamination is removed by electrolysis! Electrolysis methods include cathodic electrolysis using lead-containing copper alloy as the negative electrode and anodic electrolysis using lead-containing copper alloy as the positive electrode. Cathodic electrolysis generates oxygen gas on the surface of the lead-containing copper alloy, and this oxygen gas decomposes and removes organic soil on the surface, so it has a great cleaning effect. However, lead-containing copper alloys are melted (etched) by electrical action, so lead-containing copper alloys are ground (over-etched). Therefore, the cathode electrolysis method is also used in which the lead-containing copper alloy does not dissolve and hydrogen gas is generated on the surface of the lead-containing copper alloy. Also known is the PR electrolysis method, in which cathodic electrolysis and positive electrolysis are repeated alternately.
[0006] 陰極電解法を鉛含有銅合金のめっき前処理に選定した場合、被めつき物 (鉛含有 銅合金)がマイナス極となるため、アルカリエッチングで溶解した鉛 (Pb+)やエツチン グ液中に不純物として含まれて 、る重金属などのプラスに帯電して 、るイオンが電気 的作用で被めつき物表面に電析 (めっきと同じ作用)し、再付着する。この再付着は 後から行うめっきの密着不良やめつき後の曇りの原因となる。 [0006] When cathodic electrolysis is selected as the pretreatment for plating of lead-containing copper alloys, (Copper alloy) is a negative electrode, so lead (Pb +) dissolved in alkali etching and impurities contained in the etching solution are charged positively, such as heavy metals, and the ions are covered by electrical action. Electrodeposits on the surface of the attachment (the same effect as plating) and reattaches. This re-adhesion causes poor adhesion of the plating that will be performed later, and clouding after plating.
[0007] そこで、アルカリエッチング液に不溶性の不活性結合物を形成するキレート剤を添 加し、アルカリエッチングで溶解した鉛などと上記のキレート剤とを反応させて不溶性 のキレートイ匕合物とし、被めつき物表面に電析する前に沈殿させて除去する方法が 提案されている (特許文献 2)。  [0007] Therefore, a chelating agent that forms an insoluble inactive bond is added to the alkali etching solution, and lead dissolved in the alkali etching is reacted with the above chelating agent to form an insoluble chelating compound. A method has been proposed in which precipitation is carried out before electrodeposition on the surface of the object to be covered (Patent Document 2).
[0008] 特許文献 1 :特許第 3182765号公報 [0008] Patent Document 1: Japanese Patent No. 3182765
特許文献 2:特開平 2— 274900号公報  Patent Document 2: JP-A-2-274900
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 特許文献 1に開示されるアルカリエッチング液に酸化剤を添加し、鉛を除去する方 法にあっては、電解によらないため脱脂力が不十分な場合もある。また特許文献 2に 開示されるように、アルカリエッチング液に浸漬した陰極電解洗浄を行う際に不溶性 の不活性結合物を形成するキレート剤を添加すれば、電析 (再付着)を防止できるが 、陰極電解のみでは脱脂力が不十分な場合もある。更に上記のキレート剤を添加す るため、その分のコストがアップしてしまう。 [0009] In the method of removing lead by adding an oxidizing agent to the alkaline etching solution disclosed in Patent Document 1, degreasing power may not be sufficient because it does not depend on electrolysis. Also, as disclosed in Patent Document 2, electrodeposition (re-adhesion) can be prevented by adding a chelating agent that forms an insoluble inactive bond when performing cathodic electrolytic cleaning immersed in an alkaline etchant. In some cases, cathodic electrolysis alone does not provide sufficient degreasing power. Furthermore, since the above chelating agent is added, the cost increases accordingly.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決するため本発明は、鉛含有銅合金の表面にニッケルめっきやクロム めっきを施す前に、予め鉛含有銅合金の表層に存在する鉛を除去するめつき前処理 法であって、鉛含有銅合金をアルカリ性のエッチング液に浸漬した状態で、前記鉛 含有銅合金をプラス極またはマイナス極のどちらか一方とした電解と、前記鉛含有銅 合金をプラス極またはマイナス極のどちらカゝ他方とした電解を交互に行う(PR電解) よつにした。 [0010] In order to solve the above-mentioned problems, the present invention is a plating pretreatment method that removes lead existing in the surface layer of a lead-containing copper alloy before nickel plating or chromium plating is applied to the surface of the lead-containing copper alloy. In the state where the lead-containing copper alloy is immersed in an alkaline etching solution, the lead-containing copper alloy is used as either a positive electrode or a negative electrode, and the lead-containing copper alloy is used as either a positive electrode or a negative electrode. The other electrolysis was performed alternately (PR electrolysis).
[0011] 前記 PR電解にあっては、最後に前記鉛含有銅合金をプラス極とすることが好ま ヽ 。また、 PR電解の条件としては、電流密度が lAZdm2以上 25AZdm2以下、電流 切替時間が 2秒以上 30秒以下とすることが好ましい。更に、前記アルカリ性のエッチ ング液に酸化剤を添加することも好ま U、。 [0011] In the PR electrolysis, it is preferable that the lead-containing copper alloy is finally used as a positive electrode. Further, as conditions for PR electrolysis, it is preferable that the current density is lAZdm 2 or more and 25AZdm 2 or less, and the current switching time is 2 seconds or more and 30 seconds or less. Furthermore, the alkaline etch It is also preferable to add an oxidizing agent to the working solution.
