JP2011230617A - Cooling system for vehicle - Google Patents

Cooling system for vehicle Download PDF

Info

Publication number
JP2011230617A
JP2011230617A JP2010101716A JP2010101716A JP2011230617A JP 2011230617 A JP2011230617 A JP 2011230617A JP 2010101716 A JP2010101716 A JP 2010101716A JP 2010101716 A JP2010101716 A JP 2010101716A JP 2011230617 A JP2011230617 A JP 2011230617A
Authority
JP
Japan
Prior art keywords
engine
cooling
motor
passage
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010101716A
Other languages
Japanese (ja)
Inventor
Tomonari Taguchi
知成 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010101716A priority Critical patent/JP2011230617A/en
Publication of JP2011230617A publication Critical patent/JP2011230617A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system for a vehicle that is simpler than a conventional cooling system for the vehicle in which a cooling circuit for an engine and a cooling circuit for a motor is separately installed, and that reduces the number of parts.SOLUTION: The cooling system 10 for the vehicle includes a cooling passage which is installed so as to communicate with an engine 12, a motor 14, and an inverter 16 and in which coolant circulates. The cooling passage includes a motor system-cooling passage 42, an engine system-cooling passage 44, and a communication passage 46 communicating between the motor system-cooling passage 42 and the engine system-cooling passage 44. The cooling system 10 for the vehicle further includes a radiator 17 connecting to the cooling passage and cooling the coolant which has returned from the engine 12, the motor 14, and the inverter 16.

Description

本発明は、車両用の冷却システムに関する。   The present invention relates to a cooling system for a vehicle.

車両の駆動源として、エンジンおよびモータを使用するハイブリッド車両が従来から知られている。エンジンとモータは駆動に伴い発熱する。さらにモータと電源との間に設けられ、電源の電力を変換してモータに供給するインバータも駆動に伴い発熱する。このため、車両にはエンジン、モータ、インバータに冷却液を供給する冷却通路と、エンジン、モータ、インバータからの戻り冷却液を冷却するラジエータを備えた冷却システムが搭載されている。   Conventionally, a hybrid vehicle using an engine and a motor as a drive source of the vehicle is known. The engine and motor generate heat as they are driven. Furthermore, an inverter that is provided between the motor and the power source and converts the power of the power source and supplies the power to the motor also generates heat when driven. For this reason, the vehicle is equipped with a cooling system that includes a cooling passage that supplies coolant to the engine, motor, and inverter, and a radiator that cools the return coolant from the engine, motor, and inverter.

従来技術においては、電気機械であるモータおよび電気回路であるインバータはエンジンよりも耐熱性が低く、そのためモータ、インバータの冷却目標温度はエンジンの冷却目標温度よりも低く設定されている。その一方で、従来技術におけるラジエータは、エンジンからの戻り冷却液をモータ、インバータの冷却目標温度まで冷却する冷却能力を備えていない。これらのことから、従来の冷却システムにおいては、モータ、インバータ用の冷却系と、エンジン用の冷却系の2系統の冷却系を備えている。   In the prior art, a motor that is an electric machine and an inverter that is an electric circuit have lower heat resistance than an engine. Therefore, the cooling target temperature of the motor and the inverter is set lower than the cooling target temperature of the engine. On the other hand, the radiator in the prior art does not have a cooling capacity for cooling the return coolant from the engine to the cooling target temperature of the motor and the inverter. For these reasons, the conventional cooling system includes two cooling systems, that is, a cooling system for the motor and the inverter, and a cooling system for the engine.

例えば特許文献1においては、エンジンと主ラジエータと、これらを接続する冷却通路から構成されるエンジン系冷却回路と、モータ、インバータ等の強電系と、副ラジエータと、これらを接続する冷却通路から構成される強電系冷却回路の2つの冷却回路を備えた冷却システムが開示されている。   For example, in patent document 1, it is comprised from the engine system cooling circuit comprised from the engine, the main radiator, and the cooling channel | path which connects these, high electric systems, such as a motor and an inverter, a sub radiator, and the cooling channel | path which connects these A cooling system having two cooling circuits of a high-power system cooling circuit is disclosed.

