JP2004331690A - Fired lead for pencil - Google Patents

Fired lead for pencil Download PDF

Info

Publication number
JP2004331690A
JP2004331690A JP2003125084A JP2003125084A JP2004331690A JP 2004331690 A JP2004331690 A JP 2004331690A JP 2003125084 A JP2003125084 A JP 2003125084A JP 2003125084 A JP2003125084 A JP 2003125084A JP 2004331690 A JP2004331690 A JP 2004331690A
Authority
JP
Japan
Prior art keywords
pencil
weight
porosity
parts
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003125084A
Other languages
Japanese (ja)
Inventor
Kunihiko Ishizuka
久二彦 石塚
Katsuo Deguchi
勝男 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2003125084A priority Critical patent/JP2004331690A/en
Publication of JP2004331690A publication Critical patent/JP2004331690A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fired lead for a pencil which maintains a high flexural strength while having a higher handwriting concentration. <P>SOLUTION: The fired lead for a pencil is obtained by compounding porous crystalline inorganic fine particles having an average particle diameter of 0.2 μm to 20 μm, a standing porosity of 95% to 99%, a pressurized porosity of 60% to 95%, a Mohs hardness of 2 to 5, and a BET specific surface area of 20 m<SP>2</SP>/g to 500 m<SP>2</SP>/g, kneading and molding the resulting mixture into a fine diameter form, and then firing the form by heat. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
有機結合材、体質材、充填材、可塑剤などの原材料を混練、細線状に押出成形後、焼成温度まで熱処理を施してなる鉛筆芯の製造方法に関する。
【0002】
【従来の技術】
従来よく知られている鉛筆芯は、ポリ塩化ビニル、塩素化ポリエチレン、フラン樹脂、ポリビニルアルコール、スチロール樹脂、アクリル樹脂、尿素樹脂、メラミン樹脂、ポリエステル樹脂、スチレン−ブタジエン共重合体の水添物などの合成樹脂と、黒鉛、窒化ホウ素などに、カーボンブラック、ホワイトカーボン、無定形シリカといった無機微粉末や、フタル酸エステル、メチルエチルケトンなどの溶剤、ステアリン酸塩、ステアリン酸などを必要に応じて配合し、これらの配合原材料をニーダー、ヘンシェルミキサー、3本ロールなどで、均一分散させ、押し出し成形後、800℃〜1200℃の高温で焼成し、得られた焼結体の形成された孔にスピンドル油などの油脂類を含浸させて製造させている。
【0003】
ところで、このような焼成鉛筆芯では、フタル酸エステルなどの焼成時に揮発する成分が形成する気孔にて強度が大きく影響を受けるものであるが、曲げ強さを向上させようとして、芯自体を硬くしようとすると摩耗し難くなり筆跡の濃度が低下し、筆跡の濃度を高くしようとして摩耗し易くしようとすると、曲げ強さも低下してしまうことがあった。この曲げ強さと筆跡の濃度の相関関係を改善させようとしたものとして、多孔性のポリマー粒子を気孔形成材として用いた例が開示されている(特許文献1参照)。
【0004】
【特許文献1】
特開平4−029898号公報
【0005】
【発明が解決しようとする課題】
上記の発明は、多孔性構造のナイロンやポリメタクリル酸エステルやポリスチレンを鉛筆芯の配合材料に添加し、混練により多孔性構造のナイロン等の表面凹凸や内部空間に結合材が入り込んだ状態にしてから焼成処理を施すことで、網目構造や突起をもった気孔をつくり、気孔自体を補強するもので、濃い筆跡を得ながら芯の曲げ強さを維持したものとされている。
【0006】
本発明は、更に高い筆跡濃度を有しながら高い曲げ強さを維持する焼成鉛筆芯を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、平均粒子径が0.2μm以上20μm以下、静置空隙率が95%以上99%以下、加圧空隙率が60%以上95%以下、モース硬度が2以上5以下、BET比表面積が20m/g以上500m/g以下の多孔質結晶性無機微粒子を含有する焼成鉛筆芯を要旨とする。
【0008】
以下、詳述する。
本発明の鉛筆芯は、従来公知の方法により配合・混練・成形し、焼成することで芯体を形成し、この芯体に必要に応じて油脂類を浸漬した後、余剰の油脂類を表面から除去することによって得ることができる。
【0009】
鉛筆芯の構成材料は従来用いられている構成材料が使用でき、この構成材料に特定の多孔質結晶性無機微粒子を添加し、上記鉛筆芯の一般的製造方法で作成できる。
【0010】
多孔質結晶性無機微粒子の平均粒径はは0.2μm以上20μm以下であれば好ましい。平均粒子径が0.2μmより小さい物は粒子が凝集しやすくなり樹脂成分などと均一に混ざり難いことがある。また、20μmより大きくなると分散時等で多孔性構造を破壊されてしまう可能性もある。尚、本発明における平均粒径は、一次粒子に分散している状態で写されている電子顕微鏡写真により任意に選んだ1つの粒子の外径を3点測定した平均をその1つの粒子の粒子径とし、この測定を任意に10個選んだ粒子に行った平均値とした。
【0011】
そしてモース硬度は2以上5以下が良い。モース硬度が2より小さいと多孔性粉体の構造を維持しにくくなるので、筆記時の摩耗促進効果が小さくなる。モース硬度が5より大きいと筆記時の書き味低下といった問題点を引き起こす可能性がある。
【0012】
静置空隙率は95%以上99%以下であれば良い。95%より低いと筆記時の摩耗効果の向上が少なく、筆跡の濃度が満足されない可能性がある。また99%より高いとロールなどの分散工程で多孔性構造が崩壊し易くなり、筆記時の摩耗促進効果が小さくなる。
尚、静置空隙率(ω1)は、JISK5101−91 20.1顔料試験方法の静置法による見掛け比容(ml/g)を測定し、下記式1より求める。
【0013】
【式1】

