JP2011226615A - Method for producing power transmission member - Google Patents

Method for producing power transmission member Download PDF

Info

Publication number
JP2011226615A
JP2011226615A JP2010098902A JP2010098902A JP2011226615A JP 2011226615 A JP2011226615 A JP 2011226615A JP 2010098902 A JP2010098902 A JP 2010098902A JP 2010098902 A JP2010098902 A JP 2010098902A JP 2011226615 A JP2011226615 A JP 2011226615A
Authority
JP
Japan
Prior art keywords
steel pipe
power transmission
die
small
transmission member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010098902A
Other languages
Japanese (ja)
Inventor
Yuichi Asano
祐一 淺野
Yuichiro Kitamura
裕一郎 北村
Tsuneaki Hiraoka
恒哲 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010098902A priority Critical patent/JP2011226615A/en
Publication of JP2011226615A publication Critical patent/JP2011226615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To shape a high-accuracy small diameter part at low cost when shaping the small diameter part by applying drawing to an end part of a steel pipe.SOLUTION: By applying the drawing to the end part of the steel pipe 30, the small diameter part 4 formed with a power-transmitting connection element on an outside diameter face is shaped. By applying the drawing to the end part 30b in a state of restraining both end faces 30a1, 30b1 of the steel pipe 30, the small diameter part 4 is shaped. Thus, a situation that the thickness of the end part 30b applied with the drawing freely move in an axial direction according to the drawing is prevented.

Description

本発明は、自動車や各種産業機械の動力伝達装置に組み込まれる動力伝達部材の製造方法に関する。   The present invention relates to a method of manufacturing a power transmission member incorporated in a power transmission device of an automobile or various industrial machines.

自動車の動力伝達装置として、例えば、2つの等速自在継手を中間シャフトで連結して構成されるドライブシャフトやプロペラシャフトがある。これらの動力伝達装置を構成する動力伝達部材としての中間シャフトの両端部外径には、当該中間シャフトと等速自在継手の内側継手部材とをトルク伝達可能に連結するため、スプライン等の連結要素がそれぞれ設けられる。中間シャフトとしては、中実の棒材から加工された中実タイプ、あるいは鋼管(パイプ材)から加工された中空タイプが使用可能であるが、近時においては、足回り部品の軽量化、捩り剛性の向上およびNVH特性向上といった機能面での必要性から中空タイプが多用される傾向にある(例えば、特許文献1を参照)。   As a power transmission device for automobiles, for example, there are a drive shaft and a propeller shaft configured by connecting two constant velocity universal joints with an intermediate shaft. A connecting element such as a spline is connected to the outer diameter of both ends of the intermediate shaft as a power transmission member constituting these power transmission devices so that the intermediate shaft and the inner joint member of the constant velocity universal joint can be transmitted with torque. Are provided. As the intermediate shaft, a solid type machined from a solid bar or a hollow type machined from a steel pipe (pipe material) can be used. The hollow type tends to be frequently used because of the necessity in terms of functions such as improvement in rigidity and NVH characteristics (see, for example, Patent Document 1).

また、スプライン等の連結要素を端部外径に有する動力伝達部材として、等速自在継手の外側継手部材がある。外側継手部材とは、内側継手部材やトルク伝達部材等を内周に収容するカップ部と、カップ部の底部から軸方向に延びた軸部とを備えるものであり、スプライン等の連結要素は軸部の反カップ部側の端部外径に設けられる。連結要素を有する軸部は、上記同様の理由から中空軸で構成される場合がある(例えば、特許文献2を参照)。   Moreover, there exists an outer joint member of a constant velocity universal joint as a power transmission member which has connection elements, such as a spline, in an end part outer diameter. The outer joint member includes a cup portion that accommodates the inner joint member, the torque transmission member, and the like on the inner periphery, and a shaft portion that extends in the axial direction from the bottom portion of the cup portion. It is provided on the outer diameter of the end of the portion on the side opposite to the cup. The shaft portion having the connecting element may be formed of a hollow shaft for the same reason as described above (see, for example, Patent Document 2).

動力伝達装置の作動中、動力伝達部材の連結要素には捩りトルクが連続的に負荷されることから、連結要素は高い強度を具備している必要がある。そのため、連結要素は、鋼管の端部に絞り加工(塑性加工)を施すことで厚肉に成形した小径部の外径面に一体的に設けられる場合が多い。なお、絞り加工としては、鋼管をダイスに対して軸方向に押し込むプレス加工や、鋼管をその軸線周りに回転させながら高速度で径方向内向きの打撃力を付与するスウェージング加工を挙げることができる。   Since the torsional torque is continuously applied to the connecting element of the power transmission member during operation of the power transmission device, the connecting element needs to have high strength. Therefore, the connecting element is often provided integrally on the outer diameter surface of the small-diameter portion formed into a thick wall by subjecting the end portion of the steel pipe to drawing (plastic working). In addition, examples of the drawing process include a pressing process in which a steel pipe is pushed in an axial direction with respect to a die, and a swaging process in which a striking force is applied at a high speed in a radial direction while rotating the steel pipe around its axis. it can.

図8に、従来採用されている絞り加工法の一例を示す。まず、図8(a)に示すように、ダイス80の一端側に配置した保持型81で鋼管83の一端面を保持・拘束する。この状態で、図8(b)に示すように鋼管83の他端部84をダイス80の加圧部80aに押し込み、小径部85を成形する。小径部85の成形が完了すると、鋼管83の他端面86(小径部85が成形された側の軸端)がダイス80の他端側に配置された排出型82に当接する。そして、排出型82をダイス80に対して接近移動させ、ダイス80に押し込まれた鋼管83をダイス80から排出する。これにより鋼管83の他端部84に対する絞り加工が完了する。   FIG. 8 shows an example of a drawing method conventionally employed. First, as shown in FIG. 8A, one end surface of the steel pipe 83 is held and restrained by a holding die 81 arranged on one end side of the die 80. In this state, as shown in FIG. 8B, the other end 84 of the steel pipe 83 is pushed into the pressurizing part 80a of the die 80, and the small diameter part 85 is formed. When the forming of the small diameter portion 85 is completed, the other end face 86 of the steel pipe 83 (the shaft end on the side where the small diameter portion 85 is formed) comes into contact with the discharge die 82 disposed on the other end side of the die 80. Then, the discharge die 82 is moved closer to the die 80, and the steel pipe 83 pushed into the die 80 is discharged from the die 80. Thereby, the drawing process for the other end 84 of the steel pipe 83 is completed.

図8(b)に示すように、小径部85は、絞り加工前の他端部84よりも厚肉となる。しかしながら、上記の方法では、小径部85の肉厚(内径面形状)が軸方向で不均一となり易い。具体的には、図8(b)中の拡大図に示すように、小径部85の軸端側の領域Xが、軸端側に向かって肉厚が漸次縮小した先細り形状となる。小径部85の外径面には後の加工工程にてスプライン等の連結要素が成形されるが、肉厚が軸方向で不均一な小径部85の外径面に連結要素を設けると、捩りトルクに対する負荷能力等が不足するおそれがある。そのため、従来は、小径部85を必要以上の長寸に成形し、精度確保されていない軸端側の領域Xを切り捨てるような方策を採る場合があるが、これでは歩留が低下すると共に、加工コストが増大する。   As shown in FIG. 8B, the small diameter portion 85 is thicker than the other end portion 84 before drawing. However, in the above method, the thickness (inner diameter surface shape) of the small diameter portion 85 tends to be non-uniform in the axial direction. Specifically, as shown in the enlarged view in FIG. 8B, the region X on the shaft end side of the small-diameter portion 85 has a tapered shape in which the thickness is gradually reduced toward the shaft end side. A connecting element such as a spline is formed on the outer diameter surface of the small-diameter portion 85 in a later processing step, but if the connecting element is provided on the outer diameter surface of the small-diameter portion 85 whose thickness is not uniform in the axial direction, twisting occurs. There is a risk that the load capacity with respect to torque will be insufficient. Therefore, conventionally, there is a case where the small-diameter portion 85 is formed to be longer than necessary, and a measure such as truncating the region X on the shaft end side where accuracy is not ensured may be taken, but this reduces the yield, Processing cost increases.

