JP2011226735A - Magnetic refrigerating apparatus - Google Patents

Magnetic refrigerating apparatus Download PDF

Info

Publication number
JP2011226735A
JP2011226735A JP2010098594A JP2010098594A JP2011226735A JP 2011226735 A JP2011226735 A JP 2011226735A JP 2010098594 A JP2010098594 A JP 2010098594A JP 2010098594 A JP2010098594 A JP 2010098594A JP 2011226735 A JP2011226735 A JP 2011226735A
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
magnetic field
refrigeration apparatus
halbach array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010098594A
Other languages
Japanese (ja)
Other versions
JP5602482B2 (en
Inventor
Koichiro Waki
耕一郎 脇
Masaru Nagashima
賢 長嶋
Yuki Arai
有気 荒井
Katsutoshi Mizuno
克俊 水野
Koji Ito
孝治 伊藤
Shinichi Akiyama
慎一 秋山
Masafumi Ikeda
雅史 池田
Masahito Murakami
雅人 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Shibaura Institute of Technology
Original Assignee
Railway Technical Research Institute
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Shibaura Institute of Technology filed Critical Railway Technical Research Institute
Priority to JP2010098594A priority Critical patent/JP5602482B2/en
Publication of JP2011226735A publication Critical patent/JP2011226735A/en
Application granted granted Critical
Publication of JP5602482B2 publication Critical patent/JP5602482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic refrigerating apparatus which has simple structure, which causes a strong magnetic field to be exerted on a magnetic working substance, and which has a pair of permanent magnetic circuits having circular Halbach array fitted to a common rotary shaft.SOLUTION: A magnetic refrigerating apparatus includes a rotor A and a stator B, The rotor A includes: a permanent magnet assembly 1 that generates a magnetic field space 11 in which interval is set by a spacer 4 with respect to permanent magnetic circuits 2, 3 having circular Hulbach arrays stored in non-magnetic containers 1A, 1B; and the common rotary shaft 5 fitting the permanent magnet assembly 1. The stator B includes a duct 12 which is stored with the magnetic working substance supported by a fixed member and is arranged in the magnetic field space 11, then, magnetic refrigeration based on magnetocaloric effect is performed by action of the magnetic field in the magnetic field space 11 with respect to the duct 12 stored with the magnetic working substance.

Description

本発明は、磁気熱量効果に基づく磁気冷凍装置に関するものである。   The present invention relates to a magnetic refrigeration apparatus based on the magnetocaloric effect.

強磁性体は、断熱的に磁場を印加すると発熱し、断熱的に磁場を除去すると吸熱する。これは磁気熱量効果と呼ばれ、強磁性・常磁性間の相転移温度(キュリー温度)の近傍において顕著である。強磁性体の磁気熱量効果と熱交換媒体の往復流動とを組み合わせて低温部と高温部を生成し、低温部を用いて他の物体を冷却できるようにしたものが磁気冷凍装置である。なお、キュリー温度は強磁性体に固有なので、磁気冷凍装置の使用したい温度領域にキュリー温度を持つような強磁性体の選択が必要である。また、磁気冷凍装置に使用される強磁性体は、磁気作業物質と呼ばれる。   The ferromagnetic material generates heat when a magnetic field is applied adiabatically, and absorbs heat when the magnetic field is removed adiabatically. This is called the magnetocaloric effect and is prominent near the phase transition temperature (Curie temperature) between ferromagnetism and paramagnetism. A magnetic refrigeration apparatus is one in which a low temperature part and a high temperature part are generated by combining the magnetocaloric effect of a ferromagnetic material and the reciprocating flow of a heat exchange medium, and other objects can be cooled using the low temperature part. Since the Curie temperature is unique to the ferromagnetic material, it is necessary to select a ferromagnetic material having a Curie temperature in the temperature range where the magnetic refrigeration apparatus is to be used. In addition, the ferromagnetic material used in the magnetic refrigeration apparatus is called a magnetic working substance.

磁気熱量効果を大きくして磁気冷凍装置の能力を高くするには、強い磁場を印加してその磁場を除去するとよい。また、磁気冷凍装置の構造を簡素化するためには、永久磁石の移動によって磁場の印加と除去を行うとよい。そこで、従来は、ある種のハルバッハ配列の永久磁石磁気回路を組み、これの回転によって磁場の印加と除去を行ってきた(下記特許文献1,2参照)。   In order to increase the magnetocaloric effect and increase the capacity of the magnetic refrigeration apparatus, it is preferable to apply a strong magnetic field and remove the magnetic field. In order to simplify the structure of the magnetic refrigeration apparatus, it is preferable to apply and remove a magnetic field by moving a permanent magnet. Therefore, conventionally, a certain kind of Halbach array permanent magnet magnetic circuit is assembled, and a magnetic field is applied and removed by rotating the permanent magnet magnetic circuit (see Patent Documents 1 and 2 below).

図6は、永久磁石の磁化の向きを90°回転させながら並べたハルバッハ配列の永久磁石磁気回路の一例を示す模式図である。   FIG. 6 is a schematic diagram showing an example of a Halbach array permanent magnet magnetic circuit arranged while rotating the magnetization direction of the permanent magnet by 90 °.

