JP2011229100A - Vibration piece and vibrator - Google Patents

Vibration piece and vibrator Download PDF

Info

Publication number
JP2011229100A
JP2011229100A JP2010099521A JP2010099521A JP2011229100A JP 2011229100 A JP2011229100 A JP 2011229100A JP 2010099521 A JP2010099521 A JP 2010099521A JP 2010099521 A JP2010099521 A JP 2010099521A JP 2011229100 A JP2011229100 A JP 2011229100A
Authority
JP
Japan
Prior art keywords
temperature
frequency deviation
film thickness
resonator element
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010099521A
Other languages
Japanese (ja)
Inventor
Shuhei Yoshida
周平 吉田
Akinori Yamada
明法 山田
Kazuo Ishikawa
賀津雄 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010099521A priority Critical patent/JP2011229100A/en
Publication of JP2011229100A publication Critical patent/JP2011229100A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vibration piece which has superior temperature characteristics.SOLUTION: The vibration piece 10 includes a vibrator 11 having a base 12 and vibration arms 14a, 14b extended from the base 12 in parallel and vibrating in a bending mode, and Cr layers 24a, 24b provided on a surface of the vibrator 11 and having such a Young's modulus or a coefficient of thermal expansion that a temperature as an inflection point is within the operational temperature range of the vibrator 11, and a temperature characteristic curve of frequency deviation is generated by adding a frequency deviation due to a peak temperature of the temperature characteristic curve and a frequency deviation due to a film thickness H of the Cr layers 24a, 24b. Consequently, the vibration piece 10 has the superior frequency temperature characteristics in the operational temperature range.

Description

本発明は、振動片と、この振動片を有する振動子に関する。   The present invention relates to a vibrating piece and a vibrator having the vibrating piece.

従来、周波数温度依存性を有する水晶からなる振動片は、下地層としてCrを用いており、このCr層の膜厚を0.07μm〜0.3μmの範囲にすることで温度変化に伴う周波数偏差の変化を小さくできることが知られている(例えば、特許文献1参照)。   Conventionally, a resonator element made of quartz having frequency temperature dependency uses Cr as an underlayer, and the frequency deviation associated with temperature change is achieved by setting the thickness of the Cr layer to a range of 0.07 μm to 0.3 μm. It is known that this change can be reduced (see, for example, Patent Document 1).

特開2005−136499号公報JP 2005-136499 A

このような特許文献1では、温度変化による周波数偏差の差を小さくできる温度範囲が狭く、例えば、動作温度範囲が−40℃〜100℃というような広い温度範囲では、Cr層を形成する効果が十分に得られないという課題がある。   In Patent Document 1, the temperature range in which the difference in frequency deviation due to temperature change can be reduced is narrow. For example, in the wide temperature range where the operating temperature range is −40 ° C. to 100 ° C., the effect of forming the Cr layer is obtained. There is a problem that it cannot be obtained sufficiently.

また、上述の特許文献1では、周波数偏差の温度特性曲線の頂点温度を25℃としている。これは旧来からの一般的な頂点温度であり、このような場合、Cr層の影響が大きい低温側では、温度変化による周波数偏差の差が小さくなるが、Cr層の影響が小さい高温側では、周波数偏差の差の改善は困難である。   In Patent Document 1 described above, the apex temperature of the temperature characteristic curve of frequency deviation is set to 25 ° C. This is a conventional general apex temperature. In such a case, the difference in frequency deviation due to temperature change is small on the low temperature side where the influence of the Cr layer is large, but on the high temperature side where the influence of the Cr layer is small, It is difficult to improve the frequency deviation difference.

本発明は、従来よりも良好な周波数温度特性を得ることができる振動片、及びこの振動片を実装した振動子を提供するものであり、以下の形態または適用例として実現することが可能である。   The present invention provides a resonator element capable of obtaining better frequency temperature characteristics than the conventional one and a vibrator on which the resonator element is mounted, and can be realized as the following forms or application examples. .

[適用例1]本適用例に係る振動片は、基部と、前記基部から平行に延在され逆相で屈曲振動をする複数の振動腕と、を有する振動体と、前記振動体の表面に設けられ、ヤング率または熱膨張係数が変極点となる温度を有し、前記変極点となる温度が前記振動体の動作温度範囲内にある下地層と、を有し、前記振動体の温度特性曲線の頂点温度に依存する周波数偏差と、前記下地層の膜厚に依存する周波数偏差と、を足し合わせて周波数偏差の温度特性曲線を生成することを特徴とする。   Application Example 1 A resonator element according to this application example includes a vibrating body having a base portion and a plurality of vibrating arms that extend in parallel from the base portion and perform flexural vibration in opposite phases, and the surface of the vibrating body. Provided with a temperature at which the Young's modulus or the coefficient of thermal expansion becomes an inflection point, and the temperature at which the inflection point is within the operating temperature range of the vibrator, and the temperature characteristics of the vibrator A frequency deviation temperature characteristic curve is generated by adding the frequency deviation depending on the vertex temperature of the curve and the frequency deviation depending on the film thickness of the underlayer.

本適用例によれば、上記変極点となる温度より低温側では下地層の膜厚を適切な範囲にすることの効果と、高温側では頂点温度を高くすることによる効果とを組み合わせることにより、周波数温度特性を向上させることができる。
なお、上記頂点温度は、水晶のカット角を変えることで変化させることができ、頂点温度を高い方に変化させると、高温側の周波数温度特性を向上させることができる。
According to this application example, by combining the effect of setting the film thickness of the underlayer to an appropriate range on the lower temperature side than the temperature that becomes the inflection point, and the effect of increasing the vertex temperature on the high temperature side, The frequency temperature characteristic can be improved.
The apex temperature can be changed by changing the cut angle of the crystal. If the apex temperature is changed higher, the frequency temperature characteristic on the high temperature side can be improved.

[適用例2]上記適用例に係る振動片は、前記下地層が、CrまたはAu‐Cr合金からなることが好ましい。   Application Example 2 In the resonator element according to the application example described above, it is preferable that the base layer is made of Cr or an Au—Cr alloy.

前述したヤング率または熱膨張係数が変極点となる温度とは、ネール温度である。ネール温度は、反強磁性態が常磁性状態へ転移する温度であり、ヤング率または熱膨張係数の変極点(または極値)が現れることになる。そして、CrまたはAu−Crなどの合金は、ネール温度が振動片の動作温度範囲(例えば、−40℃〜100℃の範囲)にあるため、周波数温度特性を向上させることができる。   The temperature at which the aforementioned Young's modulus or thermal expansion coefficient becomes an inflection point is the Neel temperature. The Neel temperature is a temperature at which the antiferromagnetic state transitions to the paramagnetic state, and an inflection point (or extreme value) of Young's modulus or thermal expansion coefficient appears. And since alloys, such as Cr or Au-Cr, have a Neel temperature in the operating temperature range (for example, the range of -40 degreeC-100 degreeC) of a vibration piece, it can improve a frequency temperature characteristic.

また、Cr及びAu−Crなどの合金は、従来より振動体として用いられる水晶に対するコンタクトメタルとして用いられてきているため、水晶との密着性がよく、また製造工程における負担が小さい。   Moreover, since alloys such as Cr and Au—Cr have been used as contact metals for quartz used as a vibrating body in the past, adhesion with the quartz is good and the burden on the manufacturing process is small.