Figure 2004331690
【0014】
加圧空隙率は基本的には、高いほど好ましいが、60%以上95%以下であれば良い。60%より低いと筆記時の摩耗促進効果が小さくなる。95%より高いと芯体として素な構造になりやすくなるので折損強度が低下する可能性がある。尚、加圧空隙率(ω2)は、試料5gを断面積2cmの円筒に充填し、30kg/cmの圧力で30秒間加圧して、その厚みをノギスで測定し、下記の式2より求めた30kg/mの加圧空隙率(%)を指す。
【0015】
【式2】
Figure 2004331690
【0016】
BET法による比表面積は基本的には高い方が望ましい。比表面積が20m/g以上500m/g以下であればより良い。20m/gより小さいと他の材料が過剰に多孔性表面を覆い、筆記時の崩れ性が低下し、摩耗性が悪くなる。500m/gより大きいと可塑剤成分が多孔性粉体に吸着されてしまうので、製造での作業性に悪影響を与えることがある。
【0017】
このような多孔質結晶性無機微粒子としてヒドロキシアパタイトを好適に使用することができる。ヒドロキシアパタイト(Ca10(PO(OH))は、リン酸カルシウム系化合物の一種で、形状は製法等により様々であるが、多孔性の粉体である。特に、薄片状の部分が互いに空間をなしながら層状に絡み合った様な形状であることが好ましい。上述の物性数値にはこのような形状であることが大きく影響しているものと考えられるからである。市販のヒドロキシアパタイトとしては、丸尾カルシウム(株)より商品名HAPシリーズとして上市されているものが、上記の表面形状を「花弁状多孔質」と称している。このHAPには高比表面積タイプと低高比表面積タイプがあり、電子顕微鏡観察による平均粒子径は0.5μm〜3.0μmで、水銀圧入法により測定した平均細孔径は0.01μm〜1μmである。また静置空隙率は96〜98%で加圧空隙率は70〜95%、モース硬度は5、そしてBET比表面積はは30〜300m/gである。
【0018】
このようなヒドロキシアパタイトの製造方法は、従来公知な方法で製造できる。例えば塩化カルシウムおよびリン酸ナトリウム溶液を過剰なアンモニアと反応させて得られる。アンモニウム濃度、反応温度、撹拌条件などを制御することによって花弁状に結晶を生長させるもので、結晶の生長程度により粒子径や比表面積を調整することができる。
【0019】
ヒドロキシアパタイトの使用量は、特に限定されないが、揮発溶剤分を除く鉛筆芯材料の全量に対し1重量%から30重量%で、より好ましくは1重量%から10重量%が用いられる。使用量が1%未満では濃度向上効果が少ない可能性があり、30%を越えると、折損強度の低下が現れる場合がある。
【0020】
【作用】
多孔質結晶性無機微粒子は、焼成しても物性変化が少なく、筆記による応力を受けて自身が崩壊し芯の摩耗を促進させて濃い筆跡を形成することができるが、曲げ力に対しては周囲の構造物と挙動を共にし自身の崩れが発揮され難く、曲げ強さを備えたものとなる。特に、多孔質結晶性無機微粒子として、ヒドロキシアパタイトは、化学組成としての燐酸カルシウムが結合材として使用される合成樹脂との親和性が高く、特に、800〜1200℃の熱処理により、有機結合材炭化物と焼結する。ヒドロキシアパタイトの崩れに周囲の焼結体も影響を受け、筆記時の芯としての崩れを促進し得るし、全体の折れ難さをも支援しているものと推察される。
【0021】
【実施例】
<実施例1>
ポリ塩化ビニル樹脂 55重量部
黒鉛 75重量部
フタル酸エステル 25重量部
ステアリン酸塩 2重量部
ステアリン酸 1重量部
ヒドロキシアパタイト(平均粒子径:0.1μm) 5重量部
無定形シリカ 2重量部
メチルエチルケトン 50重量部
上記材料をヘンシェルミキサーによる混合、3本ロールによる混練をした後、細線状に押出成形し、空気中で300℃の第一次熱処理を施し、更に非酸化雰囲気中で1000℃の第二次熱処理を施し、冷却後、流動パラフィンを含浸させて、呼び径0.5mmのシャープペンシル用焼成鉛筆芯を得た。
【0022】
<実施例2>
実施例1において、ヒドロキシアパタイト(平均粒子径:0.1μm)の平均粒子径を0.5μm(商品名HAP−05NP、丸尾カルシウム(株)製)に変えた以外全て実施例1と同様にして、呼び径0.5mmのシャープペンシル用焼成鉛筆芯を得た。
【0023】
<実施例3>
実施例2において、ヒドロキシアパタイト(商品名HAP−05NP)の使用量を5重量部から10重量部に変えた以外全て実施例2と同様にして、呼び径0.5mmのシャープペンシル用焼成鉛筆芯を得た。
【0024】
<実施例4>
実施例1において、ヒドロキシアパタイト(平均粒子径:0.1μm)の平均粒子径を0.8μm(商品名HAP−08NP、丸尾カルシウム(株)製)に変えた以外全て実施例1と同様にして、呼び径0.5mmのシャープペンシル用焼成鉛筆芯を得た。
【0025】
<実施例5>
実施例3において、において、ヒドロキシアパタイト(商品名HAP−08NP)の使用量を5重量部から10重量部に変えた以外全て実施例2と同様にして、呼び径0.5mmのシャープペンシル用焼成鉛筆芯を得た。
【0026】
<比較例1>
ポリ塩化ビニル樹脂 55重量部
黒鉛 75重量部
フタル酸エステル 25重量部
ステアリン酸塩 2重量部
ステアリン酸 1重量部
無定形シリカ 2重量部
メチルエチルケトン 50重量部
上記材料を実施例1と同様にして呼び径0.5mmのシャープペンシル用焼結鉛筆芯を得た。
【0027】
<比較例2>
比較例1においてフタル酸エステルを25重量部から30重量部に変更したこと以外全て比較例1と同様にして、呼び径0.5mmのシャープペンシル用芯を得た。
【0028】
<比較例3>
比較例1において、さらに多孔性シリカ(平均粒子径1μm)を5重量部添加し、それ以外は全て比較例1と同様ににして、呼び径0.5mmのシャープペンシル用芯を得た。
【0029】
<比較例4>
比較例1において、多孔性ナイロン(平均粒子径1μm)を5重量部追加して添加し、それ以外は全て比較例1と同様ににして、呼び径0.5mmのシャープペンシル用芯を得た。
【0030】
上記各例により得られたシャープペンシル芯についてJIS S 6005に準じて曲げ強さと濃度を測定した結果を表1に示す。
【0031】
【表1】
Figure 2004331690
【0032】
以上のように本発明によれば、ヒドロキシアパタイトの添加は、従来一般的な強度や筆跡の濃度の調整方法である、焼成時揮発して気孔を形成するフタル酸エステルを配合したものや多孔性シリカや、合成樹脂系の多孔性微粒子である多孔性ナイロンを配合したものと比べても、筆跡の濃度を高く維持しつつ、曲げ強さの低下を少なくしたものとすることができる。[0001]
The present invention relates to a method for producing a pencil lead obtained by kneading raw materials such as an organic binder, a filler, a filler, and a plasticizer, extruding into a fine wire shape, and then performing a heat treatment to a firing temperature.
[0002]
[Prior art]
Conventionally known pencil cores include polyvinyl chloride, chlorinated polyethylene, furan resin, polyvinyl alcohol, styrene resin, acrylic resin, urea resin, melamine resin, polyester resin, and hydrogenated styrene-butadiene copolymer. Compounding with synthetic resin of graphite, graphite, boron nitride, etc., inorganic fine powders such as carbon black, white carbon, amorphous silica, solvents such as phthalate ester, methyl ethyl ketone, stearic acid salt, stearic acid, etc. These raw materials are uniformly dispersed in a kneader, Henschel mixer, three rolls or the like, extruded, fired at a high temperature of 800 ° C. to 1200 ° C., and a spindle oil is formed in a hole formed in the obtained sintered body. It is manufactured by impregnating oils and fats such as.
[0003]