特表2007−522657号公報Special table 2007-522657 gazette 特開2008−051412号公報JP 2008-051412 A

しかしながら、上記特許文献1における永久磁石組立体は、複雑な形状をなしており、その製作及び取付けには問題があった。
また、上記特許文献1の図15に示される永久磁石磁気回路は、回転軸に垂直な面上において回転軸を中心とする180°毎の磁極が回転体の軸方向に現れるように組んだものであり、上記特許文献2の図10に示される永久磁石磁気回路は、回転軸に垂直な面上において、回転軸を中心とする180°毎の磁極が回転軸の径方向に現れるように組んだものである。何れもある種のハルバッハ配列となっているが、純然たるものではないので、磁場の強化が不十分である。また、ハルバッハ配列の部品となる永久磁石間に発生する反撥力を、接着によって抑え込まざるを得ない。そして、回転軸の近傍に永久磁石を配置することになるので、構造設計に対する制約が発生する。さらに、磁気回路を組んだ後は、磁場の印加と除去の可能な空間が固定化されてしまうので、磁場の強度や磁気作業物質の量の調整ができないといった問題があった。
However, the permanent magnet assembly in Patent Document 1 has a complicated shape, and there has been a problem in its manufacture and attachment.
Further, the permanent magnet magnetic circuit shown in FIG. 15 of Patent Document 1 is assembled such that magnetic poles every 180 ° centering on the rotation axis appear in the axial direction of the rotating body on a plane perpendicular to the rotation axis. The permanent magnet magnetic circuit shown in FIG. 10 of Patent Document 2 is assembled so that magnetic poles every 180 ° centering on the rotation axis appear in the radial direction of the rotation axis on a plane perpendicular to the rotation axis. It is a thing. Each of them is a kind of Halbach array, but it is not pure, so the magnetic field is not sufficiently strengthened. Further, the repulsive force generated between the permanent magnets that are the components of the Halbach array must be suppressed by adhesion. And since a permanent magnet is arrange | positioned in the vicinity of a rotating shaft, the restrictions with respect to structural design generate | occur | produce. Furthermore, after the magnetic circuit is assembled, the space in which the magnetic field can be applied and removed is fixed, and there is a problem that the strength of the magnetic field and the amount of the magnetic working substance cannot be adjusted.

本発明は、これらの問題を解決するために、共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を用いることにより、磁気熱量効果を大きくした高い能力の磁気冷凍装置を提供することを目的とする。   In order to solve these problems, the present invention provides a high-capacity magnetic refrigeration apparatus having a large magnetocaloric effect by using a pair of permanent magnet magnetic circuits in an annular Halbach arrangement fitted to a common rotating shaft. The purpose is to provide.

本発明は、上記目的を達成するために、
〔1〕磁気冷凍装置において、非磁性の容器に収められた円環状ハルバッハ配列の永久磁石磁気回路を対にしてスペーサーにて間隔を設定した磁場空間を生成する永久磁石組立体と、この永久磁石組立体を嵌合する共通回転軸とを有する回転子と、前記磁場空間に、固定部材によって支持された磁気作業物質を収めたダクトを配置した固定子とを備え、前記磁気作業物質を収めたダクトへの前記磁場空間における磁場の作用により、磁気熱量効果に基づく磁気冷凍を行うことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a magnetic refrigeration apparatus, a permanent magnet assembly for generating a magnetic field space in which a space is set by a spacer by pairing a permanent magnet magnetic circuit in an annular Halbach array housed in a nonmagnetic container, and the permanent magnet A rotor having a common rotating shaft for fitting the assembly; and a stator in which a duct containing a magnetic working material supported by a fixing member is disposed in the magnetic field space. Magnetic refrigeration based on the magnetocaloric effect is performed by the action of the magnetic field in the magnetic field space on the duct.

〔2〕上記〔1〕記載の磁気冷凍装置において、前記円環状ハルバッハ配列の永久磁石磁気回路は、磁化の向きを90°回転させながら永久磁石を円環状に並べて端部がなくなるように構成することにより、磁場を弱くする磁束の漏れを抑えることを特徴とする。
〔3〕上記〔1〕記載の磁気冷凍装置において、前記スペーサーの寸法を調整することにより前記磁場の強さや前記磁気作業物質の量を調整することを特徴とする。
[2] In the magnetic refrigeration apparatus described in [1] above, the annular Halbach array permanent magnet magnetic circuit is configured such that the permanent magnets are arranged in an annular shape while the direction of magnetization is rotated by 90 ° so that the end portion is eliminated. In this way, leakage of magnetic flux that weakens the magnetic field is suppressed.
[3] The magnetic refrigeration apparatus according to [1], wherein the strength of the magnetic field and the amount of the magnetic working substance are adjusted by adjusting the size of the spacer.

〔4〕上記〔1〕記載の磁気冷凍装置において、前記永久磁石組立体は、前記対になる永久磁石磁気回路を極性の異なる互いの磁極が対向するように配置することを特徴とする。
〔5〕上記〔1〕から〔4〕の何れか一項記載の磁気冷凍装置において、前記固定子と前記回転子の組み合わせを前記共通回転軸上に複数個直列に配置して機能を拡張することを特徴とする。
[4] In the magnetic refrigeration apparatus according to [1], the permanent magnet assembly is characterized in that the paired permanent magnet magnetic circuits are arranged so that magnetic poles having different polarities face each other.
[5] In the magnetic refrigeration apparatus according to any one of [1] to [4], a plurality of combinations of the stator and the rotor are arranged in series on the common rotating shaft to expand the function. It is characterized by that.