[0012] また、本発明に係る鉛含有銅合金製水道用器具は、表面にはめつきが施され、こ のメツキの前処理として鉛含有銅合金をアルカリ性のエッチング液に浸漬した状態で 、前記鉛含有銅合金をプラス極またはマイナス極のどちらか一方とした電解と、前記 鉛含有銅合金をプラス極またはマイナス極のどちらカゝ他方とした電解を交互に行う処 理が行われたものである。  [0012] In addition, the lead-containing copper alloy water supply device according to the present invention has a surface that has been fitted, and the lead-containing copper alloy is immersed in an alkaline etching solution as a pretreatment of the plating. A process in which the electrolysis using the lead-containing copper alloy as either the positive electrode or the negative electrode and the electrolysis using the lead-containing copper alloy as either the positive electrode or the negative electrode alternately was performed. is there.
[0013] 前記鉛含有銅合金製水道用器具を得る際に行った PR電解にあっては、前記同様 に、最後に前記鉛含有銅合金をプラス極とすることが好ましい。また、 PR電解の条件 としては、電流密度が lAZdm2以上 25AZdm2以下、電流切替時間が 2秒以上 30 秒以下とすることが好ましい。更に、前記アルカリ性のエッチング液に酸化剤を添カロ することも好まし ヽ。 [0013] In the PR electrolysis performed when the lead-containing copper alloy water supply device is obtained, it is preferable that the lead-containing copper alloy is finally used as a positive electrode as described above. Further, as conditions for PR electrolysis, it is preferable that the current density is lAZdm 2 or more and 25AZdm 2 or less, and the current switching time is 2 seconds or more and 30 seconds or less. It is also preferable to add an oxidizing agent to the alkaline etching solution.
発明の効果  The invention's effect
[0014] 本発明に係るめっきの前処理法によれば、エッチング液に溶解した鉛などが被めつ き物である鉛含有銅合金に電析 (再付着)することなぐしかも十分な脱脂洗浄を行え るので、めっき後に表面に曇りなどの欠陥が生じることがなぐ更に不溶 ¾の不活'性 結合物を形成するキレート剤を用いないため、コストダウンに効果的である。  [0014] According to the plating pretreatment method of the present invention, lead or the like dissolved in the etching solution is electrodeposited (re-deposited) on the lead-containing copper alloy, and sufficient degreasing cleaning is performed. Therefore, a defect such as cloudiness does not occur on the surface after plating, and a chelating agent that forms a more inactive inactive binder is not used, which is effective for cost reduction.
[0015] また、 PR電解での最後の電解を被めつき物である鉛含有銅合金をプラス極とする ことで、被めつき物表面に鉛等が電析 (再付着)することを有効に防止できる。  [0015] In addition, by using the lead-containing copper alloy as the positive electrode for the last electrolysis in PR electrolysis, it is effective to deposit (reattach) lead etc. on the surface of the metal object Can be prevented.
[0016] また、 PR電解を行う際のアルカリ性のエッチング液に酸化剤を添加することで、鉛 の両性金属としての特性を利用して効果的に鉛を除去することができる。  [0016] In addition, by adding an oxidizing agent to an alkaline etching solution when performing PR electrolysis, it is possible to effectively remove lead using the characteristics of lead as an amphoteric metal.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明に係るめっき前処理法を適用しためっきの工程図  [0017] [FIG. 1] Process diagram of plating applying the plating pretreatment method according to the present invention.
[図 2]PR電解の概念図  [Figure 2] Conceptual diagram of PR electrolysis
[図 3]従来のめっき工程を説明した図  [Fig.3] Diagram explaining the conventional plating process
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に本発明の実施例を添付図面に基づいて説明する。図 1は本発明に係るめつ き前処理法を適用しためっきの工程図、図 2は PR電解の概念図である。本発明にあ つては、めっきの前処理として、超音波洗浄とアルカリ洗浄を行う際に、並行して PR 電解を行うことで、被めつき物 (鉛含有合金)表面の汚れを確実に落とすようにして ヽ る。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a process diagram of plating applying the pretreatment method according to the present invention, and FIG. 2 is a conceptual diagram of PR electrolysis. In the present invention, as a pretreatment for plating, when performing ultrasonic cleaning and alkali cleaning, PR is performed in parallel. By performing electrolysis, the surface of the object to be covered (lead-containing alloy) is surely cleaned.
[0019] 尚、超音波洗浄については必ずしも必要ではなくアルカリ洗浄液を用いた PR電解 のみでもよい。また、アルカリ洗浄液を用いた PR電解に引き続いて、必要に応じて陰 極電解、陽極電解を単独または組み合わせて併用して行なうようにしてもよい。このよ うにすることで、被めつき物 (鉛含有合金)表面が更に洗浄されめっきの密着性が高 まる。  Note that ultrasonic cleaning is not always necessary, and only PR electrolysis using an alkaline cleaning solution may be used. Further, following the PR electrolysis using an alkaline cleaning solution, negative electrolysis and anodic electrolysis may be performed alone or in combination as necessary. By doing so, the surface of the object to be covered (lead-containing alloy) is further cleaned and the adhesion of the plating is improved.
