JP2011227157A - Laser scanning optical device - Google Patents

Laser scanning optical device Download PDF

Info

Publication number
JP2011227157A
JP2011227157A JP2010094528A JP2010094528A JP2011227157A JP 2011227157 A JP2011227157 A JP 2011227157A JP 2010094528 A JP2010094528 A JP 2010094528A JP 2010094528 A JP2010094528 A JP 2010094528A JP 2011227157 A JP2011227157 A JP 2011227157A
Authority
JP
Japan
Prior art keywords
scanning direction
housing
optical element
relative angle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010094528A
Other languages
Japanese (ja)
Inventor
Yasushi Nagasaka
泰志 長坂
Hideaki Kusano
秀昭 草野
Atsushi Nagaoka
敦 長岡
Takahiro Matsuo
隆宏 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2010094528A priority Critical patent/JP2011227157A/en
Publication of JP2011227157A publication Critical patent/JP2011227157A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser scanning optical device that can minimize the tilt of an image surface in the sub-scanning direction, which is caused by adjustment of scanning speed.SOLUTION: A laser scanning optical device comprises: a light source 1 which emits multiple beams; a lens 2 which shapes the beams emitted from the light source 1 into parallel light; a lens 3 which converges the beams in the sub-scanning direction; a polygon mirror 4 which deflects the beams in the main-scanning direction Y; fθ optical elements 11 and 12 which converge the beams deflected by the polygon mirror 4 onto a photoreceptor 40; and an optical element 13 for correcting plane tilt, all of which are held in a housing 20. The device also has an angle adjustment member 35 which adjusts a relative angle of the housing 20 to the photoreceptor 40 in the main-scanning direction Y, and when the relative angle of the housing 20 is adjusted by the angle adjustment member 35, the change amount of a relative angle of the optical element 13 for correcting plane tilt to the photoreceptor 40 in the main-scanning direction Y is smaller than the change amount of the relative angle of the housing 20.

Description

本発明は、レーザ走査光学装置、特に、電子写真方式による複写機、プリンタなどの画像形成装置に画像書込み手段として搭載されるレーザ走査光学装置に関する。   The present invention relates to a laser scanning optical device, and more particularly to a laser scanning optical device mounted as an image writing unit in an image forming apparatus such as an electrophotographic copying machine or printer.

近年、画像形成の高精細化に伴って複数の発光点を有するマルチビーム光源を用いて、感光体上を複数のビームで同時に走査するレーザ走査光学装置が種々開発されており、ビームの本数は増加の傾向にある。この種のレーザ走査光学装置では、同時に走査される複数のビームの相対位置(ビーム間のピッチ)の制御が必要となる。そして、ビーム相対位置以外の光学性能を調整する際に、ビーム相対位置の変化を極力抑える構成が必要となる。   In recent years, various types of laser scanning optical devices that simultaneously scan a photosensitive member with a plurality of beams using a multi-beam light source having a plurality of light emitting points have been developed along with high definition of image formation. It tends to increase. In this type of laser scanning optical apparatus, it is necessary to control the relative positions (the pitches between the beams) of a plurality of beams scanned simultaneously. And when adjusting optical performance other than a beam relative position, the structure which suppresses the change of a beam relative position as much as possible is needed.

そこで、特許文献1では、感光体上を走査するビームの主走査方向の前半と後半との走査速度を調整(片倍率ずれ補正)するために、装置のハウジングを回転させて感光体に対する主走査方向の相対角度を変化させる構成を提案している。   Therefore, in Patent Document 1, in order to adjust the scanning speed of the first half and the second half in the main scanning direction of the beam scanned on the photosensitive member (correction of one magnification deviation), the apparatus housing is rotated to perform main scanning on the photosensitive member. A configuration that changes the relative angle of the direction is proposed.

しかしながら、特許文献1に記載の構成では、ハウジングを回転させて走査速度を調整すると、副走査方向に強いパワーを有する面倒れ補正光学素子と感光体の主走査方向の相対角度が変化し、副走査方向の傾きによるビームワッブルの悪化や副走査方向のビームピッチずれが発生する。   However, in the configuration described in Patent Document 1, when the scanning speed is adjusted by rotating the housing, the relative angle between the surface tilt correction optical element having strong power in the sub-scanning direction and the photosensitive member in the main scanning direction changes, and the sub-scanning direction is changed. Deterioration of the beam wobble due to the tilt in the scanning direction and beam pitch deviation in the sub-scanning direction occur.

特開2001−100136号公報JP 2001-100136 A

そこで、本発明の目的は、走査速度の調整によって生じる、副走査方向の像面の傾きを極力抑制できるレーザ走査光学装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a laser scanning optical apparatus that can suppress the inclination of the image plane in the sub-scanning direction, which is caused by adjusting the scanning speed, as much as possible.

本発明の一形態であるレーザ走査光学装置は、
ビームを放射する光源と、
前記光源から放射されたビームを、平行光に整形し、かつ、副走査方向に集光する光源光学系と、
前記光源光学系からのビームを主走査方向に偏向する偏向器と、
前記偏向器で偏向されたビームを感光体上に集光させる走査光学系と、
前記各部材を保持するハウジングと、
前記ハウジングを前記感光体に対する主走査方向の相対角度を調整する角度調整部材と、
を備え、
前記走査光学系は、主に主走査方向にパワーを有するfθ光学素子と、主に副走査方向にパワーを有する面倒れ補正光学素子からなり、
前記角度調整部材によって前記ハウジングの前記相対角度を調整した際に、前記面倒れ補正光学素子の少なくとも一つは、前記感光体に対する主走査方向の相対角度の変化量が前記ハウジングの前記相対角度の変化量よりも少ないこと、
を特徴とする。
A laser scanning optical device according to an aspect of the present invention is
A light source that emits a beam;
A light source optical system for shaping the beam emitted from the light source into parallel light and condensing it in the sub-scanning direction;
A deflector for deflecting the beam from the light source optical system in the main scanning direction;
A scanning optical system for condensing the beam deflected by the deflector onto the photosensitive member;
A housing for holding each member;
An angle adjusting member for adjusting a relative angle of the housing in the main scanning direction with respect to the photosensitive member;
With
The scanning optical system is composed of an fθ optical element mainly having power in the main scanning direction and a surface tilt correction optical element mainly having power in the sub-scanning direction,
When the relative angle of the housing is adjusted by the angle adjusting member, at least one of the surface tilt correction optical elements has a change amount of the relative angle in the main scanning direction with respect to the photosensitive member of the relative angle of the housing. Less than the amount of change,
It is characterized by.

前記レーザ走査光学装置においては、角度調整部材によってハウジングを感光体に対する主走査方向の相対角度を調整する。このようにハウジングの相対角度を調整した際に、面倒れ補正光学素子の少なくとも一つは、感光体に対する主走査方向の相対角度の変化量がハウジングの前記相対角度の変化量よりも少ないため、副走査方向の像面の傾きが極力抑制される。面倒れ補正光学素子の相対角度の変化量は0あるいは限りなく0に近いことが好ましい。これにて、副走査方向の傾きによるビームワッブルの悪化や副走査方向のビームピッチずれが小さくなる。   In the laser scanning optical device, the relative angle in the main scanning direction of the housing with respect to the photosensitive member is adjusted by the angle adjusting member. When the relative angle of the housing is adjusted in this way, at least one of the surface tilt correction optical elements has a smaller amount of change in the relative angle in the main scanning direction with respect to the photoreceptor than the amount of change in the relative angle of the housing. The tilt of the image plane in the sub scanning direction is suppressed as much as possible. It is preferable that the amount of change in the relative angle of the surface tilt correction optical element is zero or as close to zero as possible. As a result, the deterioration of the beam wobble due to the tilt in the sub-scanning direction and the beam pitch shift in the sub-scanning direction are reduced.

本発明によれば、走査速度の調整によって生じる、副走査方向の像面の傾きを極力抑制でき、ひいては、副走査方向の傾きによるビームワッブルの悪化や副走査方向のビームピッチずれが小さくなる。   According to the present invention, the tilt of the image plane in the sub-scanning direction, which is caused by adjusting the scanning speed, can be suppressed as much as possible. As a result, the deterioration of the beam wobble due to the tilt in the sub-scanning direction and the beam pitch shift in the sub-scanning direction are reduced.

本発明の一実施例であるレーザ走査光学装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the laser scanning optical apparatus which is one Example of this invention. 前記レーザ走査光学装置の調整後の状態を示す平面図である。It is a top view which shows the state after adjustment of the said laser scanning optical apparatus. 前記レーザ走査光学装置における調整機構(第1例)を示す断面図である。It is sectional drawing which shows the adjustment mechanism (1st example) in the said laser scanning optical apparatus. 調整機構の第2例を示す断面図である。It is sectional drawing which shows the 2nd example of an adjustment mechanism. 調整機構の第3例を示す断面図である。It is sectional drawing which shows the 3rd example of an adjustment mechanism.

以下、本発明に係るレーザ走査光学装置の実施例について添付図面を参照して説明する。なお、各図において、共通する部品、部分は同じ符号を付し、重複する説明は省略する。   Embodiments of a laser scanning optical apparatus according to the present invention will be described below with reference to the accompanying drawings. In each figure, common parts and portions are denoted by the same reference numerals, and redundant description is omitted.

(一実施例、図1〜図3参照)
本発明の一実施例であるレーザ走査光学装置は、図1に示すように、概略、光源1、コリメータレンズ2、シリンドリカルレンズ3、ポリゴンミラー4、走査光学系10などで構成されている。これらの部材はハウジング20に搭載されている。なお、光路を折り曲げるための図示しないミラーも適宜配置されている。感光体40上に画像(静電潜像)を形成するためのこれらの光学系の基本的な構成は周知である。
(See one embodiment, FIGS. 1-3)
As shown in FIG. 1, a laser scanning optical apparatus according to an embodiment of the present invention is roughly composed of a light source 1, a collimator lens 2, a cylindrical lens 3, a polygon mirror 4, a scanning optical system 10, and the like. These members are mounted on the housing 20. A mirror (not shown) for bending the optical path is also appropriately arranged. The basic configuration of these optical systems for forming an image (electrostatic latent image) on the photoreceptor 40 is well known.

光源1は、複数の発光点を有するマルチビーム光源(レーザダイオードアレイ)であり、複数の発光点の中心軸を回転させることにより、副走査方向Zに関するビーム間隔を補正することができる。光源1から放射されたビームは、発散光であり、コリメータレンズ2によって平行光に整形され、シリンドリカルレンズ3によって副走査方向Zに集光され、ポリゴンミラー4に入射する。ビームはポリゴンミラー4によって主走査方向Yに等角速度で偏向され、走査光学系10を透過した後、感光体40上で結像した状態で走査/露光する。   The light source 1 is a multi-beam light source (laser diode array) having a plurality of light emission points, and the beam interval in the sub-scanning direction Z can be corrected by rotating the central axis of the plurality of light emission points. The beam emitted from the light source 1 is divergent light, shaped into parallel light by the collimator lens 2, condensed in the sub-scanning direction Z by the cylindrical lens 3, and enters the polygon mirror 4. The beam is deflected at a constant angular velocity in the main scanning direction Y by the polygon mirror 4, passes through the scanning optical system 10, and then scans / exposures while being imaged on the photoreceptor 40.

走査光学系10は、主に主走査方向Yにパワーを有するfθ光学素子11,12と、主に副走査方向Zにパワーを有する面倒れ補正光学素子13とで構成されている。   The scanning optical system 10 includes fθ optical elements 11 and 12 having a power mainly in the main scanning direction Y, and a surface tilt correction optical element 13 having a power mainly in the sub-scanning direction Z.

レーザ走査光学装置は、画像書出し位置を制御するためのビーム検出センサ(光電変換素子)15を備えている。ビーム検出センサ15は、主走査方向Yの始端側であってfθ光学素子11,12及び集光レンズ16を透過したビームを検出する。ビーム検出センサ15からの検出信号は図示しない制御回路に入力され、同期信号(SOS信号とも称する)が生成される。   The laser scanning optical device includes a beam detection sensor (photoelectric conversion element) 15 for controlling the image writing position. The beam detection sensor 15 detects a beam that is transmitted through the fθ optical elements 11 and 12 and the condenser lens 16 on the start end side in the main scanning direction Y. A detection signal from the beam detection sensor 15 is input to a control circuit (not shown), and a synchronization signal (also referred to as an SOS signal) is generated.

前記面倒れ補正光学素子13は、主走査方向Yに長尺状をなし、ホルダ30に保持されている。このホルダ30は、主走査方向Yの両端部分で板ばね31,32によってハウジング20の底板部に保持され、面倒れ補正光学素子13の一端部の近傍に設けた支軸34を支点としてX−Y平面上で回転自在に配置されている。より詳しくは以下に説明する。   The surface tilt correction optical element 13 is elongated in the main scanning direction Y and is held by a holder 30. The holder 30 is held at the bottom plate portion of the housing 20 by leaf springs 31 and 32 at both end portions in the main scanning direction Y, and is supported by a support shaft 34 provided in the vicinity of one end portion of the surface tilt correction optical element 13 as a fulcrum. It is arranged so as to be rotatable on the Y plane. More details will be described below.

感光体40を位置決め保持する位置決め部材41の一面41aとハウジング20の壁部21との間には基準部材22が配置されている。また、ハウジング20の壁部21には角度調整部材35が螺着されている。即ち、ハウジング20の感光体40に対する主走査方向Yの相対角度θ(図2参照)は、角度調整部材35を回転させることによってハウジング20が基準部材22の端部を支点としてX−Y平面上で回転することによって調整される。図2はこのようにして相対角度θを調整された状態を誇張して描いたものである。   A reference member 22 is disposed between one surface 41 a of the positioning member 41 that positions and holds the photoreceptor 40 and the wall portion 21 of the housing 20. An angle adjusting member 35 is screwed to the wall portion 21 of the housing 20. That is, the relative angle θ (see FIG. 2) of the housing 20 with respect to the photoreceptor 40 in the main scanning direction Y is on the XY plane by rotating the angle adjusting member 35 so that the housing 20 has the end of the reference member 22 as a fulcrum. It is adjusted by rotating at. FIG. 2 exaggerates the state in which the relative angle θ is adjusted in this way.

調整機構の第1例を構成する前記角度調整部材35は、図3に示すように、外周に雄ねじ36を形成したものであって、一端が前記位置決め部材41の一面41aに当接し、他端が面倒れ補正光学素子13を保持するホルダ30の一面に当接している。ホルダ30は板ばね32(図1参照)によって光軸X方向に弾性的に付勢されており、一端は前記支軸34に弾性的に圧接し、他端は角度調整部材35を介して位置決め部材41に圧接している。   As shown in FIG. 3, the angle adjusting member 35 constituting the first example of the adjusting mechanism has a male screw 36 formed on the outer periphery, and one end abuts against one surface 41 a of the positioning member 41 and the other end. Is in contact with one surface of the holder 30 that holds the surface tilt correction optical element 13. The holder 30 is elastically biased in the direction of the optical axis X by a leaf spring 32 (see FIG. 1), one end is elastically pressed against the support shaft 34, and the other end is positioned via an angle adjusting member 35. It is in pressure contact with the member 41.

図1は前記相対角度θが設計値である0の場合を示し、この状態で角度調整部材35を回転させて、ハウジング20の感光体40に対する主走査方向Yの相対角度θを調整する。これにて、同時に走査される複数のビームの主走査方向Yの前半と後半との走査速度が調整(片倍率ずれ補正)される。   FIG. 1 shows a case where the relative angle θ is 0, which is a design value. In this state, the angle adjusting member 35 is rotated to adjust the relative angle θ in the main scanning direction Y with respect to the photoreceptor 40 of the housing 20. Thus, the scanning speeds of the first half and the second half of the plurality of beams scanned at the same time in the main scanning direction Y are adjusted (single magnification deviation correction).

一方、面倒れ補正光学素子13は角度調整部材35の回転によっても、一端が支軸34で規制され、他端が角度調整部材35の端部で規制された状態に変化はなく、感光体30に対する主走査方向Yの相対角度は0に限りなく近い。それゆえ、副走査方向Zの像面の傾きがほとんど生じることがなく、ビームワッブルの悪化や副走査方向Zのビームピッチずれが抑制される。   On the other hand, even when the angle adjustment member 35 rotates, the surface tilt correction optical element 13 does not change in a state where one end is restricted by the support shaft 34 and the other end is restricted by the end of the angle adjustment member 35. The relative angle in the main scanning direction Y with respect to is as close as possible to zero. Therefore, there is almost no inclination of the image plane in the sub-scanning direction Z, and deterioration of beam wobble and beam pitch deviation in the sub-scanning direction Z are suppressed.

なお、本実施例において、走査光学系10には面倒れ補正光学素子13以外にも他の面倒れ補正光学素子が設けられていてもよく、面倒れ補正光学素子の少なくとも一つが走査速度の調整に伴う副走査方向Zの像面の傾きを抑制されればよい。また、角度調整部材35の一端は位置決め部材41ではなく感光体40の端部外周に直接当接していてもよい。さらに、角度調整部材35の端端がホルダ30ではなく面倒れ補正光学素子13に直接当接していてもよい。   In this embodiment, the scanning optical system 10 may be provided with other surface tilt correction optical elements in addition to the surface tilt correction optical element 13, and at least one of the surface tilt correction optical elements adjusts the scanning speed. It is only necessary to suppress the inclination of the image plane in the sub-scanning direction Z. Further, one end of the angle adjusting member 35 may be in direct contact with the outer periphery of the end of the photoreceptor 40 instead of the positioning member 41. Furthermore, the end of the angle adjustment member 35 may be in direct contact with the surface tilt correction optical element 13 instead of the holder 30.

(調整機構の第2例、図4参照)
調整機構の第2例を図4に示す。この調整機構は、角度調整部材35の外周に第1の雄ねじ36aと、第1の雄ねじ36aよりもピッチの小さい第2の雄ねじ36bを形成している。第1の雄ねじ36aはハウジング20の壁部21に螺着され、第2の雄ねじ36bは面倒れ補正光学素子13を保持するホルダ30に螺着されている。ホルダ30は前記板ばね32(図1参照)で感光体40側に弾性的に付勢されており、角度調整部材35の一端は感光体40の位置決め部材41の一面41aに弾性的に当接している。
(Refer to the second example of the adjusting mechanism, FIG. 4)
A second example of the adjustment mechanism is shown in FIG. In this adjustment mechanism, a first male screw 36 a and a second male screw 36 b having a smaller pitch than the first male screw 36 a are formed on the outer periphery of the angle adjusting member 35. The first male screw 36 a is screwed to the wall portion 21 of the housing 20, and the second male screw 36 b is screwed to the holder 30 that holds the surface tilt correction optical element 13. The holder 30 is elastically biased toward the photoconductor 40 by the leaf spring 32 (see FIG. 1), and one end of the angle adjusting member 35 elastically contacts the one surface 41a of the positioning member 41 of the photoconductor 40. ing.

以上の構成からなる調整機構においては、角度調整部材35を回転させて、ハウジング20の感光体40に対する主走査方向Yの相対角度θを調整すると、角度調整部材35の回転に伴って、第2の雄ねじ36bが螺着しているホルダ30もハウジング20の回転に同期して支軸34を支点として回転する。第2の雄ねじ36bは第1の雄ねじ36aよりもピッチが小さいので、面倒れ補正光学素子13の感光体40に対する主走査方向Yの相対角度の変化量は小さい。それゆえ、副走査方向Zの像面の傾きは小さく、ビームワッブルの悪化や副走査方向Zのビームピッチずれが抑制される。   In the adjustment mechanism configured as described above, when the angle adjustment member 35 is rotated to adjust the relative angle θ in the main scanning direction Y with respect to the photoconductor 40 of the housing 20, the second adjustment occurs as the angle adjustment member 35 rotates. The holder 30 to which the male screw 36 b is screwed also rotates around the support shaft 34 as a fulcrum in synchronization with the rotation of the housing 20. Since the pitch of the second male screw 36b is smaller than that of the first male screw 36a, the amount of change in the relative angle of the surface tilt correction optical element 13 in the main scanning direction Y with respect to the photoreceptor 40 is small. Therefore, the inclination of the image plane in the sub-scanning direction Z is small, and deterioration of beam wobble and beam pitch shift in the sub-scanning direction Z are suppressed.

(調整機構の第3例、図5参照)
調整機構の第3例を図5に示す。この調整機構は、角度調整部材35の他端に軸芯から偏芯した半球状の突起37を設け、シリンドリカルレンズ13に傾斜したカム面13aを設け、突起37をカム面13aに当接させたものである。
(Refer to the third example of the adjusting mechanism, FIG. 5)
A third example of the adjustment mechanism is shown in FIG. This adjustment mechanism is provided with a hemispherical projection 37 eccentric from the axial center at the other end of the angle adjusting member 35, an inclined cam surface 13a is provided on the cylindrical lens 13, and the projection 37 is brought into contact with the cam surface 13a. Is.

以上の構成からなる調整機構においては、角度調整部材35を回転させて、ハウジング20の感光体40に対する主走査方向Yの相対角度θを調整すると、角度調整部材35の回転に伴って、カム面13aが突起37と当接する面倒れ補正光学素子13もハウジング20の回転に同期して回転する。角度調整部材35の回転によるハウジング20の回転量(相対角度θの変化量)よりもカム面13aと突起37による面倒れ補正光学素子13の回転量(相対角度の変化量)は小さい。それゆえ、副走査方向Zの像面の傾きは小さく、ビームワッブルの悪化や副走査方向Zのビームピッチずれが抑制される。   In the adjustment mechanism having the above-described configuration, when the angle adjustment member 35 is rotated to adjust the relative angle θ in the main scanning direction Y with respect to the photoreceptor 40 of the housing 20, the cam surface is accompanied with the rotation of the angle adjustment member 35. The surface tilt correction optical element 13 in which 13 a comes into contact with the protrusion 37 also rotates in synchronization with the rotation of the housing 20. The rotation amount (the change amount of the relative angle) of the surface tilt correction optical element 13 by the cam surface 13a and the projection 37 is smaller than the rotation amount (the change amount of the relative angle θ) of the housing 20 due to the rotation of the angle adjustment member 35. Therefore, the inclination of the image plane in the sub-scanning direction Z is small, and deterioration of beam wobble and beam pitch shift in the sub-scanning direction Z are suppressed.

なお、第3例において、突起37が当接するカム面13aはホルダ30に設けられていてもよい。   In the third example, the cam surface 13 a against which the protrusion 37 abuts may be provided on the holder 30.

(他の実施例)
なお、本発明に係るレーザ走査光学装置は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更することができる。
(Other examples)
The laser scanning optical apparatus according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.

特に、光源光学系、走査光学系の構成、配置などは任意である。また、同時に走査されるビームの本数も任意である。   In particular, the configuration and arrangement of the light source optical system and the scanning optical system are arbitrary. Also, the number of beams scanned simultaneously is arbitrary.

以上のように、本発明は、レーザ走査光学装置に有用であり、特に、走査速度の調整によって、副走査方向の像面の傾きを極力抑制できる点で優れている。   As described above, the present invention is useful for laser scanning optical devices, and is particularly excellent in that the inclination of the image plane in the sub-scanning direction can be suppressed as much as possible by adjusting the scanning speed.

1…光源
2…コリメータレンズ
3…シリンドリカルレンズ
4…ポリゴンミラー
10…走査光学系
11,12…fθ光学素子
13…面倒れ補正光学素子
13a…カム面
20…ハウジング
30…ホルダ
34…支軸
35…角度調整部材
36,36a,36b…雄ねじ
37…突起
40…感光体
41…位置決め部材
Y…主走査方向
θ…相対角度
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Collimator lens 3 ... Cylindrical lens 4 ... Polygon mirror 10 ... Scanning optical system 11, 12 ... f (theta) optical element 13 ... Surface tilt correction optical element 13a ... Cam surface 20 ... Housing 30 ... Holder 34 ... Spindle 35 ... Angle adjusting member 36, 36a, 36b ... male screw 37 ... projection 40 ... photoconductor 41 ... positioning member Y ... main scanning direction θ ... relative angle

Claims (5)

ビームを放射する光源と、
前記光源から放射されたビームを、平行光に整形し、かつ、副走査方向に集光する光源光学系と、
前記光源光学系からのビームを主走査方向に偏向する偏向器と、
前記偏向器で偏向されたビームを感光体上に集光させる走査光学系と、
前記各部材を保持するハウジングと、
前記ハウジングを前記感光体に対する主走査方向の相対角度を調整する角度調整部材と、
を備え、
前記走査光学系は、主に主走査方向にパワーを有するfθ光学素子と、主に副走査方向にパワーを有する面倒れ補正光学素子からなり、
前記角度調整部材によって前記ハウジングの前記相対角度を調整した際に、前記面倒れ補正光学素子の少なくとも一つは、前記感光体に対する主走査方向の相対角度の変化量が前記ハウジングの前記相対角度の変化量よりも少ないこと、
を特徴とするレーザ走査光学装置。
A light source that emits a beam;
A light source optical system for shaping the beam emitted from the light source into parallel light and condensing it in the sub-scanning direction;
A deflector for deflecting the beam from the light source optical system in the main scanning direction;
A scanning optical system for condensing the beam deflected by the deflector onto the photosensitive member;
A housing for holding each member;
An angle adjusting member for adjusting a relative angle of the housing in the main scanning direction with respect to the photosensitive member;
With
The scanning optical system is composed of an fθ optical element mainly having power in the main scanning direction and a surface tilt correction optical element mainly having power in the sub-scanning direction,
When the relative angle of the housing is adjusted by the angle adjusting member, at least one of the surface tilt correction optical elements has a change amount of the relative angle in the main scanning direction with respect to the photosensitive member of the relative angle of the housing. Less than the amount of change,
A laser scanning optical device.
前記ハウジングは前記面倒れ補正光学素子の主走査方向の一端部の近傍に設けた支軸を支点として前記相対角度を調整されること、を特徴とする請求項1に記載のレーザ走査光学装置。   2. The laser scanning optical apparatus according to claim 1, wherein the relative angle of the housing is adjusted with a support shaft provided in the vicinity of one end of the surface tilt correction optical element in the main scanning direction. 前記角度調整部材は外周に形成された雄ねじが前記ハウジングに螺着されており、
前記角度調整部の一端は前記感光体又は感光体の位置決め部材に当接し、他端は前記面倒れ補正光学素子又は面倒れ補正光学素子を保持するホルダに当接していること、
を特徴とする請求項1又は請求項2に記載のレーザ走査光学装置。
The angle adjusting member has a male screw formed on the outer periphery thereof screwed to the housing,
One end of the angle adjustment unit is in contact with the photosensitive member or a positioning member of the photosensitive member, and the other end is in contact with the surface tilt correction optical element or a holder that holds the surface tilt correction optical element.
The laser scanning optical apparatus according to claim 1 or 2, wherein
前記角度調整部材の他端は前記面倒れ補正光学素子を保持するホルダに設けたカム面に当接していること、を特徴とする請求項3に記載のレーザ走査光学装置。   4. The laser scanning optical device according to claim 3, wherein the other end of the angle adjusting member is in contact with a cam surface provided on a holder for holding the surface tilt correction optical element. 前記角度調整部材は外周に形成された第1の雄ねじと、第1の雄ねじよりもピッチの小さい第2の雄ねじを有し、
第1の雄ねじは前記ハウジングに螺着され、第2の雄ねじは前記面倒れ補正光学素子を保持するホルダに螺着されており、
前記角度調整部材の一端は前記感光体又は感光体の位置決め部材に当接していること、
を特徴とする請求項1又は請求項2に記載のレーザ走査光学装置。
The angle adjusting member has a first male screw formed on the outer periphery, and a second male screw having a smaller pitch than the first male screw,
A first male screw is screwed to the housing, and a second male screw is screwed to a holder holding the surface tilt correction optical element;
One end of the angle adjusting member is in contact with the photosensitive member or a positioning member of the photosensitive member;
The laser scanning optical apparatus according to claim 1 or 2, wherein
JP2010094528A 2010-04-16 2010-04-16 Laser scanning optical device Pending JP2011227157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094528A JP2011227157A (en) 2010-04-16 2010-04-16 Laser scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094528A JP2011227157A (en) 2010-04-16 2010-04-16 Laser scanning optical device

Publications (1)

Publication Number Publication Date
JP2011227157A true JP2011227157A (en) 2011-11-10

Family

ID=45042592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094528A Pending JP2011227157A (en) 2010-04-16 2010-04-16 Laser scanning optical device

Country Status (1)

Country Link
JP (1) JP2011227157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581253A1 (en) 2011-10-14 2013-04-17 Sumitomo Heavy Industries, Ltd. Wheel driving speed reducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581253A1 (en) 2011-10-14 2013-04-17 Sumitomo Heavy Industries, Ltd. Wheel driving speed reducer

Similar Documents

Publication Publication Date Title
US6825869B2 (en) Apparatus to generate laser beam detect signal
JP5114833B2 (en) Optical scanning device
US7715075B2 (en) Optical beam scanning apparatus and image forming apparatus
JP4492360B2 (en) Image forming apparatus
JP4752698B2 (en) Optical scanning device and beam pitch adjusting method.
JP2007171626A (en) Optical scanner and image forming apparatus
US6519070B2 (en) Optical scanning apparatus, multi-beam optical scanning apparatus, and image forming apparatus using the same
JP2002116396A (en) Multibeam optical scanning optical system, multibeam optical scanner and image forming device
JP2006201274A (en) Optical scanning device and image forming apparatus to which the same is applied
JP2011227157A (en) Laser scanning optical device
JP4655714B2 (en) Optical scanning device
JP2004348135A (en) Optical scanner
US20080158329A1 (en) Light scanning unit and image forming apparatus having the same
JP2009023176A (en) Scanning optical device and image forming apparatus
JP2002031771A (en) Multiple-beam scanning optical device
JP2004301971A (en) Optical scanner
JP2006171159A (en) Optical scanner
US20240201482A1 (en) Optical scanning device and image forming apparatus
JP2010179629A (en) Image forming apparatus
JP4708629B2 (en) Scanning optical device and image forming apparatus using the same
JP2008310257A (en) Scanning optical system and optical scanner and image forming apparatus equipped with the same
JP2001004939A (en) Multibeam scanning system
US8537449B2 (en) Optical scanning device
JP2013068802A (en) Scanner and image-forming device
JP2001166242A (en) Optical scanner and mirror surface adjusting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130417