本発明によれば、次のような効果を奏することができる。
(1)共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を用いることにより、能力の高い磁気冷凍装置を得ることができる。
(2)スペーサーの寸法を調整することにより、磁場の強度や磁気作業物質の量の調整ができる。
According to the present invention, the following effects can be achieved.
(1) A magnetic refrigeration apparatus with high performance can be obtained by using a pair of permanent magnet magnetic circuits in an annular Halbach arrangement fitted to a common rotating shaft.
(2) By adjusting the size of the spacer, the strength of the magnetic field and the amount of the magnetic working substance can be adjusted.

(3)共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を複数個直列に配置することにより、機能を拡張させることができる。
(4)地球温暖化の原因となるようなフロンを使用した気体冷凍装置置き換えることができる。
(3) The function can be expanded by arranging a plurality of pairs of permanent magnet magnetic circuits in an annular Halbach arrangement fitted to a common rotating shaft in series.
(4) It is possible to replace a gas refrigeration apparatus using chlorofluorocarbon that causes global warming.

本発明の第1実施例を示す磁気冷凍装置の全体模式図である。1 is an overall schematic diagram of a magnetic refrigeration apparatus showing a first embodiment of the present invention. 本発明の第1実施例を示す磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分の断面図である。It is sectional drawing of the main-body part which has a pair of the permanent magnet magnetic circuit of the annular | circular Halbach array of the magnetic refrigeration apparatus which shows 1st Example of this invention. 本発明の第1実施例を示す磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路の対を示す模式図である。It is a schematic diagram which shows the pair of the permanent magnet magnetic circuit of the annular | circular Halbach arrangement | sequence of the magnetic refrigeration apparatus which shows 1st Example of this invention. 図3の円環状ハルバッハ配列の永久磁石磁気回路の上面図である。FIG. 4 is a top view of the permanent magnet magnetic circuit of the annular Halbach array of FIG. 3. 本発明の第2実施例を示す磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路を2対有する本体部分の断面図である。It is sectional drawing of the main-body part which has two pairs of permanent magnet magnetic circuits of the annular | circular shaped Halbach arrangement | sequence of the magnetic refrigeration apparatus which shows 2nd Example of this invention. 永久磁石の磁化の向きを90°回転させながら並べたハルバッハ配列の永久磁石磁気回路の一例を示す模式図である。It is a schematic diagram which shows an example of the permanent magnet magnetic circuit of the Halbach arrangement arranged, rotating the magnetization direction of a permanent magnet 90 degrees.

本発明の磁気冷凍装置は、非磁性の容器に収められた円環状ハルバッハ配列の永久磁石磁気回路を対にしてスペーサーにて間隔を設定した磁場空間を生成する永久磁石組立体と、この永久磁石組立体を嵌合する共通回転軸とを有する回転子と、前記磁場空間に、固定部材によって支持された磁気作業物質を収めたダクトを配置した固定子とを備え、前記磁気作業物質を収めたダクトへの前記磁場空間における磁場の作用により、磁気熱量効果に基づく磁気冷凍を行う。   A magnetic refrigeration apparatus according to the present invention includes a permanent magnet assembly that generates a magnetic field space in which a space is set by a spacer with a pair of permanent magnet magnetic circuits in an annular Halbach arrangement housed in a nonmagnetic container, and the permanent magnet A rotor having a common rotating shaft for fitting the assembly; and a stator in which a duct containing a magnetic working material supported by a fixing member is disposed in the magnetic field space. Magnetic refrigeration based on the magnetocaloric effect is performed by the action of the magnetic field in the magnetic field space on the duct.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の第1実施例を示す磁気冷凍装置の全体模式図、図2はその磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分の断面図、図3はその円環状ハルバッハ配列の永久磁石磁気回路の対を示す模式図、図4は図3の円環状ハルバッハ配列の永久磁石磁気回路の上面図である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is an overall schematic view of a magnetic refrigeration apparatus showing a first embodiment of the present invention, FIG. 2 is a sectional view of a main body portion having a pair of permanent magnet magnetic circuits in an annular Halbach array of the magnetic refrigeration apparatus, and FIG. FIG. 4 is a schematic view showing a pair of the permanent magnet magnetic circuit in the annular Halbach array, and FIG. 4 is a top view of the permanent magnet magnetic circuit in the annular Halbach array in FIG.

図1は円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分を組み込んだ磁気冷凍装置の全体模式図であり、磁気作業物質を収めたダクト12には、固定子Bの外部に導出される低温配管21A,21Bと高温配管22A,22Bとがそれぞれ接続され、熱交換媒体の循環経路が形成されている。ここでは、軸対象位置にある一方の対のダクト12Aとダクト12Cとの間は、低温配管21A及び高温配管22Aで接続され、同じく軸対称位置にある他方の対のダクト12Bとダクト12Dとの間は、低温配管21B及び高温配管22Bで接続されている。一方、隣接する一対のダクト12Cとダクト12Dとの間は、被冷却体24を冷却するための冷却器23を介して、低温配管21A,21Bで接続され、別の隣接する一対のダクト12Aとダクト12Bとの間は、循環器31及び排熱交換器32を介して、高温配管22A,22Bで接続され、更にロータリー弁30が途中に設けられている。   FIG. 1 is an overall schematic view of a magnetic refrigeration apparatus incorporating a main body portion having a pair of permanent magnet magnetic circuits in an annular Halbach arrangement. A duct 12 containing a magnetic working material is led out of a stator B. The low-temperature pipes 21A and 21B and the high-temperature pipes 22A and 22B are connected to form a heat exchange medium circulation path. Here, the pair of ducts 12A and 12C at the axial target position are connected by the low-temperature pipe 21A and the high-temperature pipe 22A, and the other pair of ducts 12B and 12D that are also in the axially symmetric position are connected to each other. The space is connected by a low temperature pipe 21B and a high temperature pipe 22B. On the other hand, a pair of adjacent ducts 12C and 12D are connected by low-temperature pipes 21A and 21B via a cooler 23 for cooling the object 24 to be cooled, and another adjacent pair of ducts 12A and 12D. The duct 12B is connected by high-temperature pipes 22A and 22B via a circulator 31 and an exhaust heat exchanger 32, and a rotary valve 30 is provided in the middle.