特開2002−349538号公報JP 2002-349538 A 特開2006−64060号公報JP 2006-64060 A 特開2007−247847号公報JP 2007-247847 A

上述の問題は、例えば特許文献3に記載のように、鋼管の端部内周に内径拘束型(マンドレルとも称される)を挿入した状態で絞り加工を行うことによって解消可能である。鋼管の端部内周に内径拘束型を挿入しておけば、鋼管の端部内径は内径拘束型の外径面に倣うように塑性変形するため、小径部の肉厚等は、内径拘束型を用いない場合に比べて高精度化されるからである。   For example, as described in Patent Document 3, the above-described problem can be solved by performing drawing in a state where an inner diameter restraining type (also referred to as a mandrel) is inserted into the inner periphery of the end of the steel pipe. If an inner diameter constraining type is inserted in the inner periphery of the end of the steel pipe, the inner diameter of the end of the steel pipe is plastically deformed to follow the outer diameter surface of the inner diameter constraining type. This is because the accuracy is improved as compared with the case of not using it.

しかしながら、図8に示す態様において、鋼管の端部内周に内径拘束型を挿入した状態で絞り加工を行った場合、ダイスにかかる負荷が高くなり、ダイスの短寿命化を招くおそれがある。また、小径部の成形時には、内径拘束型によって内径側への肉の流動が規制されるため、内径拘束型を用いない場合に比べて肉厚の増加量に制限を受けるというデメリットもある。内径拘束型を用いる場合であっても、より厚肉の鋼管を用いれば所定精度の小径部を成形可能となるが、これでは中空軸を用いることによるコスト面や重量面でのメリットが減じられる。   However, in the embodiment shown in FIG. 8, when drawing is performed in a state where an inner diameter constraining mold is inserted into the inner periphery of the end of the steel pipe, the load applied to the die is increased, and the life of the die may be shortened. Further, when molding the small diameter portion, the flow of the meat toward the inner diameter side is restricted by the inner diameter restraining mold, so that there is a demerit that the increase in the wall thickness is limited as compared with the case where the inner diameter restraining mold is not used. Even if the inner diameter restraint type is used, if a thicker steel pipe is used, a small-diameter portion with a predetermined accuracy can be formed, but this reduces the merit in terms of cost and weight by using a hollow shaft. .

以上に鑑み、本発明の主たる目的は、鋼管に絞り加工を施すことによって小径部を成形する際に生じる上記の各種問題を解消し得る製造方法を提供し、もって高精度で耐久性に富む動力伝達部材を低コストに製造可能とすることにある。   In view of the above, the main object of the present invention is to provide a manufacturing method capable of solving the above-mentioned various problems that occur when forming a small-diameter portion by drawing a steel pipe, thereby providing highly accurate and durable power. It is to be able to manufacture the transmission member at a low cost.

上記の目的を達成するため、本願では、第1発明として、鋼管の端部に絞り加工を施すことで成形した小径部の外径面に、動力伝達用の連結要素が設けられた動力伝達部材の製造方法において、鋼管の両端面を拘束した状態で端部に絞り加工を施すことにより、小径部を成形することを特徴とする動力伝達部材の製造方法を提供する。ここで、本発明でいう絞り加工には、鋼管をダイスに対して軸方向に押し込むプレス加工や、鋼管をその軸線周りに回転させながら高速度で径方向内向きの打撃力を付与するスウェージング加工が含まれる。また、動力伝達用の連結要素としては、軸方向に延びる山部(歯)と谷部(歯底)が円周方向に交互に形成されたスプラインやセレーションを挙げることができる。以下に述べる第2発明についても同様である。   In order to achieve the above object, in the present application, as a first invention, a power transmission member in which a connecting element for power transmission is provided on an outer diameter surface of a small diameter portion formed by drawing an end portion of a steel pipe In this manufacturing method, there is provided a method for manufacturing a power transmission member, characterized in that a small diameter portion is formed by drawing the end portion in a state where both end faces of the steel pipe are constrained. Here, the drawing process referred to in the present invention includes a pressing process in which the steel pipe is pushed in the axial direction with respect to the die, and a swaging that imparts a radially inward striking force at a high speed while rotating the steel pipe around its axis. Processing is included. Examples of the power transmission connecting element include splines and serrations in which crests (teeth) and troughs (tooth bottoms) extending in the axial direction are alternately formed in the circumferential direction. The same applies to the second invention described below.

上記のように、両端面を拘束した状態で鋼管の端部(以下、被加工部ともいう)に絞り加工を施すようにすれば、絞り加工に伴う被加工部の肉の自由な軸方向移動を規制することができる。そのため、被加工部の軸方向全領域をほぼ均等に増肉することが可能となり、図8に示す従来方法を採用する場合に比べ高精度な小径部を得ることができる。これにより、小径部を必要以上の長寸に成形すると共に、小径部の精度不良領域を切断する必要がなくなるので、歩留の向上と製造コストの低廉化とを同時に達成することができる。また、本発明に係る製造方法であれば、従来方法を採用する場合に比べて高精度の小径部を得ることができる分、被加工部の内周に内径拘束型を挿入する必要性は低くなる。従って、ダイスの短寿命化や、動力伝達部材の重量化および高コスト化を回避することができる。   As described above, if drawing is performed on the end of the steel pipe (hereinafter also referred to as a work part) with both end surfaces constrained, the free movement of the meat of the work part accompanying the drawing is performed in the axial direction. Can be regulated. Therefore, it is possible to increase the thickness of the entire region in the axial direction of the processed portion almost evenly, and it is possible to obtain a small-diameter portion with higher accuracy than when the conventional method shown in FIG. 8 is adopted. As a result, it is not necessary to form the small-diameter portion to be longer than necessary, and it is not necessary to cut the accuracy inaccuracy region of the small-diameter portion, so that it is possible to simultaneously improve the yield and reduce the manufacturing cost. In addition, if the manufacturing method according to the present invention is used, it is possible to obtain a small-diameter portion with higher accuracy than in the case where the conventional method is adopted, and therefore, the necessity for inserting an inner-diameter constraining die on the inner periphery of the workpiece is low. Become. Therefore, it is possible to avoid the shortening of the die life and the weight and cost of the power transmission member.

但し、鋼管の両端面を拘束しつつ、被加工部の内周に内径拘束型を挿入した状態で被加工部に絞り加工を施せば、ダイスの短寿命化等の問題は効果的に解消しつつ、一層高精度な小径部を成形することができる。上述のとおり、本発明の製造方法によれば、従来よりも高精度の小径部を成形可能であるから、内径拘束型としては、絞り加工時における端部内径面との接触代が従来よりも小さくなる小径のものを用いれば足りるからである。   However, problems such as shortening the life of the die can be effectively solved by constricting both ends of the steel pipe and drawing the part to be processed with the inner diameter constraining die inserted into the inner periphery of the part to be processed. In addition, a small-diameter portion with higher accuracy can be formed. As described above, according to the manufacturing method of the present invention, it is possible to mold a small-diameter portion with higher accuracy than before. This is because it is sufficient to use a smaller diameter.

上記の第1発明に係る製造方法は、被加工部の内径寸法よりも大きい外径寸法を有する小径部を成形するのに好ましい方法であって、より大きな絞り量を確保する必要がある場合、具体的には被加工部の内径寸法よりも小さい外径寸法の小径部を成形する場合に適用することは困難である。しかしながら、より一層の高強度化(厚肉化)を図るべく、被加工部の内径寸法よりも小さい外径寸法を有する小径部を成形する必要がある場合も当然にある。そのため、このような場合にも改善を図る必要がある。   The manufacturing method according to the first aspect of the present invention is a preferable method for forming a small-diameter portion having an outer diameter dimension larger than the inner diameter dimension of the workpiece, and when a larger drawing amount needs to be secured, Specifically, it is difficult to apply when molding a small diameter portion having an outer diameter smaller than the inner diameter of the workpiece. However, there are naturally cases where it is necessary to form a small-diameter portion having an outer diameter smaller than the inner diameter of the processed portion in order to further increase the strength (thickness). Therefore, it is necessary to improve even in such a case.

そこで本願では、第2発明として、鋼管の端部に絞り加工を施すことで成形した小径部の外径に、動力伝達用の連結要素が設けられた動力伝達部材の製造方法において、端部に対する絞り加工が開始された直後に鋼管の両端面を拘束し、その状態で絞り加工をさらに進行させることにより小径部を成形することを特徴とする動力伝達部材の製造方法を提供する。なお、ここでいう「絞り加工が開始された直後」とは、例えば鋼管の先端に絞り加工が施されて当該先端に小径部が成形され、鋼管の被加工部端面に拘束型を当接させることが可能となった時点を意図している(図5を参照)。   Therefore, in the present application, as a second invention, in a method of manufacturing a power transmission member in which a connecting element for power transmission is provided on an outer diameter of a small diameter portion formed by drawing an end portion of a steel pipe, Provided is a method for manufacturing a power transmission member, characterized in that both ends of a steel pipe are constrained immediately after drawing is started, and the small diameter portion is formed by further drawing in that state. Here, “immediately after the drawing process is started” means that, for example, the tip of the steel pipe is drawn to form a small-diameter portion at the tip, and the constraining die is brought into contact with the end surface of the processed part of the steel pipe. It is intended to be when it becomes possible (see FIG. 5).

この場合、上記した第1発明に係る製造方法に比べると若干精度は劣るものの、従来方法に比べて高精度の小径部を得ることができる。この第2発明に係る製造方法においても、被加工部内周に内径拘束型を挿入した状態で被加工部に絞り加工を施すようにしても良い。   In this case, although the accuracy is slightly inferior to the manufacturing method according to the first invention, a small-diameter portion with higher accuracy can be obtained as compared with the conventional method. Also in the manufacturing method according to the second aspect of the present invention, the processed portion may be drawn with the inner diameter restraining mold inserted in the inner periphery of the processed portion.

以上に示した本発明に係る製造方法は、何れの場合であっても、絞り加工時における鋼管の両端面の拘束力(挟持力)は1MPa以上に設定する。これにより、絞り加工時に、被加工部の肉が軸方向に逃げることに起因して生じる小径部の精度低下を抑制あるいは防止することができる。   In any of the production methods according to the present invention described above, the restraining force (holding force) on both end faces of the steel pipe during drawing is set to 1 MPa or more. Thereby, at the time of a drawing process, the precision fall of the small diameter part resulting from the flesh of the to-be-processed part escaping to an axial direction can be suppressed or prevented.

以上に示した本発明に係る動力伝達部材の製造方法は、両端部に小径部が成形され、2つの等速自在継手を連結する中間シャフトを製造する際に好ましく適用することができる。また、本発明に係る動力伝達部材の製造方法は、一端部に小径部が成形され、他端部にトルク伝達部材を内周に収容するカップ部が接合される等速自在継手用外側継手部材の軸部を製造する際にも好ましく適用することができる。   The above-described method for manufacturing a power transmission member according to the present invention can be preferably applied when manufacturing an intermediate shaft in which a small diameter portion is formed at both end portions and two constant velocity universal joints are connected. The power transmission member manufacturing method according to the present invention includes an outer joint member for a constant velocity universal joint in which a small-diameter portion is formed at one end portion and a cup portion that accommodates a torque transmission member on the inner periphery is joined to the other end portion. The present invention can also be preferably applied when manufacturing the shaft portion.

以上に示すように、本発明によれば、鋼管に絞り加工を施すことによって小径部を成形する際に生じていた各種問題を解消することができる。従って、高精度で耐久性に富む動力伝達部材を低コストに製造することが可能となる。   As described above, according to the present invention, it is possible to solve various problems that have occurred when forming a small-diameter portion by drawing a steel pipe. Therefore, it is possible to manufacture a power transmission member with high accuracy and durability at low cost.

ドライブシャフトの全体構造を示す正面図である。It is a front view which shows the whole structure of a drive shaft. 図1に示す中間シャフトの正面図である。It is a front view of the intermediate shaft shown in FIG. 本発明の第1実施形態に係る絞り加工工程を概念的に示す断面図であり、(a)図は絞り加工前の段階を示す図、(b)図は絞り加工中の段階を示す図である。It is sectional drawing which shows notionally the drawing process which concerns on 1st Embodiment of this invention, (a) A figure is a figure which shows the step before drawing, (b) The figure is a figure which shows the step in drawing is there. 本発明の第2実施形態に係る絞り加工工程を概念的に示す断面図であり、(a)図は絞り加工前の段階を示す図、(b)図は絞り加工中の段階を示す図である。It is sectional drawing which shows notionally the drawing process which concerns on 2nd Embodiment of this invention, (a) A figure shows the stage before drawing, (b) The figure shows the stage in drawing is there. 本発明の第3実施形態に係る絞り加工工程を概念的に示す断面図であり、(a)図は絞り加工前の段階を示す図、(b)図は絞り加工中の段階を示す図である。It is sectional drawing which shows notionally the drawing process which concerns on 3rd Embodiment of this invention, (a) A figure is a figure which shows the step before drawing, (b) A figure is a figure which shows the step in drawing. is there. 本発明の第4実施形態に係る絞り加工工程を概念的に示す断面図であり、(a)図は絞り加工前の段階を示す図、(b)図は絞り加工中の段階を示す図である。It is sectional drawing which shows notionally the drawing process which concerns on 4th Embodiment of this invention, (a) A figure is a figure which shows the step before drawing, (b) The figure is a figure which shows the step in drawing is there. 本発明の製造方法を含んで製造した外側継手部材の正面図である。It is a front view of the outside joint member manufactured including the manufacturing method of the present invention. 従来方法に係る絞り加工工程を模式的に示す断面図であり、(a)図は絞り加工前の段階を示す図、(b)図は絞り加工中の段階を示す図である。It is sectional drawing which shows the drawing process which concerns on the conventional method typically, (a) A figure shows the step before drawing, and (b) The figure shows the step in drawing.

以下、本発明の実施の形態を図1〜7に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1に、エンジンから駆動車輪に動力(回転トルク)を伝達する動力伝達装置としてのドライブシャフトの全体構造を示す。このドライブシャフトは、エンジン側に配置される摺動式等速自在継手10と、駆動車輪側に配置される固定式等速自在継手20と、両等速自在継手10,20をトルク伝達可能に連結する動力伝達部材としての中間シャフト1とを主要な構成として備える。   FIG. 1 shows the overall structure of a drive shaft as a power transmission device that transmits power (rotational torque) from an engine to drive wheels. This drive shaft is capable of transmitting torque to the sliding type constant velocity universal joint 10 arranged on the engine side, the fixed type constant velocity universal joint 20 arranged on the drive wheel side, and the two constant velocity universal joints 10, 20. An intermediate shaft 1 as a power transmission member to be connected is provided as a main configuration.

摺動式等速自在継手10はいわゆるトリポード型(TJ)であり、カップ部12および軸部13を有する外側継手部材11と、カップ部12の内周に収容された内側継手部材としてのトリポード部材14と、トルク伝達部材としてのローラ16とを主要な構成として備える。トリポード部材14には径方向に延びる脚軸15が円周方向等間隔で3本設けられており、各脚軸15の外周には、ローラ16が1個ずつ回転自在に嵌合されている。なお、この摺動式等速自在継手10として、ダブルオフセット型(DOJ)が用いられる場合もある。   The sliding type constant velocity universal joint 10 is a so-called tripod type (TJ), an outer joint member 11 having a cup portion 12 and a shaft portion 13, and a tripod member as an inner joint member accommodated in the inner periphery of the cup portion 12. 14 and a roller 16 as a torque transmission member as main components. The tripod member 14 is provided with three leg shafts 15 extending in the radial direction at equal intervals in the circumferential direction, and one roller 16 is rotatably fitted to the outer periphery of each leg shaft 15. Note that a double offset type (DOJ) may be used as the sliding constant velocity universal joint 10.