特開2004−324445号公報JP 2004-324445 A

近年、モータおよびインバータに使用される材料の生産、加工技術が向上し、モータおよびインバータの耐熱性は向上している。その結果、モータ、インバータとエンジンとの冷却目標温度の差は縮小傾向にある。冷却目標温度の差が縮まっていることから、冷却回路をモータ、インバータとエンジンとで別々に分ける必要性は薄れている。したがって、従来個別に設けられていた冷却回路を統合し、これにより冷却システムを簡素化させ、部品点数を軽減させることが望まれている。   In recent years, production and processing techniques of materials used for motors and inverters have improved, and the heat resistance of motors and inverters has improved. As a result, the difference in the cooling target temperature among the motor, inverter and engine tends to decrease. Since the difference in the cooling target temperature is narrowing, the necessity for separately dividing the cooling circuit into a motor, an inverter and an engine is reduced. Therefore, it is desired to integrate the cooling circuits conventionally provided individually, thereby simplifying the cooling system and reducing the number of parts.

本願発明は、駆動源となるエンジンおよびモータを備えた車両における車両用冷却システムに関するものである。車両用冷却システムは、エンジンおよびモータに連通して設けられ、冷却液が流通する冷却通路と、冷却通路に接続され、エンジンおよびモータからの戻り冷却液を冷却するラジエータとを備える。   The present invention relates to a vehicular cooling system in a vehicle including an engine and a motor as drive sources. The vehicle cooling system is provided in communication with the engine and the motor, and includes a cooling passage through which the coolant flows, and a radiator that is connected to the cooling passage and cools the return coolant from the engine and the motor.

本発明により、従来よりも簡素化され、部品点数が軽減された車両用冷却システムを提供することが可能となる。   According to the present invention, it is possible to provide a vehicular cooling system that is simplified and has a reduced number of parts.

本実施形態に係る車両用冷却システムを例示する図である。It is a figure which illustrates the cooling system for vehicles concerning this embodiment.

図1に、本実施形態に係る車両用冷却システムを例示する。車両用冷却システム10は、内燃機関であるエンジン12と、電動機であるモータ14をともに駆動源とする、いわゆるハイブリッド車両(図示せず)に搭載されている。車両用冷却システム10は、エンジン12、モータ14と、電力変換器であるインバータ16と、更にこれらの周辺機器を冷却対象としている。インバータ16はモータ14と図示しない二次電池等の電源との間に設けられ、電源からの直流電力を交流電力に変換し、モータ14に交流電力を供給している。   FIG. 1 illustrates a vehicle cooling system according to this embodiment. The vehicle cooling system 10 is mounted on a so-called hybrid vehicle (not shown) that uses both an engine 12 that is an internal combustion engine and a motor 14 that is an electric motor as drive sources. The vehicle cooling system 10 has an engine 12, a motor 14, an inverter 16 as a power converter, and these peripheral devices as cooling targets. The inverter 16 is provided between the motor 14 and a power source such as a secondary battery (not shown), converts DC power from the power source into AC power, and supplies the AC power to the motor 14.

車両用冷却システム10は、エンジン12、モータ14、インバータ16に連通し、冷却液が流通する冷却通路を備えている。すなわち、エンジン12、モータ14、インバータ16は冷却通路により連結され、冷却液はこれらの機器や回路を流通可能となっている。さらに車両用冷却システム10は、冷却通路に接続し、エンジン12、モータ14、インバータ16からの戻り冷却液を冷却する放熱器であるラジエータ17を備えている。   The vehicle cooling system 10 includes a cooling passage that communicates with the engine 12, the motor 14, and the inverter 16 and through which a coolant flows. That is, the engine 12, the motor 14, and the inverter 16 are connected by a cooling passage, and the coolant can flow through these devices and circuits. Further, the vehicle cooling system 10 includes a radiator 17 that is connected to the cooling passage and cools the return coolant from the engine 12, the motor 14, and the inverter 16.

また、冷却通路は、モータ14、インバータ16とその周辺機器に連通するモータ系冷却通路42と、エンジン12とその周辺機器に連通するエンジン系冷却通路44と、モータ系冷却通路42及びエンジン系冷却通路44を連絡する連絡通路46とを備えている。   The cooling passage includes a motor system cooling passage 42 that communicates with the motor 14, the inverter 16, and its peripheral devices, an engine system cooling passage 44 that communicates with the engine 12 and its peripheral devices, the motor system cooling passage 42, and the engine system cooling. And a communication passage 46 communicating with the passage 44.

