JP2011225852A - Pencil lead - Google Patents

Pencil lead Download PDF

Info

Publication number
JP2011225852A
JP2011225852A JP2011073596A JP2011073596A JP2011225852A JP 2011225852 A JP2011225852 A JP 2011225852A JP 2011073596 A JP2011073596 A JP 2011073596A JP 2011073596 A JP2011073596 A JP 2011073596A JP 2011225852 A JP2011225852 A JP 2011225852A
Authority
JP
Japan
Prior art keywords
particles
pencil
pencil lead
graphite
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011073596A
Other languages
Japanese (ja)
Inventor
Hitoshi Fujimagari
等 藤曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2011073596A priority Critical patent/JP2011225852A/en
Publication of JP2011225852A publication Critical patent/JP2011225852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pencil lead excellent in the balance of bending strength and density.SOLUTION: The pencil lead uses at least a constitutional material and a coupling material as main materials, and is formed by being applied with mixture, molding and burning treatment. The pencil lead contains, in a pencil lead body, inorganic particles other than graphite whose particle diameters are not smaller than 0.1 μm and smaller than 1.0 μm.

Description

本発明は、体質材と結合材とを主材として使用し、混練、成形、焼成処理を施してなる鉛筆芯に関する。   The present invention relates to a pencil lead formed by using an extender and a binder as main materials and performing kneading, molding, and firing.

一般に、鉛筆芯は、黒鉛、雲母、タルク、窒化ホウ素などの体質材と、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、塩素化ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリアクリルアミド樹脂、塩素化パラフィン樹脂、フェノール樹脂、フラン樹脂、尿素樹脂、ブチルゴムなどの有機結合材とを主材として使用し、必要に応じて、無定形シリカ、カーボンブラック、などの無機添加剤、フタル酸エステルなどの可塑剤、ステアリン酸塩などの安定剤、ステアリン酸などの滑材、メチルエチルケトンなどの溶剤を併用し、これらの原材料を分散混合、混練、細線状に成形した後、適宜焼成温度まで熱処理を施し、更に必要に応じて、シリコーン油、流動パラフィン、スピンドル油、スクワラン、α−オレフィンオリゴマー、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、モンタンワックス、カルナバワックスなどの油状物やワックス類などを含浸させて製造している。   Generally, the pencil lead is made of graphite, mica, talc, boron nitride, and other materials, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, chlorinated polyethylene resin, polyvinyl alcohol resin, polyacrylamide resin, chlorinated resin. Organic binders such as paraffin resin, phenol resin, furan resin, urea resin, and butyl rubber are used as the main material. If necessary, inorganic additives such as amorphous silica and carbon black, plastics such as phthalate esters, etc. , Stabilizers such as stearates, lubricants such as stearic acid, solvents such as methyl ethyl ketone, these raw materials are dispersed and mixed, kneaded, formed into fine wires, and then subjected to heat treatment as appropriate to the firing temperature. If necessary, silicone oil, liquid paraffin, spindle oil, squalane, α-olefin oil Goma, paraffin wax, microcrystalline wax, polyethylene wax, montan wax, and prepared by impregnating the like oil or waxes such as carnauba wax.

鉛筆芯の体質材には前述したように、黒鉛、雲母、タルク、窒化ホウ素などのミクロンオーダーの無機粒子が使用されているが、中でも結晶の発達した黒鉛は扁平(板状)形状であり、鉛筆芯を細線状に成形する際に材料の押し出し方向に配向して芯体の骨格を形成する。この黒鉛による配向骨格構造(ハニカム構造)が芯体の強度を向上させており、体質材として使用されているものの中では最も強度の高い骨格を形成する。黒鉛以外の体質材が形成する骨格や、黒鉛と黒鉛以外の体質材を使用した場合に形成される黒鉛と黒鉛以外の体質材による複合骨格は、黒鉛が単独で形成する骨格よりも強度が低いため、鉛筆芯の曲げ強さも低下してしまうのが一般的である。
また、無機添加剤は、鉛筆芯の製造に関して必ずしも必須の材料ではないが、鉛筆芯の濃度向上、寸法安定性向上、割れや膨れ防止、シャープペンシルのチャック保持力向上などの効果もあるため、無機添加剤として無定形シリカやカーボンブラックなどのナノ粒子が好まれて使用されている場合が多い。これらの無機添加剤は最終的な鉛筆芯の構成材料として芯体中に残存し、その後に含浸させる油状物などを蓄える効果があるため、これらを用いることにより、鉛筆芯としての濃度を向上させることができる。一般的に油状物の含浸量が多いほど、筆記時の鉛筆芯体の崩れを促進させ、濃度は向上するからである。
ところで、鉛筆芯の曲げ強さと濃度とを両立させることは難しく、曲げ強さを高くさせようとすると濃度が低下してしまい、逆に濃度を高くしようとすると、曲げ強さが低下してしまうのが一般的である。この鉛筆芯の曲げ強さと濃度とを両立させようと様々な発明が報告されており、主材として用いられる体質材や必要に応じて使用される無機添加剤と潤滑剤に関するものもある。
特公昭42−007166号公報(特許文献1)に記載の発明は、体質材の一部として天然雲母を使用した鉛筆芯に関するものであり、特開昭54−088423号公報(特許文献2)に記載の発明は、体質材の一部としてタルクを使用した鉛筆芯に関するものであり、特開2004−262984号公報(特許文献3)に記載の発明は、体質材の一部として板状アルミナを使用した鉛筆芯に関するものであり、特開2008−081715号公報(特許文献4)に記載の発明は、体質材の一部として合成雲母を使用した鉛筆芯に関するものであり、特許第4122945号公報(特許文献5)に記載の発明は、無機添加剤として疎水性無定形シリカを使用した鉛筆芯に関するものであり、特開2007−138031号公報(特許文献6)に記載の発明は、潤滑剤(所謂無機添加剤)としてナノ材料を使用した鉛筆芯に関するものである。
As described above, micron-order inorganic particles such as graphite, mica, talc, and boron nitride are used for the material for the pencil core. Above all, graphite with a developed crystal has a flat (plate-like) shape, When the pencil core is formed into a thin line shape, it is oriented in the extrusion direction of the material to form a skeleton of the core body. This oriented skeleton structure (honeycomb structure) made of graphite improves the strength of the core, and forms the skeleton having the highest strength among those used as the extender. A skeleton formed by a material other than graphite, or a composite skeleton made of graphite and a material other than graphite formed when a material other than graphite and graphite is used, has a lower strength than a skeleton formed solely by graphite. For this reason, the bending strength of the pencil lead is generally reduced.
In addition, the inorganic additive is not necessarily an essential material for the manufacture of the pencil lead, but has the effect of improving the concentration of the pencil lead, improving the dimensional stability, preventing cracking and swelling, and improving the holding force of the mechanical pencil, Nanoparticles such as amorphous silica and carbon black are often preferred and used as inorganic additives. These inorganic additives remain in the core body as the final constituent material of the pencil lead, and have the effect of storing oils to be impregnated thereafter. By using these, the concentration as the pencil lead is improved. be able to. This is because, generally, as the amount of impregnation of the oily material increases, the collapse of the pencil core during writing is promoted and the concentration is improved.
By the way, it is difficult to achieve both the bending strength and the density of the pencil lead. If you try to increase the bending strength, the density will decrease. Conversely, if you try to increase the density, the bending strength will decrease. It is common. Various inventions have been reported to achieve both the bending strength and the concentration of the pencil lead, and there are also related to an extender used as a main material and inorganic additives and lubricants used as necessary.
The invention described in Japanese Examined Patent Publication No. 42-007166 (Patent Document 1) relates to a pencil lead using natural mica as a part of an extender, and disclosed in Japanese Patent Application Laid-Open No. 54-088423 (Patent Document 2). The described invention relates to a pencil lead using talc as a part of the extender, and the invention described in Japanese Patent Application Laid-Open No. 2004-262984 (Patent Document 3) uses plate-like alumina as a part of the extender. The invention described in Japanese Patent Application Laid-Open No. 2008-081715 (Patent Document 4) relates to a pencil core using synthetic mica as a part of an extender, and Japanese Patent No. 4122945. The invention described in (Patent Document 5) relates to a pencil lead using hydrophobic amorphous silica as an inorganic additive, and Japanese Patent Application Laid-Open No. 2007-138031 (Patent Document 6). The invention described relates to a pencil lead using nanomaterials as a lubricant (so-called inorganic additives).