固定式等速自在継手20はいわゆるバーフィールド型(BJ)であり、カップ部22および軸部23を有する外側継手部材21と、カップ部22の内周に収容された内側継手部材24と、カップ部22と内側継手部材24との間に配置されたトルク伝達部材としてのボール25と、カップ部22の内径面と内側継手部材24の外径面との間に配され、ボール25を円周方向等間隔に保持する保持器26とを備える。なお、この固定式等速自在継手20として、アンダーカットフリー型(UJ)が用いられる場合もある。   The fixed type constant velocity universal joint 20 is a so-called Barfield type (BJ), and includes an outer joint member 21 having a cup portion 22 and a shaft portion 23, an inner joint member 24 accommodated in the inner periphery of the cup portion 22, and a cup. A ball 25 serving as a torque transmitting member disposed between the portion 22 and the inner joint member 24, and an inner diameter surface of the cup portion 22 and an outer diameter surface of the inner joint member 24. And a cage 26 that holds the same direction. An undercut free type (UJ) may be used as the fixed type constant velocity universal joint 20.

中間シャフト1の両端部外径には、動力伝達用の連結要素としてスプライン2が一体的に設けられている。一端側のスプライン2は、摺動式等速自在継手10のトリポード部材14の孔部に嵌合され、これによって中間シャフト1と摺動式等速自在継手10のトリポード部材14とがトルク伝達可能に連結される。また他端側のスプライン2は、固定式等速自在継手20の内側継手部材24の孔部に嵌合され、これによって中間シャフト1と固定式等速自在継手20の内側継手部材24とがトルク伝達可能に連結される。   Splines 2 are integrally provided on the outer diameters at both ends of the intermediate shaft 1 as connecting elements for power transmission. The spline 2 on one end side is fitted into the hole of the tripod member 14 of the sliding type constant velocity universal joint 10, so that the intermediate shaft 1 and the tripod member 14 of the sliding type constant velocity universal joint 10 can transmit torque. Connected to The spline 2 on the other end side is fitted into the hole of the inner joint member 24 of the fixed type constant velocity universal joint 20, whereby the intermediate shaft 1 and the inner joint member 24 of the fixed type constant velocity universal joint 20 are torqued. It is connected so that it can be transmitted.

両等速自在継手10,20の内部にはグリース等の潤滑剤が封入されている。潤滑剤の外部漏洩や継手外部からの異物侵入を防止するため、摺動式等速自在継手10の外側継手部材11と中間シャフト1との間、および固定式等速自在継手20の外側継手部材21と中間シャフト1との間には、筒状のブーツ8,9がそれぞれ装着されている。   Both constant velocity universal joints 10 and 20 are filled with a lubricant such as grease. In order to prevent external leakage of the lubricant and entry of foreign matter from the outside of the joint, the outer joint member between the outer joint member 11 of the sliding type constant velocity universal joint 10 and the intermediate shaft 1 and the outer joint member of the fixed type constant velocity universal joint 20. Cylindrical boots 8 and 9 are respectively mounted between the intermediate shaft 21 and the intermediate shaft 1.

図2に、図1に示す中間シャフト1を抜き出して示す。中間シャフト1は、鋼管(パイプ材)から成形された軸方向全域が中空をなす軸状部材であり、軸方向中間部に配された大径部3と、軸方向両端部に配され、外径面にスプライン2が形成された小径部4とを備える。大径部3と各小径部4とは、テーパ部5、ブーツ固定部6および最小径部7を介して繋がっている。中間シャフト1成形用の鋼管としては、例えば、SKTMやSTMA等の機械構造用炭素鋼からなるもの、あるいはSCrやSCM等の機械構造用合金鋼からなるもの等を使用することができる。   FIG. 2 shows the intermediate shaft 1 shown in FIG. The intermediate shaft 1 is a shaft-shaped member formed from a steel pipe (pipe material) and has a hollow in the entire axial direction. The intermediate shaft 1 is disposed at the axially intermediate portion and at both axial ends, And a small diameter portion 4 having a spline 2 formed on the radial surface. The large diameter portion 3 and each small diameter portion 4 are connected via a taper portion 5, a boot fixing portion 6 and a minimum diameter portion 7. As the steel pipe for forming the intermediate shaft 1, for example, one made of carbon steel for mechanical structure such as SKTM or STMA or one made of alloy steel for mechanical structure such as SCr or SCM can be used.

中間シャフト1には硬化層が形成されている。本実施形態において、硬化層は図2中に斜線ハッチングで示す部分、具体的には、中間シャフト1の軸方向全域であって、かつ、内径面から外径面に至る肉厚全体に亘って形成されている。なお、硬化層は、特に強度が必要とされる部位に形成されていれば足り、必ずしも中間シャフト1の軸方向全域に亘って形成する必要はない。図示は省略するが、例えば小径部4のうち、外径面にスプライン2が形成された領域よりも軸端側の部分には硬化層を形成せずとも足りる。また、硬化層は、必ずしも中間シャフト1の肉厚全体に亘って形成されていなくても良く、中間シャフト1の内径側一部厚みに硬化層が形成されないようにしても良い。このようにすれば、熱硬化処理時に焼き割れが発生するのを防止する上で有効である。   A hardened layer is formed on the intermediate shaft 1. In the present embodiment, the hardened layer is a portion indicated by hatching in FIG. 2, specifically, the entire axial direction of the intermediate shaft 1 and the entire thickness from the inner diameter surface to the outer diameter surface. Is formed. The hardened layer is only required to be formed at a site where strength is particularly required, and does not necessarily have to be formed over the entire axial direction of the intermediate shaft 1. Although illustration is omitted, for example, it is not necessary to form a hardened layer in a portion of the small diameter portion 4 on the shaft end side with respect to the region where the spline 2 is formed on the outer diameter surface. Further, the hardened layer does not necessarily have to be formed over the entire thickness of the intermediate shaft 1, and the hardened layer may not be formed on a partial thickness on the inner diameter side of the intermediate shaft 1. This is effective in preventing the occurrence of burning cracks during the thermosetting process.

上記構成の中間シャフト1は、例えば、次のようにして製造することができる。まず、鋼管の軸方向所定部位に絞り加工(塑性加工)を施して大径部3や小径部4等を一体に有する中間成形体を製作した後、中間成形体の小径部4の外径面に転造加工等を施すことによってスプライン2を成形する。そして、所定部位に高周波焼入れ、浸炭焼入れ、あるいは浸炭窒化焼入れ等の熱硬化処理を施した後、必要に応じて適当な仕上げ加工を施すことにより完成品としての中間シャフト1を得る。   The intermediate shaft 1 having the above-described configuration can be manufactured, for example, as follows. First, an intermediate formed body having a large diameter portion 3 and a small diameter portion 4 integrally formed by drawing (plastic working) a predetermined portion in the axial direction of the steel pipe, and then the outer diameter surface of the small diameter portion 4 of the intermediate formed body The spline 2 is formed by performing a rolling process or the like. And after giving thermosetting processes, such as induction hardening, carburizing hardening, or carbonitriding hardening, to a predetermined part, the intermediate shaft 1 as a finished product is obtained by performing an appropriate finishing process as needed.

以上のようにして製造される中間シャフト1の製造工程のうち、本発明の要旨である鋼管に絞り加工を施して中間成形体を成形する工程、特に、鋼管の端部に絞り加工を施して小径部4を成形するステップを以下に詳述する。   Of the manufacturing steps of the intermediate shaft 1 manufactured as described above, the step of drawing the steel pipe, which is the gist of the present invention, to form an intermediate formed body, in particular, drawing the end of the steel pipe. The step of forming the small diameter portion 4 will be described in detail below.

図3(a)(b)は、本発明の第1実施形態に係る絞り加工工程を概念的に示す断面図である。同図に示す成形装置はいわゆるプレス装置またはであって、鋼管30の端部を径方向内向きに加圧して縮径部4を成形する加圧部40aが設けられたダイス40と、ダイス40の一端側および他端側にそれぞれ同軸配置された保持型41および端面拘束型42とを主要な構成として備える。保持型41および端面拘束型42は、図示しない適当な駆動機構にそれぞれ取り付けられて軸方向移動が可能となっている。   3A and 3B are cross-sectional views conceptually showing the drawing process according to the first embodiment of the present invention. The forming apparatus shown in the figure is a so-called pressing apparatus or a die 40 provided with a pressing part 40a for pressing the end part of the steel pipe 30 radially inward to form the reduced diameter part 4, and the die 40. The holding die 41 and the end face constraining die 42 that are coaxially arranged on one end side and the other end side of the main body are provided as main components. The holding die 41 and the end face constraining die 42 are respectively attached to an appropriate driving mechanism (not shown) and can move in the axial direction.

