JP2011228149A - Ebullient cooling type led lighting device - Google Patents

Ebullient cooling type led lighting device Download PDF

Info

Publication number
JP2011228149A
JP2011228149A JP2010097514A JP2010097514A JP2011228149A JP 2011228149 A JP2011228149 A JP 2011228149A JP 2010097514 A JP2010097514 A JP 2010097514A JP 2010097514 A JP2010097514 A JP 2010097514A JP 2011228149 A JP2011228149 A JP 2011228149A
Authority
JP
Japan
Prior art keywords
heat
light source
led lighting
source unit
heat receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097514A
Other languages
Japanese (ja)
Inventor
Yasushi Tanida
安 谷田
Yasushi Hiramoto
靖司 平本
Takuya Kitazono
卓也 北園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010097514A priority Critical patent/JP2011228149A/en
Publication of JP2011228149A publication Critical patent/JP2011228149A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ebullient cooling type LED lighting device capable of stably cooling a light source unit through prevention of dry out.SOLUTION: In the ebullient cooling type LED lighting device structured by including a light source unit 3 with an LED 9 as a light source, an ebullient cooling unit 5 equipped with a heat-receiving part 12 receiving heat from the light source unit 3, a heat-radiating part 13 radiating heat received at the heat-receiving part 12 toward outside, and a circulation route for circulating cooling media between the heat-radiating part 13 and the heat-receiving part 12, and a housing for containing the ebullient cooling unit 5 and the light source unit 3, the heat-radiating part 13 of the ebullient cooling unit 5 is arranged at an upper end of the heat-receiving part 12 shifted sideways. To be more concrete, the heat-radiating part 13 of the ebullient cooling unit 5 is arranged at a side positioned further upward than the heat-receiving part 12 in the case the latter 12 is leaned against the vertical direction.

Description

本発明は、冷媒の相変化によって高い冷却能力を発揮する沸騰冷却方式を採用した沸騰冷却式LED照明装置に関するものである。   The present invention relates to a boil-cooled LED lighting device that employs a boil-cooling system that exhibits high cooling capacity by phase change of a refrigerant.

近年、車両用前照灯や屋外照明灯等の照明装置としては、キセノンランプやナトリウムランプ等の大光量ランプを光源とするものから、長寿命で低消費電力のLEDを光源とするものへの置き換えが進んでおり、LEDを光源とするLED照明装置に対しては更なる高出力化が望まれている。   In recent years, lighting devices such as vehicular headlamps and outdoor lighting lamps have been changed from those using a high-intensity lamp such as a xenon lamp or sodium lamp as a light source to those using a long-life and low-power consumption LED as a light source. Replacement is progressing, and higher output is desired for LED lighting devices using LEDs as light sources.

ところで、現在普及しているキセノンランプは200W〜2000W程度の出力のものが多く、これに代わるLED照明装置への投入電力も増加していく傾向にあり、最近では1つのLED照明装置への投入電力が200Wを超えるものも開発されてきている。   By the way, currently popular xenon lamps have a large output of about 200 W to 2000 W, and the power input to the LED lighting device as a substitute for this tends to increase. Recently, the power input to one LED lighting device is increasing. The thing whose electric power exceeds 200W has been developed.

斯かるLED照明装置の大電力化に伴ってLED光源ユニットの発熱量も増加するため、温度によって寿命や出力が変化するLED光源においては、温度をより低く安定して駆動するための冷却構造が重要な開発課題となっている。   Since the amount of heat generated by the LED light source unit increases as the power of the LED lighting device increases, a cooling structure for driving the temperature lower and stably in an LED light source whose life and output change depending on the temperature. It is an important development issue.

例えば特許文献1には、水冷式のLED照明装置が提案されている。この水冷式LED照明装置は、LED光源の熱を液冷によって冷却する方式を採用するものであって、LED光源と該LED光源からの熱を冷媒液に受熱させる水冷ジャケットによって構成される灯体部と、受熱した冷媒液を外部空気に放熱するラジエータとファンによって構成される放熱部と、冷媒液を循環経路内で循環させるポンプを備えている。   For example, Patent Document 1 proposes a water-cooled LED lighting device. This water-cooled LED lighting apparatus employs a method of cooling the heat of an LED light source by liquid cooling, and is a lamp body constituted by an LED light source and a water-cooled jacket that receives heat from the LED light source by a refrigerant liquid. A radiator that radiates the received refrigerant liquid to the outside air and a fan, and a pump that circulates the refrigerant liquid in the circulation path.

このような水冷式LED照明装置によれば、冷媒液が灯体部から受熱した後に放熱部へと流れ、該放熱部において外気に放熱した後に灯体部に戻る循環動作を繰り返すことによって灯体部が冷却されるため、LED光源の高出力化と高寿命化が可能となるとともに、ラジエータによって効率良く放熱されるために放熱部の小型化と軽量化が可能となる。   According to such a water-cooled LED lighting device, the coolant liquid flows from the lamp body to the heat radiating section after receiving heat from the lamp body section, and repeats a circulation operation to return to the lamp body section after radiating heat to the outside air in the heat radiating section. Since the part is cooled, the LED light source can have high output and long life, and the radiator can efficiently dissipate heat, so that the heat dissipating part can be reduced in size and weight.

ところが、特許文献1において提案された上記水冷式LED照明装置では、水冷ジャケット内を循環する冷媒液の経路によって、特に冷媒液の入口と出口とで大きな温度差を生じる場合があり、複数のLEDを配列して成るLED光源全体の温度が不均一となり、LEDの発光効率と寿命にバラツキが生じるという問題が発生する可能性がある。この場合の温度差は、水冷ジャケットの受熱量と受熱面積が大きいほど大きくなる傾向にある。   However, in the water-cooled LED lighting device proposed in Patent Document 1, a large temperature difference may occur between the coolant liquid inlet and the outlet, particularly depending on the path of the coolant liquid circulating in the water-cooling jacket. There is a possibility that the temperature of the entire LED light source formed by arranging the LED becomes non-uniform, resulting in a variation in the luminous efficiency and lifetime of the LED. In this case, the temperature difference tends to increase as the heat receiving amount and the heat receiving area of the water cooling jacket increase.

