JP2006171159A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2006171159A
JP2006171159A JP2004360984A JP2004360984A JP2006171159A JP 2006171159 A JP2006171159 A JP 2006171159A JP 2004360984 A JP2004360984 A JP 2004360984A JP 2004360984 A JP2004360984 A JP 2004360984A JP 2006171159 A JP2006171159 A JP 2006171159A
Authority
JP
Japan
Prior art keywords
light emitting
emitting surface
light source
light
contact point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360984A
Other languages
Japanese (ja)
Other versions
JP4661201B2 (en
Inventor
Yuji Ono
裕士 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004360984A priority Critical patent/JP4661201B2/en
Publication of JP2006171159A publication Critical patent/JP2006171159A/en
Application granted granted Critical
Publication of JP4661201B2 publication Critical patent/JP4661201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress variations in beam diameters of light beams on a photosensitive body which are to be generated by the inclination of a light emitting surface. <P>SOLUTION: In an optical scanner of the present invention, a first adjusting screw 54, a second adjusting screw 56 and a fixing pin 58 are projected from a light source supporting surface supporting a light source 12, and they abut on three points of surroundings of the light emitting surface 50. Then, beam diameters of light beams on the photosensitive body are adjusted by adjusting the inclination of the light emitting surface 50 with the first adjusting screw 54 and the second adjusting screw 56. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の発光点が二次元配列された発光面から射出された複数の光ビームで被走査面を偏向走査する光走査装置に関する。   The present invention relates to an optical scanning device that deflects and scans a surface to be scanned with a plurality of light beams emitted from a light emitting surface in which a plurality of light emitting points are two-dimensionally arranged.

近年のレーザビームプリンタでは、高速高解像度の画像形成を行うために、二次元配列された複数の発光点から複数の光ビームを射出する所謂面発光レーザが光源として用いられている。この面発光レーザでは、30本程のマルチビームでの走査が可能であり、例えば2400dpiで毎分100枚出力することが可能である。   In recent laser beam printers, so-called surface-emitting lasers that emit a plurality of light beams from a plurality of light-emitting points arranged two-dimensionally are used as light sources in order to perform high-speed and high-resolution image formation. With this surface emitting laser, scanning with about 30 multi-beams is possible, and for example, 100 sheets can be output per minute at 2400 dpi.

ところで、光走査装置の走査光学系は、ポリゴンミラーの面倒れを補正する光学系等を備えるので、図13(A)に示すように、主走査方向の横倍率βtと副走査方向の横倍率βsが異なるのが一般的である。その中でも、マルチビーム走査光学系では、発光点間隔と走査線ピッチとの関係を満足させるために副走査方向の横倍率が規制される等、副走査方向の横倍率の設計制約が特に厳しくなっているので、主走査方向及び副走査方向の横倍率を合わせることが困難である。   Incidentally, since the scanning optical system of the optical scanning device includes an optical system for correcting the surface tilt of the polygon mirror, as shown in FIG. 13A, the lateral magnification βt in the main scanning direction and the lateral magnification in the sub-scanning direction. Generally, βs is different. Among them, in the multi-beam scanning optical system, the design constraint on the lateral magnification in the sub-scanning direction becomes particularly strict, such as the lateral magnification in the sub-scanning direction being restricted in order to satisfy the relationship between the light emitting point interval and the scanning line pitch. Therefore, it is difficult to match the horizontal magnification in the main scanning direction and the sub-scanning direction.

このため、図13(B)に示すように、発光面100の位置に光軸方向への誤差Δが生じた場合には、結像点の光軸方向への位置ずれ量が、主走査方向Δs(=Δ×βt2)と副走査方向Δs(=Δ×βs2)とで異なる。これによって、被走査面102でのビーム径が主走査方向と副走査方向とで異なってしまうので、被走査面102(Z0)において、ノミナル状態では円形(図13(A)参照)であるビーム形状が、楕円状となる。なお、副走査方向における結像点Z1では、横長に線結像し、主走査方向における結像点Z2では、縦長に線結像する。 For this reason, as shown in FIG. 13B, when an error Δ in the optical axis direction occurs at the position of the light emitting surface 100, the positional deviation amount of the image formation point in the optical axis direction is the main scanning direction. It differs between Δs (= Δ × βt 2 ) and the sub-scanning direction Δs (= Δ × βs 2 ). As a result, the beam diameter on the surface to be scanned 102 is different between the main scanning direction and the sub-scanning direction. Therefore, a beam that is circular (see FIG. 13A) in the nominal state on the surface to be scanned 102 (Z0). The shape is elliptical. Note that a line image is formed horizontally long at the image forming point Z1 in the sub-scanning direction, and a line image is formed vertically long at the image forming point Z2 in the main scanning direction.

そして、図14(A)には、発光面100が、走査光学系の光軸106に対して主走査方向又は副走査方向へ傾斜することで、各発光点104(図14(B)参照)の位置に光軸方向への誤差が生じた状態を示している。この場合、走査光学系の光軸106から主走査方向又は副走査方向へ離れた発光点104から射出された光ビームの結像点は、被走査面102から光軸方向へ大きくずれる。このため、被走査面102における光ビームのビーム径は、光軸106から主走査方向又は副走査方向へ離れるにつれて拡大し、また、ビーム形状の変動も光軸106から離れるにつれて大きくなる。これによって、濃度ムラ等の画質ディフェクトが発生するという問題があった。   In FIG. 14A, the light emitting surface 100 is inclined in the main scanning direction or the sub scanning direction with respect to the optical axis 106 of the scanning optical system, so that each light emitting point 104 (see FIG. 14B). This shows a state in which an error in the optical axis direction has occurred at the position. In this case, the imaging point of the light beam emitted from the light emitting point 104 that is separated from the optical axis 106 of the scanning optical system in the main scanning direction or the sub-scanning direction is greatly shifted from the scanned surface 102 in the optical axis direction. For this reason, the beam diameter of the light beam on the surface to be scanned 102 increases as it moves away from the optical axis 106 in the main scanning direction or sub-scanning direction, and the variation in beam shape also increases as it moves away from the optical axis 106. As a result, there is a problem that image quality defects such as density unevenness occur.

このため、光ビームの本数が増え、光学系の光軸106から各光ビームまでの距離の差が大きくなった光走査装置においては、各光ビームのビーム径やビーム形状の均一性を維持するために、発光面の傾きを厳しく規制することが重要になっている。   For this reason, in the optical scanning device in which the number of light beams is increased and the difference in distance from the optical axis 106 of the optical system to each light beam is increased, the uniformity of the beam diameter and beam shape of each light beam is maintained. For this reason, it is important to strictly regulate the inclination of the light emitting surface.

なお、従来から発光面の角度を調整する構成は公知である(例えば、特許文献1参照)。しかし、特許文献1は、ノミナル光路からのずれによって生じるピッチ偏差の低減が課題で、副走査方向へ発光面を傾けて走査線の湾曲を低減するというものであって、被走査面における光ビームのビーム径の差を抑制したり、ビーム径の差による画質ディフェクトを抑制したりといった調整機構は一切開示されていない。
特開2001−125026号公報
In addition, the structure which adjusts the angle of a light emission surface is conventionally well-known (for example, refer patent document 1). However, Patent Document 1 has a problem of reducing the pitch deviation caused by the deviation from the nominal optical path, in which the light emitting surface is inclined in the sub-scanning direction to reduce the curvature of the scanning line. There is no disclosure of an adjustment mechanism for suppressing the difference in the beam diameters or suppressing the image quality defect due to the difference in the beam diameters.
JP 2001-1225026 A

本発明は上記事実を考慮してなされたものであり、複数の発光点が二次元配列された発光面から射出された複数の光ビームの被走査面におけるビーム径の差を抑制すること、及び、ビーム径の差による画質ディフェクトを効果的に抑制することを目的とする。   The present invention has been made in consideration of the above-described fact, and suppresses a difference in beam diameter on a scanned surface of a plurality of light beams emitted from a light emitting surface in which a plurality of light emitting points are two-dimensionally arranged, and An object of the present invention is to effectively suppress image quality defects due to a difference in beam diameter.

請求項1に記載の光走査装置は、複数の発光点が二次元配列された発光面から複数の光ビームを射出する光源部と、前記光源部から射出された複数の光ビームで被走査面を偏向走査する走査光学系と、を備える光走査装置であって、前記光源部が支持される光源支持面から突出して前記光源部の前記発光面を囲む3点に当接し、前記発光面の姿勢を決める3点の当接点を備え、3点の前記当接点のうち少なくとも1点の前記当接点が、前記光源支持面からの突出量を調整可能とされた調整当接点であることを特徴とする。   The optical scanning device according to claim 1, wherein a light source unit that emits a plurality of light beams from a light emitting surface in which a plurality of light emitting points are two-dimensionally arranged, and a surface to be scanned by the plurality of light beams emitted from the light source unit A scanning optical system that deflects and scans the light source unit, and projects from a light source support surface on which the light source unit is supported, abuts on three points surrounding the light emitting surface of the light source unit, The contact point includes three contact points that determine the posture, and at least one of the three contact points is an adjustment contact point capable of adjusting a protruding amount from the light source support surface. And

請求項1に記載の光走査装置では、光源部が、複数の発光点が二次元配列された発光面から複数の光ビームを射出し、走査光学系が、光源部から射出された複数の光ビームで被走査面を偏向走査する。これによって、高速高解像度の画像形成が可能となっている。   In the optical scanning device according to claim 1, the light source unit emits a plurality of light beams from a light emitting surface in which a plurality of light emitting points are two-dimensionally arranged, and the scanning optical system includes a plurality of lights emitted from the light source unit. The scanning surface is deflected and scanned with the beam. As a result, high-speed and high-resolution image formation is possible.