本実施形態の成形装置(ダイス40)は、鋼管30の端部に、鋼管30の内径寸法dよりも大きな外径寸法を有する小径部4を成形するためのものである。そのため、ダイス40の加圧部40aの内径寸法D1は、鋼管30の端部外径寸法d1よりも小径に設定されると共に、鋼管30の端部内径寸法dよりも大径に設定されている(d<D1<d1)。端面拘束型42の外径寸法D2は、加圧部40aの内径寸法D1よりも小径に設定されると共に鋼管30の端部内径寸法dよりも大径に設定されている(d<D2<D1)。   The forming apparatus (die 40) of this embodiment is for forming a small diameter portion 4 having an outer diameter larger than the inner diameter d of the steel pipe 30 at the end of the steel pipe 30. Therefore, the inner diameter D1 of the pressurizing portion 40a of the die 40 is set to be smaller than the outer diameter d1 of the end of the steel pipe 30 and larger than the inner diameter d of the end of the steel pipe 30. (D <D1 <d1). The outer diameter dimension D2 of the end face constraining die 42 is set to be smaller than the inner diameter dimension D1 of the pressurizing portion 40a and larger than the inner diameter dimension d of the end portion of the steel pipe 30 (d <D2 <D1). ).

以上の構成において、まず図3(a)に示すように、保持型41で一端面30a1を拘束するようにして鋼管30の一端部30aを保持した後、保持型41および鋼管30をダイス40に対して接近移動させる。鋼管30の他端部30bがダイス40の加圧部40aに到達する前に、端面拘束型42を保持型41側に移動させ、鋼管30の両端面30a1,30b1を保持型41および端面拘束型42で拘束(挟持)する。この状態で図3(b)に示すように、保持型41および端面拘束型42を図中右側に同期移動させ、鋼管30の他端部30bをダイス40の加圧部40aに押し込む。これにより、鋼管30の他端部30bに絞り加工が施され、加圧部40aの内径寸法D1に対応した外径寸法を有する小径部4が成形される。   In the above configuration, first, as shown in FIG. 3A, the holding die 41 holds the one end 30 a of the steel pipe 30 so as to constrain the one end face 30 a 1, and then the holding die 41 and the steel pipe 30 are put into a die 40. Move close to it. Before the other end 30b of the steel pipe 30 reaches the pressurizing part 40a of the die 40, the end face constraining mold 42 is moved to the holding mold 41 side, and the both end faces 30a1 and 30b1 of the steel pipe 30 are moved to the holding mold 41 and the end face constraining type. 42 is restrained (clamped). In this state, as shown in FIG. 3B, the holding die 41 and the end face constraining die 42 are moved synchronously to the right side in the drawing, and the other end 30 b of the steel pipe 30 is pushed into the pressurizing portion 40 a of the die 40. Thereby, the other end part 30b of the steel pipe 30 is drawn, and the small diameter part 4 having an outer diameter corresponding to the inner diameter D1 of the pressurizing part 40a is formed.

図示は省略するが、鋼管30の他端部30bに小径部4を成形した後には、端面拘束型42を保持型41側に移動させることによって、鋼管30をダイス40から排出することができる。   Although illustration is omitted, after the small diameter portion 4 is formed on the other end portion 30b of the steel pipe 30, the steel pipe 30 can be discharged from the die 40 by moving the end face constraining die 42 to the holding die 41 side.

このように、鋼管30の両端面30a1,30b1を拘束した状態で鋼管30の端部に絞り加工を施すようにすれば、絞り加工が施される鋼管端部(被加工部)の肉が、絞り加工に伴って自由に軸方向移動するのを規制することができる。そのため、被加工部の軸方向全域をほぼ均等に増肉することが可能となり、図8に示す従来方法を採用する場合に比べて軸方向での肉厚差の小さい(もしくは肉厚差のない)高精度な小径部4を得ることができる。これにより、従来のように、小径部を必要以上の長寸に成形すると共に、この小径部の軸端側の精度不良部分を絞り加工後に切断する必要がなくなる。従って、歩留の向上と製造コストの低廉化とを同時に達成することができる。   In this way, if the end portion of the steel pipe 30 is subjected to drawing processing in a state in which both end faces 30a1, 30b1 of the steel pipe 30 are constrained, the meat of the steel pipe end portion (processed portion) to which drawing processing is performed, It is possible to restrict the axial movement freely along with the drawing process. Therefore, it is possible to increase the thickness of the entire area in the axial direction of the processed part substantially evenly, and the thickness difference in the axial direction is small (or no thickness difference) compared to the case where the conventional method shown in FIG. 8 is adopted. ) A highly accurate small diameter portion 4 can be obtained. As a result, it is not necessary to form the small-diameter portion to be longer than necessary, and to cut the poorly-accurate portion on the shaft end side of the small-diameter portion after the drawing process as in the prior art. Accordingly, it is possible to simultaneously improve the yield and reduce the manufacturing cost.

絞り加工時における鋼管30の両端面30a1,30b1の拘束力は1MPa以上に設定する。このようにすれば、絞り加工に伴う被加工部の肉の自由な軸方向移動を効果的に防止することができるので、小径部4の高精度化を図る上で有効となる。   The restraining force of both end faces 30a1 and 30b1 of the steel pipe 30 at the time of drawing is set to 1 MPa or more. By doing so, it is possible to effectively prevent free axial movement of the meat of the processed part due to drawing, which is effective in increasing the accuracy of the small diameter part 4.

また、以上に示した方法であれば、図8に示す従来方法に比べて高精度の小径部4を成形することができるので、被加工部内周に内径拘束型を挿入した状態で絞り加工を施す必要性、すなわち絞り加工に伴う肉の内径側への塑性流動を規制する必要性は低くなる。そのため、ダイス40の長寿命化を図ることができる。   Further, with the method described above, it is possible to form the small-diameter portion 4 with higher precision than the conventional method shown in FIG. 8, and therefore drawing is performed with the inner diameter constraining mold inserted in the inner periphery of the workpiece. The necessity to apply, that is, the necessity to regulate the plastic flow to the inner diameter side of the meat accompanying drawing is reduced. Therefore, the life of the die 40 can be extended.

但し、図4(a)(b)に示すように、両端面30a1,30b1を拘束しつつ、被加工部(端部30a又は30b)内周に内径拘束型を挿入した状態で絞り加工を施すようにしても良い。同図に示す成形装置では、図3に示す端面拘束型42に加えて、内径拘束型43が配置されている。内径拘束型43は、端面拘束型42の内周に相対移動可能に挿入され、図示例では端面拘束型42よりも保持型41側に突出した状態に保持されている。内径拘束型43の突出量は、端面拘束型42を鋼管30の端面に当接させた状態(保持型41と端面拘束型42とで鋼管30の両端面30a1,30b1を拘束した状態)において、その先端部が成形すべき小径部4の内側一端を超える位置まで鋼管30に挿入されるような値に設定されている。また、内径拘束型43の外径寸法D3は、鋼管30の端部内径寸法dよりも小径であって、成形すべき小径部4の内径寸法に対応する値に設定されている。   However, as shown in FIGS. 4 (a) and 4 (b), drawing is performed in a state where the inner diameter restraining mold is inserted into the inner periphery of the portion to be processed (end portion 30a or 30b) while restricting both end faces 30a1 and 30b1. You may do it. In the molding apparatus shown in the figure, in addition to the end face restraint mold 42 shown in FIG. 3, an inner diameter restraint mold 43 is arranged. The inner diameter restricting die 43 is inserted into the inner periphery of the end face restricting die 42 so as to be relatively movable, and is held in a state of protruding from the end face restricting die 42 toward the holding die 41 in the illustrated example. The protruding amount of the inner diameter restraint die 43 is in a state in which the end face restraint die 42 is in contact with the end face of the steel pipe 30 (a state where both end faces 30a1 and 30b1 of the steel pipe 30 are restrained by the holding die 41 and the end face restraint die 42). It is set to such a value that the tip portion is inserted into the steel pipe 30 up to a position exceeding the inner end of the small diameter portion 4 to be molded. Further, the outer diameter dimension D3 of the inner diameter restraining die 43 is set to a value that is smaller than the inner diameter dimension d of the end portion of the steel pipe 30 and corresponds to the inner diameter dimension of the small diameter portion 4 to be molded.

以上の構成において、まず図4(a)に示すように、保持型41で一端面30a1を拘束するようにして鋼管30の一端部30aを保持した後、保持型41および鋼管30をダイス40に対して接近移動させる。鋼管30の他端部30bがダイス40の加圧部40aに到達する前に端面拘束型42を保持型41側に移動させ、端面拘束型42を鋼管30の他端面30b1に当接させる。これにより、内径拘束型43が鋼管30の他端部30b内周に挿入されると共に、鋼管30の両端面30a1,30b1が保持型41および端面拘束型42で拘束・挟持される。この状態で保持型41および端面拘束型42を図中右側に同期移動させ、鋼管30の他端部30bをダイス40の加圧部40aに押し込むと、鋼管30の他端部30bに絞り加工が施され、小径部4が成形される(図4(b)を参照)。   In the above configuration, first, as shown in FIG. 4A, the holding die 41 holds the one end 30 a of the steel pipe 30 so as to constrain the one end face 30 a 1, and then the holding die 41 and the steel pipe 30 are put into a die 40. Move close to it. Before the other end portion 30b of the steel pipe 30 reaches the pressurizing portion 40a of the die 40, the end surface constraining die 42 is moved to the holding die 41 side, and the end surface constraining die 42 is brought into contact with the other end surface 30b1 of the steel pipe 30. As a result, the inner diameter restraint die 43 is inserted into the inner periphery of the other end 30 b of the steel pipe 30, and both end faces 30 a 1, 30 b 1 of the steel pipe 30 are restrained and clamped by the holding die 41 and the end face restraint die 42. In this state, when the holding die 41 and the end face constraining die 42 are moved synchronously to the right side in the drawing and the other end 30b of the steel pipe 30 is pushed into the pressurizing part 40a of the die 40, the other end 30b of the steel pipe 30 is drawn. The small diameter portion 4 is formed (see FIG. 4B).

かかる態様で絞り加工を施すようにすれば、鋼管30の他端部30bの肉は、内径拘束型43の外径面に倣うように塑性変形(塑性流動)するため、図3に示す内径拘束型を用いない場合に比べて一層高精度の小径部4を成形することができる。このとき、鋼管30の両端面30a1,30b1を拘束した状態で絞り加工を施した分、軸方向での肉厚差の小さい、もしくは肉厚差がない高精度な小径部4を得ることができることから、内径拘束型43としては、絞り加工時における鋼管30の被加工部内径面との接触代が小さくなる小径のものを用いれば足りる。従って、一端部のみを保持・拘束した鋼管の他端部内周に内径拘束型を挿入した状態で絞り加工を施す場合に懸念されるダイスの短寿命化等の問題は可及的に防止することができる。   If the drawing is performed in this manner, the thickness of the other end 30b of the steel pipe 30 is plastically deformed (plastic flow) so as to follow the outer diameter surface of the inner diameter constraining die 43. Compared to the case where no mold is used, the small-diameter portion 4 with higher accuracy can be formed. At this time, it is possible to obtain a high-precision small-diameter portion 4 having a small thickness difference in the axial direction or no thickness difference by the amount of drawing performed in a state where both end faces 30a1 and 30b1 of the steel pipe 30 are constrained. Therefore, as the inner diameter restraining die 43, it is sufficient to use a small-diameter one that has a small contact allowance with the inner diameter surface of the processed portion of the steel pipe 30 at the time of drawing. Therefore, it is possible to prevent as much as possible problems such as shortening of the die life, which is a concern when drawing with the inner diameter constraining die inserted into the inner circumference of the other end of the steel pipe holding and restraining only one end. Can do.

なお、この場合においても、図3に示す場合と同様に、絞り加工時における鋼管30の両端面30a1,30b1の拘束力は1MPa以上に設定する。   In this case as well, as in the case shown in FIG. 3, the restraining force of the both end faces 30a1 and 30b1 of the steel pipe 30 at the time of drawing is set to 1 MPa or more.

以上に示した実施形態では、鋼管30bの他端部30bがダイス40の加圧部40aに到達する前に、ダイス40の他端側に配置しておいた端面拘束型42を移動させることによって、鋼管30の両端面30a1,30b1を拘束・挟持するようにしたが、端面拘束型42は、予め鋼管30の他端面30b1を拘束する位置、具体的には、図3(a)に実線で示す位置(又は図4(a)に示す位置)で待機させるようにしても良い。   In the embodiment described above, the end face constraining die 42 arranged on the other end side of the die 40 is moved before the other end portion 30b of the steel pipe 30b reaches the pressurizing portion 40a of the die 40. The both end surfaces 30a1 and 30b1 of the steel pipe 30 are constrained and clamped, but the end surface constraining mold 42 is a position where the other end surface 30b1 of the steel pipe 30 is constrained in advance, specifically, a solid line in FIG. You may make it wait in the position shown (or the position shown to Fig.4 (a)).

図5は、図3に示す実施形態の変形例であって、以上で説明した実施形態よりも大きな絞り量を確保するためのもの、詳しくは、鋼管30の端部30a,30bに、その端部内径寸法dよりも小さな外径寸法の小径部4を成形するための成形装置の概略断面図である。この場合、ダイス40の加圧部40aの内径寸法D1は、鋼管30の端部内径寸法dよりも小径に設定されている(D1<d)。   FIG. 5 is a modification of the embodiment shown in FIG. 3 and is for securing a larger drawing amount than the embodiment described above. Specifically, the end portions 30a and 30b of the steel pipe 30 are connected to the ends thereof. It is a schematic sectional drawing of the shaping | molding apparatus for shape | molding the small diameter part 4 of an outer diameter dimension smaller than the part internal diameter dimension d. In this case, the inner diameter dimension D1 of the pressing portion 40a of the die 40 is set to be smaller than the inner diameter dimension d of the end portion of the steel pipe 30 (D1 <d).

本実施形態のように、鋼管30の端部にその内径寸法dよりも小さな外径寸法の小径部4を絞り加工で成形する場合には、各部材の寸法関係から、図3に示す実施形態のように、絞り加工前の段階から鋼管30の両端面30a1,30b1を拘束することは物理的に困難である。そのため、図5(a)に示す絞り加工の開始・初期段階において、端面拘束型42は加圧部40aの出口付近に配置(待機)されている。   When the small diameter portion 4 having an outer diameter smaller than the inner diameter d is formed by drawing at the end of the steel pipe 30 as in the present embodiment, the embodiment shown in FIG. As described above, it is physically difficult to constrain both end faces 30a1 and 30b1 of the steel pipe 30 from the stage before drawing. Therefore, at the start / initial stage of drawing shown in FIG. 5A, the end face constraining die 42 is disposed (standby) in the vicinity of the outlet of the pressurizing unit 40a.

この実施形態では、次のようにして小径部4を成形することができる。まず、図5(a)に示すように、保持型41で一端面30a1を拘束するように鋼管30の一端部30aを保持した後、保持型41および鋼管30をダイス40に対して接近移動させ、鋼管30の他端部30bをダイス40の加圧部40aに押し込む。そして、鋼管30の他端部30b先端に絞り加工が施されると、鋼管30の他端面30b1に、加圧部40aの出口付近に待機させておいた端面拘束型42を当接させ、鋼管30の両端面30a1,30b1を保持型41および端面拘束型42で拘束・挟持する。このときの拘束力は、以上で説明した実施形態と同様に1MPa以上に設定する。この状態で保持型41および端面拘束型42を同期移動させることによって鋼管30の他端部30bの残部をダイス40の加圧部40aに押し込み、所定長さの小径部4を成形する。   In this embodiment, the small diameter portion 4 can be formed as follows. First, as shown in FIG. 5A, after holding one end 30a of the steel pipe 30 so as to restrain the one end face 30a1 by the holding mold 41, the holding mold 41 and the steel pipe 30 are moved closer to the die 40. The other end 30 b of the steel pipe 30 is pushed into the pressurizing part 40 a of the die 40. Then, when the tip of the other end portion 30b of the steel pipe 30 is drawn, the end face constraining die 42 that has been waiting in the vicinity of the outlet of the pressurizing portion 40a is brought into contact with the other end face 30b1 of the steel pipe 30 to The both end faces 30a1 and 30b1 of the 30 are restrained and clamped by the holding mold 41 and the end face restraining mold 42. The restraining force at this time is set to 1 MPa or more as in the embodiment described above. In this state, the holding die 41 and the end face constraining die 42 are moved synchronously to push the remaining part of the other end 30b of the steel pipe 30 into the pressurizing part 40a of the die 40, thereby forming the small diameter part 4 having a predetermined length.

この場合、絞り加工の初期段階においては、鋼管30の他端面30b1を被拘束状態とせざるを得ないため、小径部4の精度は、図3に示す製造方法を採用する場合に比べて若干劣る結果となるものの、図8に示す従来方法に比べれば十分に高くなる。そのため、小径部4を図8に示す従来方法で成形する場合ほどの長寸に成形する必要がなくなる。また、仮に小径部4を切断する必要が生じたとしても、切断長は従来方法で小径部を成形する場合よりも格段に短くなる。従って、歩留の向上と製造コストの低廉化とを同時に達成することができる。   In this case, at the initial stage of drawing, the other end face 30b1 of the steel pipe 30 has to be constrained, so that the accuracy of the small diameter portion 4 is slightly inferior to the case where the manufacturing method shown in FIG. 3 is adopted. As a result, it is sufficiently higher than the conventional method shown in FIG. Therefore, it is not necessary to form the small-diameter portion 4 as long as the conventional method shown in FIG. Moreover, even if it becomes necessary to cut the small diameter part 4, the cutting length becomes much shorter than when the small diameter part is formed by the conventional method. Accordingly, it is possible to simultaneously improve the yield and reduce the manufacturing cost.

鋼管30の端部に、その内径寸法dよりも小さな外径寸法の小径部4を成形する場合であっても、図6に示すように、鋼管30の端部内周に内径拘束型を挿入した状態で絞り加工を施すことができる。本実施形態の成形装置は、実質的に図4および図5に示す構成を組み合わせたものであって、図6(a)に示すように、絞り加工の開始・初期段階においてはダイス40の加圧部40aの出口付近に端面拘束型42および内径拘束型43を配置してある。内径拘束型43は、加圧部40aよりも保持型41側に突設されており、絞り加工の開始前から鋼管30の被加工部内周に挿入可能となっている。   Even when the small-diameter portion 4 having an outer diameter smaller than the inner-diameter dimension d is formed at the end of the steel pipe 30, as shown in FIG. Drawing can be performed in the state. The molding apparatus of the present embodiment is substantially a combination of the configurations shown in FIGS. 4 and 5, and as shown in FIG. 6A, the die 40 is added at the start / initial stage of drawing. An end face constraining mold 42 and an inner diameter constraining mold 43 are arranged in the vicinity of the outlet of the pressure part 40a. The inner diameter constraining die 43 protrudes closer to the holding die 41 than the pressurizing portion 40a, and can be inserted into the inner periphery of the work portion of the steel pipe 30 before the start of drawing.

以上の構成からなる成形装置において、まず、図6(a)に示すように、保持型41で一端面30a1を拘束するように鋼管30の一端部30aを保持した後、保持型41を駆動して鋼管30の他端部30bをダイス40の加圧部40aに押し込む。鋼管30がダイス40に対してある程度接近移動すると、内径拘束型43が鋼管30の他端部30b内周に挿入される。そして、鋼管30の他端部30b先端に絞り加工が施されると、鋼管30の他端面30b1に端面拘束型42が当接し、鋼管30の両端面30a1,30b1が保持型41および端面拘束型42で拘束・挟持される。このときの拘束力も、以上で説明した実施形態と同様に1MPa以上に設定する。この状態で保持型41および拘束型43を同期移動させることによって鋼管30の他端部30bの残部をダイス40の加圧部40aに押し込み、所定長さの小径部4を成形する。   In the molding apparatus having the above configuration, first, as shown in FIG. 6A, after holding the one end 30a of the steel pipe 30 so as to restrain the one end face 30a1 by the holding mold 41, the holding mold 41 is driven. Then, the other end 30 b of the steel pipe 30 is pushed into the pressurizing part 40 a of the die 40. When the steel pipe 30 moves closer to the die 40 to some extent, the inner diameter restraining die 43 is inserted into the inner periphery of the other end 30b of the steel pipe 30. When the drawing is performed on the tip of the other end 30b of the steel pipe 30, the end face restraint die 42 comes into contact with the other end face 30b1 of the steel pipe 30, and the both end faces 30a1 and 30b1 of the steel pipe 30 are the holding die 41 and the end face restraint type. 42 is restrained and clamped. The restraining force at this time is also set to 1 MPa or more as in the embodiment described above. In this state, the holding die 41 and the constraining die 43 are moved synchronously to push the remaining part of the other end 30b of the steel pipe 30 into the pressing part 40a of the die 40, thereby forming the small diameter part 4 having a predetermined length.

以上で説明した製造方法の何れを採用するかは、成形すべき小径部4(の外径寸法)に応じて選択すれば良い。鋼管30の一端部30aと他端部30bとにそれぞれ小径部4を成形するに際し、選択すべき製造方法は同一のものであっても良いし、互いに異ならせても良い。   Which of the manufacturing methods described above is adopted may be selected according to the small diameter portion 4 (the outer diameter size) to be formed. When forming the small diameter part 4 in the one end part 30a and the other end part 30b of the steel pipe 30, the manufacturing method to be selected may be the same or different from each other.

以上では、鋼管30をダイス40に対して軸方向に押し込むプレス加工によって小径部4を成形する際に本発明の構成を適用したが、本発明の構成は、鋼管30をその軸線周りに回転させながら高速度で径方向内向きの打撃力を付与するスウェージング加工によって小径部4を成形する際にも好ましく適用することができる。スウェージング加工機ではダイス40は、周方向で4分割または6分割など複数分割されている。   In the above, the configuration of the present invention is applied when the small diameter portion 4 is formed by pressing the steel pipe 30 against the die 40 in the axial direction. However, the configuration of the present invention rotates the steel pipe 30 around its axis. However, it can be preferably applied also when the small-diameter portion 4 is formed by swaging processing that imparts a striking force inward in the radial direction at a high speed. In the swaging machine, the die 40 is divided into a plurality of parts such as four or six in the circumferential direction.

以上で説明した本発明に係る製造方法は、中空タイプの中間シャフト1を製造する際にのみ限定適用されるものではなく、他の動力伝達部材、例えば図7に示すような外側継手部材を製造する際にも好ましく適用することができる。同図に示す外側継手部材50は、図1に示すドライブシャフトの摺動式等速自在継手10に組み込み可能なものであって、内側継手部材やトルク伝達部材を内周に収容可能なカップ部51と、カップ部51の底部から軸方向に延びた中空の軸部52とを備えるものである。カップ部51と軸部52とは、摩擦圧接あるいは溶接(ここでは摩擦圧接)によって接合一体化されている。軸部52のうち、反カップ部51側の端部には以上で説明した図3〜図6の何れかの方法で小径部4が成形され、この小径部4の外径面に動力伝達用の連結要素(ここではスプライン2)が一体的に設けられている。   The manufacturing method according to the present invention described above is not limited to be applied only when the hollow intermediate shaft 1 is manufactured. Other power transmission members, for example, outer joint members as shown in FIG. 7 are manufactured. This can also be preferably applied. The outer joint member 50 shown in the figure can be incorporated into the slide-type constant velocity universal joint 10 of the drive shaft shown in FIG. 1 and can accommodate the inner joint member and the torque transmission member on the inner periphery. 51 and a hollow shaft portion 52 extending in the axial direction from the bottom portion of the cup portion 51. The cup part 51 and the shaft part 52 are joined and integrated by friction welding or welding (here, friction welding). A small-diameter portion 4 is formed on the end portion of the shaft portion 52 on the side opposite to the cup portion 51 by the method described above with reference to FIGS. 3 to 6, and power transmission is performed on the outer diameter surface of the small-diameter portion 4. Connecting elements (here, spline 2) are integrally provided.