[0020] 不溶性の不活性結合物を形成するキレート剤を添加しない PR電解で、めっきの密 着性と外観の良否について具体的な実験を行った。以下に実験条件と結果につい て記載する。尚、被めつき物は青銅铸物の単水栓とした。  [0020] With PR electrolysis without the addition of a chelating agent that forms an insoluble inactive binder, specific experiments were conducted regarding the adhesion and appearance of the plating. The experimental conditions and results are described below. In addition, the covering object was a single faucet of bronze bowl.
[0021] (電解脱脂条件電解液の条件)  [0021] (Electrolytic degreasing conditions Electrolytic solution conditions)
アルカリエッチング液 (アルカリ洗浄)  Alkaline etchant (alkali cleaning)
(1)主成分:  (1) Main component:
めっき工程は通常、脱脂工程、めっき工程力も成る。脱脂工程では、めっきの密着 性を確保するため、素材に付着した油成分など汚れを除去する工程で、本発明にお いて使用するアルカリ性エッチング液の主成分は、水酸化ナトリウム、水酸化カリウム 、炭酸ナトリウム、リン酸ナトリウム、トリポリリン酸ナトリウム、メタケイ酸ナトリウム、オル ソケィ酸ナトリウムなどのうち単独又は数種を溶カゝしたアルカリ性溶液を使用する。濃 度は、数 g/L〜数 10g/Lが一般的であり、使用する成分の組み合わせにより適宜判 断する。(2)界面活性剤:  The plating process usually includes a degreasing process and a plating process power. In the degreasing process, in order to ensure the adhesion of the plating, the main component of the alkaline etching solution used in the present invention is a process of removing dirt such as oil components adhering to the material. Sodium hydroxide, potassium hydroxide, Use an alkaline solution in which sodium carbonate, sodium phosphate, sodium tripolyphosphate, sodium metasilicate, sodium orthosilicate, etc. are used alone or in solution. The concentration is generally from several g / L to several tens of g / L, and is determined appropriately depending on the combination of components used. (2) Surfactant:
アルカリ性のエッチング液の浸透 ·湿潤性を改善するために、液の表面張力を低下 させる目的で界面活性剤を添加する。界面活性剤としては、ァニオン界面活性剤あ るいはノ-オン界面活性剤を用いることが多ぐこれらを単独又は併用する。ァ-オン 界面活性剤としては、高級脂肪酸ナトリウム、硫酸化油、高級アルコール硫酸エステ ルナトリウム、アルキルベンゼン硫酸ナトリウム、高級アルキルエーテル硫酸エステル ナトリウム、 a—ォレフイン硫酸ナトリウムがある。 また、ノ-オン界面活性剤としては 、アルキルポリオキシエチレンエーテル、アルキルフエ二ルポリオキシエチレンエーテ ル、脂肪酸エチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド 付加物(プル口ニック)がある。添加量は、数 g/L〜数 10g/Lが一般的である。 In order to improve the penetration and wettability of the alkaline etching solution, a surfactant is added to reduce the surface tension of the solution. As the surfactant, an anionic surfactant or a non-ionic surfactant is often used, and these are used alone or in combination. The surfactants include higher fatty acid sodium, sulfated oil, sodium higher alcohol sulfate, sodium alkylbenzene sulfate, sodium higher alkyl ether sulfate, and sodium a-olefin sulfate. Nonionic surfactants include alkyl polyoxyethylene ether, alkylphenyl polyoxyethylene ether, fatty acid ethylene oxide adduct, polypropylene glycol ethylene oxide. There is an adjunct (pull mouth nick). The addition amount is generally several g / L to several tens g / L.
(3)キレート剤:  (3) Chelating agent:
鉛が水酸ィ匕物となって再付着するのを防ぐとともに、鉛の溶解を促進するために、 キレート剤を添加することができる。キレート剤としては、例えば、 EDTA、エチレンジ ァミン、トリエタノールァミン、チォ尿素、ロッシエル塩、酒石酸等の鉛と錯体を形成し 易 、ィ匕合物が望ま 、。濃度は各成分とも数 g/L〜数 10g/Lが望ま 、。  Chelating agents can be added to prevent lead from re-depositing as hydroxide and to promote lead dissolution. As the chelating agent, for example, it is easy to form a complex with lead such as EDTA, ethylene diamine, triethanolamine, thiourea, Rossiel salt, tartaric acid, etc., and a compound is desirable. The concentration should be several g / L to several tens g / L for each component.