[適用例3]上記適用例に係る振動片は、前記振動体が水晶からなり、前記振動体の周波数偏差をΔf0と表し、前記変極点となる温度以下の前記動作温度範囲の前記下地層の膜厚に依存する周波数偏差をΔf1と表すと、前記変極点となる温度以下の前記動作温度範囲における前記振動体の周波数偏差Δf3が、Δf3=Δf0+Δf1で表されることが好ましい。   Application Example 3 In the resonator element according to the application example described above, the vibrating body is made of crystal, the frequency deviation of the vibrating body is expressed as Δf0, and the base layer in the operating temperature range below the temperature that becomes the inflection point. When the frequency deviation depending on the film thickness is expressed as Δf1, it is preferable that the frequency deviation Δf3 of the vibrating body in the operating temperature range equal to or lower than the temperature at which the inflection point is expressed by Δf3 = Δf0 + Δf1.

[適用例4]上記適用例に係る振動片は、前記振動体の周波数偏差をΔf0と表し、前記変極点となる温度以上の前記動作温度範囲の前記下地層の膜厚に依存する周波数偏差をΔf2と表すと、前記変極点となる温度以上の前記動作温度範囲における前記振動腕の周波数偏差Δf4が、Δf4=Δf0+Δf2で表されることが好ましい。   Application Example 4 In the resonator element according to the application example, the frequency deviation of the vibrating body is expressed as Δf0, and the frequency deviation depending on the film thickness of the base layer in the operating temperature range equal to or higher than the temperature that becomes the inflection point. When expressed as Δf2, it is preferable that the frequency deviation Δf4 of the vibrating arm in the operating temperature range equal to or higher than the temperature that becomes the inflection point is expressed by Δf4 = Δf0 + Δf2.

このようにすれば、変極点となる温度の低温側及び高温側両方において、下地層の膜厚を適切な範囲にすることの効果と、頂点温度を高くすることによる効果とを組み合わせることにより、周波数温度特性を向上させることができる。   In this way, by combining the effect of setting the thickness of the underlayer to an appropriate range on both the low temperature side and the high temperature side of the temperature that becomes the inflection point, and the effect of increasing the vertex temperature, The frequency temperature characteristic can be improved.

[適用例5]上記適用例に係る振動片は、前記下地層の膜厚をH、前記膜厚の許容範囲をΔH、前記頂点温度をTpで表すとき、前記膜厚Hが、
H=−1.25×101×Tp2+25.2×Tp+424+ΔHで表されることが好ましい。
Application Example 5 In the resonator element according to the application example, when the film thickness of the base layer is H, the allowable range of the film thickness is ΔH, and the vertex temperature is Tp, the film thickness H is
It is preferable that H = −1.25 × 10 1 × Tp 2 + 25.2 × Tp + 424 + ΔH.

上記計算式で下地層の膜厚を設定すれば、特に低温側の周波数温度特性を向上させることができる。また、膜厚のばらつき範囲を考慮しても良好な周波数温度特性を得ることができる。   If the film thickness of the underlayer is set by the above formula, the frequency temperature characteristic on the low temperature side can be improved. In addition, good frequency temperature characteristics can be obtained even when the variation range of the film thickness is taken into consideration.

[適用例6]本適用例に係る振動子は、上記各適用例に記載の振動片が、パッケージの内部に実装されていることを特徴とする。   Application Example 6 A vibrator according to this application example is characterized in that the resonator element described in each application example is mounted inside a package.

前述した振動片は、例えば、セラミック等で形成されたパッケージ内に実装される。よって、広い温度範囲において良好な周波数温度特性を得ることができる信頼性の高い振動子を実現できる。   The above-described vibrating piece is mounted in a package formed of, for example, ceramic. Therefore, it is possible to realize a highly reliable vibrator capable of obtaining good frequency temperature characteristics in a wide temperature range.

なお、パッケージ内は真空状態にあることが好ましく、真空環境で振動片が振動されることで、より一層安定した振動を長期間にわたって維持することができる。
また、パッケージに収納されることで、扱いやすいうえ、湿度など外部環境から振動片を保護することができる。
Note that the inside of the package is preferably in a vacuum state, and the vibration piece is vibrated in a vacuum environment, so that more stable vibration can be maintained over a long period of time.
In addition, by being housed in the package, it is easy to handle and the resonator element can be protected from the external environment such as humidity.

実施形態1に係る振動片を示し、(a)は平面図、(b)は(a)のA−A切断面を示す断面図。The resonator element according to Embodiment 1 is shown, (a) is a plan view, and (b) is a cross-sectional view showing the AA cut surface of (a). カット角1°30’の場合の25℃を基準とした周波数偏差の温度特性を示す温度特性曲線。The temperature characteristic curve which shows the temperature characteristic of the frequency deviation on the basis of 25 degreeC in case of cut angle 1 degree 30 '. カット角5°20’の場合の25℃を基準とした周波数偏差の温度特性を示す温度特性曲線。The temperature characteristic curve which shows the temperature characteristic of the frequency deviation on the basis of 25 degreeC in case of cut angle 5 degrees 20 '. Cr膜厚を500Åとしてカット角を変えて頂点温度を変動させたときの25℃を基準とした周波数偏差の温度特性を示す温度特性曲線。The temperature characteristic curve which shows the temperature characteristic of the frequency deviation on the basis of 25 degreeC when changing a cut angle and changing vertex temperature by making Cr film thickness 500mm. Cr膜厚=1500Åの場合の25℃を基準とした周波数偏差の温度特性を示す温度特性曲線。The temperature characteristic curve which shows the temperature characteristic of the frequency deviation on the basis of 25 degreeC in the case of Cr film thickness = 1500mm. Cr膜厚=2500Åの場合の25℃を基準とした周波数偏差の温度特性を示す温度特性曲線。The temperature characteristic curve which shows the temperature characteristic of the frequency deviation on the basis of 25 degreeC in case Cr film thickness = 2500mm. 周波数偏差が170ppmとなるCr膜厚Hと頂点温度Tpとの関係を示すグラフ。The graph which shows the relationship between Cr film thickness H from which frequency deviation will be 170 ppm, and vertex temperature Tp. 数式(8)、数式(9)を用いて計算したCr膜厚Hと頂点温度Tpとの関係を示すグラフ。The graph which shows the relationship between Cr film thickness H calculated using Numerical formula (8) and Numerical formula (9), and vertex temperature Tp. −15℃で温度特性がほほ平坦となる頂点温度TpとCr膜厚Hをパラメーターとして表す温度特性曲線。A temperature characteristic curve representing the apex temperature Tp and the Cr film thickness H at which the temperature characteristic becomes almost flat at −15 ° C. as parameters. 振動子の概略構成を示す断面図。Sectional drawing which shows schematic structure of a vibrator | oscillator.

以下、本発明の実施形態について図面を参照して説明する。なお、図1、図10は、図示の便宜上、部材ないし部分の縦横の縮尺は実際のものとは異なる模式図である。
(実施形態1)
Embodiments of the present invention will be described below with reference to the drawings. 1 and 10 are schematic diagrams in which the vertical and horizontal scales of members or portions are different from actual ones for convenience of illustration.
(Embodiment 1)

図1は、実施形態1に係る振動片を示し、(a)は平面図、(b)は(a)のA−A切断面を示す断面図である。なお、本実施形態に係る振動片10は、周波数温度依存性を有する振動体を構成する素子片として水晶を例に挙げて説明する。また、振動モードとしては、逆相の屈曲振動を主振動とする音叉型の形態を例示して説明する。   1A and 1B show a resonator element according to the first embodiment, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along the line AA in FIG. Note that the resonator element 10 according to the present embodiment will be described by taking quartz as an example of an element element that constitutes a vibration body having frequency temperature dependency. Further, the vibration mode will be described by exemplifying a tuning fork type having a bending vibration of opposite phase as a main vibration.

図1(a),(b)において、振動片10は、振動体11と、この振動体11に形成された金属膜とを有している。振動体11は圧電効果を奏する水晶で形成され、基部12と、この基部12からY軸方向に平行に延設された振動腕14a,14bとを有する、いわゆる音叉型の振動体である。なお、振動体11は、X軸が電気軸、Y軸が機械軸、Z軸が光軸となるように、水晶の単結晶から所定のカット角で切り出されている。   1A and 1B, the resonator element 10 includes a vibrating body 11 and a metal film formed on the vibrating body 11. The vibrating body 11 is a so-called tuning fork type vibrating body that is formed of quartz crystal that exhibits a piezoelectric effect, and includes a base portion 12 and vibrating arms 14 a and 14 b that extend from the base portion 12 in parallel to the Y-axis direction. The vibrating body 11 is cut from a single crystal of crystal at a predetermined cut angle so that the X axis is an electric axis, the Y axis is a mechanical axis, and the Z axis is an optical axis.

振動腕14a,14bには、幅方向中央部に溝25a,25bが形成されている(図1(b)、参照)。なお、溝25a,25bの幅は、振動腕14a,14bの幅の50%〜90%、深さは、振動腕14a,14bの厚さの30%〜49%の範囲とする。   Grooves 25a and 25b are formed in the central portions in the width direction of the vibrating arms 14a and 14b (see FIG. 1B). The width of the grooves 25a and 25b is 50% to 90% of the width of the vibrating arms 14a and 14b, and the depth is 30% to 49% of the thickness of the vibrating arms 14a and 14b.

金属膜は、溝25a,25bの内面及び振動腕14a,14bそれぞれの外側側面に密着形成される下地層24a,24bと、下地層24a,24bの表面に密着形成され表面層となる電極層とより成る。   The metal film includes base layers 24a and 24b formed in close contact with the inner surfaces of the grooves 25a and 25b and the outer side surfaces of the vibrating arms 14a and 14b, and an electrode layer formed in close contact with the surfaces of the base layers 24a and 24b and serving as a surface layer. Consists of.

なお電極層は、振動を励起するための励振電極18a,18b、駆動信号や検出信号を入出力するための入出力電極22a,22b、及び励振電極18a,18bと、入出力電極22a,22bと、を接続する引出し電極20a,20bとからなる。なお、下地層24a,24bはCrまたはAu‐Crなどの合金からなるので、以降、下地層24a,24bをCr層24a,24bと表し説明する。また、励振電極18a,18b、引き出し電極20a,20bはAuからなる。   The electrode layer includes excitation electrodes 18a and 18b for exciting vibration, input / output electrodes 22a and 22b for inputting and outputting drive signals and detection signals, excitation electrodes 18a and 18b, and input / output electrodes 22a and 22b. , Are connected to extraction electrodes 20a and 20b. Since the base layers 24a and 24b are made of an alloy such as Cr or Au—Cr, the base layers 24a and 24b are hereinafter referred to as Cr layers 24a and 24b. The excitation electrodes 18a and 18b and the extraction electrodes 20a and 20b are made of Au.

Crは、振動体11として採用する水晶に対する密着性が良好で、コンタクトメタルとしても優れているということから採用される。また、金(Au)は電気抵抗が極めて低く、安定しており、酸化等の影響を受け難く、経年劣化による性質変化が少ないという特長を有する。   Cr is employed because it has good adhesion to the quartz used as the vibrator 11 and is excellent as a contact metal. Further, gold (Au) has a feature that it has an extremely low electric resistance, is stable, is hardly affected by oxidation, and has little property change due to deterioration over time.

このような振動片10は、外部からの励振信号を入力することで、振動腕14a,14bが基部12を固定端としてX軸方向に屈曲振動される。   In such a vibrating piece 10, the vibration arms 14 a and 14 b are flexibly vibrated in the X-axis direction with the base portion 12 as a fixed end by inputting an external excitation signal.

次に、カット角と周波数偏差の温度特性の関係について説明する。
図2はカット角1°30’の場合、図3はカット角5°20’の場合の25℃を基準とした周波数偏差の温度特性を示す温度特性曲線である。なお、Cr膜厚を500Å、Au膜厚を500Åに一定とし、カット角により振動片10としての周波数温度特性がどのように変化するかを実験によって求めたものである。なお、両図共に、横軸に温度[℃]、縦軸に周波数偏差Δf[ppm]を表している。
Next, the relationship between the temperature characteristics of the cut angle and the frequency deviation will be described.
FIG. 2 is a temperature characteristic curve showing a frequency characteristic of a frequency deviation based on 25 ° C. when the cut angle is 1 ° 30 ′ and FIG. 3 is a cut angle of 5 ° 20 ′. In addition, the Cr film thickness is set to 500 mm, the Au film thickness is set to 500 mm, and how the frequency temperature characteristic as the vibrating piece 10 changes depending on the cut angle is obtained by experiments. In both figures, the horizontal axis represents temperature [° C.] and the vertical axis represents frequency deviation Δf [ppm].

カット角1°30’の場合、図2に示すように、温度特性曲線の頂点温度は25℃にあって、頂点温度よりも低い温度側では周波数偏差の変動量が小さくなっており、頂点温度よりも高い温度側では低温側よりも周波数偏差の変動量が大きくなっていることが読み取れる。   In the case of a cut angle of 1 ° 30 ′, as shown in FIG. 2, the peak temperature of the temperature characteristic curve is 25 ° C., and the fluctuation amount of the frequency deviation is small on the temperature side lower than the peak temperature. It can be seen that the fluctuation amount of the frequency deviation is larger on the higher temperature side than on the lower temperature side.

また、カット角5°20’の場合、図3に示すように、温度特性曲線の頂点温度は概ね50℃にあって、頂点温度よりも低い温度側では周波数偏差の変動量が大きくなっており、頂点温度よりも高い温度側では低温側よりも周波数偏差の変動量が小さくなっていることが読み取れる。   When the cut angle is 5 ° 20 ′, as shown in FIG. 3, the peak temperature of the temperature characteristic curve is approximately 50 ° C., and the fluctuation amount of the frequency deviation is large on the temperature side lower than the peak temperature. It can be seen that the fluctuation amount of the frequency deviation is smaller on the temperature side higher than the apex temperature than on the low temperature side.

よって、図2、図3を比較してみると、水晶のカット角を変更することにより頂点温度が変化し、頂点温度に対して高温側と低温側とで周波数偏差の変動量を調整することができることが分かる。そこで、頂点温度と、Cr層24a,24bの厚さと、を変化させることでさらに周波数温度特性が改善されることを見出し、これを数式化したことについて説明する。   Therefore, comparing FIG. 2 and FIG. 3, the vertex temperature changes by changing the cut angle of the crystal, and the fluctuation amount of the frequency deviation is adjusted between the high temperature side and the low temperature side with respect to the vertex temperature. You can see that Thus, it has been found that the frequency temperature characteristic is further improved by changing the vertex temperature and the thickness of the Cr layers 24a and 24b, and the formulating this will be described.

まず、Cr膜厚を考慮しない水晶自体の周波数偏差の温度変化による変動を数式化する。ここで、水晶の頂点温度をTp[℃]、温度をT[℃]で表し、周波数偏差をΔf0[ppm]で表す。   First, the variation due to the temperature change of the frequency deviation of the crystal itself that does not consider the Cr film thickness is formulated. Here, the apex temperature of the crystal is represented by Tp [° C.], the temperature is represented by T [° C.], and the frequency deviation is represented by Δf0 [ppm].

Δf0=A1×T3+A2×T2+A3×T+A4 (1)
なお、数式(1)の各項のA1、A2、A3、A4はそれぞれ次式で表される。
A1=8.75×10-5
A2=(3.00×10-4)×Tp−0.0347×10-2
A3=(−3×10-4)×Tp2+6.96×10-2×Tp−4.60×10-3
A4=7.20×10-3×Tp2−1.96×Tp+24.4
Δf0 = A1 × T 3 + A2 × T 2 + A3 × T + A4 (1)
In addition, A1, A2, A3, and A4 of each term of Formula (1) are each represented by the following formula.
A1 = 8.75 × 10 −5
A2 = (3.00 × 10 −4 ) × Tp−0.0347 × 10 −2
A3 = (− 3 × 10 −4 ) × Tp 2 + 6.96 × 10 −2 × Tp−4.60 × 10 −3
A4 = 7.20 × 10 −3 × Tp 2 −1.96 × Tp + 24.4

上記数式で算出した周波数偏差を図4に表す。
図4は、Cr膜厚を500Åとしてカット角を変えて頂点温度を変動させたときの周波数偏差の温度特性を示す温度特性曲線である。なお、横軸に温度T[℃]、縦軸に周波数偏差[ppm]を表し、頂点温度を15℃から85℃の範囲で10℃毎に変化させてパラメーターとした。なお、現実的にはカット角で変化可能な頂点温度は60℃程度までである。
The frequency deviation calculated by the above formula is shown in FIG.
FIG. 4 is a temperature characteristic curve showing the temperature characteristics of the frequency deviation when the Cr film thickness is 500 mm and the cut angle is changed to change the vertex temperature. The horizontal axis represents the temperature T [° C.], the vertical axis represents the frequency deviation [ppm], and the apex temperature was changed every 10 ° C. within the range of 15 ° C. to 85 ° C. as parameters. Actually, the peak temperature that can be changed by the cut angle is about 60 ° C.

図4に示すように、頂点温度が高いほど、頂点温度よりも高温側では周波数偏差の変動量が小さく、頂点温度より低温側では周波数偏差の変動量が大きくなる傾向があることが分かる。そして、この条件では、従来技術による標準偏差170ppmよりも改善されていないことが読み取れる。これは、頂点温度TpとCr膜厚との組み合わせが適切ではなかったと考えられる。   As shown in FIG. 4, it can be seen that the higher the vertex temperature, the smaller the fluctuation amount of the frequency deviation on the higher temperature side than the vertex temperature, and the larger the fluctuation amount of the frequency deviation on the lower temperature side than the vertex temperature. Under these conditions, it can be seen that the standard deviation of 170 ppm according to the prior art is not improved. This is considered that the combination of the vertex temperature Tp and the Cr film thickness was not appropriate.

そこで、上記結果をベースに、Cr膜厚の影響について、−40℃〜10℃、10℃〜100℃、の2つの温度範囲に分割して数式化する。まず、−40℃〜10℃の温度範囲について説明する。なお、Cr膜厚をH、−40℃〜10℃の温度範囲における各温度の周波数偏差をΔf1で表す。   Therefore, based on the above result, the influence of the Cr film thickness is divided into two temperature ranges of −40 ° C. to 10 ° C. and 10 ° C. to 100 ° C., and is formulated. First, the temperature range of −40 ° C. to 10 ° C. will be described. In addition, the Cr film thickness is H, and the frequency deviation of each temperature in the temperature range of −40 ° C. to 10 ° C. is represented by Δf1.

Δf1=(2.40×10-3×H+4.00×10-2)×T+5.78×10-2×H−41.0 (2) Δf1 = (2.40 × 10 −3 × H + 4.00 × 10 −2 ) × T + 5.78 × 10 −2 × H-41.0 (2)

次に、+10℃〜100℃の温度範囲について説明する。なお、この温度範囲における各温度の周波数偏差をΔf2で表す。   Next, the temperature range of + 10 ° C. to 100 ° C. will be described. Note that the frequency deviation of each temperature in this temperature range is represented by Δf2.

Δf2=B1×H2+B2×H+B3 (3)
ここで、数式(3)の各項のB1、B2、B3はそれぞれ次式で表される。
B1=1.17×10-9×T2+9.74×10-7×T+5.15×10-3
B2=−2.23×10-7×T2+4.75×10-4×T−1.24
B3=3.68×10-6×T2−6.97×10-4+13.7
Δf2 = B1 × H 2 + B2 × H + B3 (3)
Here, B1, B2, and B3 of each term of Formula (3) are each expressed by the following formulas.
B1 = 1.17 × 10 −9 × T 2 + 9.74 × 10 −7 × T + 5.15 × 10 −3
B2 = −2.23 × 10 −7 × T 2 + 4.75 × 10 −4 × T−1.24
B3 = 3.68 × 10 −6 × T2−6.97 × 10 −4 +13.7

そこで、水晶の周波数偏差Δf0(数式(1))と、−40℃〜10℃、10℃〜100℃、の2つの温度範囲におけるCr膜厚Hによる周波数偏差Δf1(数式(2)),Δf2(数式(3))とを足し合わせ数式化する。
−40℃〜10℃の温度範囲における周波数偏差Δf3は次式で表される。
Therefore, the frequency deviation Δf1 (formula (2)) and Δf2 due to the Cr film thickness H in two temperature ranges of −40 ° C. to 10 ° C. and 10 ° C. to 100 ° C. (Formula (3)) is added to form a formula.
The frequency deviation Δf3 in the temperature range of −40 ° C. to 10 ° C. is expressed by the following equation.

Δf3=Δf0+Δf1 (4)   Δf3 = Δf0 + Δf1 (4)

また、+10℃〜100℃の温度範囲における周波数偏差Δf4は次式で表される。   The frequency deviation Δf4 in the temperature range of + 10 ° C. to 100 ° C. is expressed by the following equation.

Δf4=Δf0+Δf2 (5)   Δf4 = Δf0 + Δf2 (5)

ここで、Cr膜厚H=1500Åにしたとき、Cr膜厚H=2500Åにしたときに、数式(4)及び数式(5)を用いて算出した−40℃〜100℃の温度範囲における周波数偏差と25℃を基準とした実測値とを図5、図6に図示して説明する。なお、頂点温度Tpは55℃とした。
図5は、Cr膜厚H=1500Åの場合の周波数偏差の温度特性を示す25℃を基準とした温度特性曲線である。図5において、周波数偏差は10℃で2つの曲線が結合された温度特性曲線を有し、周波数偏差の変動量は、10℃以下の範囲では小さく、+10℃以上の範囲では、大きくなる傾向を示すことが分かる。つまり、温度特性曲線は、10℃において変極点を有する。
Here, when Cr film thickness H = 1500 mm, when Cr film thickness H = 2500 mm, the frequency deviation in the temperature range of −40 ° C. to 100 ° C. calculated using Equation (4) and Equation (5). FIG. 5 and FIG. 6 illustrate the measured values with reference to 25.degree. The apex temperature Tp was 55 ° C.
FIG. 5 is a temperature characteristic curve based on 25 ° C. showing the temperature characteristic of the frequency deviation when the Cr film thickness H = 1500 mm. In FIG. 5, the frequency deviation has a temperature characteristic curve in which two curves are combined at 10 ° C., and the fluctuation amount of the frequency deviation tends to be small in the range of 10 ° C. or less and large in the range of + 10 ° C. or more. You can see that That is, the temperature characteristic curve has an inflection point at 10 ° C.

図6は、Cr膜厚=2500Åの場合の周波数偏差の温度特性を示す温度特性曲線である。図6において、振動片10の周波数偏差は、10℃で2つの曲線が結合された変極点を有する温度特性曲線を有し、周波数偏差の変動量は、10℃以下の範囲では大きく、10℃以上の範囲では小さくなる傾向を示すことが分かる。   FIG. 6 is a temperature characteristic curve showing the temperature characteristic of the frequency deviation when the Cr film thickness is 2500 mm. In FIG. 6, the frequency deviation of the resonator element 10 has a temperature characteristic curve having an inflection point in which two curves are combined at 10 ° C., and the fluctuation amount of the frequency deviation is large in the range of 10 ° C. or less. It can be seen that the above range tends to be small.

なお、図5、図6では、計算値と実測値とを比較しているが、計算値と実測値とがほぼ一致していることから、上述した数式が妥当性を有していると判断できる。   5 and 6, the calculated value and the actually measured value are compared. However, since the calculated value and the actually measured value are almost the same, it is determined that the above-described mathematical formula is valid. it can.

また、図2〜図6の温度特性曲線を比較してみると、周波数偏差は、高温側ではCr膜厚Hよりも頂点温度Tpに、低温側ではCr膜厚Hに依存している割合が高いことが読み取れる。このことからCr膜厚Hの周波数偏差への影響について説明する。   Further, when comparing the temperature characteristic curves of FIG. 2 to FIG. 6, the frequency deviation has a ratio that depends on the Cr film thickness H on the high temperature side and on the Cr film thickness H on the low temperature side. It can be read that it is expensive. From this, the influence of the Cr film thickness H on the frequency deviation will be described.

ここで、振動片10の共振周波数は、振動体11における振動腕14a,14bの長さ、幅、厚さ、振動体11を構成する物質の密度、境界条件、および弾性定数等の要素から算出することができる。そして、振動腕14a,14bに形成した金属膜16の膜厚の変化に起因して変動する要素としては、弾性定数を挙げることができる。弾性定数を構成する要素のうち、温度変化により変動する要素としてヤング率や熱膨張係数が存在する。このため、振動片10の共振周波数の温度依存は、ヤング率や熱膨張係数の変化によっても、もたらされるものであることが考えられる。   Here, the resonance frequency of the resonator element 10 is calculated from factors such as the length, width, and thickness of the vibrating arms 14 a and 14 b in the vibrating body 11, the density of the substance constituting the vibrating body 11, boundary conditions, and the elastic constant. can do. As an element that varies due to a change in the thickness of the metal film 16 formed on the vibrating arms 14a and 14b, an elastic constant can be given. Among the elements constituting the elastic constant, Young's modulus and thermal expansion coefficient exist as elements that vary with temperature changes. For this reason, it is considered that the temperature dependence of the resonance frequency of the resonator element 10 is also brought about by a change in Young's modulus and thermal expansion coefficient.

ヤング率や熱膨張係数が温度変化に対して比例の関係にあれば、このように温度特性曲線に変極点は現れないことから、Cr膜にはネール温度が振動片10の動作温度範囲に内在しているといえる。   If the Young's modulus and the thermal expansion coefficient are proportional to the temperature change, the inflection point does not appear in the temperature characteristic curve in this way, so that the Neel temperature is inherent in the operating temperature range of the resonator element 10 in the Cr film. It can be said that.

ここでネール温度とは、反強磁性体が常磁性体状態へ転移する温度をいう。なお、反強磁性とは、隣り合うスピンがそれぞれ反対方向を向いて整列し、全体として磁気モーメントを持たない物性の磁性である。また、常磁性とは、外部磁場がないときには磁化を持たず、磁場を印加するとその方向に弱く磁化する磁性である。つまり、ヤング率の急激な変化は、磁性体の状態転移に伴って生ずるものであるといえる。   Here, the Neel temperature refers to the temperature at which the antiferromagnetic material transitions to the paramagnetic state. Note that antiferromagnetism is a property of magnetism in which adjacent spins are aligned in opposite directions and have no magnetic moment as a whole. Paramagnetism is magnetism that does not have magnetization when there is no external magnetic field and magnetizes weakly in that direction when a magnetic field is applied. That is, it can be said that the rapid change in Young's modulus occurs with the state transition of the magnetic material.

そして、反強磁性体は、ネール温度において常磁性体からの転移を受けることで磁気モーメントが消失することにより、大きな体積変化を生じさせることが知られていることより、反強磁性体におけるネール温度では、熱膨張係数にも変化がもたらされるということができる。   Antiferromagnets are known to cause large volume changes due to the disappearance of magnetic moment by undergoing transition from paramagnetic material at the Neel temperature. With temperature, it can be said that the coefficient of thermal expansion also changes.

Crは、膜厚の相違による圧縮応力、および伸張応力の変化に伴い、ネール温度が変化することが知られている。具体的には、固体Crに比して薄膜化されたCrのネール温度は、数十℃の範囲で低温側へシフトする。そして、Cr膜厚Hを厚くするとネール温度は高温側にシフトし、Cr膜厚Hを薄くすると低温側にシフトする。そして、上述したように、ネール温度より低温側においてヤング率の変化が大きいことから低温側の周波数温度特性を平坦に近づける数式を導出する。   It is known that the Neel temperature changes with changes in compressive stress and extensional stress due to differences in film thickness. Specifically, the Neel temperature of Cr thinned compared with solid Cr shifts to the low temperature side within a range of several tens of degrees Celsius. When the Cr film thickness H is increased, the Neel temperature is shifted to a higher temperature side, and when the Cr film thickness H is decreased, the Neel temperature is shifted to a lower temperature side. As described above, since the change in Young's modulus is larger on the low temperature side than the Neel temperature, a mathematical formula that brings the frequency-temperature characteristics on the low temperature side closer to flatness is derived.

そこで、低温側で最も周波数偏差の変動が小さい温度特性となる頂点温度と、Cr膜厚Hと、の条件を導出するため、数式(4)を温度Tで微分し、−40℃〜10℃の中間温度である−15℃をTに代入してCr膜厚Hを算出する数式(6)を導出する。   Therefore, in order to derive the condition of the apex temperature at which the variation in frequency deviation is the smallest on the low temperature side and the Cr film thickness H, Equation (4) is differentiated by the temperature T, and −40 ° C. to 10 ° C. Substituting −15 ° C., which is an intermediate temperature, into T, Equation (6) for calculating the Cr film thickness H is derived.

なお、−15℃を選択した理由は、図5,6の温度特性曲線から、−15℃で温度特性曲線が平坦に近い温度特性となれば、温度特性曲線の変極点より低温側において平坦な温度特性が得られると判断したためである。また、頂点温度Tpは、前述した特許文献1の−40℃〜+100℃の温度範囲における周波数偏差170ppmよりも周波数偏差が小さくなる+35℃〜+85℃の範囲に限定する。   The reason for selecting −15 ° C. is that if the temperature characteristic curve becomes nearly flat at −15 ° C. from the temperature characteristic curves of FIGS. 5 and 6, the temperature characteristic curve is flat on the low temperature side from the inflection point of the temperature characteristic curve. This is because it has been determined that temperature characteristics can be obtained. Further, the apex temperature Tp is limited to a range of + 35 ° C. to + 85 ° C. in which the frequency deviation is smaller than the frequency deviation of 170 ppm in the temperature range of −40 ° C. to + 100 ° C. of Patent Document 1 described above.

H=−1.25×10-1×Tp2+25.2×Tp+424 (6)
数式(6)を用いた計算結果を表1及び図7に表す。
H = −1.25 × 10 −1 × Tp 2 + 25.2 × Tp + 424 (6)
The calculation results using the formula (6) are shown in Table 1 and FIG.

Figure 2011229100
Figure 2011229100

図7は、周波数偏差が170ppmとなるCr膜厚Hと頂点温度Tpとの関係を示すグラフである。横軸に頂点温度Tp[℃]、縦軸にCr膜厚H[Å]を表している。図7から頂点温度Tpが35℃〜85℃の範囲、Cr膜厚Hが1155Å〜1667Åの範囲において、頂点温度TpとCr膜厚Hを設定することにより標準偏差が170ppmよりも小さい領域が得られる。   FIG. 7 is a graph showing the relationship between the Cr film thickness H at which the frequency deviation is 170 ppm and the apex temperature Tp. The abscissa represents the apex temperature Tp [° C.], and the ordinate represents the Cr film thickness H [Å]. From FIG. 7, when the vertex temperature Tp is in the range of 35 ° C. to 85 ° C. and the Cr film thickness H is in the range of 1155 mm to 1667 mm, an area where the standard deviation is smaller than 170 ppm is obtained by setting the vertex temperature Tp and Cr film thickness H. It is done.

しかし、表1及び図7に示すように、適切な頂点温度TpとCr膜厚Hとの適切な組み合わせは一点ずつとなり、Cr膜厚Hの範囲が狭くなってしまうため、頂点温度Tpに対応して温度特性が平坦に近づき、周波数偏差が170ppmになるCr膜厚Hに対する許容範囲をΔHとして数式(6)に加えた計算式を導出する。   However, as shown in Table 1 and FIG. 7, an appropriate combination of the appropriate apex temperature Tp and the Cr film thickness H is one point at a time, and the range of the Cr film thickness H becomes narrow, so that it corresponds to the apex temperature Tp. Then, a calculation formula is derived by adding ΔH to the allowable range for the Cr film thickness H at which the temperature characteristic approaches flat and the frequency deviation becomes 170 ppm, and is added to Formula (6).

H=−1.25×10-1×Tp2+25.2×Tp+424+ΔH (7) H = −1.25 × 10 −1 × Tp 2 + 25.2 × Tp + 424 + ΔH (7)

そして、許容範囲ΔHを求める計算式を導出する。なお、許容範囲ΔHは、厚くなる方向(ΔH(+)と表す)と、薄くなる方向(ΔH(−)と表す)があるため、それぞれ分けて数式化する。   Then, a calculation formula for obtaining the allowable range ΔH is derived. The allowable range ΔH has a direction of increasing thickness (represented as ΔH (+)) and a direction of decreasing thickness (represented as ΔH (−)), and is therefore divided into equations.

ΔH(+)=−2.31×10-1×Tp2+37.7×Tp+352 (8) ΔH (+) = − 2.31 × 10 −1 × Tp 2 + 37.7 × Tp + 352 (8)

ΔH(−)=−1.91×10-2×Tp2+12.8×Tp+496 (9) ΔH (−) = − 1.91 × 10 −2 × Tp 2 + 12.8 × Tp + 496 (9)

上記数式(8)及び数式(9)を用いてCr膜厚を計算した結果を表2及び図8に表す。   The results of calculating the Cr film thickness using the above formula (8) and formula (9) are shown in Table 2 and FIG.

Figure 2011229100
Figure 2011229100

図8は、数式(8)、数式(9)を用いて計算したCr膜厚Hと頂点温度Tpとの関係を示すグラフである。横軸に頂点温度Tp[℃]、縦軸にCr膜厚H[Å]を表し、上段のグラフはH+ΔH(+)、下段のグラフはH+ΔH(−)、中段のグラフはCr膜厚Hの中央値を表している。図8から、Cr膜厚Hは、頂点温度Tpに対して数式(8)と数式(9)とで計算される範囲のばらつきが許容できることを示している。つまり、ばらつきを含めて頂点温度Tpに対して周波数偏差が170ppmに収まるCr膜厚Hの範囲を見出すことができる。   FIG. 8 is a graph showing the relationship between the Cr film thickness H calculated using Equation (8) and Equation (9) and the apex temperature Tp. The abscissa represents the apex temperature Tp [° C.], the ordinate represents the Cr film thickness H [Å], the upper graph represents H + ΔH (+), the lower graph represents H + ΔH (−), and the middle graph represents the Cr film thickness H. Represents the median. From FIG. 8, it is shown that the Cr film thickness H allows the variation in the range calculated by the formula (8) and the formula (9) with respect to the vertex temperature Tp. That is, it is possible to find a range of the Cr film thickness H in which the frequency deviation is within 170 ppm with respect to the vertex temperature Tp including variation.

例えば、頂点温度Tpが35℃の場合には、Cr膜厚Hが、920Å〜1390Åの範囲で周波数偏差170ppmが得られる。   For example, when the apex temperature Tp is 35 ° C., a frequency deviation of 170 ppm is obtained when the Cr film thickness H is in the range of 920 to 1390 °.

続いて、数式(6)を用いて頂点温度TpとCr膜厚Hの条件における温度特性について説明する。
図9は、−15℃で温度特性がほほ平坦となる頂点温度TpとCr膜厚Hをパラメーターとして表す温度特性曲線である。横軸に温度T[℃]、縦軸に周波数偏差[ppm]を表す。なお、図9は、最適な頂点温度Tpと、この頂点温度Tpに対する最適なCr膜厚Hの組み合わせの温度特性曲線を表している。
Next, temperature characteristics under the conditions of the vertex temperature Tp and the Cr film thickness H will be described using Equation (6).
FIG. 9 is a temperature characteristic curve that represents the apex temperature Tp and the Cr film thickness H at which the temperature characteristic becomes substantially flat at −15 ° C. as parameters. The horizontal axis represents temperature T [° C.] and the vertical axis represents frequency deviation [ppm]. FIG. 9 represents a temperature characteristic curve of a combination of the optimum vertex temperature Tp and the optimum Cr film thickness H with respect to this vertex temperature Tp.

図9に示すように、動作温度範囲の−40℃〜+100℃の範囲で周波数偏差は170ppm以下である。また、10℃以下において、温度特性曲線がほぼ平坦になっていることが分かる。
また、図中に示す温度特性を改善する手段を持たない従来音叉振動片の周波数偏差よりも格段に温度特性が改善されている。
As shown in FIG. 9, the frequency deviation is 170 ppm or less in the operating temperature range of −40 ° C. to + 100 ° C. It can also be seen that the temperature characteristic curve is almost flat at 10 ° C. or lower.
Further, the temperature characteristic is remarkably improved as compared with the frequency deviation of the conventional tuning fork vibrating piece without means for improving the temperature characteristic shown in the figure.

従って、本実施形態によれば、頂点温度Tpの影響による周波数偏差Δf0と、Cr膜厚Hの影響による周波数偏差Δf1,Δf2と、をそれぞれ数式化し、Δf0とΔf1、Δf0とΔf2とを足し合わせることにより、周波数温度特性を改善することができる。   Therefore, according to the present embodiment, the frequency deviation Δf0 due to the influence of the apex temperature Tp and the frequency deviations Δf1 and Δf2 due to the influence of the Cr film thickness H are respectively expressed as mathematical formulas, and Δf0 and Δf1, and Δf0 and Δf2 are added together. Thus, the frequency temperature characteristic can be improved.

また、周波数偏差は、高温側では頂点温度Tpに依存し、低温側ではCr膜厚Hに依存する割合が大きいため、Δf1とΔf2は、それぞれ変極点の低温側と高温側とに分けて数式を導出しているので、従来技術よりも広い動作温度範囲内において、良好な周波数温度特性が得られる。   Further, since the frequency deviation depends on the apex temperature Tp on the high temperature side and largely depends on the Cr film thickness H on the low temperature side, Δf1 and Δf2 are respectively divided into the low temperature side and the high temperature side of the inflection point. Therefore, good frequency temperature characteristics can be obtained within a wider operating temperature range than the prior art.

特に、従来技術では困難であった低温側の温度特性曲線を平坦に近づけることができ、優れた周波数温度特性を有する振動片を実現できる。   In particular, the temperature characteristic curve on the low temperature side, which was difficult with the prior art, can be made almost flat, and a resonator element having excellent frequency temperature characteristics can be realized.

また、下地層としてCrを用いており、Crのネール温度が振動片10の動作温度範囲(−40℃〜100℃)にあるため、動作温度範囲にヤング率の極値または変極点が現れることになり、周波数温度特性の改善を確実に成すことができる。
なお、Cr及びAu‐Cr合金などは、従来より水晶に対するコンタクトメタルとして用いられてきているため、水晶との密着性がよく、また製造工程における負担が小さい。
Moreover, since Cr is used as the underlayer and the Neel temperature of Cr is in the operating temperature range (−40 ° C. to 100 ° C.) of the resonator element 10, an extreme value or inflection point of Young's modulus appears in the operating temperature range. Thus, the frequency temperature characteristics can be improved reliably.
In addition, since Cr and Au—Cr alloy have been conventionally used as a contact metal for quartz, the adhesion to the quartz is good and the burden in the manufacturing process is small.

また上記実施形態では、温度特性補正部を構成する金属としてCrやCrを主体とした合金を例に挙げて説明したが、キュリー温度やネール温度が振動子の動作温度範囲内にあるものであれば、他の部材を用いても良い。
(振動子)
In the above-described embodiment, Cr or an alloy mainly composed of Cr is used as an example of the metal constituting the temperature characteristic correction unit, but the Curie temperature or the Neel temperature is within the operating temperature range of the vibrator. For example, other members may be used.
(Vibrator)

次に、前述した振動片10を用いた振動子の1例について図面を参照して説明する。
図10は、振動子の概略構成を示す断面図である。振動子100は、前述した振動片10と、この振動片10を収容するパッケージベース110、およびパッケージベース110の開口部を封止するリッド120とを主な構成要素としている。
Next, an example of a vibrator using the above-described vibrating piece 10 will be described with reference to the drawings.
FIG. 10 is a cross-sectional view showing a schematic configuration of the vibrator. The vibrator 100 mainly includes the above-described vibration piece 10, a package base 110 that accommodates the vibration piece 10, and a lid 120 that seals an opening of the package base 110.

パッケージベース110は、セラミックグリーンシート等を積層して焼成した箱体であり、凹状に形成されたキャビティ内部には、振動片10を実装するための内部実装電極112が形成されている。パッケージベース110の外部の底面に、外部実装端子114が形成されている。外部実装端子114は、図示しないスルーホール等を介して内部実装電極112と電気的に接続されている。   The package base 110 is a box body obtained by laminating and firing ceramic green sheets and the like, and an internal mounting electrode 112 for mounting the resonator element 10 is formed inside a cavity formed in a concave shape. External mounting terminals 114 are formed on the bottom surface outside the package base 110. The external mounting terminal 114 is electrically connected to the internal mounting electrode 112 through a not-shown through hole or the like.

リッド120は、本実施形態の場合には平板状を成す。構成部材としては、金属またはガラスが採用されることが多い。いずれの部材を採用する場合であっても、線膨張係数がパッケージベース110の構成部材と近似したものを採用することが望ましい。   In the present embodiment, the lid 120 has a flat plate shape. As the constituent member, a metal or glass is often employed. Whichever member is employed, it is desirable to employ a member whose linear expansion coefficient approximates that of the component of the package base 110.

上記のような構成のパッケージベース110内に振動片10を実装する。振動片10の実装には、導電性接着剤116を用いる。導電性接着剤116を内部実装電極112に塗布し、塗布した導電性接着剤116に対して振動片10の入出力電極を接合させる。   The resonator element 10 is mounted in the package base 110 configured as described above. A conductive adhesive 116 is used for mounting the resonator element 10. A conductive adhesive 116 is applied to the internal mounting electrode 112, and the input / output electrodes of the resonator element 10 are joined to the applied conductive adhesive 116.

振動片10を実装したパッケージベース110の開口部を封止する際、リッド120は接合部材118を介して接合される。接合部材118は、リッド120を構成する部材により異なる。例えばリッド120が金属であった場合、接合部材118には低融点金属で構成されたシールリングを用いる。一方、リッド120がガラスであった場合、接合部材118には低融点ガラスを採用する。   When the opening of the package base 110 on which the resonator element 10 is mounted is sealed, the lid 120 is bonded via the bonding member 118. The joining member 118 differs depending on the members constituting the lid 120. For example, when the lid 120 is a metal, a seal ring made of a low melting point metal is used for the joining member 118. On the other hand, when the lid 120 is made of glass, low-melting glass is used for the bonding member 118.

パッケージベース110とリッド120で構成される空間は、減圧状態または真空状態を保持できるように気密封止されている。   A space formed by the package base 110 and the lid 120 is hermetically sealed so as to maintain a reduced pressure state or a vacuum state.

このように構成される振動子100は、外部実装端子114を介した外部からの駆動信号により振動片が励振され、所定の周波数(例えば、32kHz)で発振(共振)する。   In the vibrator 100 configured as described above, the resonator element is excited by a driving signal from the outside via the external mounting terminal 114, and oscillates (resonates) at a predetermined frequency (for example, 32 kHz).

前述したように、振動子100は、前述した頂点温度Tp及びCr膜厚Hを有する振動片10は周波数温度特性が改善されており、広い温度範囲において高い信頼性を持つ振動子100とすることができる。   As described above, in the resonator 100, the resonator element 10 having the above-described vertex temperature Tp and Cr film thickness H has improved frequency temperature characteristics, and the resonator 100 has high reliability in a wide temperature range. Can do.

また、振動片10は、パッケージ内に収納され、パッケージ内において、真空環境で振動されることで、より一層安定した振動を長期間にわたって維持することができる。また、パッケージ内に収納されることで、扱いやすいうえ、湿度など外部環境から振動片を保護することができる。   Further, the vibrating piece 10 is housed in a package, and can be maintained in a package in a vacuum environment to maintain a more stable vibration over a long period of time. Further, by being housed in the package, it is easy to handle, and the resonator element can be protected from the external environment such as humidity.

10…振動片、11…振動体、12…基部、14a,14b…振動腕、24a,24b…Cr層。   DESCRIPTION OF SYMBOLS 10 ... Vibrating piece, 11 ... Vibrating body, 12 ... Base part, 14a, 14b ... Vibrating arm, 24a, 24b ... Cr layer.

Claims (6)

基部と、前記基部から平行に延在され逆相で屈曲振動をする複数の振動腕と、を有する振動体と、
前記振動体の表面に設けられ、ヤング率または熱膨張係数が変極点となる温度を有し、前記変極点となる温度が前記振動体の動作温度範囲内にある下地層と、
を有し、
前記振動体の温度特性曲線の頂点温度に依存する周波数偏差と、前記下地層の膜厚に依存する周波数偏差と、を足し合わせて周波数偏差の温度特性曲線を生成することを特徴とする振動片。
A vibrating body having a base and a plurality of vibrating arms extending in parallel from the base and performing flexural vibrations in opposite phases;
An underlayer provided on the surface of the vibrating body, having a temperature at which the Young's modulus or thermal expansion coefficient becomes an inflection point, and the temperature at which the inflection point is within an operating temperature range of the vibrating body;
Have
A vibration piece characterized by adding a frequency deviation depending on a vertex temperature of a temperature characteristic curve of the vibrating body and a frequency deviation depending on a film thickness of the underlayer to generate a temperature characteristic curve of the frequency deviation. .
請求項1に記載の振動片において、
前記下地層が、CrまたはAu−Cr合金からなることを特徴とする振動片。
The resonator element according to claim 1,
The resonator element, wherein the underlayer is made of Cr or an Au-Cr alloy.
請求項1または請求項2に記載の振動片において、
前記振動体が水晶からなり、
前記振動体の周波数偏差をΔf0と表し、
前記変極点となる温度以下の前記動作温度範囲の前記下地層の膜厚に依存する周波数偏差をΔf1と表すと、
前記変極点となる温度以下の前記動作温度範囲における前記振動体の周波数偏差Δf3が、
Δf3=Δf0+Δf1で表されることを特徴とする振動片。
In the resonator element according to claim 1 or 2,
The vibrating body is made of crystal,
The frequency deviation of the vibrating body is expressed as Δf0,
When the frequency deviation depending on the film thickness of the underlayer in the operating temperature range below the temperature that becomes the inflection point is expressed as Δf1,
The frequency deviation Δf3 of the vibrating body in the operating temperature range below the temperature that becomes the inflection point is
A vibrating piece characterized by Δf3 = Δf0 + Δf1.
請求項1または請求項3のいずれか一項に記載の振動片において、
前記振動体の周波数偏差をΔf0と表し、
前記変極点となる温度以上の前記動作温度範囲の前記下地層の膜厚に依存する周波数偏差をΔf2と表すと、
前記変極点となる温度以上の前記動作温度範囲における前記振動腕の周波数偏差Δf4が、
Δf4=Δf0+Δf2で表されることを特徴とする振動片。
In the resonator element according to any one of claims 1 and 3,
The frequency deviation of the vibrating body is expressed as Δf0,
When the frequency deviation depending on the film thickness of the underlayer in the operating temperature range equal to or higher than the temperature that becomes the inflection point is expressed as Δf2,
The frequency deviation Δf4 of the vibrating arm in the operating temperature range equal to or higher than the temperature that becomes the inflection point is
A vibrating piece characterized by Δf4 = Δf0 + Δf2.
請求項1ないし請求項4のいずれか一項に記載の振動片において、
前記下地層の膜厚をH、前記膜厚の許容範囲をΔH、前記頂点温度をTpで表すとき、前記膜厚Hが、
H=−1.25×101×Tp2+25.2×Tp+424+ΔH
で表されることを特徴とする振動片。
In the resonator element according to any one of claims 1 to 4,
When the thickness of the underlayer is H, the allowable range of the thickness is ΔH, and the apex temperature is Tp, the thickness H is
H = −1.25 × 10 1 × Tp 2 + 25.2 × Tp + 424 + ΔH
It is represented by the vibration piece characterized by.
請求項1ないし請求項5のいずれか一項に記載の振動片が、パッケージの内部に実装されていることを特徴とする振動子。   A vibrator, wherein the resonator element according to claim 1 is mounted inside a package.
JP2010099521A 2010-04-23 2010-04-23 Vibration piece and vibrator Pending JP2011229100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099521A JP2011229100A (en) 2010-04-23 2010-04-23 Vibration piece and vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099521A JP2011229100A (en) 2010-04-23 2010-04-23 Vibration piece and vibrator

Publications (1)

Publication Number Publication Date
JP2011229100A true JP2011229100A (en) 2011-11-10

Family

ID=45043923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099521A Pending JP2011229100A (en) 2010-04-23 2010-04-23 Vibration piece and vibrator

Country Status (1)

Country Link
JP (1) JP2011229100A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440589A (en) * 1977-09-07 1979-03-30 Seiko Epson Corp Crystal vibrator of tuning fork type
JPS63316912A (en) * 1987-06-19 1988-12-26 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrator
JPH11284484A (en) * 1998-03-26 1999-10-15 Toyo Commun Equip Co Ltd Uhf band fundamental frequency crystal oscillator and its filter
JP2000307164A (en) * 1999-04-21 2000-11-02 Matsushita Electric Ind Co Ltd Thin-plate piezoelectric element, piezoelectric acoustic element formed using the same, piezoelectric vibrator, piezoelectric actuator, piezoelectric transformer, and cold-cathode fluorescent lamp provided therewith
JP2005136499A (en) * 2003-10-28 2005-05-26 Seiko Epson Corp Piezoelectric resonator element, piezoelectric device, method of manufacturing them, cellular phone device utilizing piezoelectric device, and electronic equipment utilizing piezoelectric device
JP2005151423A (en) * 2003-11-19 2005-06-09 Seiko Epson Corp Piezoelectric vibration chip and piezoelectric device and method of manufacturing them, and mobile telephone apparatus using piezoelectric device, and electronic apparatus using piezoelectric device
JP2005197946A (en) * 2004-01-06 2005-07-21 Seiko Epson Corp Tuning fork type crystal resonator
JP2005204253A (en) * 2004-01-19 2005-07-28 Toyo Commun Equip Co Ltd Uhf band fundamental wave at cut crystal oscillating element
JP2008048275A (en) * 2006-08-18 2008-02-28 Epson Toyocom Corp Piezoelectric vibrating piece and piezoelectric device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440589A (en) * 1977-09-07 1979-03-30 Seiko Epson Corp Crystal vibrator of tuning fork type
JPS63316912A (en) * 1987-06-19 1988-12-26 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrator
JPH11284484A (en) * 1998-03-26 1999-10-15 Toyo Commun Equip Co Ltd Uhf band fundamental frequency crystal oscillator and its filter
JP2000307164A (en) * 1999-04-21 2000-11-02 Matsushita Electric Ind Co Ltd Thin-plate piezoelectric element, piezoelectric acoustic element formed using the same, piezoelectric vibrator, piezoelectric actuator, piezoelectric transformer, and cold-cathode fluorescent lamp provided therewith
JP2005136499A (en) * 2003-10-28 2005-05-26 Seiko Epson Corp Piezoelectric resonator element, piezoelectric device, method of manufacturing them, cellular phone device utilizing piezoelectric device, and electronic equipment utilizing piezoelectric device
JP2005151423A (en) * 2003-11-19 2005-06-09 Seiko Epson Corp Piezoelectric vibration chip and piezoelectric device and method of manufacturing them, and mobile telephone apparatus using piezoelectric device, and electronic apparatus using piezoelectric device
JP2005197946A (en) * 2004-01-06 2005-07-21 Seiko Epson Corp Tuning fork type crystal resonator
JP2005204253A (en) * 2004-01-19 2005-07-28 Toyo Commun Equip Co Ltd Uhf band fundamental wave at cut crystal oscillating element
JP2008048275A (en) * 2006-08-18 2008-02-28 Epson Toyocom Corp Piezoelectric vibrating piece and piezoelectric device

Similar Documents

Publication Publication Date Title
US8736152B2 (en) Piezoelectric vibrating pieces and associated devices exhibiting enhanced electrical field
JP4026074B2 (en) Crystal unit, crystal unit and crystal oscillator
KR101074975B1 (en) Flexural vibration piece, flexural vibrator, and electronic device
JP5168003B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2010252302A (en) Bending vibrator piece and oscillator using the same
JP2010252303A (en) Bending vibrator piece and oscillator using the same
JP2012019441A (en) Vibration piece, vibrator, and oscillator
JP5446839B2 (en) Vibrating piece and vibrator
JP5428068B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JP5013250B2 (en) Acceleration sensor
JP5699809B2 (en) Piezoelectric vibrating piece
JP5135566B2 (en) Quartz crystal unit, crystal unit, crystal oscillator, and method of manufacturing the same
JP2010233204A (en) Resonator element and oscillator
JP2011229100A (en) Vibration piece and vibrator
JP2013005424A (en) Vibration piece, vibrator, oscillator and electronic apparatus
JP4836016B2 (en) Quartz crystal unit, crystal unit and crystal oscillator manufacturing method, crystal unit, crystal unit and crystal oscillator
JP4411495B2 (en) Crystal unit with a bent crystal unit
JP4411494B2 (en) Crystal oscillator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP2014068369A (en) Vibration piece, vibrator, and oscillator
JP5679430B2 (en) Combined temperature compensated crystal oscillator
JP2010219992A (en) Vibrating reed and vibrator
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof
JP4556201B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JP4411496B2 (en) Portable device equipped with crystal oscillator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125