By the way, in such a fired pencil lead, strength is greatly affected by pores formed by components volatilized at the time of firing such as phthalate ester, but in order to improve bending strength, the lead itself is hardened. Attempts to make it harder to wear and lower the density of handwriting, while trying to increase the density of handwriting and make it easier to wear, the bending strength sometimes decreases. As an attempt to improve the correlation between the bending strength and the concentration of handwriting, there is disclosed an example in which porous polymer particles are used as a pore-forming material (see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H04-029898
[Problems to be solved by the invention]
In the above invention, a porous structure nylon or polymethacrylic acid ester or polystyrene is added to the compounding material of the pencil lead, and the binder is inserted into the surface irregularities or the internal space of the porous structure nylon or the like by kneading. By performing a baking process, pores having a network structure and projections are formed to reinforce the pores themselves, and it is said that the core retains the bending strength while obtaining strong handwriting.
[0006]
An object of the present invention is to provide a fired pencil lead that maintains a high bending strength while having a higher handwriting density.
[0007]
[Means for Solving the Problems]
The present invention has an average particle diameter of 0.2 μm to 20 μm, a static porosity of 95% to 99%, a pressurized porosity of 60% to 95%, a Mohs hardness of 2 to 5 and a BET specific surface area. The gist of the present invention is a fired pencil lead containing porous crystalline inorganic fine particles having a particle size of 20 m 2 / g or more and 500 m 2 / g or less.
[0008]
The details will be described below.
The pencil lead of the present invention is formed by mixing, kneading and molding by a conventionally known method, and forming a lead body by baking. After immersing fats and oils in the lead body as needed, the excess fats and oils are exposed to the surface. Can be obtained by removing
[0009]
As the constituent material of the pencil lead, a conventionally used constituent material can be used, and a specific porous crystalline inorganic fine particle is added to this constituent material, and the pencil lead can be produced by the above-mentioned general method of producing a pencil lead.
[0010]
The average particle diameter of the porous crystalline inorganic fine particles is preferably from 0.2 μm to 20 μm. If the average particle diameter is smaller than 0.2 μm, the particles are likely to aggregate, and it may be difficult to mix them uniformly with the resin component and the like. If it is larger than 20 μm, the porous structure may be broken at the time of dispersion or the like. In the present invention, the average particle diameter is determined by measuring the outer diameter of one particle arbitrarily selected at three points in an electron micrograph taken in a state of being dispersed in the primary particles, and calculating the average particle diameter of the one particle. The average was obtained by arbitrarily measuring 10 particles.
[0011]
The Mohs hardness is preferably 2 or more and 5 or less. If the Mohs hardness is less than 2, it becomes difficult to maintain the structure of the porous powder, and the effect of promoting abrasion during writing becomes small. If the Mohs hardness is larger than 5, there is a possibility that a problem such as a decrease in writing quality during writing may be caused.
[0012]
The stationary porosity may be 95% or more and 99% or less. If it is lower than 95%, the improvement of the wear effect at the time of writing is small, and the density of the handwriting may not be satisfied. On the other hand, if it is higher than 99%, the porous structure is apt to collapse in the dispersion step of a roll or the like, and the effect of promoting abrasion during writing becomes small.
The static porosity (ω1) is obtained by measuring the apparent specific volume (ml / g) of the JIS K5101-91 20.1 pigment test method by the static method, and calculating from the following equation (1).
[0013]
(Equation 1)
Figure 2004331690
[0014]
The pressurized porosity is basically preferably as high as possible, but may be from 60% to 95%. If it is lower than 60%, the effect of promoting wear during writing becomes small. If it is higher than 95%, the core tends to have a basic structure, so that the breaking strength may be reduced. The pressurized porosity (ω2) was determined by filling 5 g of a sample into a cylinder having a cross-sectional area of 2 cm 2 , applying pressure at a pressure of 30 kg / cm 2 for 30 seconds, measuring the thickness with a vernier caliper, and using the following formula 2. It refers to the determined porosity (%) of 30 kg / m 2 .
[0015]
[Equation 2]
Figure 2004331690
[0016]
It is basically desirable that the specific surface area by the BET method is high. It is better if the specific surface area is 20 m 2 / g or more and 500 m 2 / g or less. If it is less than 20 m 2 / g, other materials will excessively cover the porous surface, and the collapsibility during writing will be reduced, and the abrasion will be poor. If it is larger than 500 m 2 / g, the plasticizer component is adsorbed on the porous powder, which may adversely affect workability in production.
[0017]
Hydroxyapatite can be suitably used as such porous crystalline inorganic fine particles. Hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) is a kind of calcium phosphate-based compound, and is a porous powder although the shape varies depending on the manufacturing method and the like. In particular, it is preferable that the flaky portions have a shape in which they are entangled in layers while forming a space with each other. This is because it is considered that such a shape has a great influence on the above-mentioned physical property values. The commercially available hydroxyapatite marketed by Maruo Calcium Co., Ltd. under the trade name HAP series has the above surface shape referred to as "petal-like porous". This HAP has a high specific surface area type and a low high specific surface area type. The average particle diameter obtained by observation with an electron microscope is 0.5 μm to 3.0 μm, and the average pore diameter measured by mercury intrusion method is 0.01 μm to 1 μm. is there. The static porosity is 96 to 98%, the pressurized porosity is 70 to 95%, the Mohs hardness is 5, and the BET specific surface area is 30 to 300 m 2 / g.
[0018]
Such a method for producing hydroxyapatite can be produced by a conventionally known method. For example, it is obtained by reacting calcium chloride and sodium phosphate solutions with excess ammonia. By controlling the ammonium concentration, reaction temperature, stirring conditions, and the like, the crystal grows in a petal shape, and the particle diameter and specific surface area can be adjusted depending on the degree of the crystal growth.
[0019]
The amount of hydroxyapatite used is not particularly limited, but is preferably from 1% by weight to 30% by weight, more preferably from 1% by weight to 10% by weight, based on the total amount of the pencil core material excluding the volatile solvent. If the amount used is less than 1%, the effect of improving the concentration may be small, and if it exceeds 30%, the breaking strength may decrease.
[0020]
[Action]
Porous crystalline inorganic fine particles have a small change in physical properties even when fired, they can collapse themselves under the stress of writing and promote abrasion of the core, and can form a thick handwriting, but with respect to bending force, It shares the behavior with the surrounding structures, hardly exhibits its own collapse, and has bending strength. In particular, as a porous crystalline inorganic fine particle, hydroxyapatite has a high affinity with a synthetic resin in which calcium phosphate as a chemical composition is used as a binder, and particularly, a heat treatment at 800 to 1200 ° C. causes an organic binder carbonized. And sinter. It is presumed that the surrounding sintered body is also affected by the collapse of hydroxyapatite, which can promote the collapse as a core at the time of writing, and also helps the whole to be difficult to break.
[0021]
【Example】
<Example 1>
Polyvinyl chloride resin 55 parts by weight Graphite 75 parts by weight Phthalate ester 25 parts by weight Stearic acid salt 2 parts by weight Stearic acid 1 part by weight Hydroxyapatite (average particle diameter: 0.1 μm) 5 parts by weight Amorphous silica 2 parts by weight methyl ethyl ketone 50 Parts by weight The above materials were mixed with a Henschel mixer, kneaded with three rolls, extruded into a thin wire, subjected to a first heat treatment at 300 ° C in air, and further subjected to a second heat treatment at 1000 ° C in a non-oxidizing atmosphere. After the next heat treatment, cooling, and impregnation with liquid paraffin, a fired pencil lead for a mechanical pencil having a nominal diameter of 0.5 mm was obtained.
[0022]
<Example 2>
In the same manner as in Example 1 except that the average particle diameter of hydroxyapatite (average particle diameter: 0.1 μm) was changed to 0.5 μm (trade name: HAP-05NP, manufactured by Maruo Calcium Co., Ltd.). Then, a fired pencil lead for a mechanical pencil having a nominal diameter of 0.5 mm was obtained.
[0023]
<Example 3>
A baked pencil lead for a mechanical pencil having a nominal diameter of 0.5 mm in the same manner as in Example 2 except that the amount of hydroxyapatite (trade name: HAP-05NP) was changed from 5 parts by weight to 10 parts by weight in Example 2. Got.
[0024]
<Example 4>
In the same manner as in Example 1 except that the average particle diameter of hydroxyapatite (average particle diameter: 0.1 μm) was changed to 0.8 μm (trade name: HAP-08NP, manufactured by Maruo Calcium Co., Ltd.). Then, a fired pencil lead for a mechanical pencil having a nominal diameter of 0.5 mm was obtained.
[0025]
<Example 5>
In Example 3, firing for a mechanical pencil with a nominal diameter of 0.5 mm was performed in the same manner as in Example 2 except that the amount of hydroxyapatite (trade name: HAP-08NP) was changed from 5 parts by weight to 10 parts by weight. A pencil lead was obtained.
[0026]
<Comparative Example 1>
Polyvinyl chloride resin 55 parts by weight Graphite 75 parts by weight Phthalate ester 25 parts by weight Stearic acid salt 2 parts by weight Stearic acid 1 part by weight Amorphous silica 2 parts by weight Methyl ethyl ketone 50 parts by weight A 0.5 mm sintered pencil lead for a mechanical pencil was obtained.
[0027]
<Comparative Example 2>
A mechanical pencil lead having a nominal diameter of 0.5 mm was obtained in the same manner as in Comparative Example 1 except that the phthalate was changed from 25 parts by weight to 30 parts by weight in Comparative Example 1.
[0028]
<Comparative Example 3>
In Comparative Example 1, 5 parts by weight of porous silica (average particle diameter: 1 μm) was further added, and in the same manner as in Comparative Example 1, except that a lead for a mechanical pencil having a nominal diameter of 0.5 mm was obtained.
[0029]
<Comparative Example 4>
In Comparative Example 1, 5 parts by weight of porous nylon (average particle diameter: 1 μm) was additionally added, and in the same manner as in Comparative Example 1 except for the above, a mechanical pencil lead having a nominal diameter of 0.5 mm was obtained. .
[0030]
Table 1 shows the results of measuring the bending strength and concentration of the mechanical pencil cores obtained in the above examples according to JIS S6005.
[0031]
[Table 1]
Figure 2004331690
[0032]
As described above, according to the present invention, the addition of hydroxyapatite is a conventional method for adjusting the strength and the concentration of handwriting, which includes a phthalate ester that volatilizes during firing and forms pores, Compared with those in which silica or porous nylon, which is a synthetic resin-based porous fine particle, is blended, it is possible to maintain a high concentration of handwriting and reduce a decrease in bending strength.

Claims (2)

平均粒子径が0.2μm以上20μm以下、静置空隙率が95%以上99%以下、加圧空隙率が60%以上95%以下、モース硬度が2以上5以下、BET比表面積が20m/g以上500m/g以下の多孔質結晶性無機微粒子を含有する焼成鉛筆芯。The average particle size is 0.2 μm or more and 20 μm or less, the static porosity is 95% or more and 99% or less, the pressurized porosity is 60% or more and 95% or less, the Mohs hardness is 2 or more and 5 or less, and the BET specific surface area is 20 m 2 / A fired pencil lead containing porous crystalline inorganic fine particles of at least g and at most 500 m 2 / g. 前記結晶性無機微粒子がヒドロキシアパタイトである請求項1記載の焼成鉛筆芯。The fired pencil lead according to claim 1, wherein the crystalline inorganic fine particles are hydroxyapatite.
JP2003125084A 2003-04-30 2003-04-30 Fired lead for pencil Withdrawn JP2004331690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125084A JP2004331690A (en) 2003-04-30 2003-04-30 Fired lead for pencil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125084A JP2004331690A (en) 2003-04-30 2003-04-30 Fired lead for pencil

Publications (1)

Publication Number Publication Date
JP2004331690A true JP2004331690A (en) 2004-11-25

Family

ID=33502454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125084A Withdrawn JP2004331690A (en) 2003-04-30 2003-04-30 Fired lead for pencil

Country Status (1)

Country Link
JP (1) JP2004331690A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138031A (en) * 2005-11-18 2007-06-07 Mitsubishi Pencil Co Ltd Solid drawing material and method for producing the same
WO2010123070A1 (en) * 2009-04-24 2010-10-28 三菱鉛筆株式会社 Pencil lead and method for producing same
JP2011213757A (en) * 2010-03-31 2011-10-27 Mitsubishi Pencil Co Ltd Pencil lead
JP2011225852A (en) * 2010-04-02 2011-11-10 Pentel Corp Pencil lead
JP7411229B2 (en) 2020-12-23 2024-01-11 竹本油脂株式会社 Modifier for polyester resin sheets, polyester resin compositions, polyester resin sheets, laminated sheets, and methods for producing molded bodies

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138031A (en) * 2005-11-18 2007-06-07 Mitsubishi Pencil Co Ltd Solid drawing material and method for producing the same
WO2010123070A1 (en) * 2009-04-24 2010-10-28 三菱鉛筆株式会社 Pencil lead and method for producing same
US8349063B2 (en) 2009-04-24 2013-01-08 Mitsubishi Pencil Company, Limited Pencil lead and production process for the same
JP2011213757A (en) * 2010-03-31 2011-10-27 Mitsubishi Pencil Co Ltd Pencil lead
JP2011225852A (en) * 2010-04-02 2011-11-10 Pentel Corp Pencil lead
JP7411229B2 (en) 2020-12-23 2024-01-11 竹本油脂株式会社 Modifier for polyester resin sheets, polyester resin compositions, polyester resin sheets, laminated sheets, and methods for producing molded bodies

Similar Documents

Publication Publication Date Title
US7666380B2 (en) Imprinted mesoporous carbons and a method of manufacture thereof
DE102008042415B3 (en) Metallic semi-finished product, process for the production of materials and semi-finished products and their uses
DE102004039343A1 (en) Mechanically-stable, porous, activated carbon molding for use e.g. in tank-venting filters for cars, contains activated carbon particles embedded in a structure of carbonized phenolic resin and pyrolyzed silicone resin
JP2004331690A (en) Fired lead for pencil
DE102010005361A1 (en) Mineral shaped body, use and method for producing the mineral shaped body
JP3246233B2 (en) Mixed raw material for manufacturing porous ceramic sintered body
JP4426524B2 (en) INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
JP2010168276A (en) Granular material, method for producing the same and use of the same
JP2012111988A (en) Metal porous body, and method for manufacturing the same
JP5793045B2 (en) Method for producing ceramic porous body
JPH1088057A (en) Fired pencil lead
EP3348534B1 (en) Method for filling cavities in mouldings with a paste that comprises an activated photoinitiator
JP4300045B2 (en) Method for producing metal oxide microspheres
JP3774777B2 (en) Pencil lead
JP4395578B2 (en) Method for adjusting metal porous material
JP2011111586A (en) Fired pencil lead
JP2011213775A (en) Fired pencil lead
JP2013082920A (en) Fired lead for pencil
WO2018046764A1 (en) Insulating material
KR20030078423A (en) Pencil Lead Composition and Pencil Lead Manufacturing Thereby
JP2004175900A (en) Method for manufacturing pencil lead
JP2018034403A (en) Manufacturing method of humidity modified housing material
JP3312312B2 (en) Pencil lead
JPS63243182A (en) Production of pencil lead
JP5652762B2 (en) Porous mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20061120

Free format text: JAPANESE INTERMEDIATE CODE: A761