モータ系冷却通路42はラジエータ17に接続され、ラジエータ17によって冷却された冷却液がモータ系冷却通路42に流入する。ラジエータ17側を上流側とすると、モータ系冷却通路42は、下流側に向かって、インバータ16、リザーバタンク18、モータ側ウォーターポンプ20、ジェネレータ22、モータ24に連通している。   The motor system cooling passage 42 is connected to the radiator 17, and the coolant cooled by the radiator 17 flows into the motor system cooling passage 42. Assuming that the radiator 17 side is the upstream side, the motor system cooling passage 42 communicates with the inverter 16, the reservoir tank 18, the motor-side water pump 20, the generator 22, and the motor 24 toward the downstream side.

リザーバタンク18には予備の冷却液が貯められている。モータ系冷却通路42の液圧が上昇するとリザーバタンク18の貯液量が増加し、液圧の上昇を抑制する。またモータ系冷却通路42の液圧が低下するとリザーバタンク18の貯液量が減少し、液圧の低下を抑制する。このようにリザーバタンク18によってモータ系冷却通路42の液圧は一定に保たれる。また、モータ側ウォーターポンプ20はモータ系冷却通路42内に冷却液を流通させている。また、ジェネレータ22はエンジン12を動力として発電し、モータ14に駆動電力を供給するとともに電源を充電する。また、エンジン12の始動時には電源から電力の供給を受けてスタータとして駆動する。   A reserve coolant is stored in the reservoir tank 18. When the hydraulic pressure in the motor system cooling passage 42 increases, the amount of liquid stored in the reservoir tank 18 increases, and the increase in hydraulic pressure is suppressed. Further, when the hydraulic pressure in the motor system cooling passage 42 decreases, the amount of liquid stored in the reservoir tank 18 decreases, and the decrease in hydraulic pressure is suppressed. Thus, the hydraulic pressure in the motor system cooling passage 42 is kept constant by the reservoir tank 18. Further, the motor-side water pump 20 circulates the coolant in the motor system cooling passage 42. The generator 22 generates power using the engine 12 as power, supplies driving power to the motor 14, and charges the power source. Further, when the engine 12 is started, it is supplied with electric power from a power source and is driven as a starter.

モータ系冷却通路42の下流端は連絡通路46に接続されている。連絡通路46は、エンジン系冷却通路44に接続されている。連絡通路46側を上流側とすると、エンジン系冷却通路44は、下流側に向かって、サーモスタット26、エンジン側ウォーターポンプ28、シリンダーブロック30、シリンダーヘッド32に連通している。   The downstream end of the motor system cooling passage 42 is connected to the communication passage 46. The communication passage 46 is connected to the engine system cooling passage 44. When the communication passage 46 side is the upstream side, the engine system cooling passage 44 communicates with the thermostat 26, the engine-side water pump 28, the cylinder block 30, and the cylinder head 32 toward the downstream side.

サーモスタット26は温度に応じて開閉する弁体であり、エンジン12を低温状態から適温まで昇温させる暖気運転中においては閉止状態となる。これにより連絡通路46とエンジン系冷却通路44との冷却液の流通が遮断される。一方、エンジン12が適温まで昇温されると開弁して連絡通路46からエンジン系冷却通路44の往路48に冷却液が流入する。また、エンジン側ウォーターポンプ28はエンジン系冷却通路44内に冷却液を流通させている。また、シリンダーブロック30およびシリンダーヘッド32はともにエンジン12の構成部材であり、シリンダーブロック30には中空の筒構造が形成され、シリンダーブロック30の上にシリンダーヘッド32が配置されることでシリンダー34が形成される。また、シリンダーブロック30およびシリンダーヘッド32にはシリンダー34の周辺に冷却液を流通させるウォータージャケット(図示せず)が形成されている。   The thermostat 26 is a valve body that opens and closes depending on the temperature, and is closed during a warm-up operation in which the engine 12 is heated from a low temperature state to an appropriate temperature. As a result, the coolant flow between the communication passage 46 and the engine system cooling passage 44 is blocked. On the other hand, when the temperature of the engine 12 is raised to an appropriate temperature, the valve is opened and the coolant flows from the communication passage 46 into the forward passage 48 of the engine system cooling passage 44. Further, the engine-side water pump 28 circulates the coolant in the engine system cooling passage 44. The cylinder block 30 and the cylinder head 32 are both components of the engine 12, and the cylinder block 30 has a hollow cylindrical structure. The cylinder head 32 is disposed on the cylinder block 30, so that the cylinder 34 is It is formed. The cylinder block 30 and the cylinder head 32 are formed with a water jacket (not shown) for circulating a coolant around the cylinder 34.

さらにシリンダーヘッド32からは3つの冷却通路が接続されている。すなわち、シリンダーヘッド32と連絡通路46とを接続する復路49、シリンダーヘッド32とサーモスタット26を接続するバイパス路50、さらにヒータ36およびスロットルボデー38を経由してサーモスタット32に接続される分流路52がシリンダーヘッド32から延びている。   Further, three cooling passages are connected from the cylinder head 32. That is, a return path 49 that connects the cylinder head 32 and the communication path 46, a bypass path 50 that connects the cylinder head 32 and the thermostat 26, and a branch path 52 that is connected to the thermostat 32 via the heater 36 and the throttle body 38. Extending from the cylinder head 32.

ヒータ36は車両内に温風を送る暖房機器であり、エンジン12を通過して熱された冷却液が流通するチューブ(図示せず)が形成されている。さらにヒータ36は送風ファン(図示せず)を備えており、送風ファンから送られた空気がチューブを通過することによって温風となり、この温風が車両内に供給される。また、スロットルボデー38はエンジン12に吸気を送る際に吸気量を調整するスロットルバルブのハウジングであり、エンジン12を通過して熱された冷却液がスロットルボデー38に供給されることにより、寒冷時におけるスロットルバルブの凍結を防止している。   The heater 36 is a heating device that sends warm air into the vehicle, and is formed with a tube (not shown) through which the coolant that has been heated through the engine 12 flows. Furthermore, the heater 36 includes a blower fan (not shown), and air sent from the blower fan passes through the tube to become warm air, which is supplied into the vehicle. The throttle body 38 is a throttle valve housing that adjusts the amount of intake air when the intake air is sent to the engine 12, and the coolant heated through the engine 12 is supplied to the throttle body 38. Prevents the throttle valve from freezing.

また、エンジン系冷却通路44の復路49およびモータ系冷却通路42の下流端に接続された連絡通路46は、ラジエータ17にも接続されている。後述するように、エンジン系冷却通路44の復路49から送液された冷却液は連絡通路46を経由してラジエータ17に戻される。また、サーモスタット26が閉止状態のとき(つまり、エンジン暖機中)のときはモータ系冷却通路42から送液された冷却液は連絡通路46を経由してラジエータ17に戻される。   Further, the return passage 49 of the engine system cooling passage 44 and the communication passage 46 connected to the downstream end of the motor system cooling passage 42 are also connected to the radiator 17. As will be described later, the coolant sent from the return passage 49 of the engine system cooling passage 44 is returned to the radiator 17 via the communication passage 46. When the thermostat 26 is in a closed state (that is, during engine warm-up), the coolant sent from the motor system cooling passage 42 is returned to the radiator 17 via the communication passage 46.

次に、本実施形態に係る車両用冷却システム10の運転について説明する。車両用冷却システム10はエンジン12の暖機中と暖機完了後とで異なる運転を行っている。   Next, the operation of the vehicle cooling system 10 according to the present embodiment will be described. The vehicle cooling system 10 performs different operations during the warming up of the engine 12 and after the warming up is completed.

エンジン12の暖機中における車両用冷却システム10の運転について説明する。上述したように、エンジン12の暖機中はサーモスタット26が閉止状態であり、連絡通路46とエンジン系冷却通路44との間で冷却液の流通が遮断されている。このとき、エンジン系冷却通路44内を冷却液が循環する。すなわち、往路48を流れる冷却液がバイパス路50と分流路52とに分岐して流れ、サーモスタット26で合流して再び往路48を流通する。なお、エンジン側ウォーターポンプ28が駆動することによってエンジン系冷却通路44内の冷却液が循環する。冷却液が放熱器であるラジエータ17に戻らずにエンジン系冷却通路44内を循環することにより冷却液は放熱を免れ、エンジン12およびスロットルボデー38の昇温が促進される。   The operation of the vehicle cooling system 10 during the warm-up of the engine 12 will be described. As described above, when the engine 12 is warmed up, the thermostat 26 is closed, and the coolant flow is blocked between the communication passage 46 and the engine system cooling passage 44. At this time, the coolant circulates in the engine system cooling passage 44. That is, the coolant flowing in the forward path 48 branches and flows into the bypass path 50 and the branch path 52, joins at the thermostat 26, and flows through the forward path 48 again. The engine-side water pump 28 is driven to circulate the coolant in the engine system cooling passage 44. The coolant circulates in the engine system cooling passage 44 without returning to the radiator 17 that is a radiator, so that the coolant escapes heat and the temperature rise of the engine 12 and the throttle body 38 is promoted.

一方、モータ14側ではラジエータ17→モータ系冷却通路42→連絡通路46→ラジエータ17の順路で冷却液が循環する。なお、モータ側ウォーターポンプ20が冷却液を循環させている。ラジエータ17を通過することによって冷却液が放熱されるから、モータ系冷却通路42に連通されたインバータ16、ジェネレータ22、モータ14は冷却される。   On the other hand, on the motor 14 side, the coolant circulates along the route of the radiator 17 → the motor system cooling passage 42 → the communication passage 46 → the radiator 17. The motor side water pump 20 circulates the coolant. Since the coolant dissipates heat by passing through the radiator 17, the inverter 16, the generator 22, and the motor 14 communicated with the motor system cooling passage 42 are cooled.

なお、サーモスタット26が閉止状態であっても、エンジン系冷却通路42の復路49は連絡通路46およびラジエータ17を介してモータ系冷却通路42に連通している。したがって暖機運転中に復路49中の冷却液がモータ側ウォーターポンプ20に引き込まれる可能性がある。そこで、復路42にサーモスタット26の開閉に同期して開閉するバルブを設けても良い。   Even when the thermostat 26 is closed, the return path 49 of the engine system cooling passage 42 communicates with the motor system cooling passage 42 via the communication passage 46 and the radiator 17. Therefore, the coolant in the return path 49 may be drawn into the motor-side water pump 20 during the warm-up operation. Therefore, a valve that opens and closes in synchronization with the opening and closing of the thermostat 26 may be provided in the return path 42.

次に、エンジン12の暖機完了後の冷却運転について説明する。エンジン12が適温に昇温されるとサーモスタット26が開弁する。これにより連絡通路46からエンジン系冷却通路44に冷却液が流通する。このとき、冷却液は、ラジエータ17→モータ系冷却通路42→連絡通路46→往路48→復路49または分流路52→連絡通路46→ラジエータ17の順路で流通する。ラジエータ17に流入した戻り冷却液はラジエータ17により放熱され、再びモータ系冷却通路42に流入する。   Next, the cooling operation after the completion of warming up of the engine 12 will be described. When the engine 12 is heated to an appropriate temperature, the thermostat 26 is opened. As a result, the coolant flows from the communication passage 46 to the engine system cooling passage 44. At this time, the coolant circulates through the radiator 17 → the motor system cooling passage 42 → the communication passage 46 → the forward passage 48 → the return passage 49 or the branch passage 52 → the communication passage 46 → the radiator 17. The return coolant flowing into the radiator 17 is radiated by the radiator 17 and flows into the motor system cooling passage 42 again.

なお、モータ側ウォーターポンプ20の吸込量がエンジン側ウォーターポンプ28の吸込量よりも大きい場合、モータ系冷却通路42から連絡通路46に流入した冷却液はラジエータ17側に引き込まれてしまう。そこで、暖機完了後の冷却運転においては、エンジン側ウォーターポンプ28の吸込量をモータ側ウォーターポンプ20の吸込量よりも大きくなるように各ウォーターポンプの吸込量を設定することが好適である。また、連絡通路46の、モータ系冷却通路42との接続部と、エンジン系冷却通路44の復路49との接続部との間に、サーモスタット26の開閉に同期して開閉するバルブを設けても良い。   Note that when the suction amount of the motor-side water pump 20 is larger than the suction amount of the engine-side water pump 28, the coolant flowing into the communication passage 46 from the motor system cooling passage 42 is drawn into the radiator 17 side. Therefore, in the cooling operation after the warm-up is completed, it is preferable to set the suction amount of each water pump so that the suction amount of the engine-side water pump 28 is larger than the suction amount of the motor-side water pump 20. In addition, a valve that opens and closes in synchronization with the opening and closing of the thermostat 26 may be provided between the connection portion of the communication passage 46 with the motor system cooling passage 42 and the connection portion of the engine system cooling passage 44 with the return passage 49. good.

モータ系の冷却回路とエンジン系の冷却回路とが個別に設けられていた従来技術においては、各冷却回路に対してラジエータを設け、また個別に冷却液を流す必要があった。これに対して本実施形態における車両用冷却システムにおいては、インバータ16、モータ14、エンジン12を連通して冷却通路が形成される。つまりモータ系の冷却回路とエンジン系の冷却回路とが統合され、ラジエータは一台で済む。したがって、従来よりも簡素化され、部品点数が軽減された車両用冷却システムを提供することが可能となる。   In the prior art in which the motor system cooling circuit and the engine system cooling circuit are individually provided, it is necessary to provide a radiator for each cooling circuit and to flow the coolant individually. On the other hand, in the vehicle cooling system according to the present embodiment, the inverter 16, the motor 14, and the engine 12 are communicated to form a cooling passage. In other words, the motor system cooling circuit and the engine system cooling circuit are integrated, and only one radiator is required. Therefore, it is possible to provide a vehicular cooling system that is simplified and has a reduced number of parts.

また、本実施形態においては、エンジン12の暖機中、つまりサーモスタット26が閉止状態のときであっても、モータ系冷却通路42からの戻り冷却液は連絡通路46を介してラジエータ17に送液される。つまりエンジン暖機中であってもモータ14側ではモータ14、インバータ16、ジェネレータ22の冷却が行われる。これにより、モータ14等の電気機器、電気回路の冷却を常時行うことが可能となる。   Further, in the present embodiment, even when the engine 12 is warmed up, that is, when the thermostat 26 is closed, the return coolant from the motor system cooling passage 42 is sent to the radiator 17 via the communication passage 46. Is done. That is, even when the engine is warming up, the motor 14, the inverter 16, and the generator 22 are cooled on the motor 14 side. Thereby, it becomes possible to always cool the electric equipment such as the motor 14 and the electric circuit.

10 車両用冷却システム、12 エンジン、14 モータ、16 インバータ、17 ラジエータ、18 リザーバタンク、20 モータ側ウォーターポンプ、22 ジェネレータ、24 モータ、26 サーモスタット、28 エンジン側ウォーターポンプ、30 シリンダーブロック、32 シリンダーヘッド、34 シリンダー、36 ヒータ、38 スロットルボデー、42 モータ系冷却通路、44 エンジン系冷却通路、46 連絡通路、48 往路、49 復路、50 バイパス路、52 分流路。
10 Vehicle Cooling System, 12 Engine, 14 Motor, 16 Inverter, 17 Radiator, 18 Reservoir Tank, 20 Motor Side Water Pump, 22 Generator, 24 Motor, 26 Thermostat, 28 Engine Side Water Pump, 30 Cylinder Block, 32 Cylinder Head , 34 cylinder, 36 heater, 38 throttle body, 42 motor system cooling passage, 44 engine system cooling passage, 46 communication passage, 48 forward passage, 49 return passage, 50 bypass passage, 52 minute passage.

Claims (1)

駆動源となるエンジンおよびモータを備えた車両において、
前記エンジンおよび前記モータに連通して設けられ、冷却液が流通する冷却通路と、
前記冷却通路に接続され、前記エンジンおよび前記モータからの戻り冷却液を冷却するラジエータと、
を備えることを特徴とする、車両用冷却システム。
In a vehicle having an engine and a motor as a drive source,
A cooling passage provided in communication with the engine and the motor and through which a coolant flows;
A radiator connected to the cooling passage for cooling a return coolant from the engine and the motor;
A vehicle cooling system comprising:
JP2010101716A 2010-04-27 2010-04-27 Cooling system for vehicle Pending JP2011230617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101716A JP2011230617A (en) 2010-04-27 2010-04-27 Cooling system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101716A JP2011230617A (en) 2010-04-27 2010-04-27 Cooling system for vehicle

Publications (1)

Publication Number Publication Date
JP2011230617A true JP2011230617A (en) 2011-11-17

Family

ID=45320395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101716A Pending JP2011230617A (en) 2010-04-27 2010-04-27 Cooling system for vehicle

Country Status (1)

Country Link
JP (1) JP2011230617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912964A (en) * 2014-03-14 2015-09-16 F·波尔希名誉工学博士公司 Electric actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073765A (en) * 1999-08-31 2001-03-21 Suzuki Motor Corp Cooling device of hybrid vehicle
JP2002227644A (en) * 2000-11-02 2002-08-14 Ford Motor Co System of controlling electric coolant pump for hybrid electric vehicle
JP2004076603A (en) * 2002-08-12 2004-03-11 Toyota Motor Corp Multiple cooling system
WO2007049516A1 (en) * 2005-10-25 2007-05-03 Toyota Jidosha Kabushiki Kaisha Cooling system. method of controlling the cooling system, and automobile
JP2009044896A (en) * 2007-08-10 2009-02-26 Nissan Motor Co Ltd Cooling system for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073765A (en) * 1999-08-31 2001-03-21 Suzuki Motor Corp Cooling device of hybrid vehicle
JP2002227644A (en) * 2000-11-02 2002-08-14 Ford Motor Co System of controlling electric coolant pump for hybrid electric vehicle
JP2004076603A (en) * 2002-08-12 2004-03-11 Toyota Motor Corp Multiple cooling system
WO2007049516A1 (en) * 2005-10-25 2007-05-03 Toyota Jidosha Kabushiki Kaisha Cooling system. method of controlling the cooling system, and automobile
JP2007120312A (en) * 2005-10-25 2007-05-17 Toyota Motor Corp Cooling system, its control method and automobile
JP2009044896A (en) * 2007-08-10 2009-02-26 Nissan Motor Co Ltd Cooling system for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912964A (en) * 2014-03-14 2015-09-16 F·波尔希名誉工学博士公司 Electric actuator
JP2015177737A (en) * 2014-03-14 2015-10-05 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft Electric actuator

Similar Documents

Publication Publication Date Title
US11383577B2 (en) Thermal management system for vehicle
US8997483B2 (en) Engine thermal management system and method for split cooling and integrated exhaust manifold applications
ES2238328T3 (en) PROCEDURE AND DEVICE FOR THE TRANSPORT OF THERMAL ENERGY PRODUCED IN A CAR.
US10167769B2 (en) Temperature control system for hybrid powertrain and method of operating a temperature control system
JP5819447B2 (en) Cooling circuit and cooling method for hybrid electric vehicle
JP2015214324A (en) Cooling system of automobile
JP2020117167A (en) Heat distribution device of hybrid vehicle
JP2007182857A (en) Cooling device
CN106183786A (en) Cooling circulation system for hybrid power system and automobile
RU2633109C1 (en) Device for liquid cooling of electric vehicle components
KR102563579B1 (en) Electric oil pump system
JP2011149385A (en) Cooling water circulating device
JP3728747B2 (en) Hybrid vehicle cooling system
US20040187505A1 (en) Integrated cooling system
JP7013087B2 (en) Vehicle heat exchange system
RU155350U1 (en) INTERNAL COMBUSTION ENGINE WITH LIQUID COOLING WITH SECONDARY CIRCUIT
US11027589B2 (en) Electric motor with cooling system and corresponding method
JP2014058241A (en) Battery temperature adjustment system for electric vehicle
JP2011230617A (en) Cooling system for vehicle
KR101405667B1 (en) Engine coolling system
KR102483110B1 (en) Hybrid vehicle with a cooling system
JP2012225223A (en) Thermal storage type heating device for vehicle
JPWO2020129259A1 (en) Temperature control circuit
JP5708042B2 (en) V-type engine cooling system
US11319855B2 (en) Heat accumulation and dissipation device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218