よって、円環状ハルバッハ配列の永久磁石磁気回路を対にした永久磁石組立体1を有する回転子Aが共通回転軸5の周りを回転することと、ロータリー弁30の流路が切り換わることとにより、消磁して温度が低下したダクト12で冷却された熱交換媒体は、冷却器23で被冷却体を冷却した後、励磁して温度が上昇したダクト12を冷却して排熱交換器32に戻り、仕事分の熱量を放出する。   Therefore, the rotor A having the permanent magnet assembly 1 paired with an annular Halbach permanent magnet magnetic circuit rotates around the common rotating shaft 5 and the flow path of the rotary valve 30 is switched. The heat exchange medium cooled by the duct 12 whose temperature has been demagnetized and cooled is cooled by the cooler 23, and then the duct 12 whose temperature has been increased by excitation is cooled to the exhaust heat exchanger 32. Return and release the heat of work.

なお、ダクト12の数を2組から増やすことは可能であり、ロータリー弁30はダクト12に対して順番に流路が切り換わるように構成すればよい。
次に、本発明の磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分について詳細に説明する。
図2に示すように、磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分の回転子A側は、各永久磁石磁気回路を収める非磁性の容器1A,1Bと、非磁性の容器1Aに収められる第1の円環状ハルバッハ配列永久磁石磁気回路2と、非磁性の容器1Bに収められるとともに第1の円環状ハルバッハ配列永久磁石磁気回路2と対向する第2の円環状ハルバッハ配列永久磁石磁気回路3とを対にした永久磁石組立体1、第1の円環状ハルバッハ配列永久磁石磁気回路2と第2の円環状ハルバッハ配列永久磁石磁気回路3との間に配置されるスペーサー4、及び第1の円環状ハルバッハ配列永久磁石磁気回路2と第2の円環状ハルバッハ配列永久磁石磁気回路3とスペーサー4とを嵌合する共通回転軸5からなる。
Note that the number of ducts 12 can be increased from two sets, and the rotary valve 30 may be configured so that the flow paths are sequentially switched with respect to the duct 12.
Next, the main body portion having a pair of permanent magnet magnetic circuits in an annular Halbach array of the magnetic refrigeration apparatus of the present invention will be described in detail.
As shown in FIG. 2, the rotor A side of the main body portion having a pair of permanent magnet magnetic circuits in an annular Halbach array of the magnetic refrigeration apparatus is provided with nonmagnetic containers 1A and 1B for storing the permanent magnet magnetic circuits, A first annular Halbach array permanent magnet magnetic circuit 2 housed in a magnetic container 1A and a second annular ring housed in a non-magnetic container 1B and facing the first annular Halbach array permanent magnet magnetic circuit 2 The permanent magnet assembly 1 is paired with the Halbach array permanent magnet magnetic circuit 3, and is disposed between the first annular Halbach array permanent magnet magnetic circuit 2 and the second annular Halbach array permanent magnet magnetic circuit 3. The spacer 4 and the first annular Halbach array permanent magnet magnetic circuit 2, the second annular Halbach array permanent magnet magnetic circuit 3, and the common rotating shaft 5 that fits the spacer 4 are included.

一方、磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分の固定子B側は、第1の円環状ハルバッハ配列永久磁石磁気回路2と第2の円環状ハルバッハ配列永久磁石磁気回路3との対向面の間に極めて大きな磁場が生成され得る磁場空間11に配置される磁気作業物質を収めたダクト12、この磁気作業物質を収めたダクト12を支持するホルダー13、このホルダー13を支持する支持柱14、この支持柱14を支持する側板15、共通回転軸5と側板15との間に配置される軸受16、及び軸受16を保持する軸受押さえ17からなる。なお、上記した第1の円環状ハルバッハ配列永久磁石磁気回路2と第2の円環状ハルバッハ配列永久磁石磁気回路3との対向面側における磁場空間11には極めて大きな磁場が生成され得るのに対して、第1の円環状ハルバッハ配列永久磁石磁気回路2と第2の円環状ハルバッハ配列永久磁石磁気回路3とが対向しない側には小さい磁場が生成されるに過ぎない。   On the other hand, the stator B side of the main body portion having the pair of permanent magnet magnetic circuits in an annular Halbach array of the magnetic refrigeration apparatus has a first annular Halbach array permanent magnet magnetic circuit 2 and a second annular Halbach array permanent magnet. A duct 12 containing a magnetic working material disposed in a magnetic field space 11 where an extremely large magnetic field can be generated between the surface facing the magnetic circuit 3, a holder 13 for supporting the duct 12 containing this magnetic working material, this holder 13, a support column 14 that supports the support column 14, a side plate 15 that supports the support column 14, a bearing 16 that is disposed between the common rotary shaft 5 and the side plate 15, and a bearing retainer 17 that holds the bearing 16. Note that an extremely large magnetic field can be generated in the magnetic field space 11 on the opposite surface side of the first annular Halbach array permanent magnet magnetic circuit 2 and the second annular Halbach array permanent magnet magnetic circuit 3 described above. Thus, only a small magnetic field is generated on the side where the first annular Halbach array permanent magnet magnetic circuit 2 and the second annular Halbach array permanent magnet magnetic circuit 3 do not face each other.