ここで、光源部は光源支持面に支持されているが、光源支持面からは3点の当接点が突出して光源部の発光面を囲む3点に当接しており、発光面の姿勢が決められている。この3点の当接点のうち少なくとも1点の当接点は、光源支持面からの突出量を調整可能とされた調整当接点とされている。これによって、3点の当接点の位置関係を調整して発光面の姿勢を調整することができるので、被走査面における複数の光ビームのビーム径の変動を補正できる。また、3点の当接点を光源部の発光面を囲む3点に当接させたことで、発光面の姿勢を安定させることができ、組立誤差を抑制できる。   Here, although the light source unit is supported by the light source support surface, three contact points protrude from the light source support surface and contact the three points surrounding the light emitting surface of the light source unit, and the posture of the light emitting surface is determined. It has been. At least one of the three contact points is an adjustment contact point that can adjust the amount of protrusion from the light source support surface. Accordingly, the position of the light emitting surface can be adjusted by adjusting the positional relationship between the three contact points, so that variations in the beam diameters of the plurality of light beams on the surface to be scanned can be corrected. In addition, by bringing the three contact points into contact with the three points surrounding the light emitting surface of the light source unit, the posture of the light emitting surface can be stabilized and assembly errors can be suppressed.

請求項2に記載の光走査装置は、請求項1に記載の光走査装置であって、前記光源部は、前記発光面に対して略平行で3点の前記当接点が当接する基準面を有することを特徴とする。   An optical scanning device according to a second aspect is the optical scanning device according to the first aspect, wherein the light source portion includes a reference surface that is substantially parallel to the light emitting surface and contacts the three contact points. It is characterized by having.

請求項2に記載の光走査装置では、光源部には発光面に対して略平行な基準面が設けられており、この基準面に3点の当接点が当接することで、発光面の姿勢が決められる。ここで、面発光レーザを矩形状のパッケージに実装する場合、パッケージ表面の平面度、パッケージ表面と発光面との平行度を高精度化することは容易なので、パッケージ表面を基準面とすることで、光源部の組立精度、調整精度を確保できる。   In the optical scanning device according to claim 2, the light source portion is provided with a reference surface substantially parallel to the light emitting surface, and the three contact points come into contact with the reference surface, whereby the posture of the light emitting surface is determined. Is decided. Here, when a surface emitting laser is mounted on a rectangular package, it is easy to improve the flatness of the package surface and the parallelism between the package surface and the light emitting surface. The assembly accuracy and adjustment accuracy of the light source unit can be ensured.

請求項3に記載の光走査装置は、請求項1又は2に記載の光走査装置であって、前記調整当接点が、前記光源支持面を貫通し、装置内部から調整される調整ネジであることを特徴とする。   The optical scanning device according to claim 3 is the optical scanning device according to claim 1 or 2, wherein the adjustment contact point is an adjustment screw that penetrates the light source support surface and is adjusted from the inside of the device. It is characterized by that.

請求項3に記載の光走査装置では、光源支持面を貫通した調整ネジが装置内部から調整されることで発光面の姿勢が調整される。このように、調整当接点を光源支持面を貫通した調整ネジとし、調整部を装置内部に設けたので、光走査装置に衝撃が加わっても発光面の角度の精度を維持することができる。   In the optical scanning device according to the third aspect, the posture of the light emitting surface is adjusted by adjusting the adjusting screw penetrating the light source support surface from the inside of the device. Thus, since the adjustment contact point is an adjustment screw penetrating the light source support surface and the adjustment unit is provided inside the apparatus, the accuracy of the angle of the light emitting surface can be maintained even when an impact is applied to the optical scanning device.

請求項4に記載の光走査装置は、複数の発光点が二次元配列された発光面から複数の光ビームを射出する光源部と、前記光源部から射出された複数の光ビームで被走査面を偏向走査する走査光学系と、を備える光走査装置であって、前記光源部の前記発光面を囲む3点から突出して前記光源部が支持される光源支持面に当接し、前記発光面の姿勢を決める3点の当接点を備え、3点の前記当接点のうち少なくとも1点の前記当接点が、前記光源部からの突出量を調整可能とされた調整当接点であることを特徴とする。   The optical scanning device according to claim 4, wherein a light source unit that emits a plurality of light beams from a light emitting surface in which a plurality of light emitting points are two-dimensionally arranged, and a surface to be scanned by the plurality of light beams emitted from the light source unit A scanning optical system that deflects and scans the light source, and protrudes from three points surrounding the light emitting surface of the light source unit so as to contact a light source support surface on which the light source unit is supported, It has three contact points that determine the posture, and at least one of the three contact points is an adjustment contact point that can adjust the amount of protrusion from the light source unit. To do.

請求項4に記載の光走査装置では、光源部が光源支持面に支持されているが、光源部の発光面を囲む3点からは3点の当接点が突出して光源支持面に当接しており、発光面の姿勢が決められている。この3点の当接点のうち少なくとも1点の当接点は、光源部からの突出量を調整可能とされた調整当接点とされている。これによって、3点の当接点の位置関係を調整して発光面の姿勢を調整することができるので、被走査面における複数の光ビームのビーム径の変動を補正できる。また、3点の当接点を光源部の発光面を囲む3点から突出させて光源支持面に当接させたことで、発光面の姿勢を安定させることができ、組立精度を維持できる。   In the optical scanning device according to claim 4, the light source unit is supported by the light source support surface, but three contact points project from the three points surrounding the light emitting surface of the light source unit to contact the light source support surface. The posture of the light emitting surface is determined. At least one of the three contact points is an adjustment contact point that can adjust the amount of protrusion from the light source unit. Accordingly, the position of the light emitting surface can be adjusted by adjusting the positional relationship between the three contact points, so that variations in the beam diameters of the plurality of light beams on the surface to be scanned can be corrected. Further, by projecting the three contact points from the three points surrounding the light emitting surface of the light source unit and bringing them into contact with the light source support surface, the posture of the light emitting surface can be stabilized, and assembly accuracy can be maintained.

請求項5に記載の光走査装置は、請求項1乃至4の何れか1項に記載の光走査装置であって、前記調整当接点によって前記発光面の姿勢を調整することで、前記被走査面における複数の光ビームのビーム径を調整することを特徴とする。   An optical scanning device according to a fifth aspect is the optical scanning device according to any one of the first to fourth aspects, wherein the position of the light emitting surface is adjusted by the adjustment contact point, so that the scanned object is adjusted. The beam diameter of the plurality of light beams on the surface is adjusted.

ここで、発光面が傾斜している場合、被走査面における複数の光ビームのビーム径は、走査光学系の光軸から発光面の傾斜方向へ離れるにつれて規則的に拡大する。なお、この点については詳細に後述する。   Here, when the light emitting surface is tilted, the beam diameters of the plurality of light beams on the scanned surface regularly increase as the distance from the optical axis of the scanning optical system increases in the tilt direction of the light emitting surface. This point will be described later in detail.

そこで、請求項5に記載の光走査装置では、調整当接点によって3点の当接点の位置関係を調整して発光面の傾きを調整することで、被走査面における複数の光ビームのビーム径を調整する。これによって、被走査面における複数の光ビームのビーム径の変動を抑制できるので、濃度ムラ等の画質ディフェクトを抑制できる。   Therefore, in the optical scanning device according to claim 5, the beam diameters of a plurality of light beams on the surface to be scanned are adjusted by adjusting the positional relationship of the three contact points by the adjustment contact point to adjust the inclination of the light emitting surface. Adjust. As a result, fluctuations in the beam diameters of the plurality of light beams on the surface to be scanned can be suppressed, so that image quality defects such as density unevenness can be suppressed.

請求項6に記載の光走査装置は、請求項1乃至5の何れか1項に記載の光走査装置であって、3点の前記当接点のうちの2点を前記調整当接点としてそれぞれ前記発光面の長手方向の一側及び他側に配設し、他の1点の前記当接点を前記光源支持面又は前記光源部に固定された固定当接点として前記発光面の長手方向の他側に配設し、前記発光面の長手方向の一側に配設された前記調整当接点と前記固定当接点を結ぶ直線と前記発光面の長手方向との角度Aと、前記発光面の長手方向の他側に配設された前記調整当接点と前記固定当接点を結ぶ直線と前記発光面の短手方向との角度Bとの関係をA>Bとしたことを特徴とする。   The optical scanning device according to a sixth aspect is the optical scanning device according to any one of the first to fifth aspects, wherein two of the three contact points are used as the adjustment contact points, respectively. The light emitting surface is disposed on one side and the other side of the light emitting surface in the longitudinal direction, and the other one of the contact points is set as the fixed contact point fixed to the light source support surface or the light source unit. An angle A between a straight line connecting the adjustment contact point and the fixed contact point disposed on one side in the longitudinal direction of the light emitting surface and the longitudinal direction of the light emitting surface, and the longitudinal direction of the light emitting surface A relationship between an angle B between a straight line connecting the adjustment contact point and the fixed contact point disposed on the other side and the short side direction of the light emitting surface is A> B.

請求項6に記載の光走査装置では、発光点の配列がm×nとされる等、発光面のX方向、Y方向の長さが異なっており、発光面の長手方向の両端の発光点と走査光学系の光軸との距離が長くなっている。このため、発光面の姿勢の調整誤差が発光面の長手方向に対して大きくなると、被走査面におけるビーム径の変動が大きくなる。   In the optical scanning device according to claim 6, the lengths of the light emitting surfaces in the X direction and the Y direction are different such that the arrangement of the light emitting points is m × n, and the light emitting points at both ends in the longitudinal direction of the light emitting surface. And the optical axis of the scanning optical system are long. For this reason, when the adjustment error of the attitude | position of a light emitting surface becomes large with respect to the longitudinal direction of a light emitting surface, the fluctuation | variation of the beam diameter in a to-be-scanned surface will become large.

そこで、本発明では、発光面の姿勢の調整誤差が、発光面の長手方向に対して小さくなるように3点の当接点を配設している。詳細には、3点の当接点のうちの2点を調整当接点としてそれぞれを発光面の長手方向の一側及び他側に配設する。そして、光源支持部又は光源部に固定された他の1点の固定当接点を発光面の長手方向の他側に配設し、長手方向の一側に配設された調整当接点と固定当接点を結ぶ直線と発光面の長手方向との角度Aと、発光面の長手方向の他側に配設された調整当接点と固定当接点を結ぶ直線と発光面の短手方向との角度Bとの関係をA>Bとしている。   Therefore, in the present invention, the three contact points are arranged so that the adjustment error of the posture of the light emitting surface is reduced with respect to the longitudinal direction of the light emitting surface. Specifically, two of the three contact points are set as adjustment contact points, and are arranged on one side and the other side of the light emitting surface in the longitudinal direction. Then, the light source support part or another fixed contact point fixed to the light source part is disposed on the other side in the longitudinal direction of the light emitting surface, and the adjustment contact point disposed on one side in the longitudinal direction is fixed to the fixed contact point. The angle B between the straight line connecting the contact points and the longitudinal direction of the light emitting surface, and the angle B between the straight line connecting the adjustment contact point and the fixed contact point disposed on the other side of the light emitting surface in the longitudinal direction and the short direction of the light emitting surface. A> B.

即ち、長手方向の一側の調整当接点を調整する際には、長手方向の他側の調整当接点と固定当接点を結ぶ直線を回転軸として発光面が回転されるので、この回転軸が発光面の短手方向に対して傾いている場合、発光面の傾き調整が長手方向に対してだけではなく短手方向に対しても行われる。また、長手方向の他側の調整当接点を調整する際には、長手方向の一側の調整当接点と固定当接点を結ぶ直線を回転軸として発光面が回転されるので、この回転軸が発光面の長手方向に対して傾いている場合、発光面の傾き調整が短手方向に対してだけではなく長手方向に対しても行われる。   That is, when adjusting the adjustment contact point on one side in the longitudinal direction, the light emitting surface is rotated about a straight line connecting the adjustment contact point on the other side in the longitudinal direction and the fixed contact point. When the light emitting surface is tilted with respect to the short direction, the light emitting surface is adjusted not only with respect to the longitudinal direction but also with respect to the short direction. Further, when adjusting the adjustment contact point on the other side in the longitudinal direction, the light emitting surface is rotated about a straight line connecting the adjustment contact point on one side in the longitudinal direction and the fixed contact point. When the light emitting surface is tilted with respect to the longitudinal direction, the tilt adjustment of the light emitting surface is performed not only with respect to the lateral direction but also with respect to the longitudinal direction.

このため、長手方向の他側の調整当接点と固定当接点とを結ぶ直線と短手方向との角度Bが大きくなると、発光面の傾き調整を長手方向に対して行う際に短手方向への傾き変化が大きくなり、発光面の長手方向に対する傾き量を所望の量だけ変化させることができなくなる。そこで、この角度Bを、長手方向の一側の調整当接点と固定当接点とを結ぶ直線と長手方向との角度Aよりも小さくすることで、発光面の長手方向に対する傾き調整の調整誤差を抑制している。   For this reason, when the angle B between the straight line connecting the adjustment contact point on the other side in the longitudinal direction and the fixed contact point and the short side direction becomes large, when the inclination adjustment of the light emitting surface is performed with respect to the long side, the short side direction is reached. Thus, the change in the inclination of the light emitting surface becomes large, and the inclination amount with respect to the longitudinal direction of the light emitting surface cannot be changed by a desired amount. Therefore, by adjusting the angle B to be smaller than the angle A between the straight line connecting the adjustment contact point on one side of the longitudinal direction and the fixed contact point and the longitudinal direction, the adjustment error of the tilt adjustment with respect to the longitudinal direction of the light emitting surface is reduced. Suppressed.

請求項7に記載の光走査装置は、請求項1乃至5の何れか1項に記載の光走査装置であって、3点の前記当接点のうちの1点を前記調整当接点とし、他の2点の前記当接点を、主走査方向及び副走査方向の何れかで、前記発光面の傾きによって発生する、前記被走査面における複数の光ビームのビーム径の変動が大きい方に対して略直角な直線上に配設したことを特徴とする。   The optical scanning device according to claim 7 is the optical scanning device according to any one of claims 1 to 5, wherein one of the three contact points is set as the adjustment contact point, and the other. These two contact points are generated in the main scanning direction or the sub-scanning direction due to the inclination of the light emitting surface, and the variation in the beam diameters of the plurality of light beams on the scanned surface is larger. It arrange | positions on the substantially perpendicular | vertical straight line, It is characterized by the above-mentioned.

請求項7に記載の光走査装置では、発光面の主走査方向の幅と副走査方向の幅の違いや、走査光学系の主走査方向の横倍率と副走査方向の横倍率の違い等によって、被走査面における光ビームのビーム径の変動の仕方が主走査方向と副走査方向とで違ってくる。   In the optical scanning device according to claim 7, due to a difference in the width of the light emitting surface in the main scanning direction and the width in the sub scanning direction, a difference in the horizontal magnification in the main scanning direction and the horizontal magnification in the sub scanning direction of the scanning optical system, or the like. The method of changing the beam diameter of the light beam on the surface to be scanned differs between the main scanning direction and the sub-scanning direction.

そこで、3点の当接点のうちの1点を調整当接点とし、他の2点の当接点を、主走査方向及び副走査方向の何れかで、被走査面における複数の光ビームのビーム径の発光面の傾きによる変動が大きい方に対して略直角な直線上に配設する。これによって、発光面の傾き調整が、発光面の傾きによって発生する、ビーム径の変動が大きくなる方向に対して実行可能になるので、被走査面における光ビームのビーム径の変動を全体的に小さくでき、画質低下の発生を抑制できる。   Therefore, one of the three contact points is used as an adjustment contact point, and the other two contact points are used as beam diameters of a plurality of light beams on the scanned surface in either the main scanning direction or the sub-scanning direction. The light emitting surface is arranged on a straight line that is substantially perpendicular to the larger variation due to the inclination of the light emitting surface. As a result, the tilt adjustment of the light emitting surface can be performed in the direction in which the beam diameter variation increases due to the tilt of the light emitting surface. The size can be reduced and the occurrence of image quality degradation can be suppressed.

請求項8に記載の光走査装置は、請求項1乃至5の何れか1項に記載の光走査装置であって、3点の前記当接点のうちの1点を前記調整当接点とし、他の2点の前記当接点を、主走査方向に対して略平行な直線上に配設したことを特徴とする。   The optical scanning device according to claim 8 is the optical scanning device according to any one of claims 1 to 5, wherein one of the three contact points is set as the adjustment contact point, and the other. These two contact points are arranged on a straight line substantially parallel to the main scanning direction.

請求項8に記載の光走査装置では、被走査面における複数の光ビームのビーム径の変動が副走査方向に対して発生すると、濃度変化の周期が長くなり、濃度ムラが顕著になる。そこで、3点の当接点のうち1点を調整当接点とし、他の2点の当接点を、主走査方向に対して略平行な直線上に配設する。これによって、発光面の傾き調整が、副走査方向に対して実行可能となるので、副走査方向に対する光ビームのビーム径の変動を抑制でき、濃度ムラの発生を抑制できる。   In the optical scanning device according to the eighth aspect, when fluctuations in the beam diameters of the plurality of light beams on the surface to be scanned occur in the sub-scanning direction, the density change period becomes long and the density unevenness becomes remarkable. Therefore, one of the three contact points is set as an adjustment contact point, and the other two contact points are arranged on a straight line substantially parallel to the main scanning direction. As a result, the tilt adjustment of the light emitting surface can be performed in the sub-scanning direction, so that fluctuations in the beam diameter of the light beam with respect to the sub-scanning direction can be suppressed, and density unevenness can be suppressed.

請求項9に記載の光走査装置は、請求項1乃至8の何れか1項に記載の光走査装置であって、前記走査光学系を底面に支持し、前記光源支持面が側壁に設けられた光学ハウジングと、前記光学ハウジングに被せられるハウジングカバーと、を備え、前記調整当接点を副走査方向の前記ハウジングカバー側に配設し、他の前記当接点を副走査方向の前記底面側に配設したことを特徴とする。   The optical scanning device according to claim 9 is the optical scanning device according to any one of claims 1 to 8, wherein the scanning optical system is supported on a bottom surface, and the light source support surface is provided on a side wall. An optical housing, and a housing cover that covers the optical housing, wherein the adjustment contact point is disposed on the housing cover side in the sub-scanning direction, and the other contact point is on the bottom surface side in the sub-scanning direction. It is characterized by being arranged.

請求項9に記載の光走査装置では、光学ハウジングの底面に走査光学系が支持され、光学ハウジングの側壁に光源支持面が設けられている。また、この光学ハウジングにはハウジングカバーが被せられる。   In the optical scanning device according to the ninth aspect, the scanning optical system is supported on the bottom surface of the optical housing, and the light source support surface is provided on the side wall of the optical housing. The optical housing is covered with a housing cover.

ここで、光源部の近傍にはコリメータレンズ等が実装されており、調整当接点を調整するスペースに限りがある。そこで、調整当接点を副走査方向のハウジングカバー側、即ち光学ハウジングの開放側に配設し、他の当接点を副走査方向の底面側に配設することで、調整当接点を光学ハウジングの底面から離して設け、調整時のアクセスの自由度を確保している。   Here, a collimator lens or the like is mounted in the vicinity of the light source unit, and a space for adjusting the adjustment contact point is limited. Therefore, the adjustment contact point is disposed on the housing cover side in the sub-scanning direction, that is, on the open side of the optical housing, and the other contact point is disposed on the bottom surface side in the sub-scanning direction. It is provided away from the bottom surface to ensure freedom of access during adjustment.

本発明は上記構成にしたので、複数の発光点が二次元配列された発光面から射出された複数の光ビームの被走査面におけるビーム径の差を抑制でき、また、ビーム径の差による画質ディフェクトを効果的に抑制できる。   Since the present invention has the above-described configuration, it is possible to suppress a difference in beam diameter on the scanned surface of a plurality of light beams emitted from a light emitting surface in which a plurality of light emitting points are two-dimensionally arranged. Defects can be effectively suppressed.

以下に図面を参照しながら本発明の第1実施形態について説明する。   A first embodiment of the present invention will be described below with reference to the drawings.

図1に示すように、光走査装置10では、VCSEL光源部12(図2参照、以下、光源部という)が実装されたVCSEL制御基板14(以下、基板という)が光学ハウジング16の側壁16Aに取付けられている。側壁16Aには光源部12に面して貫通孔16Bが空けられており、光源部12から射出された光ビームLがこの貫通孔16Bから光学ハウジング16内に入射する。   As shown in FIG. 1, in the optical scanning device 10, a VCSEL control board 14 (hereinafter referred to as a substrate) on which a VCSEL light source section 12 (see FIG. 2, hereinafter referred to as a light source section) is mounted is disposed on the side wall 16 </ b> A of the optical housing 16. Installed. A through hole 16B is formed in the side wall 16A so as to face the light source unit 12, and the light beam L emitted from the light source unit 12 enters the optical housing 16 through the through hole 16B.

そして、光学ハウジング16の底面16Cには走査光学系15が配設されている。この走査光学系15は、光ビームLの光路に沿って順に配設された、コリメータレンズ18、アパーチャ20、ハーフミラー22、シリンドリカルレンズ24、ポリゴンミラー26、Fθレンズ28、第一のシリンドリカルミラー30、折返しミラー32、第二のシリンドリカルミラー34で構成されている。   A scanning optical system 15 is disposed on the bottom surface 16 </ b> C of the optical housing 16. The scanning optical system 15 includes a collimator lens 18, an aperture 20, a half mirror 22, a cylindrical lens 24, a polygon mirror 26, an Fθ lens 28, and a first cylindrical mirror 30, which are arranged in order along the optical path of the light beam L. , A folding mirror 32 and a second cylindrical mirror 34.

光ビームLは、コリメータレンズ18により平行ビームとされてアパーチャ20によって所定のビーム幅に成形される。そして、ハーフミラー22を透過してシリンドリカルレンズ24に入射し、シリンドリカルレンズ24によってポリゴンミラー26の反射面近傍に主走査方向に伸びた線状に結像される。   The light beam L is converted into a parallel beam by the collimator lens 18 and shaped to a predetermined beam width by the aperture 20. Then, the light passes through the half mirror 22 and enters the cylindrical lens 24, and the cylindrical lens 24 forms an image in the vicinity of the reflection surface of the polygon mirror 26 in a linear shape extending in the main scanning direction.

そして、光ビームLは、ポリゴンミラー26の回転により偏向され、2枚組のFθレンズ28により等速度走査する光ビームとされた後、第一のシリンドリカルミラー30、折返しミラー32、第二のシリンドリカルミラー34により反射され、防塵ウィンドウ(図示省略)を透過して、感光体36を走査する。   The light beam L is deflected by the rotation of the polygon mirror 26 and is converted into a light beam that is scanned at a constant speed by the two Fθ lenses 28, and then the first cylindrical mirror 30, the folding mirror 32, and the second cylindrical beam. The photosensitive member 36 is scanned by being reflected by the mirror 34 and passing through a dust-proof window (not shown).

なお、ハーフミラー22は、主走査方向の断面形状が台形状のウェッジプリズムであり、アパーチャ20を通過した光ビームLの一部を反射する。このハーフミラー22によって反射された光ビームLの進行方向には、レンズ38、光量検知センサ40が配設されており、ハーフミラー22によって反射された光ビームLは、レンズ38により集光されて光量検知センサ40に入射する。光量検知センサ40は、受光した光ビームLの光量を検知して光源部12の制御部(図示省略)に光量を電流値に変換して出力し、光源部12の制御部は、入力された電流値に応じて光源部12の光量制御を行う。   The half mirror 22 is a wedge prism having a trapezoidal cross-sectional shape in the main scanning direction, and reflects a part of the light beam L that has passed through the aperture 20. A lens 38 and a light amount detection sensor 40 are disposed in the traveling direction of the light beam L reflected by the half mirror 22, and the light beam L reflected by the half mirror 22 is condensed by the lens 38. It enters the light amount detection sensor 40. The light amount detection sensor 40 detects the light amount of the received light beam L, converts the light amount into a current value and outputs it to a control unit (not shown) of the light source unit 12, and the control unit of the light source unit 12 receives the input. The light amount of the light source unit 12 is controlled according to the current value.

また、折返しミラー32と第二のシリンドリカルミラー34との間の有効走査領域外にはSOSミラー42が配設されており、折返しミラー32で反射された光ビームLを反射する。SOSミラー42によって反射された光ビームLの光路には、SOSレンズ44、同期検出センサ46が配設されており、SOSミラー42によって反射された光ビームLは、SOSレンズ44によって副走査方向に集光されて同期検出センサ46に入射する。光源部12の制御部は、同期検出センサ46が光ビームLを受光したタイミングに基づいて同期制御を行う。   An SOS mirror 42 is disposed outside the effective scanning area between the folding mirror 32 and the second cylindrical mirror 34, and reflects the light beam L reflected by the folding mirror 32. An SOS lens 44 and a synchronization detection sensor 46 are disposed in the optical path of the light beam L reflected by the SOS mirror 42, and the light beam L reflected by the SOS mirror 42 is moved in the sub scanning direction by the SOS lens 44. The light is condensed and enters the synchronization detection sensor 46. The control unit of the light source unit 12 performs synchronization control based on the timing at which the synchronization detection sensor 46 receives the light beam L.

なお、走査光学系15の主走査方向の横倍率βtと副走査方向の横倍率βsとの関係は、下記(1)式のようになっている。   The relationship between the lateral magnification βt in the main scanning direction and the lateral magnification βs in the sub-scanning direction of the scanning optical system 15 is expressed by the following equation (1).

βt>βs…(1)。   βt> βs (1).

ここで、光源部12の構造について説明する。   Here, the structure of the light source unit 12 will be described.

図2に示すように、光源部12は、主走査方向に4列、副走査方向に8列、合計32個の発光点48が二次元配列された発光面50が、矩形状のパッケージ52内に実装された構成になっている。発光点48の間隔は、主走査方向に28μm、副走査方向に35μmとなっている。即ち、発光面50の主走査方向の幅Ltと副走査方向の幅Lsとの関係は、下記の(2)式のようになっている。   As shown in FIG. 2, the light source unit 12 has a light emitting surface 50 in which a total of 32 light emitting points 48 are two-dimensionally arranged in four rows in the main scanning direction and eight rows in the sub scanning direction. The configuration is implemented in The interval between the light emitting points 48 is 28 μm in the main scanning direction and 35 μm in the sub scanning direction. That is, the relationship between the width Lt in the main scanning direction and the width Ls in the sub-scanning direction of the light emitting surface 50 is expressed by the following equation (2).

Lt<Ls…(2)
また、発光点48は、主走査方向及び副走査方向に対して傾斜した直線状に配列されており、同時に32本の光ビームLで感光体36を走査することが可能となっている。
Lt <Ls (2)
The light emitting points 48 are arranged in a straight line inclined with respect to the main scanning direction and the sub-scanning direction, and can simultaneously scan the photoconductor 36 with 32 light beams L.

図3に示すように、光源部12は基板14に実装されており、基板14を光学ハウジング16の側壁16Aに取付けることで、光源部12が側壁16Aに支持される。ここで、図3乃至図5に示すように、側壁16Aに空けられた貫通孔16Bの周囲からは3本のピンが突出しており、パッケージ52の表面52Aに当接している。この3本のピンのうちの2本は第一調整ネジ54、第二調整ネジ56で、残りの1本は側壁16Aに固定された固定ピン58である。   As shown in FIG. 3, the light source unit 12 is mounted on the substrate 14, and the light source unit 12 is supported on the side wall 16 </ b> A by attaching the substrate 14 to the side wall 16 </ b> A of the optical housing 16. Here, as shown in FIGS. 3 to 5, three pins protrude from the periphery of the through hole 16 </ b> B formed in the side wall 16 </ b> A and abut against the surface 52 </ b> A of the package 52. Two of the three pins are a first adjustment screw 54 and a second adjustment screw 56, and the other one is a fixing pin 58 fixed to the side wall 16A.

第一調整ネジ54、第二調整ネジ56は、側壁16Aの内面に取付けられた板金60に螺合しており、側壁16Aに形成された穴を貫通して側壁16Aから突出している。また、第一調整ネジ54は、発光面50より副走査方向の一側(ハウジングカバー17側)に配設され、第二調整ネジ56は、発光面50より副走査方向の他側(底面16C側)に配設され、さらに、固定ピン58は、副走査方向の第一調整ネジ54と第二調整ネジ56との間に配設されている。また、第二調整ネジ56は、発光面50より主走査方向の一側(図2中の右側)に配設され、固定ピン58は、発光面50より主走査方向の他側(図2中の左側)に配設され、さらに、第一調整ネジ54は、主走査方向の第二調整ネジ56と固定ピン58との間に配設されている。   The first adjustment screw 54 and the second adjustment screw 56 are screwed into a sheet metal 60 attached to the inner surface of the side wall 16A, and protrude from the side wall 16A through a hole formed in the side wall 16A. The first adjustment screw 54 is disposed on one side in the sub-scanning direction (housing cover 17 side) from the light emitting surface 50, and the second adjustment screw 56 is on the other side in the sub-scanning direction (bottom surface 16C) from the light emitting surface 50. In addition, the fixing pin 58 is disposed between the first adjustment screw 54 and the second adjustment screw 56 in the sub-scanning direction. The second adjustment screw 56 is disposed on the one side in the main scanning direction (right side in FIG. 2) from the light emitting surface 50, and the fixing pin 58 is on the other side in the main scanning direction from the light emitting surface 50 (in FIG. 2). Further, the first adjustment screw 54 is disposed between the second adjustment screw 56 and the fixing pin 58 in the main scanning direction.

即ち、第一調整ネジ54、第二調整ネジ56、固定ピン58は、発光面50の周囲に面して配設されており、パッケージ52の表面52Aの発光面50を囲む3点に当接し、パッケージ52の表面52Aの姿勢(角度)を決定する。ここで、パッケージ52の表面52Aと発光面50との平行度、及び、表面52Aの平面度が、高精度に出されている。このため、この表面52Aを基準面として、発光面50の姿勢(角度)を高精度に決めることができる。   That is, the first adjustment screw 54, the second adjustment screw 56, and the fixing pin 58 are disposed so as to face the periphery of the light emitting surface 50, and come into contact with three points surrounding the light emitting surface 50 of the surface 52 </ b> A of the package 52. The posture (angle) of the surface 52A of the package 52 is determined. Here, the parallelism between the surface 52A of the package 52 and the light emitting surface 50 and the flatness of the surface 52A are obtained with high accuracy. Therefore, the posture (angle) of the light emitting surface 50 can be determined with high accuracy using the surface 52A as a reference surface.

ところで、上記(1)、(2)式を満たす本実施形態においては、図6(A)、(B)に示すように、発光面50が傾いた場合には、その向きに関わらず、感光体36における光ビームLが、走査光学系15の倍率が大きい方向、即ち主走査方向へ広がり、ビーム形状が楕円になる。   By the way, in the present embodiment satisfying the above formulas (1) and (2), as shown in FIGS. 6A and 6B, when the light emitting surface 50 is tilted, the photosensitive surface is not affected. The light beam L in the body 36 spreads in the direction in which the magnification of the scanning optical system 15 is large, that is, in the main scanning direction, and the beam shape becomes an ellipse.

また、図6(A)に示すように、発光面50が主走査方向に傾いた場合には、感光体36における光ビームLのビーム径が、走査光学系15の光軸62から主走査方向へ離れるにつれて次第に拡大する。   As shown in FIG. 6A, when the light emitting surface 50 is inclined in the main scanning direction, the beam diameter of the light beam L on the photosensitive member 36 is changed from the optical axis 62 of the scanning optical system 15 to the main scanning direction. It gradually expands as you move away.

また、図6(B)に示すように、発光面50が副走査方向に傾いた場合には、感光体36における光ビームLのビーム径が、走査光学系15の光軸62から副走査方向へ離れるにつれて次第に拡大する。   As shown in FIG. 6B, when the light emitting surface 50 is inclined in the sub-scanning direction, the beam diameter of the light beam L on the photoreceptor 36 is changed from the optical axis 62 of the scanning optical system 15 to the sub-scanning direction. It gradually expands as you move away.

即ち、発光面50の長手方向である副走査方向に発光面50が傾いた場合の方が、主走査方向に傾いた場合よりも、感光体36における光ビームLのビーム径の変動が大きくなる。このため、発光面50の長手方向に対する傾き調整の誤差が大きくなると、感光体36における光ビームLのビーム径の変動が大きくなる。   That is, when the light emitting surface 50 is inclined in the sub-scanning direction, which is the longitudinal direction of the light emitting surface 50, the variation in the beam diameter of the light beam L on the photoconductor 36 is larger than when the light emitting surface 50 is inclined in the main scanning direction. . For this reason, when the error of the tilt adjustment with respect to the longitudinal direction of the light emitting surface 50 becomes large, the fluctuation of the beam diameter of the light beam L on the photoconductor 36 becomes large.

そこで、本実施形態では、発光面50の傾き調整の誤差が、発光面50の長手方向に対して小さくなるように、第一調整ネジ54、第二調整ネジ56、固定ピン58を配設している。詳細には、発光面50の長手方向の一側に配設された第一調整ネジ54と固定ピン58を結ぶ直線L1と発光面50の長手方向との角度Aと、発光面50の長手方向の他側に配設された第二調整ネジ56と固定ピン58を結ぶ直線L2と発光面50の短手方向との角度Bとの関係をA>Bとしている。   Therefore, in the present embodiment, the first adjustment screw 54, the second adjustment screw 56, and the fixing pin 58 are provided so that the error in adjusting the inclination of the light emitting surface 50 is reduced with respect to the longitudinal direction of the light emitting surface 50. ing. Specifically, the angle A between the straight line L1 connecting the first adjustment screw 54 and the fixing pin 58 disposed on one side in the longitudinal direction of the light emitting surface 50 and the longitudinal direction of the light emitting surface 50, and the longitudinal direction of the light emitting surface 50 The relationship between the straight line L2 connecting the second adjustment screw 56 and the fixing pin 58 disposed on the other side and the angle B between the short side direction of the light emitting surface 50 is A> B.

即ち、第一調整ネジ54を調整する際には、第二調整ネジ56と固定ピン58を結ぶ直線L2を回転軸として発光面50が回転されるので、この回転軸L2が発光面50の短手方向に対して傾いていると、発光面50の傾き調整が長手方向に対してだけではなく短手方向に対しても行われる。また、第二調整ネジ56を調整する際には、第一調整ネジ54と固定ピン58を結ぶ直線L1を回転軸として発光面50が回転されるので、この回転軸L1が発光面50の長手方向に対して傾いていると、発光面50の傾き調整が短手方向に対してだけではなく長手方向に対しても行われる。   That is, when the first adjustment screw 54 is adjusted, the light emitting surface 50 is rotated about the straight line L2 connecting the second adjustment screw 56 and the fixing pin 58, so that the rotation axis L2 is shorter than the light emitting surface 50. When tilted with respect to the hand direction, the tilt adjustment of the light emitting surface 50 is performed not only with respect to the longitudinal direction but also with respect to the lateral direction. Further, when the second adjustment screw 56 is adjusted, the light emitting surface 50 is rotated with the straight line L1 connecting the first adjustment screw 54 and the fixing pin 58 as a rotation axis. When tilted with respect to the direction, the tilt adjustment of the light emitting surface 50 is performed not only with respect to the lateral direction but also with respect to the longitudinal direction.

このため、直線L2と短手方向との角度Bが大きくなると、発光面50の傾き調整を長手方向に対して行う際に短手方向への傾き変化が大きくなり、発光面50の長手方向に対する傾き調整を高精度に行うことができなくなる。そこで、この角度Bを、直線L1と長手方向との角度Aよりも小さくすることで、発光面50の長手方向に対する傾き調整の調整誤差を抑制している。   For this reason, when the angle B between the straight line L2 and the short side direction increases, the tilt change in the short side direction increases when the inclination adjustment of the light emitting surface 50 is performed with respect to the long side direction. Tilt adjustment cannot be performed with high accuracy. Therefore, by adjusting the angle B to be smaller than the angle A between the straight line L1 and the longitudinal direction, the adjustment error of the tilt adjustment with respect to the longitudinal direction of the light emitting surface 50 is suppressed.

これによって、発光面50の傾きによって発生する、感光体36における光ビームLのビーム径の変動が大きい方向に対して、発光面50の姿勢を高精度に調整できるので、ビーム径の差による画質ディフェクトを効果的に抑制できる。   Accordingly, the attitude of the light emitting surface 50 can be adjusted with high accuracy with respect to the direction in which the variation of the beam diameter of the light beam L on the photosensitive member 36 caused by the inclination of the light emitting surface 50 is large. Defects can be effectively suppressed.

なお、図7に示すように、直線L1を発光面50の長手方向に対して平行に、直線L2を発行面50の短手方向に対して平行にした場合、発光面50の傾き調整を長手方向に対して行う際の短手方向への傾き変化、及び発光面50の傾き調整を短手方向に対して行う際の長手方向への傾き変化をゼロにすることが可能となり、発光面50の長手方向及び短手方向に対する傾き調整の調整誤差を無くすことができる。   As shown in FIG. 7, when the straight line L1 is parallel to the longitudinal direction of the light emitting surface 50 and the straight line L2 is parallel to the short direction of the issuing surface 50, the inclination adjustment of the light emitting surface 50 is performed in the longitudinal direction. It is possible to make the change in inclination in the short direction when performing with respect to the direction and the change in inclination in the longitudinal direction when adjusting the inclination of the light emitting surface 50 with respect to the short direction to be zero. The adjustment error of the tilt adjustment with respect to the longitudinal direction and the lateral direction can be eliminated.

しかし、パッケージ52の表面52Aに対して3本のピンが当接するポイントが、発光面50の片側に偏ってしまうため、発光面50の姿勢を安定させることができない。このため、本実施形態のように、パッケージ52の表面52Aの発光面50を囲む3点にピンを当接させ、上記した角度Aと角度Bとの関係をA>Bとすることで、発光面50の姿勢を安定させると共に、発光面50の長手方向に対する傾き調整の誤差を抑制することが望ましい。   However, since the point where the three pins abut against the surface 52A of the package 52 is biased to one side of the light emitting surface 50, the posture of the light emitting surface 50 cannot be stabilized. For this reason, as in the present embodiment, the pins are brought into contact with the three points surrounding the light emitting surface 50 of the surface 52A of the package 52, and the relationship between the angle A and the angle B described above satisfies A> B, thereby emitting light. It is desirable to stabilize the posture of the surface 50 and to suppress an error in tilt adjustment with respect to the longitudinal direction of the light emitting surface 50.

次に、第2実施形態について説明する。なお、第1実施形態と同様の構成には同一の符号を付し、説明は省略する。なお、本実施形態においても、上記(1)、(2)式が満たされている。   Next, a second embodiment will be described. In addition, the same code | symbol is attached | subjected to the structure similar to 1st Embodiment, and description is abbreviate | omitted. In the present embodiment as well, the above expressions (1) and (2) are satisfied.

図8、図9に示すように、光走査装置70では、側壁16Aに空けられた貫通孔16Bの周囲から3本のピンが突出しており、パッケージ52の表面52Aに当接している。この3本のピンのうちの1本は調整ネジ72で、残りの2本は側壁16Aに固定された固定ピン74、76である。   As shown in FIGS. 8 and 9, in the optical scanning device 70, three pins protrude from the periphery of the through hole 16 </ b> B formed in the side wall 16 </ b> A and abut on the surface 52 </ b> A of the package 52. One of the three pins is an adjustment screw 72, and the other two are fixing pins 74 and 76 fixed to the side wall 16A.

調整ネジ72は、側壁16Aの内面に取付けられた板金60に螺合しており、側壁16Aに形成された穴(図示省略)を貫通して側壁16Aから突出している。また、調整ネジ72は、発光面50より副走査方向の一側(ハウジングカバー17側)且つ発光面50の主走査方向中央部に配設され、固定ピン74は、発光面50より副走査方向の他側(底面16C側)且つ発光面50より主走査方向の一側(図8中の左側)に配設され、さらに、固定ピン76は、発光面50より副走査方向の他側且つ発光面50より主走査方向の他側(図8中の右側)に配設されている。固定ピン74、76は、主走査方向と略平行な直線上に配設され、また、発光面50の主走査方向中央部からの距離が等しくなっている。即ち、調整ネジ72、固定ピン74、76は、発光面50を囲む二等辺三角形を形成している。   The adjusting screw 72 is screwed into a sheet metal 60 attached to the inner surface of the side wall 16A, and protrudes from the side wall 16A through a hole (not shown) formed in the side wall 16A. The adjustment screw 72 is disposed on one side of the light emitting surface 50 in the sub-scanning direction (housing cover 17 side) and in the center of the light emitting surface 50 in the main scanning direction, and the fixing pin 74 is arranged in the sub-scanning direction from the light emitting surface 50. The fixing pin 76 is disposed on the other side (the bottom surface 16C side) and on the one side in the main scanning direction (left side in FIG. 8) from the light emitting surface 50, and the fixing pin 76 is on the other side in the sub scanning direction from the light emitting surface 50 and emits light. It is disposed on the other side of the main scanning direction from the surface 50 (the right side in FIG. 8). The fixing pins 74 and 76 are arranged on a straight line substantially parallel to the main scanning direction, and the distances from the central portion of the light emitting surface 50 in the main scanning direction are equal. That is, the adjustment screw 72 and the fixing pins 74 and 76 form an isosceles triangle surrounding the light emitting surface 50.

ここで、調整ネジ54を調整する際には、固定ピン74、76を結ぶ直線L3を回転軸として発光面50が回転するが、この直線L3が主走査方向と略平行になっており、発光面50の傾きが、副走査方向に対してのみ調整されるようになっている。   Here, when the adjustment screw 54 is adjusted, the light emitting surface 50 rotates about the straight line L3 connecting the fixing pins 74 and 76, and this straight line L3 is substantially parallel to the main scanning direction and emits light. The inclination of the surface 50 is adjusted only with respect to the sub-scanning direction.

これは、上述したように、発光面50が発光面50の長手方向に相当する副走査方向へ傾いた場合に、感光体36における光ビームLのビーム径の変動が大きくなるためで、ビーム径の変動が大きくなる方向への発光面50の傾き調整を実行することで、感光体36における光ビームLのビーム径の変動を全体的に小さくでき、画質低下の発生を抑制できる。   This is because, as described above, when the light emitting surface 50 is tilted in the sub-scanning direction corresponding to the longitudinal direction of the light emitting surface 50, the variation in the beam diameter of the light beam L on the photosensitive member 36 increases. By executing the inclination adjustment of the light emitting surface 50 in the direction in which the fluctuation of the light increases, the fluctuation of the beam diameter of the light beam L on the photosensitive member 36 can be reduced as a whole, and the occurrence of the image quality deterioration can be suppressed.

なお、本実施形態では、副走査方向に対して発光面50の傾き調整を行ったが、発光面50の傾きによって発生する、感光体36における光ビームLのビーム径変動が、副走査方向よりも主走査方向の方が大きい場合には、主走査方向に対して発光面50の傾き調整を行えば良い。   In the present embodiment, the inclination of the light emitting surface 50 is adjusted with respect to the sub-scanning direction. However, the beam diameter variation of the light beam L on the photoconductor 36 caused by the inclination of the light emitting surface 50 is smaller than that in the sub-scanning direction. If the main scanning direction is larger, the inclination of the light emitting surface 50 may be adjusted with respect to the main scanning direction.

また、発光面50の傾き調整を、副走査方向に対して行うもう1つの理由としては、発光面50の副走査方向に対する傾きが、画像の濃度変化に対して大きな影響を与えるためである。   Another reason for adjusting the inclination of the light emitting surface 50 with respect to the sub-scanning direction is that the inclination of the light emitting surface 50 with respect to the sub-scanning direction has a great influence on the density change of the image.

図10(A)に示すように、主走査方向に発光面50の傾きが生じた場合には、図10(B)に示すように、1走査内のビーム径が短い周期で変動する。これに対して、図11(A)に示すように、副走査方向に発光面50の傾きが生じた場合には、図11(B)に示すように、1走査内のビーム径の変動の周期が長くなる。   As shown in FIG. 10A, when the light emitting surface 50 is inclined in the main scanning direction, the beam diameter in one scan fluctuates in a short cycle as shown in FIG. 10B. On the other hand, as shown in FIG. 11A, when the light emitting surface 50 is inclined in the sub-scanning direction, as shown in FIG. The cycle becomes longer.

ここで、二次元配列された光源を備える光走査装置は、複数の光ビームを同時に走査する。例えば、32本の光ビームで1200dpiの走査を行う場合には、下記(3)式に示すように1走査の副走査方向の幅が約0.7mmとなる。   Here, an optical scanning device including light sources arranged two-dimensionally scans a plurality of light beams simultaneously. For example, when scanning at 1200 dpi with 32 light beams, the width in the sub-scanning direction of one scan is about 0.7 mm as shown in the following equation (3).

25.4(mm/inch)/1200×32=0.68(mm)…(3)
また、電子写真方式の画像形成装置では、マーキング部を構成する感光体の帯電電位、現像器の現像性がエネルギ密度により変化するため、感光体におけるビーム径が大きくなると、画像濃度が低下する。このため、感光体におけるビーム径の変動周期に応じた濃度変動が生じる。
25.4 (mm / inch) /1200×32=0.68 (mm) (3)
Further, in the electrophotographic image forming apparatus, the charging potential of the photoconductor constituting the marking unit and the developability of the developing device vary depending on the energy density. Therefore, when the beam diameter on the photoconductor increases, the image density decreases. For this reason, density fluctuations according to the fluctuation period of the beam diameter in the photosensitive member occur.

即ち、図10(B)に示すように、ビーム径が短い周期で変動する場合には、図10(C)に示すように、短い周期(1走査内で8周期)の濃度変化が生じるので、(3)式の条件下では、濃度変化の周期λ1が0.10mm以下となり、濃度ムラをほとんど認識できない。これに対して、図11(B)に示すように、ビーム径が長い周期で変動する場合には、図11(C)に示すように、長い周期(1走査内で1周期)の濃度変化が生じるので、(3)式の条件下では、濃度変化の周期λ2が約0.7mmとなり、濃度ムラが顕著に表れる。   That is, as shown in FIG. 10B, when the beam diameter fluctuates in a short cycle, the density change occurs in a short cycle (eight cycles in one scan) as shown in FIG. 10C. , (3), the density change period λ1 is 0.10 mm or less, and density unevenness is hardly recognized. On the other hand, when the beam diameter fluctuates with a long period as shown in FIG. 11B, the density change with a long period (one period within one scan) as shown in FIG. 11C. Therefore, under the condition of the expression (3), the density change period λ2 is about 0.7 mm, and density unevenness appears remarkably.

このため、図8、図9に示すように、発光面50の傾き調整を、副走査方向に対して行うことで、濃度変化の周期を長くすることができ、濃度ムラの発生を抑制できる。   For this reason, as shown in FIGS. 8 and 9, by adjusting the inclination of the light emitting surface 50 in the sub-scanning direction, the density change cycle can be lengthened, and the occurrence of density unevenness can be suppressed.

なお、回転軸となる直線L2が光軸62からオフセットされているので、発光面50の傾き調整を実施すると、光軸62上の発光点48が光軸方向に移動し、結像点が光軸方向にずれるが、この結像点のズレは、コリメータレンズ18(図1参照)等を光軸方向に移動させることで補正可能である。   Since the straight line L2 serving as the rotation axis is offset from the optical axis 62, when the inclination adjustment of the light emitting surface 50 is performed, the light emitting point 48 on the optical axis 62 moves in the optical axis direction, and the imaging point becomes a light beam. Although shifted in the axial direction, this image point deviation can be corrected by moving the collimator lens 18 (see FIG. 1) or the like in the optical axis direction.

また、図1に示すように、光源部12の近傍にはコリメータレンズ18等が実装されており、調整ネジ72を調整するスペースに限りがある。そこで、本実施形態では、図9に示すように、調整ネジ72を副走査方向のハウジングカバー17側、即ち光学ハウジング16の開放側に配設し、固定ピン74、76を副走査方向の底面16C側に配設することで、調整ネジ72を光学ハウジング16の底面16Cから離して設け、調整時のアクセスの自由度を確保している。   Further, as shown in FIG. 1, a collimator lens 18 and the like are mounted in the vicinity of the light source unit 12, and a space for adjusting the adjustment screw 72 is limited. Therefore, in the present embodiment, as shown in FIG. 9, the adjustment screw 72 is disposed on the housing cover 17 side in the sub-scanning direction, that is, on the open side of the optical housing 16, and the fixing pins 74 and 76 are arranged on the bottom surface in the sub-scanning direction. By disposing on the 16C side, the adjustment screw 72 is provided away from the bottom surface 16C of the optical housing 16, and the degree of freedom of access during adjustment is ensured.

また、固定ピン74、76の主走査方向の距離を、パッケージ52の表面52Aから逸脱しない範囲で最長にすることにより、無調整である発光面50の主走査方向の傾きを最大限抑制できる。   Further, by making the distance of the fixing pins 74 and 76 in the main scanning direction the longest within a range not deviating from the surface 52A of the package 52, the inclination of the light emitting surface 50 which is not adjusted can be suppressed to the maximum.

次に、第3実施形態について説明する。なお、第1、第2実施形態と同様の構成には同一の符号を付し、説明は省略する。   Next, a third embodiment will be described. In addition, the same code | symbol is attached | subjected to the structure similar to 1st, 2nd embodiment, and description is abbreviate | omitted.

図12に示すように、光走査装置80では、光源部12のパッケージ52に第一調整ネジ54、第二調整ネジ56が螺合し、固定ピン58(図示省略)が固定されており、これらが側壁16Aに当接している。この第一調整ネジ54、第二調整ネジ56、固定ピン58が当接する側壁16Aの面は、平面性が高くなっており、発光面50の姿勢が高精度に決められるようになっている。   As shown in FIG. 12, in the optical scanning device 80, the first adjustment screw 54 and the second adjustment screw 56 are screwed into the package 52 of the light source unit 12, and fixing pins 58 (not shown) are fixed. Is in contact with the side wall 16A. The surface of the side wall 16A with which the first adjustment screw 54, the second adjustment screw 56, and the fixing pin 58 come into contact has high flatness, and the posture of the light emitting surface 50 can be determined with high accuracy.

ここで、基板14には第一調整ネジ54、第二調整ネジ56が貫通する貫通孔14A、14Bが空けられており、基板14の裏側から、即ち光走査装置80の外側から、第一調整ネジ54、第二調整ネジ56を調整することができるようになっている。このため、調整作業が容易であり、また、光走査装置80を画像形成装置に実装した状態で光源部12の傾きを調整し、画質調整をすることが可能となる。   Here, the substrate 14 has through holes 14A and 14B through which the first adjustment screw 54 and the second adjustment screw 56 pass, and the first adjustment is made from the back side of the substrate 14, that is, from the outside of the optical scanning device 80. The screw 54 and the second adjusting screw 56 can be adjusted. Therefore, the adjustment work is easy, and the image quality can be adjusted by adjusting the inclination of the light source unit 12 in a state where the optical scanning device 80 is mounted on the image forming apparatus.

第1実施形態の光走査装置を示す斜視図である。It is a perspective view which shows the optical scanning device of 1st Embodiment. 第1実施形態の光走査装置の光源部の調整機構を示す正面図である。It is a front view which shows the adjustment mechanism of the light source part of the optical scanning device of 1st Embodiment. 第1実施形態の光走査装置を示す平面図である。It is a top view which shows the optical scanning device of 1st Embodiment. 図3に示す光走査装置の4−4断面図である。FIG. 4 is a 4-4 sectional view of the optical scanning device shown in FIG. 3. 第1実施形態の光走査装置の光源支持部を示す斜視図である。It is a perspective view which shows the light source support part of the optical scanning device of 1st Embodiment. 発光面の傾きによって生じる感光体での光ビームのビーム径の変動を示す図で、(A)は、発光面が主走査方向に対して傾いた場合、(B)は、発光面が副走査方向に対して傾いた場合を示している。FIGS. 4A and 4B are diagrams showing fluctuations in the beam diameter of the light beam on the photosensitive member caused by the inclination of the light emitting surface. FIG. 5A shows the case where the light emitting surface is inclined with respect to the main scanning direction, and FIG. The case where it inclines with respect to the direction is shown. 第1実施形態の光走査装置の光源部の調整機構の変形例を示す正面図である。It is a front view which shows the modification of the adjustment mechanism of the light source part of the optical scanning device of 1st Embodiment. 第2実施形態の光走査装置の光源部の調整機構を示す正面図である。It is a front view which shows the adjustment mechanism of the light source part of the optical scanning device of 2nd Embodiment. 第2実施形態の光走査装置の光源支持部を示す斜視図である。It is a perspective view which shows the light source support part of the optical scanning device of 2nd Embodiment. 発光面が主走査方向に対して傾いた時の、(A)は、感光体での光ビームのビーム径の変動を示す図、(B)は、感光体での光ビームの分布状態を示す図、(C)は、画像の濃度変化を示すグラフである。When the light emitting surface is inclined with respect to the main scanning direction, (A) is a diagram showing the fluctuation of the beam diameter of the light beam on the photoconductor, and (B) is the distribution state of the light beam on the photoconductor. FIG. 4C is a graph showing changes in image density. 発光面が副走査方向に対して傾いた時の、(A)は、感光体での光ビームのビーム径の変動を示す図、(B)は、感光体での光ビームの分布状態を示す図、(C)は、画像の濃度変化を示すグラフである。When the light emitting surface is tilted with respect to the sub-scanning direction, (A) is a diagram showing the variation of the beam diameter of the light beam on the photoconductor, and (B) is the distribution state of the light beam on the photoconductor. FIG. 4C is a graph showing changes in image density. 第3実施形態の光走査装置を示す断面図である。It is sectional drawing which shows the optical scanning device of 3rd Embodiment. (A)は、走査光学系の横倍率と結像との関係を示す図で、(B)は、発光面が光軸方向にズレた場合の、走査光学系の横倍率と結像との関係を示す図である。(A) is a figure which shows the relationship between the horizontal magnification of a scanning optical system, and image formation, (B) is the horizontal magnification of a scanning optical system, and image formation when a light emission surface shift | deviates to an optical axis direction. It is a figure which shows a relationship. (A)は、発光面が傾いた場合の走査光学系の横倍率と結像との関係を示す図で、(B)は、発光面を示す図である。(A) is a figure which shows the relationship between the lateral magnification of a scanning optical system and image formation when a light emitting surface inclines, (B) is a figure which shows a light emitting surface.

符号の説明Explanation of symbols

10 光走査装置
12 光源部
15 走査光学系
16 光学ハウジング
16A 側壁(光源支持面)
16C 底面
17 ハウジング
36 感光体(被走査面)
48 発光点
50 発光面
52A 表面(基準面)
54 第一調整ネジ(当接点、調整当接点、調整ネジ)
56 第二調整ネジ(当接点、調整当接点、調整ネジ)
58 固定ピン(当接点、固定当接点)
70 光走査装置
72 調整ネジ(当接点、調整当接点、調整ネジ)
74 固定ピン(当接点、固定当接点)
76 固定ピン(当接点、固定当接点)
80 光走査装置
L 光ビーム
L1 直線
L2 直線
DESCRIPTION OF SYMBOLS 10 Optical scanning device 12 Light source part 15 Scanning optical system 16 Optical housing 16A Side wall (light source support surface)
16C bottom surface 17 housing 36 photoconductor (scanned surface)
48 Light emitting point 50 Light emitting surface 52A Surface (reference surface)
54 First adjustment screw (contact point, adjustment contact point, adjustment screw)
56 Second adjustment screw (contact point, adjustment contact point, adjustment screw)
58 Fixed pin (contact point, fixed contact point)
70 Optical scanning device 72 Adjustment screw (contact point, adjustment contact point, adjustment screw)
74 Fixing pin (contact point, fixed contact point)
76 Fixing pin (contact point, fixed contact point)
80 Optical scanning device L Light beam L1 Straight line L2 Straight line

Claims (9)

複数の発光点が二次元配列された発光面から複数の光ビームを射出する光源部と、
前記光源部から射出された複数の光ビームで被走査面を偏向走査する走査光学系と、を備える光走査装置であって、
前記光源部が支持される光源支持面から突出して前記光源部の前記発光面を囲む3点に当接し、前記発光面の姿勢を決める3点の当接点を備え、
3点の前記当接点のうち少なくとも1点の前記当接点が、前記光源支持面からの突出量を調整可能とされた調整当接点であることを特徴とする光走査装置。
A light source unit for emitting a plurality of light beams from a light emitting surface in which a plurality of light emitting points are two-dimensionally arranged;
A scanning optical system that deflects and scans a surface to be scanned with a plurality of light beams emitted from the light source unit,
Projecting from a light source support surface on which the light source unit is supported, contacting three points surrounding the light emitting surface of the light source unit, and comprising three contact points that determine the posture of the light emitting surface;
The optical scanning device according to claim 1, wherein at least one of the three contact points is an adjustment contact point capable of adjusting an amount of protrusion from the light source support surface.
前記光源部は、前記発光面に対して略平行で3点の前記当接点が当接する基準面を有することを特徴とする請求項1に記載の光走査装置。   2. The optical scanning device according to claim 1, wherein the light source unit has a reference surface that is substantially parallel to the light emitting surface and contacts the three contact points. 前記調整当接点が、前記光源支持面を貫通し、装置内部から調整される調整ネジであることを特徴とする請求項1又は2に記載の光走査装置。   The optical scanning device according to claim 1, wherein the adjustment contact point is an adjustment screw that passes through the light source support surface and is adjusted from the inside of the device. 複数の発光点が二次元配列された発光面から複数の光ビームを射出する光源部と、
前記光源部から射出された複数の光ビームで被走査面を偏向走査する走査光学系と、を備える光走査装置であって、
前記光源部の前記発光面を囲む3点から突出して前記光源部が支持される光源支持面に当接し、前記発光面の姿勢を決める3点の当接点を備え、
3点の前記当接点のうち少なくとも1点の前記当接点が、前記光源部からの突出量を調整可能とされた調整当接点であることを特徴とする光走査装置。
A light source unit for emitting a plurality of light beams from a light emitting surface in which a plurality of light emitting points are two-dimensionally arranged;
A scanning optical system that deflects and scans a surface to be scanned with a plurality of light beams emitted from the light source unit,
Projecting from the three points surrounding the light emitting surface of the light source unit to contact the light source support surface on which the light source unit is supported, and comprising three contact points that determine the posture of the light emitting surface;
The optical scanning device according to claim 1, wherein at least one of the three contact points is an adjustment contact point capable of adjusting a protruding amount from the light source unit.
前記調整当接点によって前記発光面の姿勢を調整することで、前記被走査面における複数の光ビームのビーム径を調整することを特徴とする請求項1乃至4の何れか1項に記載の光走査装置。   5. The light according to claim 1, wherein beam diameters of a plurality of light beams on the surface to be scanned are adjusted by adjusting an attitude of the light emitting surface by the adjustment contact point. Scanning device. 3点の前記当接点のうちの2点を前記調整当接点としてそれぞれを前記発光面の長手方向の一側及び他側に配設し、他の1点の前記当接点を前記光源支持面又は前記光源部に固定された固定当接点として前記発光面の長手方向の他側に配設し、
前記発光面の長手方向の一側に配設された前記調整当接点と前記固定当接点を結ぶ直線と前記発光面の長手方向との角度Aと、前記発光面の長手方向の他側に配設された前記調整当接点と前記固定当接点を結ぶ直線と前記発光面の短手方向との角度Bとの関係をA>Bとしたことを特徴とする請求項1乃至5の何れか1項に記載の光走査装置。
Two of the three contact points are set as the adjustment contact points, which are disposed on one side and the other side in the longitudinal direction of the light emitting surface, and the other one contact point is the light source support surface or As a fixed contact point fixed to the light source unit, disposed on the other side in the longitudinal direction of the light emitting surface,
An angle A between a straight line connecting the adjustment contact point and the fixed contact point disposed on one side in the longitudinal direction of the light emitting surface and the longitudinal direction of the light emitting surface and the other side in the longitudinal direction of the light emitting surface. 6. The relationship between the straight line connecting the adjustment contact point and the fixed contact point provided and the angle B between the short side direction of the light emitting surface is set as A> B. The optical scanning device according to Item.
3点の前記当接点のうちの1点を前記調整当接点とし、
他の2点の前記当接点を、主走査方向及び副走査方向の何れかで、前記発光面の傾きによって発生する、前記被走査面における複数の光ビームのビーム径の変動が大きい方に対して略直角な直線上に配設したことを特徴とする請求項1乃至5の何れか1項に記載の光走査装置。
One of the three contact points is set as the adjustment contact point,
The other two contact points are in the main scanning direction or the sub-scanning direction with respect to the larger variation in the beam diameter of the plurality of light beams on the scanned surface, which is caused by the inclination of the light emitting surface. 6. The optical scanning device according to claim 1, wherein the optical scanning device is disposed on a substantially perpendicular straight line.
3点の前記当接点のうちの1点を前記調整当接点とし、
他の2点の前記当接点を、主走査方向に対して略平行な直線上に配設したことを特徴とする請求項1乃至5の何れか1項に記載の光走査装置。
One of the three contact points is set as the adjustment contact point,
6. The optical scanning device according to claim 1, wherein the other two contact points are arranged on a straight line substantially parallel to the main scanning direction.
前記走査光学系を底面に支持し、前記光源支持面が側壁に設けられた光学ハウジングと、前記光学ハウジングに被せられるハウジングカバーと、を備え、
前記調整当接点を副走査方向の前記ハウジングカバー側に配設し、他の前記当接点を副走査方向の前記底面側に配設したことを特徴とする請求項1乃至8の何れか1項に記載の光走査装置。
An optical housing that supports the scanning optical system on a bottom surface, and the light source support surface is provided on a side wall; and a housing cover that covers the optical housing,
9. The adjustment contact point is disposed on the housing cover side in the sub-scanning direction, and the other contact point is disposed on the bottom surface side in the sub-scanning direction. The optical scanning device according to 1.
JP2004360984A 2004-12-14 2004-12-14 Optical scanning device Active JP4661201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360984A JP4661201B2 (en) 2004-12-14 2004-12-14 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360984A JP4661201B2 (en) 2004-12-14 2004-12-14 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2006171159A true JP2006171159A (en) 2006-06-29
JP4661201B2 JP4661201B2 (en) 2011-03-30

Family

ID=36672021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360984A Active JP4661201B2 (en) 2004-12-14 2004-12-14 Optical scanning device

Country Status (1)

Country Link
JP (1) JP4661201B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107554A (en) * 2006-10-25 2008-05-08 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2008129490A (en) * 2006-11-24 2008-06-05 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2008275711A (en) * 2007-04-26 2008-11-13 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2014056087A (en) * 2012-09-12 2014-03-27 Canon Inc Optical scanning device and image forming device
JP2015041077A (en) * 2013-08-23 2015-03-02 キヤノン株式会社 Light beam emitting device, optical scanner, and image forming apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161117A (en) * 1986-01-10 1987-07-17 Canon Inc Light source device
JPH04216514A (en) * 1990-12-17 1992-08-06 Ricoh Co Ltd Laser beam generator
JPH1123988A (en) * 1997-07-03 1999-01-29 Ricoh Co Ltd Multi-beam light source device
JPH1172729A (en) * 1997-08-29 1999-03-16 Canon Inc Multibeam scanning device
JP2001272615A (en) * 2000-03-24 2001-10-05 Fuji Xerox Co Ltd Optical scanner
JP2003266787A (en) * 2002-03-20 2003-09-24 Ricoh Co Ltd Color image forming apparatus
JP2004077714A (en) * 2002-08-15 2004-03-11 Fuji Xerox Co Ltd Optical scanner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161117A (en) * 1986-01-10 1987-07-17 Canon Inc Light source device
JPH04216514A (en) * 1990-12-17 1992-08-06 Ricoh Co Ltd Laser beam generator
JPH1123988A (en) * 1997-07-03 1999-01-29 Ricoh Co Ltd Multi-beam light source device
JPH1172729A (en) * 1997-08-29 1999-03-16 Canon Inc Multibeam scanning device
JP2001272615A (en) * 2000-03-24 2001-10-05 Fuji Xerox Co Ltd Optical scanner
JP2003266787A (en) * 2002-03-20 2003-09-24 Ricoh Co Ltd Color image forming apparatus
JP2004077714A (en) * 2002-08-15 2004-03-11 Fuji Xerox Co Ltd Optical scanner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107554A (en) * 2006-10-25 2008-05-08 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2008129490A (en) * 2006-11-24 2008-06-05 Ricoh Co Ltd Optical scanner and image forming apparatus
US8199179B2 (en) 2006-11-24 2012-06-12 Ricoh Company, Ltd. Image forming apparatus and scanning unit to scan a target surface using light fluxes
USRE45945E1 (en) 2006-11-24 2016-03-22 Ricoh Company, Ltd. Image forming apparatus and scanning unit to scan a target surface using light fluxes
JP2008275711A (en) * 2007-04-26 2008-11-13 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2014056087A (en) * 2012-09-12 2014-03-27 Canon Inc Optical scanning device and image forming device
JP2015041077A (en) * 2013-08-23 2015-03-02 キヤノン株式会社 Light beam emitting device, optical scanner, and image forming apparatus

Also Published As

Publication number Publication date
JP4661201B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP2009145569A (en) Optical scanning apparatus and image forming apparatus using same
US6710905B2 (en) Tandem scanning optical device
KR100739761B1 (en) Multi-beam scanning unit
JP2005284270A (en) Optical multibeam scanning apparatus and image forming apparatus
JP2008076712A (en) Optical scanner and beam pitch adjustment method
JP2004334175A (en) Optical scanner and image forming apparatus
JP2006091157A (en) Optical scanner
JP2010134434A (en) Scanning optical apparatus and image forming apparatus using the same
JP4661201B2 (en) Optical scanning device
JP2007171626A (en) Optical scanner and image forming apparatus
JP6049502B2 (en) Optical scanning device and image forming apparatus using the same
US20060291028A1 (en) Laser scanning unit for splitting multiple light beams in a tandem image forming apparatus
JPH11249048A (en) Optical scanning device
JP2006035703A (en) Optical scanner and imaging device using optical scanner
US20030227659A1 (en) Light source apparatus and optical scanner
JP2002287057A (en) Multibeam scanning optical system and image forming device using it
JP2005164997A (en) Optical scanner and method of detecting synchronization used for the same
US20080158329A1 (en) Light scanning unit and image forming apparatus having the same
JP2013142744A (en) Multibeam optical scanner and image formation apparatus
JP2000330046A (en) Optical scanner
JP2009023176A (en) Scanning optical device and image forming apparatus
JP2006267288A (en) Optical scanner
JP5930679B2 (en) Optical scanning device
JP2006194973A (en) Optical scanner
JP5070559B2 (en) Optical scanning apparatus and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4661201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350