また、鉛などの重金属と不溶性の不活性生成物を形成するキレート剤も添加するこ とが出来る。不溶性の不活性生成物を形成するキレート剤としては、ジメチルジチォ 力ルバミン酸ナトリウム又は、ジェチルジチォカルバミン酸ナトリウムなどが望ま 、。 濃度は、各成分とも数 gZL〜数 lOgZLが望ましい。  Chelating agents that form insoluble inactive products with heavy metals such as lead can also be added. As a chelating agent that forms an insoluble inactive product, sodium dimethyldithiocarbamate or sodium jetyldithiocarbamate is desirable. The concentration of each component is preferably several gZL to several lOgZL.
(4)酸化剤:  (4) Oxidizing agent:
アルカリエッチング液中に酸化剤を添加すると、鉛が酸ィ匕され、酸ィ匕鉛 (PbOなど) を経てアルカリに溶解し、結果として鉛の溶解を促進する。酸化剤としては、例えば、 メタ-トロベンゼンスルホン酸ナトリウム、ノ ラニトロ安息香酸ナトリウム等の有機酸ィ匕 性化合物、次亜塩素酸塩、さらし粉、過酸化水素、過マンガン酸カリウム、過硫酸塩 、過塩素酸塩等の無機化合物を用いる。濃度は各成分とも、数 g/L〜数 10g/Lが望 ましい。  When an oxidant is added to the alkaline etchant, lead is oxidized and dissolved in alkali via acid lead (such as PbO), resulting in the promotion of lead dissolution. Examples of the oxidizing agent include organic acid-soluble compounds such as sodium meta-trobenzenesulfonate and sodium nitrate nitrobenzoate, hypochlorite, bleaching powder, hydrogen peroxide, potassium permanganate, persulfate, An inorganic compound such as perchlorate is used. The concentration of each component is preferably several g / L to several tens g / L.
(めっきの条件) (Plating conditions)
めっきは、下記のものを行った。  The following plating was performed.
(1)クロムめつき  (1) Chrome plating
クロムめつき浴は一般に公知の、無水クロム酸及び硫酸力もなるサージェント浴が 使用できる。また、サージェント浴中の硫酸の一部又は全部をフッ化物に置き換えた フッ化クロムめつき浴でもよい。クロムめつき液中でクロムめつきを行うと、外部表面は クロムめつきしながら、内部表面はクロムめつき液の強酸ィ匕性という性質のため、銅合 金素材を全体溶解しながら鉛も溶解する。但しフッ化物が存在しな ヽとクロム酸鉛と して沈殿物が残存する可能性があるが、フッ化物はこれを溶解する役目を果たすの で、フッ化クロムめつき浴中でクロムめつきを施すのが好ましぐ温度は 40〜60°C、 浸漬時間は数 10秒〜数分が望ましい。 フッ化物としては、フッ化ナトリウム、フッ化カリウム、フッ化アンモン、フッ酸、ホウフ ッ酸、ケィフッ酸 'ケィフッ化ナトリウム'ケィフッ化カリウム、ホウフッ化クロムなど、フッ 素化合物はそのほとんどが使用できる。 As the chromium bath, generally known sergeant baths having chromic anhydride and sulfuric acid power can be used. Alternatively, a chromium fluoride bath may be used in which part or all of the sulfuric acid in the Sargent bath is replaced with fluoride. When chrome plating is performed in a chrome plating solution, the outer surface is chrome plated, and the inner surface is a strong acidity of the chrome plating solution. Dissolve. However, in the absence of fluoride, precipitates may remain as lead and chromate, but fluoride plays a role in dissolving it, so that it can be applied in a chromium fluoride bath. The preferred temperature is 40 to 60 ° C, and the immersion time is several tens of seconds to several minutes. As the fluoride, most of the fluorine compounds can be used such as sodium fluoride, potassium fluoride, ammonium fluoride, hydrofluoric acid, borofluoric acid, kafluoric acid 'sodium fluoride', potassium potassium fluoride, and chromium borofluoride.
(2)クロメート処理  (2) Chromate treatment
クロメート処理に使用する添加剤は、無水クロム酸、リン酸、硫酸をベースとする力 場合によっては硝酸、フッ酸、酢酸、シユウ酸、クロム酸塩等を添加、または置き換え る。市販の亜鉛めつき等のクロメート剤を使用してもよい。  Additives used for chromate treatment may be added or replaced with nitric acid, hydrofluoric acid, acetic acid, oxalic acid, chromate, etc. depending on the power based on chromic anhydride, phosphoric acid and sulfuric acid. A commercially available chromate agent such as zinc plating may be used.
濃度は各成分とも、数 g/L〜数 10g/Lが望ましい。処理温度、処理時間は常温〜 6 0°C、数秒〜数分がそれぞれ望ましい。外部表面のめっき完了品をこのクロメート液 に浸漬することにより、内部表面にクロメート皮膜を形成し、鉛の溶出を抑制する。ク 口メート液の主成分である無水クロム酸にリン酸を添加することによりその相乗効果で より鉛溶出抑制の効果が増す。  The concentration of each component is preferably several g / L to several tens g / L. The treatment temperature and treatment time are preferably from room temperature to 60 ° C and from several seconds to several minutes. By immersing the finished plating on the outer surface in this chromate solution, a chromate film is formed on the inner surface to suppress elution of lead. By adding phosphoric acid to chromic anhydride, which is the main component of the cuprate solution, the synergistic effect increases the effect of suppressing lead elution.