そこで、図3及び図4に示すように、第1の円環状ハルバッハ配列永久磁石磁気回路2は、第1の磁極2Aと第2の磁極2Bが対角位置にあり、それらの間に磁路を形成する部材2C,2Dが配置されている。また、第2の円環状ハルバッハ配列永久磁石磁気回路3は、第1の磁極3Aと第2の磁極3Bが対角位置にあり、それらの間に磁路を形成する部材3C,3Dが配置されている。このように構成した第1の円環状ハルバッハ配列永久磁石磁気回路2と第2の円環状ハルバッハ配列永久磁石磁気回路3とを磁極が互いに対向するようにして配置することにより、対向する磁極間の磁場空間11に極めて大きな磁場を生成することができる。なお、図3及び図4において、矢印は永久磁石の磁化の向きを示している。   Therefore, as shown in FIGS. 3 and 4, in the first annular Halbach array permanent magnet magnetic circuit 2, the first magnetic pole 2A and the second magnetic pole 2B are in a diagonal position, and the magnetic path is between them. The members 2C and 2D are formed. Further, in the second annular Halbach array permanent magnet magnetic circuit 3, the first magnetic pole 3A and the second magnetic pole 3B are at diagonal positions, and members 3C and 3D forming magnetic paths are disposed between them. ing. By arranging the first annular Halbach array permanent magnet magnetic circuit 2 and the second annular Halbach array permanent magnet magnetic circuit 3 thus configured so that the magnetic poles face each other, the gap between the opposing magnetic poles An extremely large magnetic field can be generated in the magnetic field space 11. In FIGS. 3 and 4, the arrows indicate the direction of magnetization of the permanent magnet.

このような2つの円環状ハルバッハ配列の永久磁石磁気回路2,3を磁極2Aが磁極3Aに、磁極2Bが磁極3Bにそれぞれ対向するようにして各々を非磁性の容器1A,1Bへ収め、磁気吸引力に対抗して磁場空間11を保つことができるようにスペーサー4を設け、非磁性の容器1A,1Bを共通回転軸5に嵌合させて一対とする。この共通回転軸5は、その両端に軸受16を配置することにより、側板15に対して回転自在に支承される。また、この側板15は、その中間に支持柱14を配置することにより、一定間隔に保持される。   Such two annular Halbach array permanent magnet magnetic circuits 2 and 3 are housed in non-magnetic containers 1A and 1B such that the magnetic pole 2A faces the magnetic pole 3A and the magnetic pole 2B faces the magnetic pole 3B, respectively. A spacer 4 is provided so that the magnetic field space 11 can be maintained against the attractive force, and the nonmagnetic containers 1A and 1B are fitted to the common rotating shaft 5 to form a pair. The common rotating shaft 5 is rotatably supported with respect to the side plate 15 by disposing bearings 16 at both ends thereof. Further, the side plates 15 are held at regular intervals by arranging the support pillars 14 in the middle thereof.

ハルバッハ配列の永久磁石磁気回路の一例として、図6に示したような、永久磁石の磁化の向きを90°回転させながら並べたものがあるが、これに対して、本発明のハルバッハ配列の永久磁石磁気回路は、図4に示すように、円環状に並べて端部がなくなるように構成するので、磁場を弱くしてしまうような磁束の漏れが抑えられる。なお、磁極の数は任意なので、ここでは2としている。これを、図3に示すように、磁極2Aと磁極3A、磁極2Bと磁極3Bがそれぞれ対向するように構成したので、磁極の対向している空間では磁場が強く、それ以外の空間では磁場が弱くなるような磁場空間11が生成される。この磁場空間(空隙)11に、磁気作業物質が収められたダクト12をホルダー13及び支持柱14で支持して設置し、この永久磁石磁気回路2と3の対を回転させることにより、ダクト12内の磁気作業物質に対して強い磁場の印加と除去を行うことができる。   As an example of the Halbach array permanent magnet magnetic circuit, as shown in FIG. 6, the permanent magnets are arranged while rotating their magnetization directions by 90 °. As shown in FIG. 4, the magnet magnetic circuit is configured to be arranged in an annular shape so that the end portion is eliminated, so that leakage of magnetic flux that weakens the magnetic field can be suppressed. In addition, since the number of magnetic poles is arbitrary, it is set to 2 here. As shown in FIG. 3, since the magnetic pole 2A and the magnetic pole 3A and the magnetic pole 2B and the magnetic pole 3B are opposed to each other, the magnetic field is strong in the space where the magnetic poles face each other, and the magnetic field is generated in other spaces A weak magnetic field space 11 is generated. In this magnetic field space (gap) 11, a duct 12 containing a magnetic working substance is supported and installed by a holder 13 and a support column 14, and the pair of permanent magnet magnetic circuits 2 and 3 is rotated to thereby form a duct 12. A strong magnetic field can be applied to and removed from the magnetic working material.