以上では、本発明に係る製造方法を、ドライブシャフトを構成する各種動力伝達部材を製造する際に適用しているが、本発明は、プロペラシャフト等、その他の動力伝達装置を構成する各種動力伝達部材を製造する際にも好ましく適用することができる。   In the above, the manufacturing method according to the present invention is applied when manufacturing various power transmission members constituting the drive shaft. However, the present invention is applicable to various power transmissions constituting other power transmission devices such as a propeller shaft. It can be preferably applied also when manufacturing a member.

1 中間シャフト(動力伝達部材)
2 スプライン(連結要素)
3 大径部
4 小径部
10 摺動式等速自在継手
11 固定式等速自在継手
30 鋼管
30a 一端部
30a1 一端面
30b 他端部
30b1 他端面
40 ダイス
40a 加圧部
41 保持型
42 端面拘束型
43 内径拘束型
1 Intermediate shaft (power transmission member)
2 Splines (connecting elements)
3 Large-diameter portion 4 Small-diameter portion 10 Sliding constant velocity universal joint 11 Fixed constant velocity universal joint 30 Steel pipe 30a One end portion 30a1 One end surface 30b Other end portion 30b1 Other end surface 40 Die 40a Pressurizing portion 41 Holding mold 42 End surface constraining type 43 ID restriction type

Claims (8)

鋼管の端部に絞り加工を施すことで成形した小径部の外径面に、動力伝達用の連結要素が設けられた動力伝達部材の製造方法において、
鋼管の両端面を拘束した状態で前記端部に絞り加工を施すことにより、小径部を成形することを特徴とする動力伝達部材の製造方法。
In the manufacturing method of the power transmission member in which the connecting element for power transmission is provided on the outer diameter surface of the small diameter part formed by drawing the end of the steel pipe,
A method for manufacturing a power transmission member, comprising forming a small-diameter portion by drawing the end portion in a state where both end faces of the steel pipe are constrained.
前記端部の内径寸法よりも大きい外径寸法を有する小径部を成形する際に適用する請求項1に記載の動力伝達部材の製造方法。   The method for manufacturing a power transmission member according to claim 1, which is applied when forming a small-diameter portion having an outer diameter dimension larger than an inner diameter dimension of the end portion. 鋼管の端部に絞り加工を施すことで成形した小径部の外径面に、動力伝達用の連結要素が設けられた動力伝達部材の製造方法において、
前記端部に対する絞り加工が開始された直後に鋼管の両端面を拘束し、その状態で絞り加工をさらに進行させることにより小径部を成形することを特徴とする動力伝達部材の製造方法。
In the manufacturing method of the power transmission member in which the connecting element for power transmission is provided on the outer diameter surface of the small diameter part formed by drawing the end of the steel pipe,
A method for manufacturing a power transmission member, comprising: constraining both end faces of a steel pipe immediately after drawing of the end portion is started, and further forming the small diameter portion by further drawing in that state.
前記端部の内径寸法よりも小さい外径寸法を有する小径部を成形する際に適用する請求項3に記載の動力伝達部材の製造方法。   The method for manufacturing a power transmission member according to claim 3, which is applied when forming a small diameter portion having an outer diameter smaller than an inner diameter of the end. 鋼管の両端面の拘束力を1MPa以上に設定した請求項1〜4の何れか一項に記載の動力伝達部材の製造方法。   The manufacturing method of the power transmission member as described in any one of Claims 1-4 which set the binding force of the both end surfaces of a steel pipe to 1 Mpa or more. 前記端部の内周に内径拘束型を挿入した状態で、前記端部に絞り加工を施す請求項1〜5の何れか一項に記載の動力伝達部材の製造方法。   The method for manufacturing a power transmission member according to any one of claims 1 to 5, wherein a drawing process is performed on the end portion in a state where an inner diameter restraining mold is inserted in an inner periphery of the end portion. 鋼管は、その両端部に小径部が成形され、2つの等速自在継手をトルク伝達可能に連結する中間シャフトを構成するものである請求項1〜6の何れか一項に記載の動力伝達部材の製造方法。   The power transmission member according to any one of claims 1 to 6, wherein the steel pipe has a small-diameter portion formed at both ends thereof and constitutes an intermediate shaft that couples the two constant velocity universal joints so as to transmit torque. Manufacturing method. 鋼管は、その一端部に小径部が成形されると共に、その他端部にトルク伝達部材を内周に収容するカップ部が接合される等速自在継手用外側継手部材の軸部を構成するものである請求項1〜6の何れか一項に記載の動力伝達部材の製造方法。   The steel pipe constitutes a shaft portion of an outer joint member for a constant velocity universal joint in which a small diameter portion is formed at one end portion and a cup portion that accommodates a torque transmission member on the inner periphery is joined to the other end portion. The manufacturing method of the power transmission member as described in any one of Claims 1-6.
JP2010098902A 2010-04-22 2010-04-22 Method for producing power transmission member Pending JP2011226615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098902A JP2011226615A (en) 2010-04-22 2010-04-22 Method for producing power transmission member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098902A JP2011226615A (en) 2010-04-22 2010-04-22 Method for producing power transmission member

Publications (1)

Publication Number Publication Date
JP2011226615A true JP2011226615A (en) 2011-11-10

Family

ID=45042179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098902A Pending JP2011226615A (en) 2010-04-22 2010-04-22 Method for producing power transmission member

Country Status (1)

Country Link
JP (1) JP2011226615A (en)

Similar Documents

Publication Publication Date Title
US9005038B2 (en) Rotation transmitting apparatus, vehicle steering system, and intermediate shaft
KR101522651B1 (en) hub overdriver clutch and manufacturing method thereof
EP3001060A1 (en) Torque transmission shaft with yoke for universal joint and manufacturing method therefor
JP6328614B2 (en) Power transmission shaft and spline processing method
KR20140039660A (en) Shaft joint of universal joint for vehicle and manufacturing method thereof
JP5586929B2 (en) Method for manufacturing constant velocity universal joint
JP6005402B2 (en) Method for manufacturing outer joint member of constant velocity universal joint
JP2013066903A (en) Hollow power-transmission shaft
JP5377908B2 (en) Manufacturing method of tripod type constant velocity universal joint
KR101936650B1 (en) Method for manufacturing drive shaft having ball spline
JP4846559B2 (en) Assembly method of power transmission shaft of steering device
JP2007139094A (en) Constant speed universal joint
JP2011226615A (en) Method for producing power transmission member
JP4853776B2 (en) CVT shaft and manufacturing method thereof
JP6548863B2 (en) Method of manufacturing outer joint member of constant velocity universal joint
JP6372627B2 (en) Manufacturing method and manufacturing apparatus for wheel support bearing unit, and manufacturing method of vehicle
JP5857770B2 (en) Worm wheel manufacturing method and worm wheel manufacturing apparatus
JP2008200684A (en) Method for forming spline of shaft member
KR20140024080A (en) Universal joint for vehicle and manufacturing method thereof
JP2007247847A (en) Power transmission shaft
KR102068195B1 (en) A Manufacturing Method of a Cam Ring, A Forging Device Used in the Method and A Cam Ring Manufactured by the Method
EP2251559A1 (en) Inner joint member for constant velocity universal joint, method of producing the same, and constant velocity universal joint
WO2014188838A1 (en) Method for producing outside joint member for use in constant-velocity universal joint, and intermediate forged product to be made into outside joint member
JP2009275878A (en) Spline shaft, power transmission shaft, and outer ring of constant velocity universal joint
JP5323572B2 (en) Tripod type constant velocity universal joint and manufacturing method thereof