[0023] (評価試験) [0023] (Evaluation test)
上記電解脱脂を行 ヽ、めっき (ニッケルめっき後クロムめつきを行った後クロメート処 理)を行った後、下記の評価試験を行った。  After performing the above electrolytic degreasing and plating (chromium treatment after nickel plating after chromium plating), the following evaluation test was performed.
[0024] (1)密着性試験 [0024] (1) Adhesion test
JIS H8504「めっきの密着性試験方法」に規定された 21. 2熱衝撃試験を行った( 試料を加熱急冷する熱衝撃によって、めっきの密着性を調べる試験方法)。結果は 以下の(表 1)に示すように、不溶性の不活性結合物を形成するキレート剤なしの陰 極電解以外は、密着性に問題はなかった。  The 21.2 thermal shock test specified in JIS H8504 “Plating adhesion test method” was conducted (test method for examining plating adhesion by thermal shock by heating and quenching the sample). As shown in the following (Table 1), there was no problem in adhesion except for negative electrolysis without a chelating agent that forms an insoluble inactive binder.
[0025] [表 1]
Figure imgf000008_0001
[0025] [Table 1]
Figure imgf000008_0001
(2)外観試験 (2) Appearance test
JIS H8617「ニッケルめっき及びニッケル一クロムめつき」に規定された 9. 2外観 試験を行った (外観試験は目視によって行い、ざらつき、焦げ、割れ、ピット、素地の 露出などのめつき欠陥、密着不良の兆候、汚れやきずなとの有無を調べる)。 結果は以下の(表 2)に示すように、不溶性の不活性結合物を形成するキレート剤を 添カ卩しないで良好な結果が得られたのは PR電解だけであった。 9.2 Appearance test stipulated in JIS H8617 “Nickel plating and nickel-chrome plating” (Appearance test was conducted by visual inspection. Check for signs of defects, smudges, and nicks). As shown in the following (Table 2), only PR electrolysis gave good results without adding a chelating agent that forms an insoluble inactive binder.
[0027] [表 2]
Figure imgf000009_0001
[0027] [Table 2]
Figure imgf000009_0001
[0028] 次に、陽極電解と PR電解のつ!、て、以下の実験条件にて密着性と外観性にっ ヽ て実験を行った。 Next, anodic electrolysis and PR electrolysis were conducted under the following experimental conditions for adhesion and appearance.
先ず以下の (表 3)は、不溶性の不活性結合物を形成するキレート剤ありで陽極電 解を行った実験結果を示すものであり、密着性は全て良好であつたが、外観は全て 不良であった。尚、電解条件は、超音波を付加した超音波洗浄(1分間)後、アルカリ 洗浄 (2分間)を行った。  First, the following (Table 3) shows the experimental results of anodic electrolysis with a chelating agent that forms an insoluble inactive binder. The adhesion was all good, but the appearance was poor. Met. The electrolysis conditions were ultrasonic cleaning (1 minute) with ultrasonic waves followed by alkali cleaning (2 minutes).
[0029] [表 3] [0029] [Table 3]
Figure imgf000009_0002
Figure imgf000009_0002
[0030] 以下の(表 4)は、不溶性の不活性結合物を形成するキレート剤なしで陽極電解を 行った実験結果を示すものであり、密着性は全て良好であつたが、外観は全て不良 であった。尚、電解条件は、超音波を付加した超音波洗浄(1分間)後、アルカリ洗浄 (2分間)を行った。 [0030] The following (Table 4) shows the experimental results of anodic electrolysis without a chelating agent that forms an insoluble inactive binder. The adhesion was all good, but the appearance was all It was bad. The electrolysis conditions were ultrasonic cleaning (1 minute) with ultrasonic waves followed by alkali cleaning (2 minutes).
[0031] [表 4] 前処理条件 外観品位 超音波洗净 超音波パルス アル力リ洗净 ァノレ力リハレス ツヤ ブッ [0031] [Table 4] Pretreatment conditions Appearance quality Ultrasonic cleaning Ultrasonic pulse Al force cleaning Washing power rehabilitation
OA/dm2 ― 1 A/dm2 一 X XOA / dm 2 ― 1 A / dm 2 XX
OA/ dm2 ― 10 AZdm2 ― X XOA / dm 2 ― 10 AZdm 2 ― XX
OA/dm2 ― 10 A/dm2 2 " on 2,, off X X XOA / dm 2 ― 10 A / dm 2 2 "on 2, off XXX
2. 5 A/dm2 1 ,, on 3,, off 1 0 A/dm2 一 X X 2.5 A / dm 2 1 ,, on 3, off 10 A / dm 2 XX
2. 5 A/dm2 1,, on 3,, off 1 A/dm2 (8 OX) ― X X 2.5 A / dm 2 1, on 3, off 1 A / dm 2 (8 OX) ― XX
2. 5 A/dm2 1 ' ' on 3 ' ' off 10 AZdm2 (8 OV) ― X X 2.5 A / dm 2 1 '' on 3 '' off 10 AZdm 2 (8 OV) ― XX
2. 5 A/dm2 ― 10 A/dm2 ― X X X 2.5 A / dm 2 ― 10 A / dm 2 ― XXX
2. 5 A/dm2 ― 2. 5 A/dm2 ― X X X [0032] 以下の(表 5)は、不溶性の不活性結合物を形成するキレート剤なしで PR電解を行 つた実験結果を示すものであり、密着性及び外観性とも全て良好であった。尚、電解 条件は、超音波を付加した超音波洗浄 (1分間)後、アルカリ洗浄 (2分間)を行った。 2.5 A / dm 22.5 A / dm 2 ― XXX [0032] The following (Table 5) shows the results of an experiment in which PR electrolysis was performed without a chelating agent forming an insoluble inactive binder, and both adhesion and appearance were all good. The electrolysis conditions were ultrasonic cleaning (1 minute) with ultrasonic waves followed by alkali cleaning (2 minutes).