本発明によるハルバッハ配列の永久磁石磁気回路2,3は単純な円環の形状であるので、簡単に非磁性の容器1A,1Bに収めることが可能になり、ハルバッハ配列の部品となる永久磁石間に発生する反撥力を、非磁性の容器1A,1Bによって抑え込むことができる。また、共通回転軸5の近傍に永久磁石を配置しないことになるので、構造設計に対する制約が緩和される。そして、磁場空間(空隙)11を保持するスペーサー4の寸法を変えることにより、磁場の印加と除去が可能な空間を変化させることができるので、磁場の強度や磁気作業物質の量の調整ができる。   Since the Halbach array permanent magnet magnetic circuits 2 and 3 according to the present invention have a simple circular shape, they can be easily accommodated in the non-magnetic containers 1A and 1B, and the permanent magnets constituting the Halbach array components are arranged between the permanent magnets. Can be suppressed by the non-magnetic containers 1A and 1B. In addition, since no permanent magnet is disposed in the vicinity of the common rotating shaft 5, restrictions on the structural design are eased. Then, by changing the size of the spacer 4 that holds the magnetic field space (gap) 11, the space where the magnetic field can be applied and removed can be changed, so that the strength of the magnetic field and the amount of the magnetic working substance can be adjusted. .

このように、本発明によれば、単純な構造を備え、磁気作業物質に強力な磁場を作用させることができる共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を有する磁気冷凍装置を提供することができる。
図5は本発明の第2実施例を示す磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路を2対有する本体部分の断面図である。
Thus, according to the present invention, it has a pair of permanent magnet magnetic circuits of an annular Halbach arrangement that have a simple structure and are fitted to a common rotating shaft capable of applying a strong magnetic field to a magnetic working material. A magnetic refrigeration apparatus can be provided.
FIG. 5 is a sectional view of a main body portion having two pairs of permanent magnet magnetic circuits in an annular Halbach array of a magnetic refrigeration apparatus showing a second embodiment of the present invention.

この実施例では、上記した第1実施例に示したものと同様の円環状ハルバッハ配列の永久磁石磁気回路を対にした永久磁石組立体41,42を直列に並べて共通回転軸43に嵌合させ、永久磁石組立体41,42それぞれの中間に磁気作業物質が収められたダクト44と45を配置して、機能を拡張するようにしたものである。なお、永久磁石組立体41と42との間の背面空間47には弱い磁場しか生成されないので、比較的薄いスペーサー46を配置するだけで十分である。   In this embodiment, permanent magnet assemblies 41 and 42 each paired with a permanent magnet magnetic circuit in an annular Halbach arrangement similar to that shown in the first embodiment are arranged in series and fitted to a common rotating shaft 43. In addition, ducts 44 and 45 containing magnetic working materials are arranged between the permanent magnet assemblies 41 and 42 to expand the functions. Since only a weak magnetic field is generated in the back space 47 between the permanent magnet assemblies 41 and 42, it is sufficient to dispose a relatively thin spacer 46.

このように、第1実施例のような構成を基本単位として、第2実施例のように、複数の基本単位で構成するようにすれば、能力を一層高くすることができるので、装置としての拡張性が高い。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
Thus, if the configuration as in the first embodiment is used as a basic unit, and the configuration is configured as a plurality of basic units as in the second embodiment, the capability can be further increased, so that the device High scalability.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の磁気冷凍装置は、単純な構造を備え、磁気作業物質に強力な磁場を作用させることができる、共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を有する磁気冷凍装置として利用可能である。よって、地球温暖化の原因となるようなフロンを使用した気体冷凍装置を本発明に置き換えることができる。   The magnetic refrigeration apparatus of the present invention has a simple structure and has a pair of permanent magnet magnetic circuits in an annular Halbach arrangement fitted to a common rotating shaft, which can cause a strong magnetic field to act on a magnetic working material. It can be used as a refrigeration apparatus. Therefore, a gas refrigeration apparatus using chlorofluorocarbon that causes global warming can be replaced by the present invention.

1,41,42 円環状ハルバッハ配列の永久磁石磁気回路を対にした永久磁石組立体
1A,1B 非磁性の容器
2 第1の円環状ハルバッハ配列永久磁石磁気回路
2A,3A 第1の磁極
2B,3B 第2の磁極
2C,2D,3C,3D 磁路を形成する部材
3 第2の円環状ハルバッハ配列永久磁石磁気回路
4,46 スペーサー
5,43 共通回転軸
11 磁場空間
12,12A,12B,12C,12D,44,45 磁気作業物質を収めたダクト
13 ホルダー
14 支持柱
15 側板
16 軸受
17 軸受押さえ
21A,21B 低温配管
22A,22B 高温配管
23 冷却器
24 被冷却体
30 ロータリー弁
31 循環器
32 排熱交換器
47 背面空間
A 回転子
B 固定子
1, 41, 42 Permanent magnet assembly 1A, 1B non-magnetic container 2 paired with an annular Halbach array permanent magnet magnetic circuit 2A, 1A, 3A First magnetic pole 2B, 3B Second magnetic pole 2C, 2D, 3C, 3D Member forming magnetic path 3 Second annular Halbach array permanent magnet magnetic circuit 4, 46 Spacer 5, 43 Common rotating shaft 11 Magnetic field space 12, 12A, 12B, 12C , 12D, 44, 45 Duct containing magnetic working substance 13 Holder 14 Support column 15 Side plate 16 Bearing 17 Bearing retainer 21A, 21B Low temperature pipe 22A, 22B High temperature pipe 23 Cooler 24 Cooled body 30 Rotary valve 31 Circulator 32 Exhaust Heat exchanger 47 Back space A Rotor B Stator

Claims (5)