特公昭42−007166号公報Japanese Patent Publication No.42-007166 特開昭54−088423号公報Japanese Patent Laid-Open No. 54-088423 特開2004−262984号公報JP 2004-262984 A 特開2008−081715号公報JP 2008-081715 A 特許第4122945号公報Japanese Patent No. 4122945 特開2007−138031号公報JP 2007-138031 A

特許文献1、2に記載の発明は、体質材の一部として天然雲母やタルクを使用したものであるが、天然雲母やタルクは耐熱温度が約800℃のため、それより高い温度での熱処理を施すと、脱水反応により結晶が膨張して分解してしまうことで劈開性や平滑性が悪くなり、鉛筆芯筆記時の芯体摩耗が阻害され、極端に濃度が低くなると共に書き味が悪くなってしまうため、鉛筆芯の強度向上に有利な1000℃以上の高温熱処理ができないことで、鉛筆芯としての満足な曲げ強さを得られなくなってしまうものであった。
特許文献3、4に記載の発明は、体質材の一部として耐熱性の高い板状アルミナや合成雲母を使用することにより、特許文献1、2に記載の発明で不可能であった1000℃以上での高温熱処理を可能にした発明である。
ところが、これら特許文献1〜4に記載の発明は、鉛筆芯の曲げ強さ向上を意図したものではなく、体質材の一部として黒鉛以外の板状粒子を使用することで黒鉛特有の鉛色の筆記線を純黒色に近づけることを意図した発明であるため、体質材全量に対する黒鉛以外の板状粒子の使用量は最低でも10%以上の高い比率となっており、その分体質材に占める黒鉛の比率が少なくなり鉛筆芯としての曲げ強さは低下してしまうものであった。
特許文献5、6に記載の発明は、セラミック系あるいはカーボン系のナノ粒子(材料)を体質材全量に対して数%程度添加使用するものである。これらに記載されている無定形シリカやカーボンブラックなどのナノ粒子(材料)を使用することで、前述したように鉛筆芯の濃度向上、寸法安定性向上、割れや膨れ防止、シャープペンシルのチャック保持力向上などの効果が得られるため好ましく使用されているが、これらのナノ粒子(材料)は、少量の使用でも鉛筆芯体中に存在する粒子の数は非常に多く、その存在が鉛筆芯成形時に体質材として使用する黒鉛の押し出し方向への配向を少なからず阻害してしまうのも事実であり、そのことが芯体中で黒鉛が形成する骨格に欠陥を生じさせ、鉛筆芯としての曲げ強さを低下させてしまうものとなっていた。
本発明は、これらの問題を解決し、曲げ強さと濃度とを両立させたバランスの優れた鉛筆芯を提供することを目的とする。
The inventions described in Patent Documents 1 and 2 use natural mica and talc as a part of the constitution material, but natural mica and talc have a heat-resistant temperature of about 800 ° C., so heat treatment at a higher temperature is performed. , The crystal expands and decomposes due to the dehydration reaction, resulting in poor cleavage and smoothness, which inhibits core wear when writing with a pencil lead, resulting in extremely low concentration and poor writing. As a result, the high-temperature heat treatment at 1000 ° C. or higher, which is advantageous for improving the strength of the pencil lead, cannot be performed, so that satisfactory bending strength as a pencil lead cannot be obtained.
The inventions described in Patent Documents 3 and 4 use plate-like alumina and synthetic mica having high heat resistance as part of the build material, which is impossible with the inventions described in Patent Documents 1 and 2. This is an invention that enables high-temperature heat treatment as described above.
However, these inventions described in Patent Documents 1 to 4 are not intended to improve the bending strength of the pencil core, but lead color peculiar to graphite by using plate-like particles other than graphite as part of the extender. Since the writing line of the invention is intended to be close to pure black, the amount of plate-like particles other than graphite with respect to the total amount of the extender is at least a high ratio of 10% or more, and occupies the proportion of the extender The ratio of graphite was reduced, and the bending strength as a pencil lead was lowered.
In the inventions described in Patent Documents 5 and 6, ceramic-based or carbon-based nanoparticles (materials) are added and used in an amount of several percent with respect to the total amount of the extender. By using nanoparticles (materials) such as amorphous silica and carbon black described in these, as described above, the pencil core concentration is improved, the dimensional stability is improved, cracking and swelling are prevented, and the mechanical pencil chuck is held. These nanoparticles (materials) are preferably used because of their effects such as improving their strength, but these nanoparticles (materials) have a very large number of particles present in the pencil core even when used in small quantities, and their presence is the result of pencil core molding. It is also true that it sometimes obstructs the orientation of graphite used as an extender in the direction of extrusion, which causes defects in the skeleton formed by graphite in the core, and the bending strength as a pencil core. It was something that would reduce the thickness.
An object of the present invention is to solve these problems and to provide a pencil lead with an excellent balance in which both bending strength and density are compatible.

本発明は、少なくとも体質材と結合材とを主材として使用し、混練、成形、焼成処理を施してなる鉛筆芯において、鉛筆芯体中に粒子径が0.1μm以上1.0μm未満の黒鉛以外の無機粒子を含有する鉛筆芯を要旨とする。   The present invention relates to a pencil core obtained by using at least an extender and a binder as main components and subjected to kneading, molding, and firing, and graphite having a particle diameter of 0.1 μm or more and less than 1.0 μm in the pencil core. The gist is a pencil lead containing other inorganic particles.

本発明の鉛筆芯は、その芯体中に粒子径が0.1μm以上1.0μm未満の黒鉛以外の無機粒子(以下、サブミクロン粒子と記す)を含有するものであり、このサブミクロン粒子は、同重量の使用の場合、前述のナノ粒子に比べて芯体中に存在する粒子の数が格段に少なくなる。例えば、ナノ粒子(1〜100nm)とサブミクロン粒子(0.1〜1μm=100〜1000nm)が無機粒子として一般的な密度を有するもので、その使用量が体質材全量に対して10%程度以下であれば、芯体中に存在するナノ粒子とサブミクロン粒子の数は、それぞれ1012〜1018個、10〜1012個となり、ナノ粒子はサブミクロン粒子の1〜10倍の粒子数となる。故に、サブミクロン粒子が芯体中で存在する数は1012個以下となり、ナノ粒子が芯体中で存在する場合と比べて、鉛筆芯成形時に黒鉛の押し出し方向への配向を阻害する可能性が非常に小さくなるのである。
また、このサブミクロン粒子は、黒鉛と共に骨格を形成する大きさではないため、体質材同士の接触により形成された隙間に位置しても、芯体中の骨格はほぼ黒鉛単独の骨格となり、黒鉛単独の骨格による芯体強度を得ることができる。これらにより、黒鉛の押し出し方向への配向が得られると共に、その黒鉛に起因する骨格の強度にて強い骨格の芯体を形成することができる。
また、このサブミクロン粒子は、体質材同士の接触により形成された隙間を埋めるように配置され、後に含浸される油状物を蓄える働きをする。体質材やサブミクロン粒子の隙間に形成される微細な隙間は、毛管力が発揮されて、前記含浸される油状物の保持に寄与するし、サブミクロン粒子そのものが、油状物を保持するような多孔質のものとすると油状物の保持に大きく貢献できる。
このように、体質材同士の接触により形成された隙間を埋めるためには隙間の寸法に対して無機添加剤の粒子径がより小さい方が効果的であるが、10μm〜30μm程度の径の体質材に対して、サブミクロン粒子は0.1μm以上1.0μm未満の粒子径であるので、その粒子径は体質材の粒子径の1/10以下になるものがほとんどであり、体質材同士の接触により形成された隙間に位置することができ、サブミクロン粒子を、機能性を有する添加剤とした場合の機能を充分に発揮させることができる。
ちなみに、一般に、大きさの異なる二つの粒子(球体と仮定した場合)において、大小粒子の半径比が1:0.155(=6.45:1)より差が大きな場合であれば、複数の大粒子の接触により形成される中で最小の空間にも小粒子が位置することが理論的に可能となるため、球体ではない無機添加剤と体質材においても、無機添加剤の粒子径が体質材の粒子径の1/6.45以下であれば、体質材同士の接触により形成された隙間に無機添加剤が位置することができる可能性が高くなると考えられる。
また、前記サブミクロン粒子が、黒鉛と同様の板状形状であれば、その粒子は鉛筆芯成形時に黒鉛と同じ挙動を示し、黒鉛が押し出し方向へ配向するのを阻害する可能性が極力小さくなるから、板状形状である方が好ましい。
また、サブミクロン粒子の耐熱温度が1000℃以上であることにより、鉛筆芯の強度向上に有利な1000℃以上の高温熱処理を施しても、鉛筆芯の濃度や書き味に影響するサブミクロン粒子の平滑性などの特性変化が小さく、鉛筆芯の濃度が低くなったり書き味が悪くなったりすることが少ない。
The pencil core of the present invention contains inorganic particles other than graphite (hereinafter referred to as submicron particles) having a particle size of 0.1 μm or more and less than 1.0 μm in the core, and the submicron particles are When the same weight is used, the number of particles present in the core is remarkably reduced as compared with the aforementioned nanoparticles. For example, nanoparticles (1 to 100 nm) and submicron particles (0.1 to 1 μm = 100 to 1000 nm) have a general density as inorganic particles, and the amount used is about 10% with respect to the total amount of the extender. if less, the number of nanoparticles and sub-micron particles present in the core is 10 12 to 10 18, respectively, 10 9 to 10 12 cells and become, the nanoparticles 1 to 10 9 times the submicron particles Number of particles. Therefore, the number of submicron particles present in the core is 10 12 or less, and the possibility of inhibiting the orientation of graphite in the extrusion direction during pencil core molding is less than when nanoparticles are present in the core. Is very small.
In addition, since the submicron particles are not of a size that forms a skeleton with graphite, the skeleton in the core is almost a skeleton of graphite alone even if it is located in a gap formed by contact between the extender materials. The core strength by a single skeleton can be obtained. As a result, the orientation of graphite in the extrusion direction can be obtained, and a strong skeleton core can be formed with the strength of the skeleton caused by the graphite.
In addition, the submicron particles are arranged so as to fill a gap formed by contact between the constituent materials, and function to store an oily substance to be impregnated later. The fine gaps formed in the gaps between the build material and the submicron particles exert capillary force and contribute to the retention of the impregnated oil, and the submicron particles themselves retain the oil. If it is porous, it can greatly contribute to the retention of oil.
Thus, in order to fill the gap formed by the contact between the extender materials, it is effective that the particle diameter of the inorganic additive is smaller than the size of the gap, but the extender having a diameter of about 10 μm to 30 μm. Since the submicron particles have a particle diameter of 0.1 μm or more and less than 1.0 μm with respect to the material, the particle diameter is almost 1/10 or less of the particle diameter of the extender. It can be located in the gap formed by contact, and the function when submicron particles are used as a functional additive can be sufficiently exhibited.
By the way, in general, when two particles having different sizes (assuming a sphere) have a large / small particle radius ratio larger than 1: 0.155 (= 6.45: 1), a plurality of particles Since it is theoretically possible for small particles to be located in the smallest space formed by the contact of large particles, the particle size of the inorganic additive is also the constitution of inorganic additives and extenders that are not spheres. If it is 1 / 6.45 or less of the particle diameter of a material, it is thought that possibility that an inorganic additive will be located in the clearance gap formed by the contact between extenders becomes high.
In addition, if the submicron particles have a plate shape similar to that of graphite, the particles exhibit the same behavior as graphite when forming a pencil core, and the possibility of inhibiting the orientation of graphite in the extrusion direction is minimized. Therefore, the plate shape is preferable.
In addition, since the heat-resistant temperature of the submicron particles is 1000 ° C. or higher, even if a high temperature heat treatment at 1000 ° C. or higher, which is advantageous for improving the strength of the pencil lead, is applied, Changes in characteristics such as smoothness are small, and the density of the pencil lead is low and the writing quality is unlikely to deteriorate.

以下、詳述する。
本発明の鉛筆芯体中に含有されるサブミクロン粒子は、前述したように、鉛筆芯成形時に黒鉛が押し出し方向へ配向するのを阻害しないと同時に、無機添加剤としての効果も発現させるために、芯体中でサブミクロンオーダーとなっていることが前提である。
このサブミクロン粒子の元となる無機粒子としては黒鉛以外であれば種々のものが挙げられるが、一例として鉛筆芯の製造に一般的に使用されている天然雲母、合成雲母、タルク、窒化ホウ素、板状アルミナ、鱗片状低結晶性シリカ、非晶質板状シリカなどが挙げられる。
また、サブミクロン粒子はどのような形状で存在しても構わないが、黒鉛と同様の板状形状であれば、その粒子は鉛筆芯成形時に黒鉛と同じ挙動を示し、黒鉛が押し出し方向へ配向するのを阻害する可能性が極力小さくなるから、板状形状である方が好ましい。一般に、アスペクト比(最大粒子径/最小粒子径)が5以上であれば板状形状と言われるが、アスペクト比があまりにも大きくなると、粒子自体の曲げ強さが低下するため、アスペクト比としては5〜20程度が望ましい。
Details will be described below.
As described above, the submicron particles contained in the pencil core of the present invention do not hinder the orientation of graphite in the extrusion direction at the time of pencil core molding, and at the same time, the effect as an inorganic additive is also exhibited. It is premised on the submicron order in the core.
Various inorganic particles other than graphite can be cited as the inorganic particles that form the submicron particles. For example, natural mica, synthetic mica, talc, boron nitride, Examples include plate-like alumina, scaly low crystalline silica, and amorphous plate-like silica.
The submicron particles may be present in any shape, but if the plate shape is similar to that of graphite, the particles exhibit the same behavior as graphite during pencil core molding, and the graphite is oriented in the extrusion direction. Since the possibility of hindering this is reduced as much as possible, a plate shape is preferred. In general, if the aspect ratio (maximum particle diameter / minimum particle diameter) is 5 or more, it is said to be a plate shape, but if the aspect ratio becomes too large, the bending strength of the particles themselves decreases, so the aspect ratio is About 5-20 is desirable.

また、サブミクロン粒子の耐熱性については、天然雲母やタルクなどのように800℃未満での熱処理ならば使用できるものもあるため、目的とする鉛筆芯の熱処理温度条件を考慮して適宜サブミクロン粒子の元となる無機粒子を選択使用すればよいが、前述したようにサブミクロン粒子の耐熱温度が1000℃以上のものであれば、鉛筆芯の強度向上に有利な高温熱処理を施しても、鉛筆芯の濃度や書き味に影響する粒子の平滑性などの特性変化が概ね小さく、鉛筆芯の濃度が低くなったり書き味が悪くなったりすることが少ないため、サブミクロン粒子としては耐熱温度が1000℃以上である合成雲母、板状アルミナ、鱗片状低結晶性シリカ、非晶質板状シリカなどを選択使用するのが好ましい。
ただし、耐熱温度は同じでも鉛筆芯の濃度や書き味に影響する粒子の平滑性などの特性変化は物質によっても異なるため、粉体粒子の平滑性の尺度の一つである安息角の変化を熱処理前後で比較するのがよい。一般に、体質材として使用する黒鉛粒子などは不活性雰囲気下における耐熱性と平滑性が非常に高く、このことが鉛筆芯としての書き味の良さを発現させるのであるが、黒鉛の安息角は一般的な鉛筆芯の製造条件である不活性雰囲気中での800℃〜1300℃の熱処理においては熱処理前と全く変化しない値を示す(熱処理前55°、1100℃熱処理後55°)。そして、芯体中のサブミクロン粒子は最終的な鉛筆芯の構成材料として芯体中で黒鉛と近接して残存し、鉛筆芯の筆記時に黒鉛と共に紙面に筆記摩耗され、鉛筆芯の書き味に影響を与えるため、熱処理後の安息角の値は小さいほど好ましく、60°未満のものが特に好ましい。また、熱処理前の安息角は鉛筆芯の書き味に影響を与えることはないが、あまりにも大きいと成形の際の材料の流れを阻害する可能性があるため、これも小さい方が好ましく、60°未満のものが特に好ましい。つまり、熱処理前の安息角が小さくかつ熱処理温度によらず安息角の変化も小さい方が好ましいのである。
一般的な鉛筆芯の製造条件である不活性雰囲気中での800℃〜1300℃の熱処理における上述した種々無機粒子の安息角の変化については、非晶質板状シリカの変化がほとんどない(熱処理前53°、1100℃熱処理後52°)のに対して、他の無機粒子は1000℃以上になると結晶化が進むことにより安息角が大きい値に変化してしまう物が多い。例えば、タルクは熱処理前の55°が1100℃熱処理後には60°となり、合成雲母は熱処理前の63°が1100℃熱処理後には65°となる。この違いは結晶質粒子と非晶質粒子との差によるものと考えられるが、無機粒子単独での安息角測定値で顕著であるばかりでなく、実際の鉛筆芯の配合割合に近い、例えば黒鉛98%、無機粒子2%という混合粉体などにおいてもその差は明らかに生じる。
この安息角の値については、熱処理後の値は鉛筆芯の濃度と書き味に影響を与えるため、小さい程好ましく、60°未満のものが特に好ましい。また、熱処理前の値は鉛筆芯の濃度と書き味に影響を与えることはないが、あまりに大きいと鉛筆芯成形の際の材料の流れを阻害する可能性もあるため、できれば小さい方が好ましい。したがって、耐熱性の点では無機粒子の中では非晶質板状シリカを選択使用するのが最も好ましい。
なお、安息角の測定はJIS R9301−2−2に準じて測定した。
In addition, as for the heat resistance of the submicron particles, some of them can be used if they are heat-treated at temperatures lower than 800 ° C., such as natural mica and talc. It is only necessary to selectively use the inorganic particles that are the basis of the particles. However, as described above, if the heat resistance temperature of the submicron particles is 1000 ° C. or higher, high-temperature heat treatment advantageous for improving the strength of the pencil core can be performed. The change in properties such as the smoothness of the particle that affects the pencil core concentration and writing quality is generally small, and the pencil core concentration is low and the writing quality is less likely to deteriorate. It is preferable to selectively use synthetic mica, plate-like alumina, scaly low crystalline silica, amorphous plate-like silica or the like having a temperature of 1000 ° C. or higher.
However, even if the heat-resistant temperature is the same, changes in properties such as the pencil core concentration and particle smoothness that affect the writing quality vary depending on the substance, so the angle of repose, which is one of the measures of powder particle smoothness, is changed. It is better to compare before and after heat treatment. In general, graphite particles used as an extender have very high heat resistance and smoothness in an inert atmosphere, which expresses good writing quality as a pencil lead, but the angle of repose of graphite is generally In a heat treatment at 800 ° C. to 1300 ° C. in an inert atmosphere, which is a typical manufacturing condition for a pencil lead, a value that does not change at all from that before the heat treatment (55 ° before heat treatment, 55 ° after heat treatment at 1100 ° C.) Then, the submicron particles in the core remain in the vicinity of the graphite in the core as the final component of the pencil core, and are written and worn on the paper together with the graphite when writing the pencil core. In order to influence, the value of the angle of repose after heat treatment is preferably as small as possible, and particularly preferably less than 60 °. Further, the angle of repose before the heat treatment does not affect the writing quality of the pencil lead, but if it is too large, the flow of the material at the time of molding may be hindered. Those less than ° are particularly preferred. That is, it is preferable that the angle of repose before heat treatment is small and the change in the angle of repose is small regardless of the heat treatment temperature.
Regarding the change in the angle of repose of the various inorganic particles described above in the heat treatment at 800 ° C. to 1300 ° C. in an inert atmosphere, which is a general manufacturing condition for a pencil lead, there is almost no change in amorphous plate-like silica (heat treatment). In contrast to the previous 53 °, 52 ° after heat treatment at 1100 ° C., other inorganic particles often change their repose angle to a large value as the crystallization progresses at 1000 ° C. or higher. For example, 55 ° before heat treatment is 60 ° after heat treatment at 1100 ° C. for talc, and 63 ° before heat treatment is 65 ° after heat treatment at 1100 ° C. for synthetic mica. This difference is considered to be due to the difference between crystalline particles and amorphous particles, but not only is the repose angle measured with inorganic particles alone, but is also close to the actual blending ratio of pencil lead, for example, graphite. The difference clearly occurs even in a mixed powder of 98% and inorganic particles 2%.
As for the angle of repose, since the value after heat treatment affects the density and writing quality of the pencil lead, it is preferably as small as possible and particularly preferably less than 60 °. Further, the value before the heat treatment does not affect the concentration and writing quality of the pencil lead, but if it is too large, the flow of the material at the time of forming the pencil lead may be hindered. Therefore, from the viewpoint of heat resistance, it is most preferable to select and use amorphous plate-like silica among inorganic particles.
The angle of repose was measured according to JIS R9301-2-2.

鉛筆芯体中に含有される無機粒子の粒子径確認はそのままでは難しいため、焼成処理後の鉛筆芯を酸化雰囲気中で熱処理し、黒鉛などの炭素質が酸化消耗でなくなることによって得られた無機粒子による灰分を観察することで確認するのが良い。得られた灰分は、黒鉛が形成する骨格が酸化消耗によってなくなった後の無機粒子単独による灰分であり、鉛筆芯相似状の形骸となっていることが多い。その際に熱処理条件の違いにより灰分の状態が変化する可能性があるため、評価には一定の熱処理条件を採用するのが望ましい。本発明で採用した条件は、観察しようとする焼成処理後の鉛筆芯を磁性皿に乗せ、酸化雰囲気中で室温から800℃まで毎分10℃の昇温速度で熱処理し、最高温度の800℃で1時間保持した後に冷却するというものである。
無機粒子がサブミクロン粒子になっていることを確認する方法は、電子顕微鏡で撮影した灰分の写真上で、存在する無機粒子の粒子径を測定するというものである。粒子の長軸、短軸、厚さのうち、最大値を最大粒子径とし、最小値を最小粒子径とする。以下、無機粒子の粒子径とは最大粒子径を指す。電子顕微鏡により灰分の側面と横断面それぞれについて場所を変えて3カ所撮影し、写真上で無機粒子を任意に50個選択して、その粒子径を測定し、ナノ粒子(0.1μm未満)、サブミクロン粒子(0.1μm以上、1.0μm未満)、ミクロン粒子(1.0μm以上)に分類して粒子径別数量比率を算出する。そのうちサブミクロン粒子の最大平均粒子径と最小平均粒子径からアスペクト比(最大平均粒子径/最小平均粒子径)を算出する。サブミクロン粒子の確認には電子顕微鏡の撮影倍率は10000倍程度で充分であるが、ナノ粒子の確認には50000倍程度が必要となる。
鉛筆芯の灰分量に対する無機粒子の粒子径別含有比率としては、ナノ粒子とミクロン粒子との合計含有比率が多いものほど鉛筆芯の曲げ強さは低下してしまうため、灰分量に対するサブミクロン粒子の含有比率が40重量%以上あることが好ましい。各粒子の含有比率は電子顕微鏡写真から判断した無機粒子の粒子径別数量比率と、使用した無機粒子の配合量と灰分の重量とから算出する。例えば、体質材として黒鉛のみを使用し、無機添加剤としてナノ粒子の無定形シリカのみを使用した場合、得られる灰分は無定形シリカのみであるから、灰分量に対してはナノ粒子が100重量%の含有比率となる。また、体質材として黒鉛とミクロン粒子のタルクとを等分使用し、無機添加剤を使用せずに、タルクが全てミクロン粒子のままであれば、得られる灰分はタルクのみであるから、灰分量に対してはミクロン粒子が100重量%の含有比率となるのである。
Since it is difficult to confirm the particle size of the inorganic particles contained in the pencil core as it is, inorganic particles obtained by heat-treating the pencil core after firing in an oxidizing atmosphere and carbonaceous materials such as graphite are not oxidized and consumed. It is better to confirm by observing the ash content of the particles. The obtained ash content is ash content of the inorganic particles alone after the skeleton formed by graphite has disappeared due to oxidative exhaustion, and often has a shape similar to a pencil core. At that time, since the ash state may change due to the difference in heat treatment conditions, it is desirable to adopt a certain heat treatment condition for the evaluation. The condition adopted in the present invention is that the pencil core after the baking treatment to be observed is placed on a magnetic dish and heat-treated at a heating rate of 10 ° C. per minute from room temperature to 800 ° C. in an oxidizing atmosphere, and the maximum temperature of 800 ° C. And then cooling for 1 hour.
A method for confirming that the inorganic particles are submicron particles is to measure the particle diameter of the existing inorganic particles on a photograph of ash taken with an electron microscope. Of the major axis, minor axis, and thickness of the particles, the maximum value is the maximum particle size, and the minimum value is the minimum particle size. Hereinafter, the particle diameter of the inorganic particles refers to the maximum particle diameter. Photographed at three locations on the side and cross-section of the ash with an electron microscope, arbitrarily selected 50 inorganic particles on the photograph, measured the particle size, nanoparticles (less than 0.1 μm), The quantity ratio is calculated by classifying into submicron particles (0.1 μm or more and less than 1.0 μm) and micron particles (1.0 μm or more). Of these, the aspect ratio (maximum average particle diameter / minimum average particle diameter) is calculated from the maximum average particle diameter and the minimum average particle diameter of the submicron particles. An imaging magnification of about 10,000 times is sufficient for confirmation of submicron particles, but about 50,000 times are necessary for confirmation of nanoparticles.
As the content ratio of inorganic particles by particle size with respect to the ash content of the pencil core, the higher the total content ratio of nanoparticles and micron particles, the lower the bending strength of the pencil core. The content ratio of is preferably 40% by weight or more. The content ratio of each particle is calculated from the number ratio of the inorganic particles by particle diameter determined from the electron micrograph, the blending amount of the used inorganic particles, and the weight of ash. For example, when only graphite is used as an extender and only amorphous silica of nanoparticles is used as an inorganic additive, the resulting ash content is only amorphous silica. % Content ratio. Also, if graphite and micron particle talc are equally used as extender, and if talc is all micron particles without using inorganic additives, the ash content is only talc. In contrast, the content ratio of micron particles is 100% by weight.

鉛筆芯体中に含有されるサブミクロン粒子は、配合時には平均粒子径がミクロンオーダーの無機粒子でも構わないが、無機添加剤としての効果を発現させるために、また、成形工程では無機粒子の粒子径が変化する可能性は小さいため、成形工程までの分散混合工程や混練工程などでサブミクロン粒子としておく必要がある。ミクロンオーダーの無機粒子をサブミクロン粒子にするには、分散混合工程や混練工程での負荷強度を上げることで可能となるが、あまりに大きな負荷強度ではサブミクロン粒子よりもナノ粒子の生成比率が大きくなってしまうため、使用する無機粒子の耐衝撃性などを考慮して条件を設定するのがよい。例えば、板状アルミナなどは、薄片状粒子が単純に付着し合った疑似劈開性を有する板状粒子で、耐熱温度は高いが耐衝撃性が他の無機粒子に比べて高くないため、あまり強い分散混合や混練は好ましくない。因みに、ヘンシェルミキサーなどを使用する分散混合工程では配合する無機粒子は元の形状と相似状に小さくなる、所謂体積粉砕となり易いが、ニーダーや3本ロールなどを使用する混練工程では強い剪断力がかかるため、配合する無機粒子は元の形状よりも薄くアスペクト比の高い形状になる、所謂面積粉砕となり易く、特に剪断力の強い3本ロールによる混練はアスペクト比を上げるためには好ましいものである。
このロールによる混練を長時間実施すれば、無機粒子の面積粉砕はより進みサブミクロン粒子は増えるが、体質材や結合材など他の材料の粉砕が進み過ぎて全体としての粒度バランスが崩れて不都合が生じる場合には、ロールの負荷強度を低下させて長時間実施することで体質材や結合材など他の材料の過度な粉砕を抑制することができる。また、使用する無機粒子だけを予めロール処理しておき、その後、残りの材料と混ぜて再度ロール処理を施しても良い。そうすることで、無機粒子以外の材料が必要以上に粉砕されてしまうことがなくなる。
鉛筆芯の熱処理の条件については、鉛筆芯としての成形が既に終わっているのでそれほど影響を与えないが、最高温度が高いほど無機粒子の焼結による安息角増大の可能性があるため、最高温度は無機粒子の焼結温度以下に留めるのが良い。各工程での条件別に得られた鉛筆芯体中に含有される無機粒子の粒子径や含有比率を確認しながら目的に合った条件を把握することが好ましい。
また、無機粒子の使用量が多くなる程、ナノ粒子とミクロン粒子の絶対量も多くなり、灰分中のサブミクロン粒子の含有量が40%重量以上あっても鉛筆芯の曲げ強さが低下する可能性が大きくなるため、無機粒子の使用量は体質材全量に対して概ね5%以下とするのが好ましい。そして、無機添加剤による鉛筆芯の濃度向上、寸法安定性向上、割れや膨れ防止、シャープペンシルのチャック保持力向上などの効果を更に大きくするために無定形シリカやカーボンブラックなどのナノ粒子を併用しても構わないが、その場合には、使用量が多いほど鉛筆芯の曲げ強さは低下するため、体質材全量に対して1%未満の使用量に抑えることが望ましい。
The submicron particles contained in the pencil core may be inorganic particles having an average particle diameter of the order of microns at the time of blending. However, in order to express the effect as an inorganic additive, the particles of inorganic particles are used in the molding process. Since there is little possibility that the diameter will change, it is necessary to prepare submicron particles in the dispersion mixing process and kneading process up to the molding process. In order to make micron-order inorganic particles into submicron particles, it is possible to increase the load strength in the dispersion mixing process and kneading process. However, the generation ratio of nanoparticles is larger than that of submicron particles at excessively high load strength. Therefore, the conditions should be set in consideration of the impact resistance of the inorganic particles used. For example, plate-like alumina is a plate-like particle having pseudo-cleavage in which flaky particles simply adhere to each other, and has a high heat resistance temperature but is not so strong as other inorganic particles. Dispersion mixing and kneading are not preferred. Incidentally, in the dispersion mixing process using a Henschel mixer or the like, the inorganic particles to be blended are likely to be so-called volume pulverization, which is similar to the original shape. For this reason, the inorganic particles to be blended are thinner than the original shape and have a shape with a high aspect ratio, so that the so-called area pulverization is easy, and kneading with a triple roll having a strong shearing force is particularly preferable for increasing the aspect ratio. .
If kneading with this roll is carried out for a long time, the area pulverization of inorganic particles will progress and the number of submicron particles will increase, but the pulverization of other materials such as build materials and binders will progress too much and the overall particle size balance will be lost, which is inconvenient When this occurs, excessive pulverization of other materials such as the extender and the binder can be suppressed by reducing the load strength of the roll for a long time. Alternatively, only the inorganic particles to be used may be roll-treated in advance, and then mixed with the remaining materials and roll-treated again. By doing so, materials other than inorganic particles are not crushed more than necessary.
As for the heat treatment conditions for the pencil lead, the molding as a pencil lead has already been completed, so it does not affect that much, but the higher the maximum temperature, the greater the angle of repose due to the sintering of inorganic particles, so the highest temperature Is preferably kept below the sintering temperature of the inorganic particles. It is preferable to grasp the conditions suitable for the purpose while confirming the particle diameter and content ratio of the inorganic particles contained in the pencil core obtained according to the conditions in each step.
Also, as the amount of inorganic particles used increases, the absolute amount of nanoparticles and micron particles also increases, and the bending strength of the pencil core decreases even if the content of submicron particles in the ash is 40% by weight or more. Since the possibility increases, it is preferable that the amount of inorganic particles used is approximately 5% or less with respect to the total amount of the extender. In addition, nano particles such as amorphous silica and carbon black are used in combination with inorganic additives to increase the effect of improving the pencil core concentration, improving dimensional stability, preventing cracking and swelling, and improving the chuck holding power of mechanical pencils. However, in that case, since the bending strength of the pencil lead decreases as the amount used increases, it is desirable to suppress the amount used to less than 1% with respect to the total amount of the build material.

上記以外の使用材料としては、従来公知の材料を使用できる。体質材としては、一般的な、鱗状黒鉛、鱗片状黒鉛、土状黒鉛、人造黒鉛、雲母、タルク、窒化ホウ素、などの中より選択された1種もしくは2種以上のものが例示できる。結合材としては、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、塩素化ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリアクリルアミド樹脂、塩素化パラフィン樹脂、フラン樹脂、尿素樹脂、ブチルゴムなどの有機結合材の中より選択された1種もしくは2種以上のものが例示できる。
更に、必要に応じて、無定形シリカ、カーボンブラックなどの無機添加剤、フタル酸ジオクチル、フタル酸ジブチル、リン酸トリクレジル、ジプロピレングリコールジベンゾエート、アジピン酸ジオクチル、プロピオンカーボネートなどの可塑剤、ステアリン酸塩などの安定剤、ステアリン酸などの滑材、メチルエチルケトンなどの溶剤などが適宜併用できる。
Conventionally known materials can be used as materials other than those described above. Examples of the extender include one or more selected from general scale-like graphite, scale-like graphite, earth-like graphite, artificial graphite, mica, talc, boron nitride, and the like. As binders, organic binders such as polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, chlorinated polyethylene resin, polyvinyl alcohol resin, polyacrylamide resin, chlorinated paraffin resin, furan resin, urea resin, butyl rubber, etc. 1 type or 2 types or more selected from among them can be exemplified.
Furthermore, if necessary, inorganic additives such as amorphous silica and carbon black, dioctyl phthalate, dibutyl phthalate, tricresyl phosphate, dipropylene glycol dibenzoate, dioctyl adipate, propionate carbonate, stearic acid, etc. A stabilizer such as salt, a lubricant such as stearic acid, a solvent such as methyl ethyl ketone, and the like can be used in combination as appropriate.

これらの原材料をヘンシェルミキサーなどによる分散混合、ニーダー、3本ロールなどによる混練の後、細線状に押出成形し、空気中で室温から300℃前後までの熱処理を施し、その後、不活性雰囲気中で800℃〜1300℃の焼成処理を施し、更に必要に応じて、シリコーン油、流動パラフィン、スピンドル油、スクワラン、α−オレフィンオリゴマー、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、モンタンワックス、カルナバワックスなどの適宜油状物やワックス類を含浸させて鉛筆芯を製造する。尚、必要に応じて、顔料、染料などを適宜併用し、色鉛筆芯としても良い。   These raw materials are dispersed and mixed with a Henschel mixer, etc., kneaded with a kneader, three rolls, etc., then extruded into a thin line, heat treated from room temperature to around 300 ° C. in air, and then in an inert atmosphere. A baking treatment at 800 ° C. to 1300 ° C. is performed, and if necessary, silicone oil, liquid paraffin, spindle oil, squalane, α-olefin oligomer, paraffin wax, microcrystalline wax, polyethylene wax, montan wax, carnauba wax, etc. A pencil lead is produced by appropriately impregnating oil or wax. In addition, if necessary, pigments, dyes, and the like may be used in combination to form a colored pencil lead.

以下、実施例に基づき本発明を説明するが、本発明は実施例に限定されるものではない。
<実施例1>
黒鉛(体質材、平均粒子径:20μm) 73重量部
ポリ塩化ビニル樹脂(結合材) 55重量部
シルリーフ(水澤化学工業(株)の非晶質板状シリカ、平均粒子径:6μm、耐熱温度:1100℃) 2重量部
フタル酸ジオクチル(可塑剤) 25重量部
ステアリン酸塩(安定剤) 2重量部
ステアリン酸(滑材) 1重量部
メチルエチルケトン(溶剤) 20重量部
上記材料をヘンシェルミキサーによる分散混合処理、3本ロールによる混練処理をした後、細線状に押出成形し、空気中で室温から300℃まで約10時間かけて昇温し、300℃で約1時間保持する加熱処理をし、更に、密閉容器中で1100℃を最高とする焼成処理を施し、冷却後、流動パラフィンを含浸させて、呼び径0.5の鉛筆芯を得た。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example.
<Example 1>
Graphite (extrinsic material, average particle diameter: 20 μm) 73 parts by weight polyvinyl chloride resin (binder) 55 parts by weight Silleaf (amorphous plate silica of Mizusawa Chemical Co., Ltd., average particle diameter: 6 μm, heat-resistant temperature: 1100 ° C) 2 parts by weight dioctyl phthalate (plasticizer) 25 parts by weight stearate (stabilizer) 2 parts by weight stearic acid (lubricant) 1 part by weight methyl ethyl ketone (solvent) 20 parts by weight Treatment, kneading treatment with three rolls, extrusion molding into a thin wire, heating from room temperature to 300 ° C. in air over about 10 hours, heat treatment for holding at 300 ° C. for about 1 hour, Then, a baking treatment at a maximum of 1100 ° C. was performed in a closed container, and after cooling, liquid paraffin was impregnated to obtain a pencil lead having a nominal diameter of 0.5.

<実施例2>
実施例1において、シルリーフの代わりに、セラフYFA05025(YKK(株)製の板状アルミナ、平均粒子径:5μm、耐熱温度:1200℃)を2重量部使用した以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Example 2>
In Example 1, instead of Sylleaf, Seraph YFA05025 (YKK Co., Ltd. plate-like alumina, average particle size: 5 μm, heat resistance temperature: 1200 ° C.) was used in the same manner as in Example 1 except that 2 parts by weight were used. Thus, a pencil lead having a nominal diameter of 0.5 was obtained.

<実施例3>
実施例1において、シルリーフの代わりに、PDM−9WA(トピー工業(株)製のフッ素金雲母、平均粒子径:12μm、耐熱温度:1100℃)を2重量部使用した以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Example 3>
In Example 1, PDM-9WA (fluorine phlogopite manufactured by Topy Industries Co., Ltd., average particle size: 12 μm, heat resistant temperature: 1100 ° C.) was used in place of Silleaf, except that 2 parts by weight were used. Similarly, a pencil lead having a nominal diameter of 0.5 was obtained.

<実施例4>
実施例1において、シルリーフの代わりに、CT35((株)山口雲母工業製のタルク、平均粒子径:15μm、耐熱温度:800℃)を2重量部使用し、焼成処理の最高温度を800℃とした以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Example 4>
In Example 1, 2 parts by weight of CT35 (Talc manufactured by Yamaguchi Mica Kogyo Co., Ltd., average particle size: 15 μm, heat-resistant temperature: 800 ° C.) was used instead of silleaf, and the maximum temperature of the baking treatment was 800 ° C. A pencil lead having a nominal diameter of 0.5 was obtained in the same manner as in Example 1 except for the above.

<実施例5〜7>
実施例1において、3本ロールの負荷強度は変えずに混練処理時間をそれぞれ1.5倍、1.2倍、0.8倍に変えた以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Examples 5-7>
In Example 1, the nominal diameter was changed in the same manner as in Example 1 except that the kneading treatment time was changed to 1.5 times, 1.2 times, and 0.8 times respectively without changing the load strength of the three rolls. A pencil lead of 0.5 was obtained.

<実施例8>
実施例1において、3本ロールの負荷強度を0.8倍にし、混練処理時間を1.5倍にした以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Example 8>
In Example 1, a pencil core having a nominal diameter of 0.5 was obtained in the same manner as in Example 1 except that the load strength of the three rolls was increased 0.8 times and the kneading time was increased 1.5 times. .

<実施例9>
実施例1において、ヘンシェルミキサーによる分散混合処理時間を1.5倍、3本ロールの負荷強度は変えずに混練処理時間を1.5倍にした以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Example 9>
In Example 1, the same as in Example 1, except that the dispersion mixing processing time by the Henschel mixer was 1.5 times and the kneading processing time was 1.5 times without changing the load strength of the three rolls. A pencil lead with a diameter of 0.5 was obtained.

<実施例10〜13>
実施例1において、シルリーフの使用量をそれぞれ4重量部、3.5重量部、1重量部、0.7重量部に変え、黒鉛の使用量をそれぞれ71重量部、71.5重量部、74重量部、74.3重量部に変えた以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Examples 10 to 13>
In Example 1, the amount of sylleaf used was changed to 4 parts by weight, 3.5 parts by weight, 1 part by weight and 0.7 parts by weight, respectively, and the amounts of graphite used were 71 parts by weight, 71.5 parts by weight and 74 parts by weight, respectively. A pencil lead having a nominal diameter of 0.5 was obtained in the same manner as in Example 1 except that the amount was changed to parts by weight and 74.3 parts by weight.

<実施例14>
実施例1において、密閉容器中での焼成処理を1200℃を最高とする焼成処理にした以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Example 14>
In Example 1, a pencil lead having a nominal diameter of 0.5 was obtained in the same manner as in Example 1 except that the baking process in the sealed container was changed to the baking process that maximizes 1200 ° C.

<比較例1>
実施例1において、シルリーフの代わりに、アエロジルR972(日本アエロジル(株)製の疎水性無定形シリカ、平均粒子径:16nm、耐熱温度:1600℃)を2重量部使用した以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Comparative Example 1>
Example 1 except that 2 parts by weight of Aerosil R972 (hydrophobic amorphous silica manufactured by Nippon Aerosil Co., Ltd., average particle size: 16 nm, heat resistant temperature: 1600 ° C.) was used in place of Silleaf in Example 1. In the same manner, a pencil lead having a nominal diameter of 0.5 was obtained.

<比較例2>
実施例1において、シルリーフを使用せずに、黒鉛の使用量を75重量部に変えた以外、すべて実施例1と同様にして、呼び径0.5の鉛筆芯を得た。
<Comparative example 2>
In Example 1, a pencil lead having a nominal diameter of 0.5 was obtained in the same manner as in Example 1 except that the amount of graphite used was changed to 75 parts by weight without using sill leaf.

以上、各実施例及び比較例で得た鉛筆芯について、JIS S 6005に準じて曲げ強さと濃度を測定した。また、各鉛筆芯を磁性皿に乗せ、酸化雰囲気中で、室温から800℃まで毎分10℃の昇温速度で熱処理し、最高温度の800℃で1時間保持した後に冷却するという条件で灰分を得た。得られた灰分の側面と横断面それぞれについて、場所を変えて3箇所ずつ電子顕微鏡にて10000倍で写真撮影し、写真上で無機粒子を任意に50個選択して、その粒子径を測定し、ナノ粒子(0.1μm未満)、サブミクロン粒子(0.1μm以上、1.0μm未満)、ミクロン粒子(1.0μm以上)に分類して粒子径別数量比率を算出した。そのうちサブミクロン粒子の最大平均粒子径と最小平均粒子径からアスペクト比(最大平均粒子径/最小平均粒子径)を算出した。
更に、写真上から判断した無機粒子の粒子径別数量比率と使用した無機粒子の配合量と灰分の重量とから灰分量に対するサブミクロン粒子の含有量を算出した。その結果を表1に示す。
As described above, the bending strength and the concentration were measured according to JIS S 6005 for the pencil lead obtained in each of the examples and comparative examples. In addition, each pencil lead is placed on a magnetic dish, heat-treated in an oxidizing atmosphere from room temperature to 800 ° C. at a heating rate of 10 ° C. per minute, held at the maximum temperature of 800 ° C. for 1 hour, and then cooled down to ash content. Got. For each of the obtained ash side and cross-section, photographed at 10000 times with an electron microscope at three different locations, arbitrarily selected 50 inorganic particles on the photograph, and measured the particle size. The quantity ratio by particle size was calculated by classifying into nanoparticles (less than 0.1 μm), sub-micron particles (more than 0.1 μm, less than 1.0 μm), and micron particles (more than 1.0 μm). Of these, the aspect ratio (maximum average particle diameter / minimum average particle diameter) was calculated from the maximum average particle diameter and the minimum average particle diameter of the submicron particles.
Furthermore, the content of submicron particles relative to the ash content was calculated from the ratio by number of inorganic particles determined from the photograph, the blending amount of the inorganic particles used, and the weight of the ash. The results are shown in Table 1.

Figure 2011225852
Figure 2011225852

表1について説明する。
実施例1は、無機粒子として最も好ましい非晶質板状シリカを使用した例であり、曲げ強さと濃度とが非常にバランスの取れた優れた値となっている。
実施例2は、無機粒子として板状アルミナを使用した例であり、板状アルミナの耐衝撃性が非晶質板状シリカに比べて低いため、鉛筆芯としての曲げ強さが低下する結果となっている。
実施例3は、無機粒子としてフッ素金雲母を使用した例であり、フッ素金雲母の安息角が非晶質板状シリカに比べて大きくなるため、鉛筆芯としての濃度が低下する結果となっている。
実施例4は、無機粒子としてタルクを使用した例であり、タルクの耐熱温度が低く、それに合わせて焼成処理温度も800℃と低くしたため、鉛筆芯としての曲げ強さが低下する結果となっている。
実施例5〜7は、ロールの負荷強度は変えずに混練処理時間を実施例1に比べてそれぞれ1.5倍、1.2倍、0.8倍に変えた例で、混練処理時間の長い方が無機粒子のアスペクト比が大きくなるため鉛筆芯としての曲げ強さが高くなり、混練処理時間の短い方が無機粒子のアスペクト比が小さくなるため曲げ強さが低下している。
実施例8は、実施例1に比べてロールの負荷強度を0.8倍にし、混練処理時間を1.5倍にした例で、鉛筆芯の曲げ強さにはロールの混練処理時間よりも負荷強度の影響が大きいため、曲げ強さは低下し濃度は高くなっている。
実施例9は、実施例1に比べてヘンシェルミキサーによる分散混合処理時間を1.5倍にし、ロールの負荷強度は変えずに混練処理時間を1.5倍にした例で、ヘンシェルミキサーによる分散混合処理時間が長くなることで、無機粒子の平均粒子径が小さくなり、鉛筆芯としての曲げ強さと濃度が共に低下している。
実施例10〜13は、無機粒子としてのシルリーフの使用量を4、3.5、1.0、0.7重量部に変えた例で、シルリーフの使用量が多くなるに従ってシルリーフの粉砕によるナノ粒子量も多くなり、鉛筆芯成形時の黒鉛の配向を阻害する可能性も高くなるため、鉛筆芯としての曲げ強さが低下し濃度が高くなる傾向となっている。実施例10は、無機粒子の使用量が体質材全量に対して5%を超えているため、曲げ強さの低下が大きく濃度は高くならない。
実施例14は、焼成処理温度を1200℃にした例で、シルリーフの耐熱温度を超えているため、シルリーフの焼結により粒子の平滑性が低くなり、鉛筆芯としての曲げ強さは高くなるが濃度は低下する結果となっている。
比較例1は、無機粒子としてシルリーフの代わりにアエロジルR972を使用した例で、鉛筆芯成形時の黒鉛の配向が阻害されるため、鉛筆芯としての曲げ強さが低下する結果となっている。
比較例2は、黒鉛以外の無機粒子を使用せず黒鉛使用量を増した例で、鉛筆芯成形時の黒鉛の配向が阻害されないため、鉛筆芯としての曲げ強さは高いが、油状物を蓄える効果のある無機粒子がないため、濃度は大幅に低下する結果となっている。
以上説明した通り、体質材と結合材とを主材として使用し、混練、成形、焼成処理を施してなる鉛筆芯において、鉛筆芯体中に粒子径が0.1μm以上1.0μm未満の黒鉛以外の無機粒子を含有させることにより、曲げ強さと濃度とのバランスに優れた鉛筆芯を提供することができる。
Table 1 will be described.
Example 1 is an example in which the most preferable amorphous plate-like silica is used as the inorganic particles, and has excellent values in which bending strength and concentration are very balanced.
Example 2 is an example in which plate-like alumina is used as inorganic particles, and the impact resistance of plate-like alumina is lower than that of amorphous plate-like silica, resulting in a decrease in bending strength as a pencil core. It has become.
Example 3 is an example in which fluorine phlogopite is used as inorganic particles, and the repose angle of fluorine phlogopite is larger than that of amorphous plate-like silica, resulting in a decrease in the density as a pencil lead. Yes.
Example 4 is an example in which talc is used as the inorganic particles. The heat resistance temperature of talc is low, and the firing temperature is lowered to 800 ° C. accordingly, resulting in a decrease in bending strength as a pencil lead. Yes.
Examples 5 to 7 are examples in which the kneading treatment time was changed to 1.5 times, 1.2 times, and 0.8 times of Example 1 without changing the load strength of the roll, respectively. The longer the aspect ratio of the inorganic particles, the higher the bending strength as a pencil core, and the shorter the kneading time, the lower the aspect ratio of the inorganic particles, so the bending strength is reduced.
Example 8 is an example in which the load strength of the roll is 0.8 times that of Example 1 and the kneading treatment time is 1.5 times longer. The bending strength of the pencil lead is more than the kneading treatment time of the roll. Since the influence of the load strength is large, the bending strength decreases and the concentration increases.
Example 9 is an example in which the dispersion mixing treatment time by the Henschel mixer is 1.5 times that of Example 1, and the kneading treatment time is 1.5 times without changing the load strength of the roll. By increasing the mixing treatment time, the average particle size of the inorganic particles is reduced, and both the bending strength and the concentration as a pencil core are reduced.
Examples 10 to 13 are examples in which the amount of sylleaf used as inorganic particles was changed to 4, 3.5, 1.0, and 0.7 parts by weight. Since the amount of particles increases and the possibility of inhibiting the orientation of graphite at the time of pencil core molding increases, the bending strength as the pencil core tends to decrease and the concentration tends to increase. In Example 10, since the amount of inorganic particles used exceeds 5% of the total amount of the extender, the bending strength is greatly reduced and the concentration is not increased.
Example 14 is an example in which the firing temperature is 1200 ° C., and since the heat resistance temperature of the silleaf is exceeded, the smoothness of the particles is lowered by sintering the silleaf, and the bending strength as a pencil core is increased. The result is a decrease in concentration.
Comparative Example 1 is an example in which Aerosil R972 is used as inorganic particles instead of sylleaf, and the orientation of graphite at the time of pencil core molding is hindered, resulting in a decrease in bending strength as a pencil core.
Comparative Example 2 is an example in which the amount of graphite used is increased without using inorganic particles other than graphite, and since the orientation of the graphite at the time of pencil core molding is not hindered, the bending strength as a pencil core is high, but an oily substance is used. Since there are no inorganic particles that have the effect of accumulating, the concentration is greatly reduced.
As described above, in a pencil core formed by using an extender and a binder as main materials and subjected to kneading, molding, and firing, graphite having a particle diameter of 0.1 μm or more and less than 1.0 μm in the pencil core. By containing inorganic particles other than the above, it is possible to provide a pencil lead having an excellent balance between bending strength and concentration.

Claims (4)

少なくとも体質材と結合材とを主材として使用し、混練、成形、焼成処理を施してなる鉛筆芯において、鉛筆芯体中に粒子径が0.1μm以上1.0μm未満の黒鉛以外の無機粒子を含有する鉛筆芯。 In a pencil core formed by using at least an extender and a binder as main materials and subjected to kneading, molding and firing, inorganic particles other than graphite having a particle diameter of 0.1 μm or more and less than 1.0 μm in the pencil core Containing pencil lead. 前記無機粒子の含有量が鉛筆芯の灰分量に対して40重量%以上である請求項1に記載の鉛筆芯。 The pencil lead according to claim 1, wherein the content of the inorganic particles is 40% by weight or more based on the ash content of the pencil lead. 前記無機粒子が板状形状である請求項1又は請求項2に記載の鉛筆芯。 The pencil lead according to claim 1 or 2, wherein the inorganic particles have a plate shape. 前記無機粒子が耐熱温度が1000℃以上の無機粒子である請求項1乃至請求項3のいずれかに記載の鉛筆芯。   The pencil lead according to any one of claims 1 to 3, wherein the inorganic particles are inorganic particles having a heat resistant temperature of 1000 ° C or higher.
JP2011073596A 2010-04-02 2011-03-29 Pencil lead Pending JP2011225852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073596A JP2011225852A (en) 2010-04-02 2011-03-29 Pencil lead

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010086584 2010-04-02
JP2010086584 2010-04-02
JP2011073596A JP2011225852A (en) 2010-04-02 2011-03-29 Pencil lead

Publications (1)

Publication Number Publication Date
JP2011225852A true JP2011225852A (en) 2011-11-10

Family

ID=45041595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073596A Pending JP2011225852A (en) 2010-04-02 2011-03-29 Pencil lead

Country Status (1)

Country Link
JP (1) JP2011225852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151606A (en) * 2012-01-25 2013-08-08 Sekisui Chem Co Ltd Vinyl chloride-based resin composition
JP2015010157A (en) * 2013-06-28 2015-01-19 ぺんてる株式会社 Calcined pencil lead
JP2016084379A (en) * 2014-10-23 2016-05-19 三菱鉛筆株式会社 Pencil lead

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718213A (en) * 1993-06-30 1995-01-20 Pentel Kk Production of pencil lead
JPH10237379A (en) * 1997-02-28 1998-09-08 Pentel Kk Pencil lead
JP2003221544A (en) * 2002-01-31 2003-08-08 Pentel Corp Solid drawing material
JP2004262984A (en) * 2003-02-28 2004-09-24 Pentel Corp Pencil lead
JP2004331690A (en) * 2003-04-30 2004-11-25 Pentel Corp Fired lead for pencil
JP2008081715A (en) * 2005-11-30 2008-04-10 Pentel Corp Pencil lead
JP2009228002A (en) * 2008-02-29 2009-10-08 Pentel Corp Pencil lead

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718213A (en) * 1993-06-30 1995-01-20 Pentel Kk Production of pencil lead
JPH10237379A (en) * 1997-02-28 1998-09-08 Pentel Kk Pencil lead
JP2003221544A (en) * 2002-01-31 2003-08-08 Pentel Corp Solid drawing material
JP2004262984A (en) * 2003-02-28 2004-09-24 Pentel Corp Pencil lead
JP2004331690A (en) * 2003-04-30 2004-11-25 Pentel Corp Fired lead for pencil
JP2008081715A (en) * 2005-11-30 2008-04-10 Pentel Corp Pencil lead
JP2009228002A (en) * 2008-02-29 2009-10-08 Pentel Corp Pencil lead

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151606A (en) * 2012-01-25 2013-08-08 Sekisui Chem Co Ltd Vinyl chloride-based resin composition
JP2015010157A (en) * 2013-06-28 2015-01-19 ぺんてる株式会社 Calcined pencil lead
JP2016084379A (en) * 2014-10-23 2016-05-19 三菱鉛筆株式会社 Pencil lead

Similar Documents

Publication Publication Date Title
Shah A review on enhancement of phase change materials-A nanomaterials perspective
Zhang et al. Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
JP4919652B2 (en) Solid drawing material and method for producing the same
CN109715555A (en) The nanometer leaf of wet-milling and the shearing of dry carbonaceous
EP2423280B1 (en) Pencil lead and method for producing same
JP2011225852A (en) Pencil lead
JP5526562B2 (en) Firing pencil lead
JP5590786B2 (en) Firing pencil lead and method for producing the same
JP6359425B2 (en) Porous aluminum nitride particles
JP5846722B2 (en) Pencil lead
JP2016074193A (en) Method for producing thermoplastic resin composition film
JP2012172065A (en) Pencil lead and method for producing the same
JP2010163541A (en) Solid drawing material, and method for producing the same
JP4627563B2 (en) Pencil lead and method for manufacturing the same
JP6167696B2 (en) Firing pencil lead
JP4627567B2 (en) Pencil lead manufacturing method
JP5621480B2 (en) Firing pencil lead
JP2011246676A (en) Fired pencil lead
JP4627568B2 (en) Pencil lead manufacturing method
JP4122945B2 (en) Pencil lead manufacturing method
JP2013082920A (en) Fired lead for pencil
JP5589747B2 (en) Firing pencil lead
JP2012116946A (en) Fired pencil lead
JP3774777B2 (en) Pencil lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721