[0033] [表 5]  [0033] [Table 5]
Figure imgf000010_0001
Figure imgf000010_0001
[0034] 以上の実験により、 PR電解を適用した場合には、不溶性の不活性結合物を形成 するキレート剤を添加しなくてもめっき後の密着性と外観性が良好であることが判明し たので、次に PR電解の好ましい条件 (切替え周期と電流密度)について実験を行つ た。実験は、超音波を付加した超音波洗浄を 1分間行い、その後アルカリ洗浄を 2分 間行った。 [0034] From the above experiments, it was found that when PR electrolysis was applied, the adhesion and appearance after plating were good without adding a chelating agent that forms an insoluble inactive binder. Therefore, experiments were conducted on the preferred conditions for PR electrolysis (switching period and current density). In the experiment, ultrasonic cleaning with ultrasonic waves was performed for 1 minute, and then alkaline cleaning was performed for 2 minutes.
[0035] 結果を以下の(表 6)に示す。この(表 6)から、切替え周期は 30秒以下、電流密度 は 25AZdm2以下が好まし 、ことが分かる。 [0035] The results are shown below (Table 6). From this (Table 6), it is clear that the switching period is 30 seconds or less and the current density is 25AZdm 2 or less.
[0036] [表 6] [0036] [Table 6]
Figure imgf000010_0002
以上により、 PR電解であれば不溶性の不活性結合物を形成するキレート剤なしで も、めっき密着性&外観が確保できたので、次に鉛溶出が NSF規格および JIS規格 を満足するかどうか確認した。サンプルとしては青銅铸物のシングルレバー水栓を使 し/こ。 [0038] NSF規格
Figure imgf000010_0002
Based on the above, we were able to secure plating adhesion and appearance without using a chelating agent that would form an insoluble inactive binder in the case of PR electrolysis. Next, check whether lead elution satisfies NSF and JIS standards. did. Use a single lever faucet made of bronze as a sample. [0038] NSF standard
NSF/ANSI61— 2003e「9 Mechanical plumbing devices Jにしたがって、処理し た上記サンプルにつ 、て、溶出した鉛濃度を分析した。  According to NSF / ANSI61-2003e “9 Mechanical plumbing devices J”, the dissolved lead concentration was analyzed for the above treated samples.
基準:換算後 l lppb以下  Standard: After conversion l lppb or less
[0039] 規格 [0039] Standard
JIS 33200—7 (2004年)「水道用器具-浸出性能試験方法」にしたがって、処理 した上記サンプルにつ!ヽて、溶出した鉛濃度を分析した。  According to JIS 33200-7 (2004) “Water supply equipment – Leaching performance test method”, the treated lead samples were analyzed and analyzed for their lead concentration.
基準:換算後 7ppb以下  Standard: After conversion 7ppb or less
[0040] 実験結果を以下の(表 7— 1)及び (表 7— 2)に示す。これら (表 7— 1)及び (表 7— 2)から明らかなように、本発明に係るめっき前処理法を適用しためっき法によって得 られた製品は、 NSF規格および JIS規格を満足する結果が得られた。 [0040] The experimental results are shown in the following (Table 7-1) and (Table 2-2). As is clear from these (Table 7-1) and (Table 7-2), the product obtained by the plating method to which the plating pretreatment method according to the present invention is applied has a result satisfying the NSF standard and the JIS standard. Obtained.
[0041] [表 7-1] [0041] [Table 7-1]
N S F規格試験結果N SF Standard test result
Figure imgf000011_0001
Figure imgf000011_0001
※単位: p p b 捕正値 =浸出値 X (内容積/ 1000)  * Unit: p p b Correction value = Leaching value X (Internal volume / 1000)
[0042] [表 7-2] [0042] [Table 7-2]
J I s規格試験結果J I s standard test results
Figure imgf000011_0002
Figure imgf000011_0002
※単位: p p b 補正値 =浸出値 X (内容積/ 1000)  * Unit: p p b Correction value = Leaching value X (Internal volume / 1000)

Claims

請求の範囲 The scope of the claims
[1] 鉛含有銅合金の表面にめっきを施す前に予め鉛含有銅合金の表層に存在する鉛 を除去するめつき前処理法であって、鉛含有銅合金をアルカリ性のエッチング液に 浸漬した状態で、前記鉛含有銅合金をプラス極またはマイナス極のどちらか一方とし た電解と、前記鉛含有銅合金をプラス極またはマイナス極のどちらか他方とした電解 を交互に行うことを特徴とするめつき前処理法。  [1] A plating pretreatment method that removes lead existing in the surface layer of the lead-containing copper alloy before plating on the surface of the lead-containing copper alloy, in which the lead-containing copper alloy is immersed in an alkaline etching solution In addition, the electrolysis using the lead-containing copper alloy as either a positive electrode or a negative electrode and the electrolysis using the lead-containing copper alloy as either the positive electrode or the negative electrode are alternately performed. Pretreatment method.
[2] 請求項 1に記載のめっき前処理法において、前記交互にプラス極またはマイナス極 として繰り返す電解が、最後に前記鉛含有銅合金をプラス極とすることを特徴とする めっき前処理法。  [2] The plating pretreatment method according to [1], wherein the electrolysis that alternately repeats as a positive electrode or a negative electrode makes the lead-containing copper alloy a positive electrode at the end.
[3] 請求項 1または請求項 2に記載のめっき前処理法において、前記交互にプラス極ま たはマイナス極として繰り返す電解の条件力 電流密度が 1 AZdm2以上 25AZdm 2以下であり、電流切替時間が 2秒以上 30秒以下であることを特徴とするめつき前処 理法。 [3] In the plating pretreatment method according to claim 1 or claim 2, the condition force of the electrolysis that repeats alternately as a positive electrode or a negative electrode. The current density is 1 AZdm 2 or more and 25 AZdm 2 or less, and the current switching A process for pre-meshing characterized in that the time is 2 seconds or more and 30 seconds or less.
[4] 請求項 1乃至請求項 3の何れかに記載のめっき前処理法において、前記アルカリ 性のエッチング液に酸化剤を添加したことを特徴とするめつき前処理法。  [4] The plating pretreatment method according to any one of claims 1 to 3, wherein an oxidizing agent is added to the alkaline etching solution.
[5] 請求項 1乃至請求項 3の何れかに記載のめっき前処理法において、前記鉛含有銅 合金の表面に施すめっきはニッケルめっき後にクロムめつきを行うことを特徴とするめ つき前処理法。  [5] The plating pretreatment method according to any one of claims 1 to 3, wherein the plating applied to the surface of the lead-containing copper alloy is performed by chromium plating after nickel plating. .
[6] 鉛含有銅合金製水道用器具であって、この水道用器具の表面にはめつきが施され 、このめつきの前処理として鉛含有銅合金をアルカリ性のエッチング液に浸漬した状 態で、前記鉛含有銅合金をプラス極またはマイナス極のどちらか一方とした電解と、 前記鉛含有銅合金をプラス極またはマイナス極のどちらか他方とした電解を交互に 行う処理が行われたことを特徴とする鉛含有銅合金製水道用器具。  [6] A water supply device made of lead-containing copper alloy, and the surface of the water supply device is nailed, and the lead-containing copper alloy is immersed in an alkaline etching solution as a pretreatment for the staking. The electrolysis using the lead-containing copper alloy as either the positive electrode or the negative electrode and the electrolysis using the lead-containing copper alloy as either the positive electrode or the negative electrode alternately were performed. Lead-containing copper alloy water supply equipment.
[7] 請求項 6に記載の鉛含有銅合金製水道用器具において、前記交互にプラス極また はマイナス極として繰り返す電解が、最後に前記鉛含有銅合金素材をプラス極とする ことを特徴とする鉛含有銅合金製水道用器具。  [7] The lead-containing copper alloy water supply device according to claim 6, wherein the electrolysis is repeated alternately as a positive electrode or a negative electrode, and the lead-containing copper alloy material is finally used as a positive electrode. Lead-containing copper alloy water supply equipment.
[8] 請求項 6または請求項 7に記載の鉛含有銅合金製水道用器具にお 、て、前記交 互にプラス極またはマイナス極として繰り返す電解の条件が電流密度が lAZdm2以 上 25AZdm2以下であり、電流切替時間が 2秒以上 30秒以下であることを特徴とす る鉛含有銅合金製水道用器具。 [8] In the lead-containing copper alloy water supply device according to claim 6 or claim 7, the current density is less than lAZdm 2 when the alternating electrolysis condition is repeated as a positive electrode or a negative electrode. Top 25AZdm 2 or less, lead-containing copper alloy water supply equipment characterized by current switching time of 2 seconds or more and 30 seconds or less.
請求項 6乃至請求項 8の何れかに記載の鉛含有銅合金製水道用器具において、 前記アルカリ性のエッチング液に酸化剤を添加したことを特徴とする鉛含有銅合金 製水道用器具。  9. The lead-containing copper alloy water supply device according to any one of claims 6 to 8, wherein an oxidizing agent is added to the alkaline etching solution.
PCT/JP2007/060330 2006-05-22 2007-05-21 Method of pretreatment for plating and water service instrument made of lead-containing copper alloy WO2007136024A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/887,781 US20090250354A1 (en) 2006-05-22 2007-05-21 Pre-Treatment Method for Plating and Instrument for Waterworks of Lead-Contained Copper Alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006140990A JP2007308779A (en) 2006-05-22 2006-05-22 Plating pretreatment method and apparatus for city water made of lead-containing copper alloy
JP2006-140990 2006-05-22

Publications (1)

Publication Number Publication Date
WO2007136024A1 true WO2007136024A1 (en) 2007-11-29

Family

ID=38723336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060330 WO2007136024A1 (en) 2006-05-22 2007-05-21 Method of pretreatment for plating and water service instrument made of lead-containing copper alloy

Country Status (3)

Country Link
US (1) US20090250354A1 (en)
JP (1) JP2007308779A (en)
WO (1) WO2007136024A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761028B2 (en) * 2009-12-01 2015-08-12 ニプロ株式会社 Cell potential measuring container and manufacturing method thereof
JP5832857B2 (en) * 2011-11-04 2015-12-16 日本特殊陶業株式会社 Manufacturing method of spark plug metal shell and spark plug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116800A (en) * 1983-11-29 1985-06-24 Naganoken Degreasing and activating method by high speed current inversion electrolysis
JP2002180267A (en) * 2000-12-08 2002-06-26 Koei Kogyo Kk Treatment method for preventing elution of lead from lead-containing copper alloy
JP2005232538A (en) * 2004-02-19 2005-09-02 Toto Ltd Appliance for water supply, and method for improving corrosion resistance of plating layer in the appliance for water supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2830942A (en) * 1957-05-24 1958-04-15 Jr Robert H Elliott Electrocleaner for brass
US4416738A (en) * 1980-01-28 1983-11-22 The Boeing Company Chromium plating
AU1350399A (en) * 1997-12-03 1999-06-16 Toto Ltd. Method of reducing elution of lead in lead-containing copper alloy, and city water service fittings made of lead-containing copper alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116800A (en) * 1983-11-29 1985-06-24 Naganoken Degreasing and activating method by high speed current inversion electrolysis
JP2002180267A (en) * 2000-12-08 2002-06-26 Koei Kogyo Kk Treatment method for preventing elution of lead from lead-containing copper alloy
JP2005232538A (en) * 2004-02-19 2005-09-02 Toto Ltd Appliance for water supply, and method for improving corrosion resistance of plating layer in the appliance for water supply

Also Published As

Publication number Publication date
JP2007308779A (en) 2007-11-29
US20090250354A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US6407047B1 (en) Composition for desmutting aluminum
US7384901B2 (en) Process for cleaning aluminum and aluminum alloy surfaces with nitric acid and chromic acid-free compositions
JP3178608B2 (en) Two-step electrochemical method for magnesium coating
JP3182765B2 (en) Lead elution reduction treatment method for lead-containing copper alloy, lead elution reduction plating method for lead-containing copper alloy, and lead-containing copper alloy water supply device
EP2573214A1 (en) Protection of magnesium alloys by aluminum plating from ionic liquids
Burgess Electroplating onto aluminium and its alloys
JP3866198B2 (en) Lead removal method and faucet fitting for plated products made of lead-containing copper alloy having a cylindrical part, and lead leaching prevention method and faucet fitting for lead-containing copper alloy products
WO2007136024A1 (en) Method of pretreatment for plating and water service instrument made of lead-containing copper alloy
JP3426800B2 (en) Pretreatment method for plating aluminum alloy material
JPWO2004024987A1 (en) Lead elution reduction processing method for lead-containing copper alloy and lead-containing copper alloy water supply device
JP2003049299A (en) Method for cleaning and passivating surface of light alloy
JP4285649B2 (en) Surface treatment composition and treatment method for removing silicon component and reducing metal salt generated during etching of aluminum die casting material
CN102465325A (en) Method for directly plating hard chromium on surface of tungsten alloy through constant current density
JP2010121151A (en) Method for treating surface
JP4616490B2 (en) Plating method for CVT pulley
JP6596876B2 (en) Method of manufacturing water supply appliances with suppressed elution of lead and nickel
KR101847439B1 (en) Direct zinc electroplating method on aluminium or aluminium alloys
JP2000096269A (en) Treatment of lead-containing copper alloy for suppressing leaching of lead and implement for water service made of lead-containing copper alloy
JPS6361393B2 (en)
RU2709913C1 (en) Method of applying galvanic coatings on complex-profile parts
JP2000096268A (en) Treatment of lead-containing copper alloy for suppressing leaching of lead and implement for water service made of lead-containing copper alloy
JP2000096270A (en) Method for reducing elution of lead from lead-containing copper alloy and water service instrument made of lead- containing copper alloy
JPH0832965B2 (en) Pretreatment method for plating titanium material
JPH03223482A (en) Method for deoiling copper and copper alloy
US20140008236A1 (en) Anodization treatment method for aluminum alloys containing cooper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11887781

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743764

Country of ref document: EP

Kind code of ref document: A1