(a)非磁性の容器に収められた円環状ハルバッハ配列の永久磁石磁気回路を対にしてスペーサーにて間隔を設定した磁場空間を生成する永久磁石組立体と、該永久磁石組立体を嵌合する共通回転軸とを有する回転子と、
(b)前記磁場空間に、固定部材によって支持された磁気作業物質を収めたダクトを配置した固定子とを備え、
(c)前記磁気作業物質を収めたダクトへの前記磁場空間における磁場の作用により、磁気熱量効果に基づく磁気冷凍を行うことを特徴とする磁気冷凍装置。
(A) A permanent magnet assembly that generates a magnetic field space in which a space is set with a spacer by pairing a permanent magnet magnetic circuit in an annular Halbach array housed in a nonmagnetic container, and the permanent magnet assembly are fitted together A rotor having a common rotating shaft that
(B) a stator in which a duct containing a magnetic working material supported by a fixing member is disposed in the magnetic field space;
(C) A magnetic refrigeration apparatus that performs magnetic refrigeration based on a magnetocaloric effect by the action of a magnetic field in the magnetic field space on a duct containing the magnetic working substance.
請求項1記載の磁気冷凍装置において、前記円環状ハルバッハ配列の永久磁石磁気回路は、磁化の向きを90°回転させながら永久磁石を円環状に並べて端部がなくなるように構成することにより、磁場を弱くする磁束の漏れを抑えることを特徴とする磁気冷凍装置。   2. The magnetic refrigeration apparatus according to claim 1, wherein the permanent magnet magnetic circuit in the annular Halbach array has a configuration in which the permanent magnets are arranged in an annular shape while rotating the direction of magnetization by 90 degrees so that there is no end portion. A magnetic refrigeration apparatus that suppresses leakage of magnetic flux that weakens the magnetic field. 請求項1記載の磁気冷凍装置において、前記スペーサーの寸法を調整することにより前記磁場の強さや前記磁気作業物質の量を調整することを特徴とする磁気冷凍装置。   2. The magnetic refrigeration apparatus according to claim 1, wherein the strength of the magnetic field and the amount of the magnetic working substance are adjusted by adjusting the size of the spacer. 請求項1記載の磁気冷凍装置において、前記永久磁石組立体は、前記対になる永久磁石磁気回路を極性の異なる互いの磁極が対向するように配置することを特徴とする磁気冷凍装置。   2. The magnetic refrigeration apparatus according to claim 1, wherein the permanent magnet assembly arranges the paired permanent magnet magnetic circuits so that magnetic poles having different polarities face each other. 請求項1から4の何れか一項記載の磁気冷凍装置において、前記固定子と前記回転子の組み合わせを前記共通回転軸上に複数個直列に配置して機能を拡張することを特徴とする磁気冷凍装置。   5. The magnetic refrigeration apparatus according to claim 1, wherein a plurality of combinations of the stator and the rotor are arranged in series on the common rotating shaft to expand the function. Refrigeration equipment.
JP2010098594A 2010-04-22 2010-04-22 Magnetic refrigeration equipment Expired - Fee Related JP5602482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098594A JP5602482B2 (en) 2010-04-22 2010-04-22 Magnetic refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098594A JP5602482B2 (en) 2010-04-22 2010-04-22 Magnetic refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2011226735A true JP2011226735A (en) 2011-11-10
JP5602482B2 JP5602482B2 (en) 2014-10-08

Family

ID=45042279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098594A Expired - Fee Related JP5602482B2 (en) 2010-04-22 2010-04-22 Magnetic refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5602482B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205141A (en) * 2012-03-28 2013-10-07 Honda Motor Co Ltd Throttle opening detector
JP2013204984A (en) * 2012-03-29 2013-10-07 Railway Technical Research Institute Magnetic refrigerating device with rotation type permanent magnet
JP2013253725A (en) * 2012-06-06 2013-12-19 Denso Corp Magnetic heat pump system and air conditioner using the system
WO2014006714A1 (en) * 2012-07-05 2014-01-09 イマテック株式会社 Magnet valve
JP2015502514A (en) * 2011-11-24 2015-01-22 クールテック アプリケーションズ エス.エイ.エス. Magneto-caloric effect type heat generator
JP2015524617A (en) * 2012-07-27 2015-08-24 クールテック アプリケーションズ エス.エー.エス. Magnetic field generator for magnetocaloric effect type thermal apparatus, and magnetocaloric effect type thermal apparatus equipped with such a generator
JP2017510786A (en) * 2014-04-11 2017-04-13 佛山市川東磁電股▲ふん▼有限公司Chuandong Magnetic Electronic Co.,Ltd Rotary series magnetic refrigeration system
JP2018017484A (en) * 2016-07-29 2018-02-01 公益財団法人鉄道総合技術研究所 Magnetic refrigeration device
WO2022224695A1 (en) * 2021-04-19 2022-10-27 株式会社日立製作所 Magnetic refrigeration system
CN115516258A (en) * 2020-05-14 2022-12-23 三菱电机株式会社 Magnetic refrigerator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117066A (en) * 1984-11-13 1985-06-24 青木 亮三 Magnetic low-temperature generator
JPS62106271A (en) * 1985-11-01 1987-05-16 株式会社日立製作所 Rotating-field type magnetic refrigerator
JPH10173409A (en) * 1996-12-13 1998-06-26 Nec Corp Microwave integrated circuit circulator and manufacture thereof
JP2002106999A (en) * 2000-10-02 2002-04-10 Toshiba Corp Magnetic refrigerating device
JP2002356748A (en) * 2001-03-27 2002-12-13 Toshiba Corp Magnetic material
JP2003028532A (en) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd Working substance and equipment for magnetic refrigeration, and cool storage type heat exchanger
JP2004507197A (en) * 2000-08-10 2004-03-04 ジョン・フロレスタ High performance slotless electric motor and manufacturing method thereof
JP2007522657A (en) * 2004-02-03 2007-08-09 アストロノーティックス コーポレイション オブ アメリカ Permanent magnet assembly
JP2007537690A (en) * 2004-05-12 2007-12-20 デクスター・マグネティック・テクノロジーズ・インコーポレーテッド High electric field voice coil motor
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2010043775A (en) * 2008-08-11 2010-02-25 Shikoku Electric Power Co Inc Heat pump applying magneto-caloric effect