又、ポンプによって冷媒液が循環経路を循環するため、何らかの原因でポンプが停止した場合には冷媒液の循環も停止し、水冷ジャケットが断熱状態となって深刻な故障に繋がる可能性がある。   In addition, since the refrigerant liquid circulates in the circulation path by the pump, when the pump stops for some reason, the circulation of the refrigerant liquid also stops, and the water cooling jacket may be insulative, leading to a serious failure.

更に、灯体部と放熱部とがブチルゴム等から成るゴムホースによって連結されているため、ゴムホースから冷媒液が蒸発し、その蒸発量を補うためのリザーブタンクを循環経路内に設ける必要がある。このリザーブタンクのサイズは、メンテナンス間隔によっても異なるが、メンテナンス間隔を長くするには大きなサイズのリザーブタンクが必要になり、LED照明装置が大型化及び高重量化するという問題が発生する。   Furthermore, since the lamp unit and the heat radiating unit are connected by a rubber hose made of butyl rubber or the like, it is necessary to provide a reserve tank in the circulation path for evaporating the refrigerant liquid from the rubber hose and compensating for the evaporation amount. Although the size of the reserve tank varies depending on the maintenance interval, a large reserve tank is required to lengthen the maintenance interval, which causes a problem that the LED lighting device is increased in size and weight.

そこで、本出願人は、冷媒の相変化によって高い冷却能力を発揮する沸騰冷却方式を採用した図9に示すような沸騰冷却式LED照明装置101を先に提案した(特願2009−265876において)。   Therefore, the present applicant has previously proposed a boil-cooled LED lighting device 101 as shown in FIG. 9 that employs a boil-cooling system that exhibits a high cooling capacity by the phase change of the refrigerant (in Japanese Patent Application No. 2009-265876). .

図9は本出願人が先に提案した沸騰冷却式LED照明装置の縦断面図であり、図示の沸騰冷却式LED照明装置101は、矩形ボックス状のハウジング102の内部に光源ユニット103、LED駆動回路104、沸騰冷却器105及びファン106を組み込んで構成されている。   FIG. 9 is a longitudinal sectional view of the boiling cooling type LED lighting apparatus previously proposed by the present applicant. The boiling cooling type LED lighting apparatus 101 shown in FIG. 9 includes a light source unit 103 and an LED drive inside a rectangular box-shaped housing 102. The circuit 104, the boiling cooler 105, and the fan 106 are incorporated.

上記沸騰冷却器105は、エバポレータとしての受熱部112と、該受熱部112の上方に配されたコンデンサとしての放熱部113と、該放熱部113と前記受熱部112間において冷媒を循環させる循環経路を含んで構成されている。ここで、上記受熱部112は、ジャケット構造を有する偏平な矩形の中空プレートによって構成されており、ハウジング102内に垂直に起立した状態で収納されている。この受熱部112の内部には冷媒が収容されており、その前面には前記光源ユニット103が密着した状態で配置され、背面には前記LED駆動回路104が密着した状態で配置されている。即ち、受熱部112は、光源ユニット103とLED駆動回路104によって挟持された状態で両者の間に配置されている。   The boiling cooler 105 includes a heat receiving portion 112 as an evaporator, a heat radiating portion 113 as a condenser disposed above the heat receiving portion 112, and a circulation path for circulating a refrigerant between the heat radiating portion 113 and the heat receiving portion 112. It is comprised including. Here, the heat receiving portion 112 is configured by a flat rectangular hollow plate having a jacket structure, and is housed in a vertically standing state in the housing 102. A refrigerant is accommodated inside the heat receiving portion 112, the light source unit 103 is disposed in close contact with the front surface, and the LED drive circuit 104 is disposed in close contact with the back surface. That is, the heat receiving unit 112 is disposed between the light source unit 103 and the LED drive circuit 104 while being sandwiched between them.

又、前記放熱部113は、多数の冷却フィンを有してラジエータ構造として幅方向に長く形成されており、これはハウジング102の上端部において受熱部112を境としてこれの両側(前後)に配されている。   The heat dissipating part 113 has a large number of cooling fins and is formed long in the width direction as a radiator structure, which is arranged on both sides (front and rear) of the upper end of the housing 102 with the heat receiving part 112 as a boundary. Has been.

前記ファン106は、沸騰冷却器105の受熱部112を挟んでこれの両側であって、上下方向において光源ユニット103と放熱部113との間及びLED駆動回路104と放熱部113との間にそれぞれ配設されている。   The fan 106 is on both sides of the heat receiving portion 112 of the boiling cooler 105, and between the light source unit 103 and the heat radiating portion 113 and between the LED drive circuit 104 and the heat radiating portion 113 in the vertical direction. It is arranged.

而して、以上のように構成された沸騰冷却式LED照明装置101が起動されて光源ユニット103とLED駆動回路104及びファン106に電源が供給されると、光源ユニット103の複数のLEDが発光し、その光はレンズ107を透過して正面前方に向かって照射されることによって前方を照明するが、光源ユニット103の点灯制御はLED駆動回路104によってなされ、駆動中において光源ユニット103のLED及びLED駆動回路104の各種電子部品が発熱するが、これらは沸騰冷却器105によって強制冷却されてその温度上昇が抑えられる。   Thus, when the boiling cooling type LED lighting apparatus 101 configured as described above is activated and power is supplied to the light source unit 103, the LED drive circuit 104, and the fan 106, a plurality of LEDs of the light source unit 103 emit light. The light passes through the lens 107 and is irradiated toward the front of the front side to illuminate the front. However, the lighting control of the light source unit 103 is performed by the LED drive circuit 104. Various electronic components of the LED drive circuit 104 generate heat, but these are forcibly cooled by the boiling cooler 105 and the temperature rise is suppressed.

即ち、沸騰冷却器105の受熱部112においては、光源ユニット103及びLED駆動回路410と冷媒との温度差による通常の熱伝導に加えて、冷媒が沸騰(蒸発)して気化するときの蒸発潜熱が光源ユニット103とLED駆動回路104から奪われるため、これらの光源ユニット103とLED駆動回路104が効率良く冷却される。尚、沸騰冷却器510の受熱部112において沸騰して気化した冷媒は、気泡となって上昇し、気泡ポンプ効果によって受熱部112内の液冷媒を放熱部113へと押し出すため、循環経路には冷媒の循環流が発生する。   That is, in the heat receiving part 112 of the boiling cooler 105, in addition to normal heat conduction due to the temperature difference between the light source unit 103 and the LED drive circuit 410 and the refrigerant, the latent heat of vaporization when the refrigerant boils (evaporates) and vaporizes. Are deprived from the light source unit 103 and the LED drive circuit 104, so that the light source unit 103 and the LED drive circuit 104 are efficiently cooled. The refrigerant boiled and vaporized in the heat receiving unit 112 of the boiling cooler 510 rises as bubbles and pushes the liquid refrigerant in the heat receiving unit 112 to the heat radiating unit 113 by the bubble pump effect. A circulating flow of refrigerant is generated.

特開2009−129642号公報JP 2009-129642 A

ところが、図9に示した沸騰冷却式LED照明装置101においては、冷媒が重力を利用して循環するため、その向きによって放熱性能が大きく影響を受け易く、沸騰冷却式LED照明装置101の設置方向が限定されてしまうという問題があった。   However, in the boiling cooling type LED lighting apparatus 101 shown in FIG. 9, since the refrigerant circulates using gravity, the heat radiation performance is easily influenced by the direction, and the installation direction of the boiling cooling type LED lighting apparatus 101 is There was a problem that was limited.

即ち、図9に示した沸騰冷却式LED照明装置101においては、沸騰冷却器105の放熱部113がハウジング102内の上部において受熱部112の前後両側に亘って配置されていたため、図10に示すように沸騰冷却式LED照明装置101を垂直に対して例えば前方に図示の角度θだけ傾けると、放熱部113の受熱部112よりも前側の部分に冷媒液が溜まり、受熱部112付近に冷媒液が無くなるためにドライアウトの状態に陥ってしまう。このようなドライアウトが発生すると、冷媒液の循環が滞るために受熱部112から放熱部113への熱の輸送が不可能となってほぼ断熱状態となり、放熱部113の放熱機能が失われて沸騰冷却器105の冷却性能が低下するという問題が発生する。   That is, in the boiling cooling type LED lighting device 101 shown in FIG. 9, since the heat radiating portion 113 of the boiling cooler 105 is arranged on both the front and rear sides of the heat receiving portion 112 in the upper part in the housing 102, as shown in FIG. 10. When the boiling-cooled LED lighting device 101 is tilted forward, for example, by the angle θ shown in the figure with respect to the vertical direction, the refrigerant liquid is accumulated in a portion of the heat radiating portion 113 in front of the heat receiving portion 112, and the refrigerant liquid is near the heat receiving portion 112. Because it disappears, it falls into a dry out state. When such a dry-out occurs, the circulation of the refrigerant liquid is delayed, so that the heat cannot be transported from the heat receiving part 112 to the heat radiating part 113 and the heat radiating function of the heat radiating part 113 is lost. The problem that the cooling performance of the boiling cooler 105 falls occurs.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、ドライアウトの発生を防いで光源ユニットを安定的に冷却することができる沸騰冷却式LED照明装置を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a boil-cooled LED lighting device that can stably cool a light source unit by preventing the occurrence of dryout. .

上記目的を達成するため、請求項1記載の発明は、
LEDを光源とする光源ユニットと、
該光源ユニットから受熱する受熱部、該受熱部で受熱した熱を外気に放熱する放熱部及び該放熱部と前記受熱部間において冷媒を循環させる循環経路を備えた沸騰冷却器と、
該沸騰冷却器と前記光源ユニットを収容するハウジングと、
を含んで構成される沸騰冷却式LED照明装置において、
前記沸騰冷却器の放熱部を受熱部の上端に片側に寄せて配置したことを特徴とする。
In order to achieve the above object, the invention according to claim 1
A light source unit using an LED as a light source;
A heat receiving portion that receives heat from the light source unit, a heat radiating portion that radiates heat received by the heat receiving portion to the outside air, and a boiling cooler that includes a circulation path for circulating a refrigerant between the heat radiating portion and the heat receiving portion;
A housing for housing the boiling cooler and the light source unit;
In a boil-cooled LED lighting device comprising:
The heat dissipating part of the boiling cooler is arranged close to one end at the upper end of the heat receiving part.

請求項2記載の発明は、請求項1記載の発明において、前記沸騰冷却器の放熱部を、前記受熱部を垂直に対して傾けた場合に該受熱部よりも上方に位置する側に配置したことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the heat radiating portion of the boiling cooler is disposed on a side located above the heat receiving portion when the heat receiving portion is inclined with respect to the vertical. It is characterized by that.

請求項3記載の発明は、請求項1又は2記載の発明において、前記沸騰冷却器の受熱部の少なくとも一部に垂直に対して傾斜する傾斜部を設け、該傾斜部の上端に前記放熱部を直角上方に向けて延設するとともに、同傾斜部の片面に前記光源ユニットを密着させて配置したことを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, at least a part of the heat receiving portion of the boiling cooler is provided with an inclined portion that is inclined with respect to the vertical, and the heat radiating portion is provided at an upper end of the inclined portion. And the light source unit is disposed in close contact with one side of the inclined portion.

本発明によれば、沸騰冷却器の放熱部を受熱部の上端に片側に寄せて、例えば受熱部を垂直に対して傾けた場合に該受熱部よりも上方に位置する側に寄せて配置するようにしたため、沸騰冷却式LED照明装置(受熱部)を垂直に対して或る程度の角度まで傾けても液冷媒が放熱部に溜まることがなく、放熱部に液冷媒が溜まることによるドライアウトの発生が防がれ、光源ユニットが沸騰冷却器によって安定的に冷却されてその温度上昇が防がれ、該光源ユニットを構成する各LEDの発光効率及び寿命が高められる。   According to the present invention, the heat radiating part of the boiling cooler is moved to one side to the upper end of the heat receiving part, for example, when the heat receiving part is tilted with respect to the vertical, the heat radiating part is moved closer to the side positioned above the heat receiving part. Therefore, even if the boiling cooling type LED lighting device (heat receiving part) is tilted to a certain angle with respect to the vertical, the liquid refrigerant does not accumulate in the heat radiating part, and the dry out due to the liquid refrigerant accumulating in the heat radiating part. Generation is prevented, the light source unit is stably cooled by the boiling cooler, and the temperature rise is prevented, and the light emission efficiency and life of each LED constituting the light source unit are increased.

本発明に係る沸騰冷却式LED照明装置の斜視図である。It is a perspective view of the boiling cooling type LED lighting apparatus which concerns on this invention. 本発明に係る沸騰冷却式LED照明装置のハウジングを取り外した状態の斜視図である。It is a perspective view of the state where the housing of the boil cooling type LED lighting device concerning the present invention was removed. 本発明に係る沸騰冷却式LED照明装置に備えられた沸騰冷却器の受熱部と放熱部の断面図であって、(a)は垂直に設置された状態を示し、(b)は垂直に対して前側に傾けた状態を示す。It is sectional drawing of the heat receiving part and heat dissipation part of the boiling cooler with which the boiling cooling type LED lighting device which concerns on this invention was equipped, Comprising: (a) shows the state installed vertically, (b) is perpendicular | vertical Shows the state tilted forward. 本発明に係る沸騰冷却式LED照明装置に備えられた沸騰冷却器の作用を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the effect | action of the boiling cooler with which the boiling cooling type LED lighting apparatus which concerns on this invention was equipped. 本発明に係る沸騰冷却式LED照明装置の傾斜角度と放熱性能との関係を従来のものと対比して示す図である。It is a figure which shows the relationship between the inclination angle of the boiling cooling type | mold LED illuminating device which concerns on this invention, and a thermal radiation performance in contrast with the conventional one. 本発明の別形態に係る沸騰冷却式LED照明装置の側面図である。It is a side view of the boiling cooling type LED lighting apparatus which concerns on another form of this invention. 本発明の別形態に係る沸騰冷却式LED照明装置の側断面図である。It is a sectional side view of the boil cooling type LED lighting apparatus which concerns on another form of this invention. 本発明に係る沸騰冷却式LED照明装置の使用形態を示す要部断面図であり、(a)はダウンライトとしての使用形態、(b)はアッパーライトとしての使用形態をそれぞれ示す図である。It is principal part sectional drawing which shows the usage condition of the boiling-cooling type LED illuminating device which concerns on this invention, (a) is a usage pattern as a downlight, (b) is a figure which respectively shows the usage pattern as an upper light. 従来の沸騰冷却式LED照明装置の縦断面図である。It is a longitudinal cross-sectional view of the conventional boiling cooling type LED lighting apparatus. 従来の沸騰冷却式LED照明装置を垂直に対して傾けた状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which inclined the conventional boil cooling type LED lighting apparatus with respect to perpendicular | vertical.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係る沸騰冷却式LED照明装置の斜視図、図2は同沸騰冷却式LED照明装置のハウジングを取り外した状態の斜視図、図3は同沸騰冷却式LED照明装置に備えられた沸騰冷却器の受熱部と放熱部の断面図であって、(a)は垂直に設置された状態を示す図、(b)は垂直に対して前側に傾けた状態を示す図、図4は同沸騰冷却器の作用を説明するための模式的断面図である。   1 is a perspective view of a boil-cooled LED lighting device according to the present invention, FIG. 2 is a perspective view of the boil-cooled LED lighting device with a housing removed, and FIG. 3 is provided in the boil-cooled LED lighting device. FIG. 4 is a cross-sectional view of the heat receiving part and the heat radiating part of the boiling cooler, in which (a) shows a state of being installed vertically, (b) is a figure showing a state of being tilted forward with respect to the vertical, FIG. These are typical sectional drawings for demonstrating the effect | action of the same boiling cooler.

図1に示す沸騰冷却式LED照明装置1は、矩形ボックス状のハウジング2の内部に図2に示す光源ユニット3、LED駆動回路4、沸騰冷却器5及びファン6を組み込んで構成されている。   A boiling cooling type LED lighting apparatus 1 shown in FIG. 1 is configured by incorporating a light source unit 3, an LED drive circuit 4, a boiling cooler 5, and a fan 6 shown in FIG. 2 inside a rectangular box-shaped housing 2.

上記ハウジング2は、PC等の樹脂或いはアルミニウム等の金属で構成されており、図1に示すように、その前面2aには前記光源ユニット3の前方を覆う矩形の透明なレンズ7が嵌め込まれている。又、ハウジング2の上面の略全面には幅方向に長い矩形の排気口8が形成されている。尚、図示しないが、ハウジング2の背面にはルーバー状の複数の吸気口が形成されている。   The housing 2 is made of a resin such as PC or a metal such as aluminum. As shown in FIG. 1, a rectangular transparent lens 7 covering the front of the light source unit 3 is fitted into the front surface 2a. Yes. A rectangular exhaust port 8 that is long in the width direction is formed on substantially the entire upper surface of the housing 2. Although not shown, a plurality of louver-like air inlets are formed on the rear surface of the housing 2.

前記光源ユニット3は、図2に示すように、光源である複数のLED9をLED基板10上にマトリックス状に実装して構成されており、ハウジング2内の前面側に垂直に起立した状態で収納されている。   As shown in FIG. 2, the light source unit 3 is configured by mounting a plurality of LEDs 9 serving as light sources on a LED substrate 10 in a matrix shape, and is housed in a vertically standing state on the front side in the housing 2. Has been.

又、前記LED駆動回路4は、図2に示すように、回路基板上に複数の各種電子部品11を実装して構成されており、ハウジング2内において前記沸騰冷却器5の一部を構成する後述の受熱部12を挟んで前記光源ユニット3が配された側とは反対の背面側に垂直に起立した状態で収納されている。   Further, as shown in FIG. 2, the LED drive circuit 4 is configured by mounting a plurality of various electronic components 11 on a circuit board, and constitutes a part of the boiling cooler 5 in the housing 2. It is housed in a vertically standing state on the back side opposite to the side on which the light source unit 3 is disposed with a heat receiving part 12 described later interposed therebetween.

前記沸騰冷却器5は、図4に模式的に示すように、エバポレータとしての受熱部12と、該受熱部12の上方に配されたコンデンサとしての放熱部13と、該放熱部13と前記受熱部12間において冷媒を循環させる循環経路を含んで構成されており、循環経路は受熱部12内の通路と放熱部13内の通路及び受熱部12の横に上下方向に一体に形成されたリターン通路14によって構成されている。   As schematically shown in FIG. 4, the boiling cooler 5 includes a heat receiving portion 12 as an evaporator, a heat radiating portion 13 as a capacitor disposed above the heat receiving portion 12, the heat radiating portion 13 and the heat receiving portion. The circulation path is configured to circulate the refrigerant between the parts 12, and the circulation path is integrally formed in the vertical direction beside the passage in the heat receiving part 12, the passage in the heat radiating part 13, and the heat receiving part 12. It is constituted by a passage 14.

上記受熱部12は、ジャケット構造を有する偏平な矩形の中空プレートによって構成されており、その内部には冷媒が収容されている。尚、冷媒としては代替フロンであるフルオロカーボンやフルオロケトン、代替フロン以外の一般的なエチレングリコールやプロピレングリコール等が使用され、沸騰冷却器5の製造時(冷媒の充填時)に内圧を調整することによって該冷媒の沸点がコントロールされる。   The heat receiving portion 12 is configured by a flat rectangular hollow plate having a jacket structure, and a refrigerant is accommodated therein. As the refrigerant, fluorocarbon or fluoroketone, which is an alternative chlorofluorocarbon, general ethylene glycol or propylene glycol other than the alternative chlorofluorocarbon is used, and the internal pressure is adjusted when the boiling cooler 5 is manufactured (when the refrigerant is charged). Controls the boiling point of the refrigerant.

而して、受熱部12は、前述のようにハウジング2内に垂直に起立した状態で収納されるが、その前面には前記光源ユニット3が密着した状態で配置され、背面には前記LED駆動回路4が密着した状態で配置されている。即ち、受熱部12は、光源ユニット3とLED駆動回路4によって挟持された状態で両者の間に配置されている。   Thus, the heat receiving portion 12 is stored in the housing 2 in a vertically upright state as described above, but the light source unit 3 is disposed in close contact with the front surface, and the LED drive is disposed on the rear surface. The circuit 4 is arranged in close contact. That is, the heat receiving unit 12 is disposed between the light source unit 3 and the LED drive circuit 4 while being sandwiched between them.

又、前記放熱部13は、多数の冷却フィンを有してラジエータ構造として幅方向に長く形成されており、これは図3(a)に示すように受熱部12の上端に片側(本実施の形態では後側)に寄せて、具体的には例えば受熱部12(沸騰冷却式LED照明装置1)を図3(b)に示すように垂直に対して角度θだけ傾けた場合に該受熱部12よりも上方に位置する側に寄せて配置されている。即ち、放熱部13は受熱部12の上端部において後方に向かって直角に延設されている。   Further, the heat dissipating part 13 has a large number of cooling fins and is formed long in the width direction as a radiator structure, which is arranged on one side (this embodiment) at the upper end of the heat receiving part 12 as shown in FIG. For example, when the heat receiving unit 12 (boiling cooled LED lighting device 1) is inclined by an angle θ with respect to the vertical as shown in FIG. It is arranged close to the side located above 12. That is, the heat radiating portion 13 is extended at a right angle toward the rear at the upper end portion of the heat receiving portion 12.

ここで、受熱』部12と放熱部13は、共に軽量で熱伝達率の高いアルミニウム材で構成されており、両者はロウ付けによって接合一体化されている。又、沸騰冷却器5の内部空間はその半分以上が液冷媒によって満たされている。   Here, the “heat receiving” portion 12 and the heat radiating portion 13 are both made of an aluminum material that is lightweight and has a high heat transfer coefficient, and both are joined and integrated by brazing. Moreover, more than half of the internal space of the boiling cooler 5 is filled with the liquid refrigerant.

ところで、図4に示すように、沸騰冷却器5においては、受熱部12の上部に開口する冷媒出口12aと放熱部13の下部に開口する冷媒入口13aとは直接連通しており、放熱部13の冷媒入口13aとは反対側に開口する冷媒出口13bと受熱部12の下部に開口する冷媒入口12bとはリターン通路14を介して互いに連通しており、これによって冷媒の循環経路が構成されている。そして、本実施の形態では、図2に示すように、放熱部13は、その冷媒出口13bが冷媒入口13a(図4参照)よりも下方に位置するように(リターン通路14に向かって下がるように)水平に対して若干傾斜して配置されている。   Incidentally, as shown in FIG. 4, in the boiling cooler 5, the refrigerant outlet 12 a that opens at the upper part of the heat receiving part 12 and the refrigerant inlet 13 a that opens at the lower part of the heat radiating part 13 are in direct communication with each other. The refrigerant outlet 13b that opens to the opposite side of the refrigerant inlet 13a and the refrigerant inlet 12b that opens to the lower part of the heat receiving portion 12 are in communication with each other via a return passage 14, thereby forming a refrigerant circulation path. Yes. In the present embodiment, as shown in FIG. 2, the heat radiating portion 13 is lowered toward the return passage 14 such that the refrigerant outlet 13b is positioned below the refrigerant inlet 13a (see FIG. 4). B) It is arranged slightly inclined with respect to the horizontal.

前記ファン6は、図2に示すように、沸騰冷却器5の放熱部13の下方に幅方向(横方向)に複数並設されている。   As shown in FIG. 2, a plurality of the fans 6 are arranged in parallel in the width direction (lateral direction) below the heat radiating portion 13 of the boiling cooler 5.

而して、以上のように構成された沸騰冷却式LED照明装置1が起動されて光源ユニット3とLED駆動回路4及びファン6に電源が供給されると、光源ユニット3の複数のLED9が発光し、その光はレンズ7を透過して正面前方に向かって照射されることによって前方を照明するが、光源ユニット3の点灯制御はLED駆動回路4によってなされ、駆動中において光源ユニット3のLED9及びLED駆動回路4の各種電子部品11が発熱し、そのままでは光源ユニット3とLED駆動回路4及びこれらを収容するハウジング2が過熱されてそれらの温度が上昇する。   Thus, when the boiling cooling type LED lighting apparatus 1 configured as described above is activated and power is supplied to the light source unit 3, the LED drive circuit 4, and the fan 6, the plurality of LEDs 9 of the light source unit 3 emit light. The light passes through the lens 7 and is irradiated toward the front of the front side to illuminate the front. However, the lighting control of the light source unit 3 is performed by the LED drive circuit 4, and the LED 9 of the light source unit 3 and Various electronic components 11 of the LED drive circuit 4 generate heat, and the light source unit 3, the LED drive circuit 4, and the housing 2 that houses them are overheated to raise their temperatures.

然るに、本実施の形態では、沸騰冷却器5によって光源ユニット3とLED駆動回路4が強制冷却されてその温度上昇が抑えられるとともに、ファン6によってハウジング2の背面に形成された不図示の吸気口からハウジング2内に導入される外気によってハウジング2及びLED駆動回路4が強制空冷されてその温度上昇が抑えられる。   However, in the present embodiment, the light source unit 3 and the LED drive circuit 4 are forcibly cooled by the boiling cooler 5 to suppress the temperature rise, and the intake port (not shown) formed on the back surface of the housing 2 by the fan 6. The housing 2 and the LED drive circuit 4 are forcibly air-cooled by the outside air introduced into the housing 2 from the outside and the temperature rise is suppressed.

即ち、沸騰冷却器5の受熱部12においては、光源ユニット3及びLED駆動回路4と冷媒との温度差による通常の熱伝導に加えて、冷媒が沸騰(蒸発)して気化するときの蒸発潜熱が光源ユニット3とLED駆動回路4から奪われるため、これらの光源ユニット3とLED駆動回路4が効率良く冷却される。   That is, in the heat receiving part 12 of the boiling cooler 5, in addition to normal heat conduction due to the temperature difference between the light source unit 3 and the LED drive circuit 4 and the refrigerant, the latent heat of vaporization when the refrigerant boils (evaporates) and vaporizes. Are deprived of the light source unit 3 and the LED drive circuit 4, so that the light source unit 3 and the LED drive circuit 4 are efficiently cooled.

そして、沸騰冷却器5の受熱部12において沸騰して気化した冷媒は、図4に矢印にて示すように、気泡となって上昇し、気泡ポンプ効果によって受熱部12内の液冷媒を放熱部13へと押し出すため、循環経路には図4に矢印にて示す方向の冷媒の循環流が発生する。   And the refrigerant | coolant which boiled and vaporized in the heat receiving part 12 of the boiling cooler 5 rose as a bubble, as shown by the arrow in FIG. 4, and the liquid refrigerant in the heat receiving part 12 is radiated by the bubble pump effect. In order to push out to 13, the circulating flow of the refrigerant | coolant of the direction shown by the arrow in FIG.

而して、沸騰によって気化したガス冷媒は、放熱部13において外気に熱を放出することによって凝縮して液化するが、放熱部13での冷媒からの放熱は、放熱部13を通過する外気によって促進される。即ち、ハウジング2内で回転するファン6によって外気がハウジング2の吸気口からハウジング2内に吸引され、この吸引された外気は、ハウジング2とLED駆動回路4を冷却しながら上昇し、放熱部13を通過してハウジング2の排気口8から外部に排出されるため、放熱部13を通過する外気によって放熱部13での冷媒からの放熱が促進される。   Thus, the gas refrigerant vaporized by boiling is condensed and liquefied by releasing heat to the outside air in the heat radiating portion 13, but the heat radiation from the refrigerant in the heat radiating portion 13 is caused by the outside air passing through the heat radiating portion 13. Promoted. That is, outside air is sucked into the housing 2 from the air inlet of the housing 2 by the fan 6 rotating in the housing 2, and the sucked outside air rises while cooling the housing 2 and the LED drive circuit 4, and the heat radiating portion 13. , The heat is discharged from the exhaust port 8 of the housing 2 to the outside, and the heat radiation from the refrigerant in the heat radiating portion 13 is promoted by the outside air passing through the heat radiating portion 13.

放熱部13において凝縮して液化した冷媒は、気泡ポンプ効果に加えて、重力によって放熱部13の傾斜に沿って冷媒出口13bに向かって流れ、冷媒出口13bからリターン通路14へと流れ込んで受熱部12へと送り込まれる。   In addition to the bubble pump effect, the refrigerant condensed and liquefied in the heat radiating portion 13 flows toward the refrigerant outlet 13b along the inclination of the heat radiating portion 13 due to gravity, and flows into the return passage 14 from the refrigerant outlet 13b. 12 is sent.

以後、同様の作用が繰り返され、冷媒は沸騰と凝縮の相変化を繰り返しながら循環経路を循環し、受熱部12での沸騰に伴う蒸発潜熱を光源ユニット3とLRD駆動回路4から奪うことによってこれらを効率良く冷却する。   Thereafter, the same operation is repeated, and the refrigerant circulates in the circulation path while repeating the boiling and condensation phase change, and these take away the latent heat of evaporation accompanying the boiling in the heat receiving unit 12 from the light source unit 3 and the LRD drive circuit 4. To cool efficiently.

以上において、本実施の形態に係る沸騰冷却式LED照明装置1においては、沸騰冷却器5の放熱部13を受熱部12の上端に片側に寄せて、具体的には受熱部12を垂直に対して図3(b)に示すように前側に角度θだけ傾けた場合に該受熱部12よりも上方に位置する側に寄せて配置するようにしたため、沸騰冷却式LED照明装置1(受熱部12)を垂直に対して或る程度の角度(実際には70°程度)まで傾けても液冷媒が放熱部13に溜まることがなく、放熱部13に液冷媒が溜まることによるドライアウトの発生が防がれ、光源ユニット3が沸騰冷却器5によって安定的に冷却されてその温度上昇が防がれ、該光源ユニット3を構成する各LED9の発光効率及び寿命が高められる。   In the above, in the boiling cooling type LED lighting device 1 according to the present embodiment, the heat radiating part 13 of the boiling cooler 5 is brought to one side to the upper end of the heat receiving part 12, specifically, the heat receiving part 12 is perpendicular to the vertical direction. As shown in FIG. 3 (b), when it is inclined forward by an angle θ, it is arranged close to the side positioned above the heat receiving part 12, so that the boil cooling type LED lighting device 1 (heat receiving part 12) is arranged. ) Is tilted to a certain angle (actually about 70 °) with respect to the vertical, the liquid refrigerant does not accumulate in the heat radiating portion 13, and the occurrence of dryout due to the liquid refrigerant accumulating in the heat radiating portion 13 occurs. Thus, the light source unit 3 is stably cooled by the boiling cooler 5 to prevent the temperature from rising, and the luminous efficiency and life of each LED 9 constituting the light source unit 3 are increased.

ここで、図6に本発明に係る沸騰冷却式LED照明装置1(受熱部12)を垂直に対して傾けた場合、その傾斜角θ[deg]と放熱性能(放熱部13の温度[℃])との関係を図9に示した従来の沸騰冷却式LED照明装置101のそれと対比して示すが、本発明に係る沸騰冷却式LED照明装置1では傾斜角θが70°程度まではドライアウトは発生せず、略一定の放熱性能が得られることが分かる。これに対して、従来の沸騰冷却式LED照明装置101では、傾斜角θが35°を超えると放熱性能が大幅に低下して放熱部113の温度が急上昇し、傾斜角θが40°を超えるとドライアウトが発生することが分かる。   Here, when the boiling-cooling type LED lighting device 1 (heat receiving part 12) according to the present invention is tilted with respect to FIG. 6, the inclination angle θ [deg] and the heat radiation performance (the temperature [° C.] of the heat radiation part 13). ) In comparison with that of the conventional boiling-cooled LED lighting device 101 shown in FIG. 9, the boiling-cooled LED lighting device 1 according to the present invention is dry-out until the inclination angle θ is about 70 °. It can be seen that substantially constant heat dissipation performance is obtained. On the other hand, in the conventional boil-cooled LED lighting device 101, when the inclination angle θ exceeds 35 °, the heat dissipation performance is significantly reduced, the temperature of the heat dissipation part 113 rapidly increases, and the inclination angle θ exceeds 40 °. It can be seen that dryout occurs.

次に、本発明の別形態を図6〜図8に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to FIGS.

図6は本発明の別形態に係る沸騰冷却式LED照明装置の側面図、図7は同沸騰冷却式LED照明装置の側断面図、図8は同沸騰冷却式LED照明装置の使用形態を示す要部断面図であって、(a)はダウンライトとしての使用形態、(b)はアッパーライトとしての使用形態をそれぞれ示す図である。   6 is a side view of a boil-cooled LED lighting device according to another embodiment of the present invention, FIG. 7 is a side sectional view of the boil-cooled LED lighting device, and FIG. 8 is a usage pattern of the boil-cooled LED lighting device. It is principal part sectional drawing, Comprising: (a) is a figure which shows the usage type as a downlight, (b) is a figure which shows the usage type as an upper light, respectively.

本実施の形態に係る沸騰冷却式LED照明装置1’は、側面視「く」の字状に屈曲するステー15に斜めに傾斜して取り付けられたものであって、ステー15の傾斜部15Aに取り付けられたハウジング2の内部には、図7に示すように、光源ユニット3、LED駆動回路4、沸騰冷却器5及びファン6が収容されている。   The boil-cooled LED lighting device 1 ′ according to the present embodiment is attached to the stay 15 that bends in the shape of a letter “<” in a side view and is inclined to the inclined portion 15 </ b> A of the stay 15. As shown in FIG. 7, the light source unit 3, the LED drive circuit 4, the boiling cooler 5, and the fan 6 are accommodated inside the attached housing 2.

ここで、沸騰冷却器5は、受熱部12と、該受熱部12の上端部に斜め上方(受熱部12の長手方向に対して直角上方)に配された放熱部13と、該放熱部13と前記受熱部12間において冷媒を循環させる循環経路を含んで構成されており、放熱部13は受熱部12の上端に片側(本実施の形態では斜め上方)に寄せて、具体的には受熱部12の長手方向に対して直角上方を向くよう配設されている。   Here, the boiling cooler 5 includes a heat receiving portion 12, a heat radiating portion 13 disposed obliquely above the upper end portion of the heat receiving portion 12 (upwardly perpendicular to the longitudinal direction of the heat receiving portion 12), and the heat radiating portion 13. And the heat receiving part 12 including a circulation path for circulating the refrigerant. The heat radiating part 13 is brought to one side (in the embodiment, obliquely upward) at the upper end of the heat receiving part 12, and specifically, the heat receiving part. The portion 12 is disposed so as to face a direction perpendicular to the longitudinal direction of the portion 12.

而して、本実施の形態に係る沸騰冷却式LED装置1’のように垂直に対して傾いた状態で取り付けられたものであっても、放熱部13は受熱部12の上端に片側(本実施の形態では斜め上方)に寄せて配置されているため、液冷媒が放熱部13に溜まることがなく、ドライアウトの発生が防がれて光源ユニット3が沸騰冷却器5によって安定的に冷却される。   Thus, even if it is attached in a state inclined with respect to the vertical as in the boil-cooled LED device 1 ′ according to the present embodiment, the heat radiating portion 13 is connected to the upper end of the heat receiving portion 12 on one side (this In the embodiment, the liquid refrigerant is not accumulated in the heat radiating portion 13, and the occurrence of dry-out is prevented, and the light source unit 3 is stably cooled by the boiling cooler 5. Is done.

斯かる沸騰冷却式LED照明装置1’は、例えばダウンライトやアッパーライトとしての用途に供することができ、ダウンライトとして使用する場合には、図8(a)に示すように光源ユニット3を受熱部12の下面側に配置し、アッパーライトとして使用する場合には、図8(b)に示すように光源ユニット3を受熱部12の上面側に配置すれば良い。   Such a boil-cooled LED lighting device 1 ′ can be used for, for example, a downlight or an upper light. When used as a downlight, the boil-cooled LED lighting device 1 ′ receives heat from the light source unit 3 as shown in FIG. When the light source unit 3 is disposed on the lower surface side of the portion 12 and used as an upper light, the light source unit 3 may be disposed on the upper surface side of the heat receiving portion 12 as shown in FIG.

尚、以上の実施の形態では、LED駆動回路4のみを外気によって強制空冷するようにしたが、光源ユニット3も同時に外気によって強制空冷する方式を採用すれば、沸騰冷却器5による冷却とファン6による強制空冷とのハイブリッド冷却方式によって光源ユニット3を一層効率良く冷却することができる。   In the above embodiment, only the LED drive circuit 4 is forcedly cooled by the outside air. However, if the light source unit 3 is also forcedly cooled by the outside air at the same time, cooling by the boiling cooler 5 and the fan 6 are performed. The light source unit 3 can be cooled more efficiently by the hybrid cooling method with forced air cooling.

1 沸騰冷却式LED照明装置
2 ハウジング
2a ハウジングの前面
3 光源ユニット
4 LED駆動回路
5 沸騰冷却器
6 ファン
7 レンズ
8 排気口
9 LED
10 LED基板
11 電子部品
12 受熱部
12a 受熱部の冷媒出口
12b 受熱部の冷媒入口
13 放熱部
13a 放熱部の冷媒入口
13b 放熱部の冷媒出口
14 リターン通路
15 ステー
15A ステーの傾斜部
DESCRIPTION OF SYMBOLS 1 Boiling cooling type LED lighting apparatus 2 Housing 2a Front surface of housing 3 Light source unit 4 LED drive circuit 5 Boiling cooler 6 Fan 7 Lens 8 Exhaust port 9 LED
DESCRIPTION OF SYMBOLS 10 LED board 11 Electronic component 12 Heat receiving part 12a Refrigerant outlet of heat receiving part 12b Refrigerant inlet of heat receiving part 13 Heat radiating part 13a Refrigerant inlet of heat radiating part 13b Refrigerant outlet of heat radiating part 14 Return path 15 Stay 15A Stay inclination part

Claims (3)

LEDを光源とする光源ユニットと、
該光源ユニットから受熱する受熱部、該受熱部で受熱した熱を外気に放熱する放熱部及び該放熱部と前記受熱部間において冷媒を循環させる循環経路を備えた沸騰冷却器と、
該沸騰冷却器と前記光源ユニットを収容するハウジングと、
を含んで構成される沸騰冷却式LED照明装置において、
前記沸騰冷却器の放熱部を受熱部の上端に片側に寄せて配置したことを特徴とする沸騰冷却式LED照明装置。
A light source unit using an LED as a light source;
A heat receiving portion that receives heat from the light source unit, a heat radiating portion that radiates heat received by the heat receiving portion to the outside air, and a boiling cooler that includes a circulation path for circulating a refrigerant between the heat radiating portion and the heat receiving portion;
A housing for housing the boiling cooler and the light source unit;
In a boil-cooled LED lighting device comprising:
The boiling cooling type LED lighting device, wherein the heat radiating portion of the boiling cooler is arranged close to one end on the upper end of the heat receiving portion.
前記沸騰冷却器の放熱部を、前記受熱部を垂直に対して傾けた場合に該受熱部よりも上方に位置する側に配置したことを特徴とする請求項1記載の沸騰冷却式LED照明装置。   The boiling cooling type LED lighting device according to claim 1, wherein the heat radiating part of the boiling cooler is arranged on a side located above the heat receiving part when the heat receiving part is inclined with respect to the vertical. . 前記沸騰冷却器の受熱部の少なくとも一部に垂直に対して傾斜する傾斜部を設け、該傾斜部の上端に前記放熱部を直角上方に向けて延設するとともに、同傾斜部の片面に前記光源ユニットを密着させて配置したことを特徴とする請求項1又は2記載の沸騰冷却式LED照明装置。
At least a part of the heat receiving part of the boiling cooler is provided with an inclined part that is inclined with respect to the vertical, the heat radiating part is extended upward at a right angle at the upper end of the inclined part, and the one side of the inclined part is The boil-cooling type LED lighting device according to claim 1, wherein the light source unit is disposed in close contact.
JP2010097514A 2010-04-21 2010-04-21 Ebullient cooling type led lighting device Pending JP2011228149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097514A JP2011228149A (en) 2010-04-21 2010-04-21 Ebullient cooling type led lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097514A JP2011228149A (en) 2010-04-21 2010-04-21 Ebullient cooling type led lighting device

Publications (1)

Publication Number Publication Date
JP2011228149A true JP2011228149A (en) 2011-11-10

Family

ID=45043276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097514A Pending JP2011228149A (en) 2010-04-21 2010-04-21 Ebullient cooling type led lighting device

Country Status (1)

Country Link
JP (1) JP2011228149A (en)

Similar Documents

Publication Publication Date Title
US8262263B2 (en) High reliability cooling system for LED lamps using dual mode heat transfer loops
JP5210997B2 (en) COOLING SYSTEM AND ELECTRONIC DEVICE USING THE SAME
CN102834688B (en) Phase change cooler and electronic equipment provided with same
US20090059594A1 (en) Heat dissipating apparatus for automotive LED lamp
JP5031044B2 (en) Automotive headlamp
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
US9188305B2 (en) Cooling device for vehicle headlights
US20160338226A1 (en) Cooling device and electronic device
US20090213613A1 (en) Vehicle Headlight
JP2011502342A (en) Cooling device for lighting with built-in power light-emitting diode
US20120294002A1 (en) Vapor chamber cooling of solid-state light fixtures
JP2010272440A (en) Cooling type led lighting device
JP5384990B2 (en) Water-cooled LED lighting device
JP2010129178A (en) Liquid-cooled led lighting device
KR20110022921A (en) Led lighting lamp with a cooler
TWM607434U (en) Light emitting module and light emitting device
JP2011113639A (en) Boiling refrigerant type led lighting system
KR101054509B1 (en) Heating element cooling system
JP5390781B2 (en) Light source cooling device
JP2011228149A (en) Ebullient cooling type led lighting device
KR100932430B1 (en) Heat-discharging apparatus for illuminator using led
JP2013069607A (en) Boiling and cooling type led lighting apparatus
KR100704669B1 (en) Led cooling device and display for using the same
JP2011228148A (en) Ebullient cooling type led lighting device
KR20120107235A (en) Heat-discharging apparatus for led module and led headlight system for vehicle using thereof