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117066A (en) * 1984-11-13 1985-06-24 青木 亮三 Magnetic low-temperature generator
JPS62106271A (en) * 1985-11-01 1987-05-16 株式会社日立製作所 Rotating-field type magnetic refrigerator
JPH10173409A (en) * 1996-12-13 1998-06-26 Nec Corp Microwave integrated circuit circulator and manufacture thereof
JP2004507197A (en) * 2000-08-10 2004-03-04 ジョン・フロレスタ High performance slotless electric motor and manufacturing method thereof
JP2002106999A (en) * 2000-10-02 2002-04-10 Toshiba Corp Magnetic refrigerating device
JP2002356748A (en) * 2001-03-27 2002-12-13 Toshiba Corp Magnetic material
JP2003028532A (en) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd Working substance and equipment for magnetic refrigeration, and cool storage type heat exchanger
JP2007522657A (en) * 2004-02-03 2007-08-09 アストロノーティックス コーポレイション オブ アメリカ Permanent magnet assembly
JP2007537690A (en) * 2004-05-12 2007-12-20 デクスター・マグネティック・テクノロジーズ・インコーポレーテッド High electric field voice coil motor
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
JP2010043775A (en) * 2008-08-11 2010-02-25 Shikoku Electric Power Co Inc Heat pump applying magneto-caloric effect

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502514A (en) * 2011-11-24 2015-01-22 クールテック アプリケーションズ エス.エイ.エス. Magneto-caloric effect type heat generator
JP2013205141A (en) * 2012-03-28 2013-10-07 Honda Motor Co Ltd Throttle opening detector
JP2013204984A (en) * 2012-03-29 2013-10-07 Railway Technical Research Institute Magnetic refrigerating device with rotation type permanent magnet
JP2013253725A (en) * 2012-06-06 2013-12-19 Denso Corp Magnetic heat pump system and air conditioner using the system
WO2014006714A1 (en) * 2012-07-05 2014-01-09 イマテック株式会社 Magnet valve
JP2015524617A (en) * 2012-07-27 2015-08-24 クールテック アプリケーションズ エス.エー.エス. Magnetic field generator for magnetocaloric effect type thermal apparatus, and magnetocaloric effect type thermal apparatus equipped with such a generator
JP2017510786A (en) * 2014-04-11 2017-04-13 佛山市川東磁電股▲ふん▼有限公司Chuandong Magnetic Electronic Co.,Ltd Rotary series magnetic refrigeration system
JP2018017484A (en) * 2016-07-29 2018-02-01 公益財団法人鉄道総合技術研究所 Magnetic refrigeration device
CN115516258A (en) * 2020-05-14 2022-12-23 三菱电机株式会社 Magnetic refrigerator
WO2022224695A1 (en) * 2021-04-19 2022-10-27 株式会社日立製作所 Magnetic refrigeration system

Also Published As

Publication number Publication date
JP5602482B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5602482B2 (en) Magnetic refrigeration equipment
US9273886B2 (en) Magnetic refrigerator utilizing a permanent magnet to create movement between plates comprising high and low temperature side heat exchangers
AU2015232241B2 (en) Magnetic regenerator unit and magnetic cooling system with the same
US8209988B2 (en) Magnetic refrigeration device
EP2108904A1 (en) A magnetocaloric device, especially a magnetic refrigerator, a heat pump or a power generator
JP5425732B2 (en) Magnetic refrigeration equipment
JP2017537291A (en) Magnetocaloric heat equipment
US20100146989A1 (en) Continuously rotary magnetic refrigerator or heat pump
JP2008005653A (en) Superconducting coil apparatus and inductor type synchronous machine
US11402136B2 (en) Drum-type magnetic refrigeration apparatus with multiple bed rings
JP5816491B2 (en) Magnetic refrigeration equipment
JP7409882B2 (en) Magnetic field generator and magnetic gear
EP3967952A1 (en) Magnetic refrigeration device
US11125477B2 (en) Drum-type magnetic refrigeration apparatus with improved magnetic-field source
JP5823904B2 (en) Rotating permanent magnet magnetic refrigeration system
JP2013257104A (en) Magnetic refrigeration device
JP2007060818A (en) Rotating machine supported by magnetic repulsion
JP2020038026A (en) Magnetic refrigeration device
KR20110048935A (en) Magnetic field generating unit for magnetic refrigerator and magnetic refrigerator comprising the same
JP6586401B2 (en) Magnetic refrigeration equipment
JP5335260B2 (en) Cylindrical power generator having a two-pole shaft rotating body levitated by a high-temperature superconductor
CN211400365U (en) Magnetic refrigeration system and magnetic refrigerator with same
CN110953761A (en) Magnetic refrigeration system and magnetic refrigerator with same
JP2022165236A (en) magnetic refrigeration system
CN115376801A (en) Shielding type semi-magnetic ring structure and use method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5602482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees