JP2011223025A - Ceramic core and manufacturing method thereof and chip-shaped electronic components using the same - Google Patents

Ceramic core and manufacturing method thereof and chip-shaped electronic components using the same Download PDF

Info

Publication number
JP2011223025A
JP2011223025A JP2011148252A JP2011148252A JP2011223025A JP 2011223025 A JP2011223025 A JP 2011223025A JP 2011148252 A JP2011148252 A JP 2011148252A JP 2011148252 A JP2011148252 A JP 2011148252A JP 2011223025 A JP2011223025 A JP 2011223025A
Authority
JP
Japan
Prior art keywords
ceramic
core
die
ceramic core
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011148252A
Other languages
Japanese (ja)
Inventor
Toshio Uedahira
利夫 上田平
Yoshihiro Matsumoto
義博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011148252A priority Critical patent/JP2011223025A/en
Publication of JP2011223025A publication Critical patent/JP2011223025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasmall chip-shaped electronic component and a ceramic core used therein, which secures the necessary bonding strength of electrode terminals when mounted on a circuit board.SOLUTION: A ceramic core comprises a core part and a leg for holding the core part by both edges thereof, measuring 1.1 mm or less in the lengthwise direction and 0.6 mm or less in the breadthwise direction in a plan view. The edge of a protruding part of the leg in the breadthwise direction of the ceramic core has its corners and ridgelines curved at a radius of curvature of 5-25 μm.

Description

本発明は、1005、0603ミリサイズ等の特に極小のチップ状電子部品に関し、更に詳しく述べるとコア芯部外周に導体を巻き線またはメッキにより螺旋状に形成するチップインダクタならびに、その部材となるセラミックコアに関する。   The present invention relates to a particularly small chip-shaped electronic component having a size of 1005, 0603 mm or the like, and more specifically, a chip inductor in which a conductor is spirally formed on the outer periphery of a core core portion by winding or plating, and a ceramic as a member thereof Concerning the core.

携帯用電子機器、特に携帯電話機用にはコンデンサやCR、インダクタなど多数のチップ状電子部品が搭載され、前記した機器の小型化、高機能化が進むにつれ、ミリ寸法通称値で1608(平面視した長手寸法1.6mm、短手寸法0.8mm、以下同様)から1005さらに0603、0402と搭載されるチップ状電子部品も急速に極小チップ化を辿っている。なかでもインダクタは高周波ノイズ除去等の回路部品として多用されているが、外辺サイズの小型化に反して高インダクタンスも要求され、従ってコイル形成部の有効領域の確保に苦慮しているのが現状である。   A large number of chip-shaped electronic components such as capacitors, CRs, and inductors are mounted on portable electronic devices, particularly cellular phones. As the above-mentioned devices become smaller and more functional, 1608 (plan view) The chip-like electronic components mounted with the long dimension of 1.6 mm, the short dimension of 0.8 mm, and so on to 1005, 0603, and 0402 are also rapidly miniaturizing. In particular, inductors are frequently used as circuit components for high-frequency noise removal, but high inductance is also required against the downsizing of the outer size, so it is currently difficult to secure an effective area for the coil formation part. It is.

チップ状電子部品は図示しないが一般的な矩形状のものから、図7(a)、(b)に示すように、略H形状を呈するチップ状電子部品111のものがあり、該チップ状電子部品111がチップインダクタであれば、コア芯部103に導体を巻き線123またはメッキ124により螺旋状に巻回し、コア芯部103を狭持する両端の脚部102に電極122を形成し、該電極122をプリント配線基板の導体へハンダリフロー等により接着実装される。   Although the chip-shaped electronic component is not illustrated, there is a chip-shaped electronic component 111 having a substantially H shape as shown in FIGS. 7A and 7B from a general rectangular shape. If the component 111 is a chip inductor, a conductor is wound around the core core portion 103 in a spiral manner by a winding 123 or a plating 124, and electrodes 122 are formed on the leg portions 102 at both ends sandwiching the core core portion 103. The electrode 122 is adhesively mounted on the conductor of the printed wiring board by solder reflow or the like.

前記チップ状電子部品111の長手寸法Lの極小化に伴い、例えば、チップインダクタ121であれば自ずとコア芯103の長さXが短くなり、従って、巻き線123或いはメッキ124の巻回数が減り高インダクタンス値が得られないという課題があった。   With the minimization of the longitudinal dimension L of the chip-shaped electronic component 111, for example, in the case of the chip inductor 121, the length X of the core core 103 is naturally shortened, and therefore the number of turns of the winding 123 or the plating 124 is reduced. There was a problem that an inductance value could not be obtained.

これらの課題を解決するために、図8(a)、(b)に示すセラミックコア101の長手寸法Lが0.6mmにおいて、コア芯部103の長さXが0.1mmのものが作製可能であった。詳細には脚部102の幅Dは0.25mm、コア芯部103と脚部102の境界の曲面の曲率半径R2を0.06mmのセラミックコア101を作製することが可能であった。   In order to solve these problems, a ceramic core 101 shown in FIGS. 8A and 8B having a longitudinal dimension L of 0.6 mm and a core core 103 having a length X of 0.1 mm can be produced. Met. Specifically, it was possible to produce the ceramic core 101 having a width D of 0.25 mm of the leg portion 102 and a curvature radius R2 of the curved surface at the boundary between the core core portion 103 and the leg portion 102 of 0.06 mm.

また、前記のセラミックコア101の製造には、コア芯103の横断面図となる部分の形成方法を図9(a)に、また、セラミックコア101の縦断面図となる部分の形成方法を図9(b)に示された粉体成形装置131を用いた。概略の動作説明をすると、セラミック粉体充填孔139にセラミック粉体109を充填し、つぎに上パンチ135を下降し第一下パンチ136と当接させながら下方へ押圧することにより、固定されている第二下パンチ137により充填されているセラミック粉体109は上パンチ135と第一下パンチ136で囲まれるセラミック粉体充填孔139内で加圧され、第一下パンチ136の凹部底面136aが、第二下パンチ137の突出面137aの位置まで下降し、セラミックコア101となるセラミック成形体110を得るものであった。(特許文献1参照)   Further, in the manufacture of the ceramic core 101, a method for forming a portion that becomes a cross-sectional view of the core core 103 is shown in FIG. 9A, and a method for forming a portion that becomes a vertical cross-sectional view of the ceramic core 101 is shown. The powder molding apparatus 131 shown in 9 (b) was used. An outline of the operation is as follows. The ceramic powder filling hole 139 is filled with the ceramic powder 109, and then the upper punch 135 is lowered and pressed downward while being in contact with the first lower punch 136, thereby being fixed. The ceramic powder 109 filled by the second lower punch 137 is pressurized in a ceramic powder filling hole 139 surrounded by the upper punch 135 and the first lower punch 136, and the bottom surface 136a of the recess of the first lower punch 136 is formed. The ceramic molded body 110 that is lowered to the position of the projecting surface 137 a of the second lower punch 137 and becomes the ceramic core 101 was obtained. (See Patent Document 1)

特開平5−275256号公報JP-A-5-275256

しかしながら、特許文献1のセラミックコア101は、長手寸法Lに対する脚部102の幅Dの占める割合2D/L=0.83と著しく大きかったため、コア芯部103の長さXが小さくなり、セラミックコア101をチップ状電子部品111或いはチップインダクタ121として用いた場合、導体形成の有効領域が僅かであった。さらに、コア芯部103と脚部102の境界の曲面の曲率半径R2を60μmにできたことは、実質、コア芯部103の横断面の寸法がコア芯部103の長手方向に一様でないこととなり、前記セラミックコア101をチップインダクタとして用いた場合、巻き線123の巻回長さ或いはメッキ124の厚みバラツキとなり、結果的にインダクタンス値のバラツキとなって表れるという課題があった。   However, since the ceramic core 101 of Patent Document 1 has a remarkably large ratio 2D / L = 0.83 of the width D of the leg portion 102 with respect to the longitudinal dimension L, the length X of the core core portion 103 is reduced, and the ceramic core When 101 was used as the chip-shaped electronic component 111 or the chip inductor 121, the effective area for conductor formation was small. Furthermore, the curvature radius R2 of the curved surface at the boundary between the core core portion 103 and the leg portion 102 can be set to 60 μm. That is, the dimension of the cross section of the core core portion 103 is not substantially uniform in the longitudinal direction of the core core portion 103. Thus, when the ceramic core 101 is used as a chip inductor, there is a problem that the winding length of the winding 123 or the thickness of the plating 124 varies, and as a result, the inductance value varies.

ここで、セラミックコア101の長手寸法Lを小さくする手段としてコア芯部103の長さXのみを小さくした理由は、図10に示すように、セラミックコア101が極小寸法を有するため、セラミックコア101を成形するためのダイ132も極小にしなければならなかった。しかし、そのような極小のダイ132における凹部形状を精度よくシャープに加工できなかったため、セラミック粉体を成形すると、突出部端面102aの角102b、稜線102cには少なくとも曲率半径R1が45μm程度の曲面が形成され、さらに焼成後に、付着物除去のバレル処理を施すと、曲率半径R1が50μm程度になった。即ち、脚部102の幅Dを小さくすると、脚部102の突出部端面102aの直線部102dが小となるが故に、直線部102dを確保するためには脚部102の幅Dを0.25mm程度に大きくする必要があった。   Here, the reason why only the length X of the core core 103 is reduced as a means for reducing the longitudinal dimension L of the ceramic core 101 is that the ceramic core 101 has a minimum dimension as shown in FIG. The die 132 for forming the sheet had to be minimized. However, since the concave shape of such a very small die 132 could not be processed accurately and sharply, when the ceramic powder is formed, the corner 102b and the ridgeline 102c of the protruding portion end surface 102a are curved surfaces having a radius of curvature R1 of at least about 45 μm. When the barrel treatment for removing deposits was performed after firing, the radius of curvature R1 was about 50 μm. That is, when the width D of the leg portion 102 is reduced, the straight portion 102d of the projecting portion end surface 102a of the leg portion 102 is reduced. Therefore, in order to secure the straight portion 102d, the width D of the leg portion 102 is 0.25 mm. It was necessary to make it large.

一方で、セラミックコア101の脚部102の幅Dを0.1mmのものを作製した場合、脚部102の突出部端面102aには直線部102dは存在しない、或いは僅かとなり、前記脚部102の突出部端面102aに電極を形成し設置面とし、ハンダリフロー等で基板の導体へ接着させた場合、その接着強度が低いという課題があった。   On the other hand, when the width D of the leg portion 102 of the ceramic core 101 is 0.1 mm, the protruding portion end surface 102a of the leg portion 102 does not have the linear portion 102d or becomes slightly small. When an electrode is formed on the projecting portion end surface 102a to be an installation surface and bonded to the conductor of the substrate by solder reflow or the like, there is a problem that the adhesive strength is low.

また、前述した上パンチ135と第一下パンチ136をダイ132内で対向当接させ下降させることにより、第二下パンチ137が所定の位置まで来ることにより、成形されたセラミックコア101となるセラミック成形体110の製造方法には、つぎのような課題があった。   Further, the above-described upper punch 135 and first lower punch 136 are brought into contact with each other in the die 132 and lowered so that the second lower punch 137 comes to a predetermined position, thereby forming the ceramic core 101 to be formed. The manufacturing method of the molded body 110 has the following problems.

図11に第二下パンチ137の斜視図を示すが、このような形状であれば、プロファイル研磨で加工されるために、コア芯部103側の脚部102の稜線102cとなる第二下パンチ137の角部137aには曲率半径R3が50μm以上の曲面となる。したがって、セラミックコア101の脚部102の突出部端面102aのコア芯103側の稜線102cの曲率半径R1は50μm以上になるという課題があり、さらに、図10(b)の上パンチ135、第二下パンチ137とダイ132間には上下動するためのクリアランスが必要であり、これにより成形されたセラミック成形体110の脚部102の突出部先端102aの外側の稜線102cおよびその角102bにはバリが発生する。前記セラミック成形体110を焼成したセラミックコア101の前記バリはそのまま存在し、チップ状電子部品111として用いることは出来ない。公知のバレル処理により前記バリを除去することになるが、その結果、前記バリが除去された跡はチッピング状のC面または曲面となり、加えて、脚部102の突出部端面102aのコア芯103側の稜線102cの曲面まで大きくするという課題があった。   FIG. 11 shows a perspective view of the second lower punch 137. With such a shape, the second lower punch that becomes the ridge line 102c of the leg 102 on the core core 103 side is processed by profile polishing. The corner portion 137a of 137 is a curved surface having a curvature radius R3 of 50 μm or more. Therefore, there is a problem that the radius of curvature R1 of the ridgeline 102c on the core core 103 side of the protruding end surface 102a of the leg portion 102 of the ceramic core 101 is 50 μm or more, and further, the upper punch 135, second shape of FIG. A clearance is required between the lower punch 137 and the die 132 to move up and down, and the ridgeline 102c on the outer edge 102a of the protruding portion 102a and the corner 102b of the leg portion 102 of the ceramic molded body 110 formed thereby are burrs. Will occur. The burr of the ceramic core 101 obtained by firing the ceramic molded body 110 exists as it is, and cannot be used as the chip-shaped electronic component 111. The burrs are removed by a known barrel process. As a result, the traces from which the burrs are removed become a chipping-shaped C surface or a curved surface, and in addition, the core core 103 of the projecting portion end surface 102a of the leg portion 102 is formed. There has been a problem of enlarging the curved surface of the side ridge line 102c.

また、反面、前記セラミックコア101の脚部102の突出部端面102aの角102b、稜線102cが実質0に近い曲率半径R1のシャープエッジに出来た場合には、電極122をコの字状に形成したときに、前記角102b、稜線102c部の厚みが薄くなるとう課題ならびに、図示しないが巻き線123の終端の引き出し線を電極122に圧着さ
せる際に引き出し線が前記稜線102cのエッジ部で断線するという課題があった。
On the other hand, when the corner 102b and the ridgeline 102c of the protruding end surface 102a of the leg portion 102 of the ceramic core 101 are formed as sharp edges having a curvature radius R1 that is substantially zero, the electrode 122 is formed in a U-shape. In this case, the thickness of the corners 102b and the ridge line 102c is reduced, and the lead line is disconnected at the edge of the ridge line 102c when the terminal line of the winding 123 is crimped to the electrode 122 (not shown). There was a problem to do.

上述した課題を解決するために、本発明のセラミックコアは、コア芯部の両端に脚部を備え、平面視した長手寸法が1.1mm以下、短手寸法が0.6mm以下であるセラミックコアであって、脚部の突出部端面の角および稜線に曲率半径5〜25μmの曲面を有することを特徴とする。   In order to solve the above-described problems, a ceramic core according to the present invention is provided with leg portions at both ends of a core core portion, and has a longitudinal dimension of 1.1 mm or less and a short dimension of 0.6 mm or less in plan view. And it is characterized by having a curved surface with a curvature radius of 5 to 25 μm at the corner and the ridgeline of the end face of the protruding portion of the leg portion.

さらに、平面視した前記脚部の突出部端面幅をDとしたとき、前記角間に少なくともD/2以上の直線部を有することを特徴とする。   Furthermore, when the projecting portion end face width of the leg portion in plan view is D, it has a straight portion of at least D / 2 or more between the corners.

さらに、平面視した前記セラミックコアの長手寸法をLとしたとき、2D/Lが0.2以上であることを特徴とする。   Furthermore, when the longitudinal dimension of the ceramic core in plan view is L, 2D / L is 0.2 or more.

また、本発明は前記セラミックコアの製造方法であって、セラミック粉体充填孔を備えたダイと、セラミック粉体を加圧成形するための上パンチならびに下パンチからなるセラミック粉末成形装置を用いて成形する工程と、得られたセラミック成形体を焼成しバレル処理する工程とからなり、前記成形工程で用いるダイは、前記セラミック粉体充填孔の領域外を構成する第一ダイを備え、前記セラミック粉体充填孔の側面のうち、前記セラミックコアの突出部端面に相当する部位に第二ダイを配置し、前記セラミック粉体充填孔にセラミック粉体を充填し、前記上パンチと前記下パンチとで前記セラミック粉体を加圧してセラミック成形体を成形する工程からなることを特徴とする。   The present invention also relates to a method for producing the ceramic core, wherein a ceramic powder molding apparatus comprising a die having a ceramic powder filling hole, and an upper punch and a lower punch for press-molding the ceramic powder is used. The die used in the molding step comprises a first die that constitutes an area outside the ceramic powder filling hole, and comprises the step of molding and the step of firing and barreling the obtained ceramic compact. A second die is disposed in a portion of the side surface of the powder filling hole corresponding to the end surface of the projecting portion of the ceramic core, the ceramic powder filling hole is filled with ceramic powder, the upper punch and the lower punch, And pressurizing the ceramic powder to form a ceramic compact.

さらに、前記セラミック粉体充填孔の側面のうち、前記セラミックコアの短手方向の突出部端面に相当する部位の前記第二ダイの側面の両端部位を前記第一ダイに当接させ、前記第二ダイの他の側面と前記第一ダイ間にクリアランスを有するセラミック粉体成形装置を用いることを特徴とする。   Further, of the side surfaces of the ceramic powder filling hole, both end portions of the side surface of the second die corresponding to the end surface of the projecting portion in the short direction of the ceramic core are brought into contact with the first die, and A ceramic powder molding apparatus having a clearance between the other side surface of the two dies and the first die is used.

さらに、少なくとも水と前記セラミックコアとを混在させ遠心バレル処理する工程を含むことを特徴とする。   Furthermore, it includes a step of mixing at least water and the ceramic core and performing a centrifugal barrel treatment.

このように本発明のセラミックコアによれば、コア芯部の両端に脚部を備え、平面視した長手寸法が1.1mm以下、短手寸法が0.6mm以下であるセラミックコアにおいて、脚部の突出部端面の角および稜線に曲率半径5〜25μmの曲面としている。   As described above, according to the ceramic core of the present invention, in the ceramic core having the leg portions at both ends of the core core portion and having a longitudinal dimension in a plan view of 1.1 mm or less and a short dimension of 0.6 mm or less, The protrusion end face has a curved surface with a radius of curvature of 5 to 25 μm at the corner and ridge line.

このように、前記曲率半径を5μm以上としたことから、前記セラミックコアの短手方
向の脚部の突出部端面に電極部をコの字状に形成しても、前記電極部の厚みバラツキを小さくできるとともに、前記突出部端面の角および稜線部位で前記セラミックコアの露出を防止することができる。さらに、前記セラミックコアのコア芯部に巻き線を巻回し該巻き線の引き出し線を前記脚部の突出部端面の稜線を横架して該突出部端面に付設する場合においても、前記稜線が曲面となっているために引き出し線の断線を防止できる。また、前記脚部の突出部端面の角および稜線の曲面は最大でも曲率半径25μm以下であることから、例えば長手寸法が0.4mmの極小セラミックコアにおいて、少なくともコア芯の長さを前記長手寸法の1/2確保するとき、短手方向の脚部の突出部端面の幅は0.1mmであり、該突出部端面の角の曲面の曲率半径が25μmであれば、前記角間に少なくとも0.05mmの直線部を確保でき、前述したように、前記突出部端面に電極を形成し、この面を設置面としてプリント配線基板へ接着したとき、十分な接着強度を確保できる。
As described above, since the radius of curvature is 5 μm or more, even if the electrode part is formed in a U-shape on the end face of the leg part in the short direction of the ceramic core, the thickness variation of the electrode part is reduced. While being able to make it small, exposure of the ceramic core can be prevented at corners and ridge lines of the end face of the protrusion. Further, when the winding is wound around the core part of the ceramic core and the lead wire of the winding is attached to the end face of the projecting part across the ridge line of the projecting part end face of the leg part, the ridge line is Since it is a curved surface, it is possible to prevent disconnection of the lead wire. In addition, since the curved surface of the corner and the ridgeline of the protruding portion end surface of the leg portion has a curvature radius of 25 μm or less at the maximum, for example, in a very small ceramic core having a longitudinal dimension of 0.4 mm, at least the length of the core core is set to the longitudinal dimension. If the radius of curvature of the curved surface at the corner of the protruding portion end surface is 25 μm, the width of the protruding portion end surface of the leg portion in the short direction is at least 0. A straight line portion of 05 mm can be secured. As described above, when an electrode is formed on the end surface of the protruding portion and this surface is used as an installation surface and adhered to a printed wiring board, sufficient adhesive strength can be secured.

また、平面視した前記脚部の突出部端面幅をDとしたとき、前記角間に少なくともD/
2以上の直線部を有するとしたことから、前記セラミックコアの前記突出部端面に電極を設けてチップ状電子部品として使用する際に、プリント配線基板と十分な強度で接着できる。
Further, when the end surface width of the projecting portion of the leg portion in plan view is D, at least D /
Since it has two or more straight portions, when it is used as a chip-shaped electronic component by providing an electrode on the end surface of the projecting portion of the ceramic core, it can be bonded to the printed wiring board with sufficient strength.

また、平面視した前記セラミックコアの長手寸法をLとしたとき、2D/Lが0.2以上であることから、プリント配線基板に接着させるために十分な長さの脚部を有するとともに、コア芯部に設ける導体量を増加することができるため、インダクタ等として用いると、実効値を増大することができる。   Further, when the longitudinal dimension of the ceramic core in plan view is L, 2D / L is 0.2 or more, so that the core has a leg portion long enough to adhere to the printed wiring board, and the core Since the amount of conductor provided in the core portion can be increased, the effective value can be increased when used as an inductor or the like.

また、本発明のセラミックコアの製造方法によれば、セラミック粉末成形装置のダイは、セラミックコアの短辺方向の突出部端面に相当する部位に第二ダイを配置して構成され、該第二ダイおよびセラミック粉体充填孔の領域外を第一ダイで構成され、さらに、セラミックコアの短手方向の突出部端面に相当する部位の第二ダイの側面の両端を第一ダイに当接させ、前記第二ダイの他の側面と前記第一ダイ間にクリアランスを有するセラミック粉体成形装置からなるために、前記脚部の突出部端面幅に直線部を形成しやすくなるとともに、前記脚部の突出部端面の角および稜線の曲面の曲率半径を極めて小さく形成できる。   According to the method for manufacturing a ceramic core of the present invention, the die of the ceramic powder molding apparatus is configured by disposing the second die at a portion corresponding to the end face of the projecting portion in the short side direction of the ceramic core, The area outside the die and the ceramic powder filling hole is constituted by the first die, and both ends of the side surface of the second die corresponding to the end face of the projecting portion of the ceramic core in the short direction are brought into contact with the first die. In addition, since the ceramic powder molding apparatus has a clearance between the other side surface of the second die and the first die, it is easy to form a straight portion in the projecting portion end face width of the leg portion, and the leg portion The radius of curvature of the end surface of the protrusion and the curved surface of the ridge line can be made extremely small.

さらに、セラミック成形体の焼成後、少なくとも水と前記セラミックコアを混在させ、遠心バレル処理すると、前記脚部の突出部端面の角および稜線における曲面の曲率半径を著しく増大することなく、焼き付いた付着物の除去ができる。   Further, after firing the ceramic molded body, when at least water and the ceramic core are mixed and subjected to a centrifugal barrel treatment, seizure is performed without significantly increasing the curvature radius of the curved surface at the corners and ridgelines of the protrusions of the legs. The kimono can be removed.

また、本発明のチップ状電子部品は、前記脚部の突出部端面にコの字状に電極を形成すると、前記突出部端面の角および稜線部位で、電極から突出するセラミックコアの露出を防止できるとともに、電極形成部位をプリント配線基板への設置面として実装したとき、前記プリント配線基板と十分な接着強度を確保できる。   Further, in the chip-shaped electronic component according to the present invention, when an electrode is formed in a U shape on the projecting portion end surface of the leg portion, the ceramic core projecting from the electrode is prevented from being exposed at the corner and the ridge line portion of the projecting portion end surface. In addition, when the electrode forming portion is mounted as an installation surface on the printed wiring board, sufficient adhesive strength with the printed wiring board can be secured.

また、本発明のチップ状電子部品をインダクタとして用いた場合、コア芯部に設ける導体量を増加することができる。さらに、巻き線方式のチップインダクタとして用いた場合、巻き線終端の引き出し線の断線を防止出来るという効果がある。   Moreover, when the chip-shaped electronic component of the present invention is used as an inductor, the amount of conductor provided in the core core portion can be increased. Further, when used as a winding type chip inductor, there is an effect that disconnection of the lead wire at the end of the winding can be prevented.

(a)は本発明のセラミックコアの一実施例を示す斜視図、(b)は要部側面図、(c)は他の実施例を示す斜視図である。(A) is a perspective view which shows one Example of the ceramic core of this invention, (b) is a principal part side view, (c) is a perspective view which shows another Example. (a)は本発明のセラミックコアの製造する際に用いる粉末加圧成形装置を示す断面図、(b)は粉末加圧成形装置に設置されたダイの平面図である。(A) is sectional drawing which shows the powder pressure molding apparatus used when manufacturing the ceramic core of this invention, (b) is a top view of the die | dye installed in the powder pressure molding apparatus. (a)は本発明のセラミックコアの他の製造方法を示す平面図、(b)は本発明のセラミックコアの他の実施例である。(A) is a top view which shows the other manufacturing method of the ceramic core of this invention, (b) is another Example of the ceramic core of this invention. (a)は本発明のチップ状電子部品の一実施例を示す側面図である。(A) is a side view which shows one Example of the chip-shaped electronic component of this invention. (a)は従来のセラミックコアの製造方法を示す断面図、(b)は平面図である。(A) is sectional drawing which shows the manufacturing method of the conventional ceramic core, (b) is a top view. 電極の接着強度試験を示す断面図である。It is sectional drawing which shows the adhesive strength test of an electrode. (a)、(b)は従来のチップ状電子部品の側面図である。(A), (b) is a side view of the conventional chip-shaped electronic component. (a)は従来のセラミックコアの斜視図、(b)は側面図である。(A) is a perspective view of the conventional ceramic core, (b) is a side view. (a)(b)は従来のセラミックコアの製造方法を示す断面図である。(A) (b) is sectional drawing which shows the manufacturing method of the conventional ceramic core. 従来のセラミックコアの要部の側面図である。It is a side view of the principal part of the conventional ceramic core. 従来のセラミックコアの製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the conventional ceramic core.

以下、本発明の実施形態について説明する。図1(a)は、本発明のセラミックコア1
の一例を示す斜視図、(b)にその要部断面図、(c)に本発明のセラミックコア1の他の一例の斜視図を示している。図1(a)示すように、セラミックコア1はコア芯部3の両端に、セラミックコア1の短手方向に突出する脚部2を備え、コア芯部3と脚部2とは一体に形成されている。また、図1(b)に示すように、セラミックコア1の脚部2の突出部端面2aの角2b、および稜線2cは曲率半径R1の曲面を有し、また、突出部端面2aの両端の角2b間に存在する直線部位を突出部端面2aの直線部2dとする。ここで、セラミックコア1の材質はアルミナ、フェライト等のセラミックからなるものが好適である。
Hereinafter, embodiments of the present invention will be described. FIG. 1 (a) shows a ceramic core 1 of the present invention.
The perspective view which shows an example, (b) is the principal part sectional drawing, (c) has shown the perspective view of the other example of the ceramic core 1 of this invention. As shown in FIG. 1 (a), the ceramic core 1 is provided with leg portions 2 projecting in the short direction of the ceramic core 1 at both ends of the core core portion 3, and the core core portion 3 and the leg portion 2 are integrally formed. Has been. Further, as shown in FIG. 1 (b), the corner 2b of the projecting portion end surface 2a of the leg portion 2 of the ceramic core 1 and the ridge line 2c have a curved surface with a radius of curvature R1, and at both ends of the projecting portion end surface 2a. A straight line portion existing between the corners 2b is defined as a straight line portion 2d of the protrusion end surface 2a. Here, the material of the ceramic core 1 is preferably made of a ceramic such as alumina or ferrite.

そして、本発明のセラミックコア1は、平面視した長手寸法Lが1.1mm以下、短手寸法Yが0.6mm以下であって、該セラミックコア1の脚部2の突出部端面2aの角2bおよび稜線2cに曲率半径R1が5〜25μmの曲面を有している。   The ceramic core 1 of the present invention has a longitudinal dimension L in a plan view of 1.1 mm or less and a short dimension Y of 0.6 mm or less, and a corner of the projecting portion end surface 2 a of the leg portion 2 of the ceramic core 1. 2b and the ridgeline 2c have curved surfaces with a radius of curvature R1 of 5 to 25 μm.

ここで、曲率半径R1が5μm未満である場合、角2bおよび稜線2cがシャープエッジになるため、突出部端面2aに電極を形成すると、電極を厚み精度良く形成できず、電極に厚みバラツキが生じて角部2bで電極が剥れてセラミックコア1が露出しやすくなる。また、前記曲率半径R1が25μmを超えると、脚部2の突出部端面2aの幅Dが0.10mm未満のようなセラミックコア1が極小な寸法においては、前記突出部端面2aの角2
b間に存在する直線部2dの長さが前記幅Dの0.05mm未満となり、セラミックコア1をチップ状電子部品として用いると、プリント配線基板との接着強度低下の原因となる。即ち、曲率半径R1を5〜25μmとすることにより、セラミックコア1の露出を防ぐとともに、図1(b)に示すように、突出部端面2aの直線部2dを十分に設けることができるため、セラミックコア1をチップ状電子部品として用いる際に、プリント配線基板との接着強度を有することができる。尚、曲率半径R1はバレル処理時間等を考慮すると、5〜10μmとするのが好ましい。
Here, when the radius of curvature R1 is less than 5 μm, the corner 2b and the ridgeline 2c become sharp edges. Therefore, when the electrode is formed on the projecting portion end surface 2a, the electrode cannot be formed with high thickness accuracy, resulting in variations in the thickness of the electrode. Thus, the electrodes are peeled off at the corners 2b and the ceramic core 1 is easily exposed. If the radius of curvature R1 exceeds 25 μm, the corner 2 of the protrusion end face 2a is smaller when the ceramic core 1 has a minimum dimension such that the width D of the protrusion end face 2a of the leg 2 is less than 0.10 mm.
If the length of the straight portion 2d existing between b is less than 0.05 mm of the width D, and the ceramic core 1 is used as a chip-shaped electronic component, it causes a reduction in adhesive strength with the printed wiring board. That is, by setting the radius of curvature R1 to 5 to 25 μm, it is possible to prevent the ceramic core 1 from being exposed and to sufficiently provide the linear portion 2d of the projecting portion end surface 2a as shown in FIG. When the ceramic core 1 is used as a chip-shaped electronic component, it can have adhesive strength with a printed wiring board. The curvature radius R1 is preferably 5 to 10 μm in consideration of barrel processing time and the like.

さらに、脚部2の突出部端面2aの直線部2dが突出部2aの幅Dの1/2以上であることが好ましい。これは、直線部2dが突出部2aの幅Dの1/2未満であると、セラミックコア1をチップ状電子部品として用いる際に、プリント配線基板との十分な接着強度を得られない可能性がある。   Furthermore, it is preferable that the linear part 2d of the protrusion part end surface 2a of the leg part 2 is 1/2 or more of the width D of the protrusion part 2a. This is because, when the linear portion 2d is less than ½ of the width D of the protruding portion 2a, there is a possibility that sufficient adhesive strength with the printed wiring board cannot be obtained when the ceramic core 1 is used as a chip-shaped electronic component. There is.

また、平面視したセラミックコア1の長手寸法をLとしたとき、2D/Lが0.2以上であることが好ましい。これは、2D/Lが0.2未満であると、例えば、セラミックコア1をインダクタとして使用すると、導体を設けるコア芯部3の長さが短いため、所望の実効値を得られない場合がある。尚、所望の実効値を得るとともに、プリント配線基板との接着強度を十分に有するためには、2D/Lが0.2〜0.4であることが好ましい。   Further, when the longitudinal dimension of the ceramic core 1 in plan view is L, 2D / L is preferably 0.2 or more. For example, when 2D / L is less than 0.2, for example, when the ceramic core 1 is used as an inductor, the core core portion 3 provided with the conductor is short, so that a desired effective value may not be obtained. is there. In addition, in order to obtain a desired effective value and to have sufficient adhesive strength with the printed wiring board, 2D / L is preferably 0.2 to 0.4.

次に、本発明のセラミックコア1を製造するために用いるセラミック粉体成形装置31について説明する。   Next, the ceramic powder molding apparatus 31 used for manufacturing the ceramic core 1 of the present invention will be described.

図2(a)は、本発明のセラミックコアを製造するために用いるセラミック粉体成形装置31の概略の断面図であり、(b)はダイ32の一実施例を示す平面図である。   FIG. 2A is a schematic cross-sectional view of a ceramic powder forming apparatus 31 used for manufacturing the ceramic core of the present invention, and FIG. 2B is a plan view showing an embodiment of the die 32.

セラミック粉体成形装置31は、ダイ32に囲まれたセラミック粉体充填孔37へセラミック粉末9を充填し、上下パンチ35、36にて加圧成型することによりセラミック成形体10を成形する構造を成している。ダイ32の構造は図2(b)に示すように、前記セラミック粉体充填孔37の側面のうち、セラミックコア1の短辺方向の突出部端面2aに相当する部位に第二ダイ34を配置して構成され、該第二ダイ34およびセラミック粉体充填孔37の領域外を第一ダイ33で構成している。さらに、前記セラミック粉体充填孔37の側面のうち、セラミックコア1の短手方向の突出部端面2aに相当する部位の第
二ダイ34の側面34aの両端部位を第一ダイ33に当接させている。一方で、第二ダイ34の他の側面34b、34c、34dと第一ダイ33間にはクリアランスgを有するように配置されている。
The ceramic powder molding apparatus 31 has a structure in which the ceramic powder body 9 is filled by filling the ceramic powder filling hole 37 surrounded by the die 32 and press-molding with the upper and lower punches 35 and 36 to form the ceramic molded body 10. It is made. As shown in FIG. 2B, the die 32 has a structure in which the second die 34 is arranged at a portion corresponding to the projecting portion end surface 2 a in the short side direction of the ceramic core 1 in the side surface of the ceramic powder filling hole 37. The first die 33 is configured outside the region of the second die 34 and the ceramic powder filling hole 37. Further, of the side surfaces of the ceramic powder filling hole 37, both end portions of the side surface 34 a of the second die 34 corresponding to the projecting end surface 2 a in the short direction of the ceramic core 1 are brought into contact with the first die 33. ing. On the other hand, it arrange | positions between the other side surfaces 34b, 34c, 34d of the 2nd die | dye 34, and the 1st die | dye 33 so that it may have the clearance g.

尚、上下パンチ35、36ならびに、ダイ32、33、34の材質はWc、Wc−Co等からなる超硬合金であって、特にダイ32、33、34は超微粒子径からなるものが望ましい。また、第二ダイ34の両端部位34aと第一ダイ33の当接固定は、図2(b)に示すように、第一ダイ33から第二ダイ34へロックピン38等を嵌挿させ固定させれば良い。また、第二ダイ34の側面34aは第一ダイ33に当接配置させるが、他の側面34b、34dはいずれも第一ダイ33間にクリアランスgが有っても良いし、或いは片側は第一ダイ33に当接されていても良い。図2(b)のような構造であれば、少なくとも側面34cと第一ダイ33間にクリアランスgが存在すればよい。   The material of the upper and lower punches 35 and 36 and the dies 32, 33, and 34 is a cemented carbide made of Wc, Wc-Co, etc., and the dies 32, 33, and 34 are preferably made of ultrafine particles. Further, the abutment and fixing of the both end portions 34a of the second die 34 and the first die 33 are fixed by inserting a lock pin 38 or the like from the first die 33 to the second die 34 as shown in FIG. You can do it. Further, the side surface 34a of the second die 34 is disposed in contact with the first die 33, but the other side surfaces 34b and 34d may have a clearance g between the first dies 33, or one side may be the first side. It may be in contact with one die 33. In the structure as shown in FIG. 2B, it is sufficient that the clearance g exists between at least the side surface 34 c and the first die 33.

ここで、前記セラミック粉体充填孔37の側面のうち、セラミックコア1の短辺方向の突出部端面2aに相当する部位に第二ダイ34を配置して構成され、該第二ダイ34およびセラミック粉体充填孔37の領域外を第一ダイ33で構成し配置したことにより、セラミックコア1の脚部2の突出部端面2aの角2bを形成するセラミック粉体充填孔37の突出部端面37aの角37bをシャープエッジに形成できる。   Here, a second die 34 is arranged in a portion corresponding to the projecting portion end surface 2a in the short side direction of the ceramic core 1 in the side surface of the ceramic powder filling hole 37. The projecting portion end surface 37a of the ceramic powder filling hole 37 forming the corner 2b of the projecting portion end surface 2a of the leg portion 2 of the ceramic core 1 by constituting and arranging the first die 33 outside the region of the powder filling hole 37. The corner 37b can be formed as a sharp edge.

例えば、第一ダイ33と第二ダイ34とが一体的に構成されているダイ32であれば、図示しないが、細線0.7mmφのワイヤー放電加工で行っても、曲率半径45μm程度の曲面が形成されることは避けられないため、得られた製品の前記突出部端面の角の曲面も曲率半径45μm程度と大きな値となる。   For example, in the case of the die 32 in which the first die 33 and the second die 34 are integrally configured, a curved surface with a radius of curvature of about 45 μm is formed even if it is performed by wire electric discharge machining with a thin wire 0.7 mmφ. Since it is unavoidable that it is formed, the curved surface of the end face of the obtained product has a large curvature radius of about 45 μm.

また、第一ダイ33と第二ダイ34間にクリアランスgを設けると、ロックピン38等を第一ダイ33と第二ダイ34に嵌挿させ固定させたことにより、ダイ32の組み立て時において、セラミック粉体充填孔37の突出部端面37aの角37bの部位に相当する第1ダイ33の突出部の潰れを防止できる。さらに、当接手段が焼き嵌め、圧着、ロウ付け等によらないために、ダイ32の寸法精度への影響を最小にできるため、極小セラミックコア1のセラミック粉末成形装置31に要求される寸法精度±5μm以下を満足できる。一方で、第一ダイ33、第二ダイ34のいずれかが摩耗等により交換が必要となったときは、最小限のパーツのみを交換すれば良く、メンテナンスの簡便さが図られる。ここで、クリアランスgは2μm以上あれば足り、特に限定するものではない。また、セラミック成形体10を同時に複数個成型することが合理的であり、何個成型とするかは適宜選択すれば良い。   Further, when the clearance g is provided between the first die 33 and the second die 34, the lock pin 38 and the like are fitted and fixed to the first die 33 and the second die 34, so that when the die 32 is assembled, The protrusion of the first die 33 corresponding to the corner 37b of the protrusion end surface 37a of the ceramic powder filling hole 37 can be prevented from being crushed. Furthermore, since the contact means is not shrink fit, crimping, brazing, etc., the influence on the dimensional accuracy of the die 32 can be minimized, so that the dimensional accuracy required for the ceramic powder molding apparatus 31 of the micro ceramic core 1 is achieved. It can satisfy ± 5 μm or less. On the other hand, when either the first die 33 or the second die 34 needs to be replaced due to wear or the like, only the minimum parts need be replaced, and the maintenance can be simplified. Here, the clearance g is not particularly limited as long as it is 2 μm or more. Further, it is reasonable to mold a plurality of ceramic molded bodies 10 at the same time, and the number of the ceramic molded bodies 10 may be appropriately selected.

尚、図3(a)に本発明の他の実施例であるセラミック粉末成形装置31のダイ32の平面図を示している。これは、セラミックコア1の脚部2となる両端の突出部端面2aに相当するセラミック粉体充填孔37の軸a方向に対し左右いずれかの一対の突出部端面37aに第二ダイ34を当接したものである。これにより得られたセラミックコア1は、図3(b)に示すように、先の第二ダイ34で形成された一対の脚部2の突出部端面2aに電極12を形成すればよいため、電極12の位置決めを容易にするとともに、第二ダイ34を2つ設置すればよく、セラミック粉体成形装置31を安価にできるという利点もある。   FIG. 3A shows a plan view of a die 32 of a ceramic powder forming apparatus 31 which is another embodiment of the present invention. This is because the second die 34 is brought into contact with either the left or right pair of projecting portion end surfaces 37a with respect to the axis a direction of the ceramic powder filling hole 37 corresponding to the projecting portion end surfaces 2a at both ends to be the leg portions 2 of the ceramic core 1. It is in contact. As shown in FIG. 3B, the ceramic core 1 thus obtained is only required to form the electrodes 12 on the projecting portion end faces 2a of the pair of leg portions 2 formed by the second die 34. While positioning the electrode 12 is easy, it is only necessary to install two second dies 34, and there is an advantage that the ceramic powder molding apparatus 31 can be made inexpensive.

次に、上記したセラミック粉末成形装置31を用いた本発明のセラミックコアの製造方法を説明する。   Next, the manufacturing method of the ceramic core of this invention using the above-mentioned ceramic powder shaping | molding apparatus 31 is demonstrated.

セラミック粉体充填孔37にアルミナ等のセラミック粉体9を充填し、上パンチ35と下パンチ36で加圧成形してセラミック成形体10を得る。該セラミック成形体10を所
定の焼成温度で焼成した後に、バレル処理することにより所望のセラミックコア1を作製する。ここで、バレル処理の条件は、少なくとも水および製品となるセラミックコア1を混在させて遠心バレル装置に投入してバレル処理するのが好ましい。これは、水とセラミックコア1に研磨剤を添加してバレル処理すると、角2bおよび稜線2cに大きな曲面を形成する場合がある。即ち、本発明のセラミックコア1は長手寸法1.1mm以下、短手寸法0.6mm以下という極小寸法を有していることから、通常のバレル処理で使用される研磨剤の効果をセラミックコア1自体に持たせることにある。よって、前記研磨剤を使用することなくバレル処理することにより、セラミックコア1の付着物の除去とともに、適度な曲面に制御しやすくなる。尚、バレル処理において、流体に適度な攪拌力を付加してバレル処理時間を短縮するために、曲面形成に作用しない程度のメディアを添加してもよい。
The ceramic powder filling hole 37 is filled with ceramic powder 9 such as alumina, and press-molded by the upper punch 35 and the lower punch 36 to obtain the ceramic molded body 10. After firing the ceramic molded body 10 at a predetermined firing temperature, barrel processing is performed to produce a desired ceramic core 1. Here, it is preferable that the barrel treatment is carried out by mixing at least water and the ceramic core 1 as a product and introducing it into a centrifugal barrel device for barrel treatment. In some cases, when an abrasive is added to water and the ceramic core 1 and barrel treatment is performed, large curved surfaces are formed at the corners 2b and the ridgeline 2c. That is, since the ceramic core 1 of the present invention has a minimum dimension of 1.1 mm or less in the longitudinal dimension and 0.6 mm or less in the short dimension, the effect of the abrasive used in the normal barrel processing is reduced. It is to have it in itself. Therefore, by performing barrel treatment without using the abrasive, it is easy to control the surface of the ceramic core 1 to an appropriate curved surface as well as removing the deposits. In addition, in the barrel processing, in order to shorten the barrel processing time by applying an appropriate stirring force to the fluid, media that do not affect the curved surface formation may be added.

つぎに、図4に本発明のセラミックコア1を用い、セラミックコア1の少なくとも設置面となる一対の短手方向の脚部2の突出部端面2aに電極12を形成した本発明のチップ状電子部品11の側面図を示す。前述したように、前記セラミックコア1の脚部2の突出部端面2aにコの字状に電極12を形成した場合、角2bの曲率半径R1が小さいので、電極12の厚みtもバラツキが少なく、かつ、突出部端面2aの直線部2dが十分確保されているために、設置面として基板導体面へ実装したときに、十分な接着強度を確保できる。さらに、コア芯部3の長さXが極小のセラミックコア1であっても十分大きく、したがって回路形成有効領域3aも大きくとれる。さらには、基板面に対して鉛直方向に回路形成ができるため、回路集積密度を向上することも可能となる。   Next, the chip-shaped electron of the present invention in which the ceramic core 1 of the present invention is used in FIG. 4 and the electrodes 12 are formed on the projecting portion end surfaces 2a of the pair of short legs 2 serving as the installation surfaces of the ceramic core 1 is shown. A side view of the part 11 is shown. As described above, when the electrode 12 is formed in a U-shape on the projecting portion end surface 2a of the leg portion 2 of the ceramic core 1, the curvature radius R1 of the corner 2b is small, so that the thickness t of the electrode 12 is also less varied. And since the linear part 2d of the protrusion part end surface 2a is fully ensured, when it mounts on a board | substrate conductor surface as an installation surface, sufficient adhesive strength is securable. Furthermore, even if the length X of the core core portion 3 is a very small ceramic core 1, it is sufficiently large, so that the circuit formation effective region 3a can be made large. Furthermore, since the circuit can be formed in a direction perpendicular to the substrate surface, the circuit integration density can be improved.

また、チップ状電子部品11をチップインダクタとして用いれば、コア芯部3と脚部2との境界における曲率半径R2が小さいことから、コア芯部3の断面の寸法精度が高く、従って、巻き線を巻回した場合はその長さバラツキが小さく、また、メッキ24を形成し、レーザー等でエッチングしコイル状にした場合でも、メッキ24の厚みバラツキが抑えられ、結果的にインダクタンス値のバラツキを小さくできるのである。さらに、前記巻き線方式においては、その終端の引き出し線を脚部2の突出部端面2aの電極12に付設するが、セラミックコア1の脚部2の突出部端面2aの稜線2cが過度なシャープエッジでないために、引き出し線が断線するという問題を防止できる。   Moreover, if the chip-shaped electronic component 11 is used as a chip inductor, the radius of curvature R2 at the boundary between the core core portion 3 and the leg portion 2 is small, so that the dimensional accuracy of the cross section of the core core portion 3 is high. When the wire is wound, the length variation is small, and even when the plating 24 is formed and etched with a laser or the like to form a coil shape, the variation in the thickness of the plating 24 can be suppressed, resulting in a variation in inductance value. It can be made smaller. Further, in the winding method, the terminal lead wire is attached to the electrode 12 on the projecting portion end surface 2a of the leg portion 2, but the ridge line 2c of the projecting portion end surface 2a of the leg portion 2 of the ceramic core 1 is excessively sharp. Since it is not an edge, the problem that the lead wire is disconnected can be prevented.

本発明のセラミックコアを以下の方法で作成した。   The ceramic core of the present invention was prepared by the following method.

先ず、本発明のセラミックコアを作製する際に使用するセラミック粉末成形装置31は、図2に示すように、ダイ32に設けられたセラミック粉体充填孔37の上方、および下方にそれぞれ上パンチ35と下パンチ36とを設置し、上パンチ35と下パンチ36とが相対的に連動してセラミック粉体充填孔37に充填されたセラミック粉体を加圧成形するものである。また、ダイ32は2つのダイから構成されており、ダイ32に設けられたセラミック粉体充填孔37の側面のうち、成形されるセラミックコア1の短辺方向の突出部端面2aに相当する部位に第二ダイ34が配置され、該第二ダイ34およびセラミック粉体充填孔37の領域外を第一ダイ33で構成されている構造になっている。また、第一ダイ33、第二ダイ34、上パンチ35、および下パンチ36の材質は、いずれも超微粒子径のWC超硬合金である。   First, as shown in FIG. 2, the ceramic powder molding apparatus 31 used when producing the ceramic core of the present invention has an upper punch 35 above and below the ceramic powder filling hole 37 provided in the die 32, respectively. The lower punch 36 is installed, and the upper punch 35 and the lower punch 36 are relatively interlocked to press-mold the ceramic powder filled in the ceramic powder filling hole 37. The die 32 is composed of two dies. Of the side surfaces of the ceramic powder filling hole 37 provided in the die 32, a portion corresponding to the projecting portion end surface 2 a in the short side direction of the ceramic core 1 to be molded. The second die 34 is disposed in the first die 33 outside the area of the second die 34 and the ceramic powder filling hole 37. The materials of the first die 33, the second die 34, the upper punch 35, and the lower punch 36 are all WC cemented carbides having an ultrafine particle diameter.

次に、Al96質量%のアルミナと残部がSiO、MgO、CaOからなる焼結助剤にさらに樹脂バインダーを混合したセラミック粉体9を、プレス装置にセットされたセラミック粉末成形装置31のダイ32に設けられたセラミック粉体孔37に充填し、上パンチ35と下パンチ36で上記セラミック粉体9を約120〜130MPaで加圧成形する。 Next, a ceramic powder molding device in which ceramic powder 9 in which resin binder is further mixed with a sintering aid composed of 96 mass% Al 2 O 3 alumina and the balance being SiO 2 , MgO, and CaO is set in a press device. The ceramic powder hole 37 provided in the die 32 of 31 is filled, and the ceramic powder 9 is pressure-formed at about 120 to 130 MPa by the upper punch 35 and the lower punch 36.

上記で得られたセラミック成形体を1600℃で焼成し、その後、遠心バレル装置に焼成したセラミックコア1と水をポットに投入し、遠心バレル装置内に前記ポットを設置し、回転数60rpmで6時間処理することによって、図1(a)に示すように、長手寸法L=約0.5mm、短手寸法Y=約0.3mm、脚2の突出部先端2aの幅D=約0.1mmであるH型形状の本発明のセラミックコア1を作製した。   The ceramic molded body obtained above was fired at 1600 ° C., then the fired ceramic core 1 and water were put into a pot, the pot was placed in the centrifugal barrel device, and the rotational speed was 60 rpm. By performing the time processing, as shown in FIG. 1 (a), the longitudinal dimension L = about 0.5 mm, the short dimension Y = about 0.3 mm, and the width D of the protrusion tip 2a of the leg 2 = about 0.1 mm. An H-shaped ceramic core 1 of the present invention was produced.

(実施例1)
上記の製造方法で得られた本発明のセラミックコア1について、角2b、稜線2cの曲率半径R1、および直線部2dの長さを検証した。尚、本発明のセラミックコア1は、前記バレル条件の設定により角2b、稜線2cの曲率半径R1が15μm程度となるように作製した。
Example 1
About the ceramic core 1 of this invention obtained by said manufacturing method, the corner | angular 2b, the curvature radius R1 of the ridgeline 2c, and the length of the linear part 2d were verified. The ceramic core 1 of the present invention was produced so that the radius of curvature R1 of the corner 2b and the ridgeline 2c was about 15 μm by setting the barrel conditions.

また、比較例として、図5(a)、(b)に示すように0.7mmφの細線ワイヤー放電加工で作製したダイ132を備えたセラミック粉末成形装置131を用いてセラミックコアを作製した。また、材質はダイ132、上パンチ135、下パンチ136のいずれもWC超硬合金を使用している。尚、ダイ132は、成形されるセラミックコアの突出部端面102aの角102b、稜線102cの曲率半径R1が最小となるように精密加工したものを使用した。そして、セラミック粉体の材料、セラミック成形体の焼成条件、焼成後のバレル条件は本発明の実施例と同一とし、また、セラミックコアの長手寸法L、短手寸法Y、突出部先端2aの幅D、および形状は本発明の実施例と同等になるように作製した。   In addition, as a comparative example, a ceramic core was manufactured using a ceramic powder molding apparatus 131 including a die 132 manufactured by 0.7 mmφ thin wire electric discharge machining as shown in FIGS. 5 (a) and 5 (b). In addition, the material of the die 132, the upper punch 135, and the lower punch 136 is WC cemented carbide. The die 132 used was precisely machined so that the corner 102b of the protruding end surface 102a of the ceramic core to be molded and the curvature radius R1 of the ridgeline 102c were minimized. The material of the ceramic powder, the firing condition of the ceramic molded body, and the barrel condition after firing are the same as those of the embodiment of the present invention, and the longitudinal dimension L, the lateral dimension Y of the ceramic core, and the width of the protrusion tip 2a D and the shape were made to be equivalent to those of the example of the present invention.

以上の条件で本発明の実施例、比較例ともに試料数を5個ずつ作製し、本発明の実施例の試料番号を1〜5、比較例の試料番号を6〜10とし、それぞれの長手寸法L、脚部の突出部端面の幅D、直線部長さ2d、102d、角並びに稜線の曲率半径R1の測定を行った。結果は表1に示すとおりである。   Under the above conditions, 5 samples were prepared for each of the examples and comparative examples of the present invention, the sample numbers of the examples of the present invention were 1 to 5, and the sample numbers of the comparative examples were 6 to 10, respectively. L, the width D of the protrusion end surface of the leg, the straight line lengths 2d and 102d, the corners, and the curvature radius R1 of the ridgeline were measured. The results are as shown in Table 1.

Figure 2011223025
Figure 2011223025

表1から解るように、比較例であるセラミックコアは、突出部端面102aの角102b、稜線102cの曲率半径R1を最小となるようにセラミック粉末成形装置131を設定したものの、作製されたセラミックコア101の角102bにおける曲率半径R1は平均値で49μmと大きく、その結果、突出部端面102aの角102b間に存在する直線部102dは平均値で0.001mmであり実質的に直線部102dを設けることができなかった。   As can be seen from Table 1, the ceramic core according to the comparative example was prepared by setting the ceramic powder forming apparatus 131 so that the curvature radius R1 of the corner 102b and the ridgeline 102c of the protruding portion end surface 102a was minimized. The radius of curvature R1 at the corner 102b of 101 is as large as 49 μm on average, and as a result, the straight portion 102d existing between the corners 102b of the protrusion end surface 102a has an average value of 0.001 mm and is substantially provided with a straight portion 102d. I couldn't.

これに対し、本発明の実施例であるセラミックコア1は、突出部端面2aの角2b、稜
線2cの曲率半径R1は設定値に近い値に作製できたとともに、脚部2の突出部端面2aの角2b間の直線部2dは平均値で0.067mmであり、脚部2の直線部2dを十分に確保できた。
On the other hand, in the ceramic core 1 according to the embodiment of the present invention, the corner radius 2b of the projecting portion end surface 2a and the curvature radius R1 of the ridge line 2c can be made close to the set values, and the projecting portion end surface 2a of the leg portion 2 can be obtained. The straight portion 2d between the corners 2b was 0.067 mm on average, and the straight portion 2d of the leg 2 was sufficiently secured.

(実施例2)
上記した製造方法で作製した突出部端面の角および稜線に様々な曲率半径R1を有するセラミックコアに、セラミックコア1における脚部2の突出部端面2aに電極12を形成し、該電極12を形成したチップ状電子部品の外観検査とともに、電極12の基板に対する接着強度の確認試験を行った。さらに、巻き線123をコア芯部3に巻き、その引き出し線の脚部2の突出部端面2aの稜線2cにおける断線発生率の確認試験を行った。
(Example 2)
The electrode 12 is formed on the projecting portion end surface 2a of the leg portion 2 of the ceramic core 1 on the ceramic core having various radii of curvature R1 at the corners and ridgelines of the projecting portion end surface produced by the manufacturing method described above. Along with the appearance inspection of the chip-shaped electronic component, a test for confirming the adhesive strength of the electrode 12 to the substrate was performed. Furthermore, the winding wire 123 was wound around the core core part 3, and the confirmation test of the disconnection incidence rate in the ridgeline 2c of the protrusion part end surface 2a of the leg part 2 of the lead wire was performed.

ここで、チップ状電子部品を形成するセラミックコア1は、実施例1の本発明のセラミックコアと同様の製造方法で作製した。尚、セラミックコア1の突出部端面2aの角2b、稜線2cの曲率半径R1は、バレル処理を2〜14時間の範囲で微調整した。   Here, the ceramic core 1 forming the chip-shaped electronic component was manufactured by the same manufacturing method as the ceramic core of the present invention of Example 1. In addition, the corner 2b of the protrusion part end surface 2a of the ceramic core 1 and the curvature radius R1 of the ridgeline 2c were finely adjusted in the range of 2 to 14 hours in the barrel treatment.

また、角2b、稜線2cの曲率半径R1が40μmを超える試料に関しては、実施例1の比較例であるセラミックコア101と同様の製造方法で作製した。   In addition, a sample in which the curvature radius R1 of the corner 2b and the ridgeline 2c exceeds 40 μm was manufactured by the same manufacturing method as the ceramic core 101 which is a comparative example of Example 1.

上述した製造方法で作製したセラミックコア1の脚部2の突出部端面2aに、図5に示すように、コの字状の電極12を形成し、コア芯部3に、20μmφのCu線による巻き線23を巻き線機で形成した後、引き出し線を脚部2の突出部端面2aの稜線2cを横架するように引き出してチップ電子部品11を作製した。ここで、電極12は、下地電極材としてCuをディッピング法にて20μm形成し、該Cu上にNiを2μm形成し、さらに、前記Ni上にSnを5μmで形成した。   As shown in FIG. 5, a U-shaped electrode 12 is formed on the projecting portion end surface 2 a of the leg portion 2 of the ceramic core 1 manufactured by the above-described manufacturing method, and the core core portion 3 is formed of 20 μmφ Cu wire. After the winding wire 23 was formed by a winding machine, the lead electronic wire was drawn out so as to cross the ridge line 2c of the protruding portion end surface 2a of the leg portion 2, and the chip electronic component 11 was manufactured. Here, the electrode 12 was formed by forming 20 μm of Cu as a base electrode material by dipping, forming 2 μm of Ni on the Cu, and further forming Sn of 5 μm on the Ni.

上記で作製したチップ状電子部品に施した確認試験を以下のように実施した。   A confirmation test performed on the chip-shaped electronic component produced above was performed as follows.

チップ状電子部品の外観検査は、該チップ状電子部品に電極が形成された突出部端面2aの角2bならびに稜線2cについて、電極12から突出するセラミックコアの露出の有無を顕微鏡にて検査した。   In the appearance inspection of the chip-shaped electronic component, the presence or absence of exposure of the ceramic core protruding from the electrode 12 was inspected with respect to the corner 2b and the ridgeline 2c of the protruding portion end surface 2a where the electrode was formed on the chip-shaped electronic component.

また、チップ状電子部品の基板に対する接着強度の確認試験は、図6に示すように、Cu層42を35μm厚み形成した96質量%のアルミナ基板41に細孔41aを設け、脚部
102間で細孔41aを跨ぐようにチップ状電子部品を設置し、電極12をSn−Pbハ
ンダリフローによりアルミナ基板41にハンダ付けし、チップ状電子部品設置面の背面側から細孔41aを通して加圧ジグ43をチップ状電子部品に押し当てた。その速度は、約
1mm/sec.で加圧加重が5Nに達した段階で10sec.当接保持した衝突試験をした後に、チップ状電子部品の電極12とアルミナ基板41のCu層42間に剥がれがな
いか、顕微鏡で観察した。
In addition, as shown in FIG. 6, a test for confirming the adhesive strength of the chip-shaped electronic component to the substrate is performed by providing a pore 41a in a 96% by mass alumina substrate 41 in which a Cu layer 42 is formed to a thickness of 35 μm. A chip-like electronic component is placed so as to straddle the pore 41a, the electrode 12 is soldered to the alumina substrate 41 by Sn-Pb solder reflow, and the pressure jig 43 is passed through the pore 41a from the back side of the chip-like electronic component placement surface. Was pressed against the chip-shaped electronic component. The speed is about 1 mm / sec. When the pressure load reaches 5N, 10 sec. After a collision test with contact and holding, whether or not there was any peeling between the electrode 12 of the chip-shaped electronic component and the Cu layer 42 of the alumina substrate 41 was observed with a microscope.

また、チップ状電子部品の引き出し線の断線発生率の確認試験は、引き出し線を脚部2の突出部端面2aの稜線2cを横架するように引き出す際に、上記稜線2cを直角方向にコア芯3部の巻き線23に緩みが発生しない程度の強さで引き出し線を引っ張り横架したとき、該引き出し線の断線について、繰り返し実施回数100回当たりにおける巻き線23の断線率を求めた。結果は表2に示すとおりである。   Further, the confirmation test of the disconnection rate of the lead wire of the chip-like electronic component is performed by pulling the lead wire 2c at a right angle when the lead wire is drawn so as to cross the ridge line 2c of the protruding portion end surface 2a. When the lead wire was pulled and stretched with such a strength that no looseness occurred in the winding 23 of the core 3 part, the disconnection rate of the winding 23 was determined per 100 repetitions of the lead wire breakage. The results are as shown in Table 2.

Figure 2011223025
Figure 2011223025

表2から解るように、チップ状電子部品11の電極12とアルミナ基板41のCu層4
2との接着強度の確認試験結果は、脚部2の突出部端面2aの角2bの曲率半径R1が25μmを超えた比較例である試料番号16、17にはCu層42と前記電極12間に剥がれが確認された。
As can be seen from Table 2, the electrode 12 of the chip-like electronic component 11 and the Cu layer 4 of the alumina substrate 41
The results of the test for confirming the adhesive strength with No. 2 are as follows: Sample Nos. 16 and 17, which are comparative examples in which the radius of curvature R1 of the corner 2b of the projecting portion end surface 2a of the leg 2 exceeds 25 μm, are between the Cu layer 42 and the electrode 12 Peeling was confirmed.

また、コア芯部3に巻き線23を巻回し、その引き出し線をセラミックコア1の脚部2の突出部端面2aに稜線2cを横架して引き出す断線発生率の試験においては、稜線2cの曲率半径R1が5μm未満である比較例である試料番号11では2%の割合で引き出し線の断線が発生した。   Further, in the test of the occurrence rate of breakage of the ridge line 2c, the winding wire 23 is wound around the core core part 3, and the lead line is pulled out by extending the ridge line 2c horizontally on the protruding end surface 2a of the leg part 2 of the ceramic core 1. In Sample No. 11, which is a comparative example in which the curvature radius R1 is less than 5 μm, the lead wire was disconnected at a rate of 2%.

以上の結果より、極小のセラミックコアにおいて、脚部の突出部端面の角ならびに稜線の曲率半径が5〜25μmで脚部の幅Dに対し、突出部端面の直線部2dが、少なくともD/2以上確保されていると、前記セラミックコアの脚部に電極を形成し、その部分を設置面とし基板へ接着したとき、十分な接着強度が得られるとともに、突出部端面の角ならびに稜線に少なくとも曲率半径5μm以上の曲面を有することから、引き出し線等がこの角或いは稜線を横架しても断線の発生を防止できるのである。   From the above results, in the extremely small ceramic core, the straight portion 2d of the protrusion end face is at least D / 2 with respect to the width D of the leg with the corner radius of the protrusion and the curvature radius of the ridge line of 5-25 μm. When the above is ensured, when an electrode is formed on the leg portion of the ceramic core and that portion is used as the installation surface and adhered to the substrate, sufficient adhesion strength is obtained, and at least the curvature and the corners and ridge lines of the end surface of the protruding portion are obtained. Since it has a curved surface with a radius of 5 μm or more, the occurrence of disconnection can be prevented even if a lead wire or the like crosses the corner or ridge line.

本発明は、1005ミリサイズ以下で、脚部を有する極小のチップ状電子部品として好適である。   The present invention is suitable as an extremely small chip-shaped electronic component having a leg portion with a size of 1005 mm or less.

1、101:セラミックコア
2.102:脚部
2a、102a:突出部端面
2b、102b:角
2c、102c:稜線
3、103:コア芯部
3a、103a:回路形成有効領域
9:セラミック粉体
10:セラミック成形体
11、111:チップ状電子部品
12、122:電極
23、123:巻き線
124:メッキ
31、131:セラミック粉末成形装置
32、132:ダイ
33:第一ダイ
34:第二ダイ
35:上パンチ
36:下パンチ
136:第一下パンチ
137:第二下パンチ
37:セラミック粉体充填孔
38:ロックピン
41:アルミナ基板
42:Cu層
43:加圧ジグ
DESCRIPTION OF SYMBOLS 1,101: Ceramic core 2.102: Leg part 2a, 102a: Protruding part end surface 2b, 102b: Corner | angular 2c, 102c: Ridge line 3, 103: Core core part 3a, 103a: Circuit formation effective area 9: Ceramic powder 10 : Ceramic molded body 11, 111: Chip-shaped electronic component 12, 122: Electrode 23, 123: Winding 124: Plating 31, 131: Ceramic powder molding apparatus 32, 132: Die 33: First die 34: Second die 35 : Upper punch 36: Lower punch 136: First lower punch 137: Second lower punch 37: Ceramic powder filling hole 38: Lock pin 41: Alumina substrate 42: Cu layer 43: Pressure jig

Claims (8)

コア芯部の両端に脚部を備え、平面視した長手寸法が1.1mm以下、短手寸法が0.6mm以下であるセラミックコアであって、脚部の突出部端面の角および稜線に曲率半径5〜25μmの曲面を有することを特徴とするセラミックコア。 A ceramic core having legs at both ends of the core core and having a longitudinal dimension of 1.1 mm or less and a short dimension of 0.6 mm or less in plan view. A ceramic core having a curved surface with a radius of 5 to 25 μm. 平面視した前記脚部の突出部端面幅をDとしたとき、前記角間に少なくともD/2以上の直線部を有することを特徴とする請求項1記載のセラミックコア。 2. The ceramic core according to claim 1, wherein when the end surface width of the protruding portion of the leg portion in plan view is D, the ceramic core has a straight portion of at least D / 2 between the corners. 平面視した前記セラミックコアの長手寸法をLとしたとき、2D/Lが0.2以上であることを特徴とする請求項1記載のセラミックコア。 2. The ceramic core according to claim 1, wherein 2D / L is 0.2 or more, where L is a longitudinal dimension of the ceramic core in plan view. 請求項1乃至3のいずれかに記載のセラミックコアの製造方法であって、セラミック粉体充填孔を備えたダイと、セラミック粉体を加圧成形するための上パンチならびに下パンチからなるセラミック粉末成形装置を用いて成形する工程と、得られたセラミック成形体を焼成しバレル処理する工程とからなり、前記成形工程で用いるダイは、前記セラミック粉体充填孔の領域外を構成する第一ダイを備え、前記セラミック粉体充填孔の側面のうち、前記セラミックコアの突出部端面に相当する部位に第二ダイを配置し、前記セラミック粉体充填孔にセラミック粉体を充填し、前記上パンチと前記下パンチとで前記セラミック粉体を加圧してセラミック成形体を成形する工程からなるセラミックコアの製造方法。 4. A method for producing a ceramic core according to claim 1, wherein the ceramic powder comprises a die having a ceramic powder filling hole, an upper punch for pressing the ceramic powder, and a lower punch. The die used in the forming step comprises a step of forming using a forming device and a step of firing and barreling the obtained ceramic formed body. A second die is disposed at a portion of the side surface of the ceramic powder filling hole corresponding to the end surface of the projecting portion of the ceramic core, the ceramic powder filling hole is filled with the ceramic powder, and the upper punch And the lower punch pressurizing the ceramic powder to form a ceramic molded body. 前記成形工程で用いるダイは、セラミック粉体充填孔の側面のうち、前記セラミックコアの短手方向の突出部端面に相当する部位の前記第二ダイの側面の両端部位を前記第一ダイに当接させ、前記第二ダイの他の側面と前記第一ダイ間にクリアランスを有することを特徴とする請求項4記載のセラミックコアの製造方法。 The die used in the forming step is such that, of the side surfaces of the ceramic powder filling hole, both end portions of the side surface of the second die corresponding to the end surface of the projecting portion in the short direction of the ceramic core are applied to the first die. 5. The method of manufacturing a ceramic core according to claim 4, wherein a clearance is provided between the other side surface of the second die and the first die. 少なくとも水と前記セラミックコアとを混在させ遠心バレル処理する工程を含むことを特徴とする請求項4記載のセラミックコアの製造方法。 5. The method for producing a ceramic core according to claim 4, further comprising a step of mixing at least water and the ceramic core and performing a centrifugal barrel treatment. 請求項1乃至3のいずれかに記載のセラミックコアに少なくとも設置面となる一対の短手方向の脚部の突出部端面に電極を形成したことを特徴とするチップ状電子部品。 4. A chip-shaped electronic component comprising: a ceramic core according to claim 1, wherein an electrode is formed at least on a projecting portion end surface of a pair of short-side leg portions serving as an installation surface. コア芯部に導体を設け、該導体を巻き線或いはメッキにより螺旋状に巻回したことを特徴とする請求項7記載のチップ状電子部品。 8. A chip-shaped electronic component according to claim 7, wherein a conductor is provided on the core core and the conductor is spirally wound by winding or plating.
JP2011148252A 2011-07-04 2011-07-04 Ceramic core and manufacturing method thereof and chip-shaped electronic components using the same Pending JP2011223025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148252A JP2011223025A (en) 2011-07-04 2011-07-04 Ceramic core and manufacturing method thereof and chip-shaped electronic components using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148252A JP2011223025A (en) 2011-07-04 2011-07-04 Ceramic core and manufacturing method thereof and chip-shaped electronic components using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004130892A Division JP5093975B2 (en) 2004-04-27 2004-04-27 Ceramic core, manufacturing method thereof, and chip-shaped electronic component using the same

Publications (1)

Publication Number Publication Date
JP2011223025A true JP2011223025A (en) 2011-11-04

Family

ID=45039504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148252A Pending JP2011223025A (en) 2011-07-04 2011-07-04 Ceramic core and manufacturing method thereof and chip-shaped electronic components using the same

Country Status (1)

Country Link
JP (1) JP2011223025A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369532A (en) * 2016-05-13 2017-11-21 株式会社村田制作所 The manufacture method of ceramic core, wire wound electronic component and ceramic core
CN109830368A (en) * 2018-10-08 2019-05-31 柳州凯通新材料科技有限公司 A kind of technique of high-speed motor battery core granulating powders
CN110021475A (en) * 2017-12-26 2019-07-16 株式会社村田制作所 Winding core and its manufacturing method, winding core aggregate
CN110581002A (en) * 2018-06-11 2019-12-17 株式会社村田制作所 Coil component
EP3680923A1 (en) * 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
EP3680924A1 (en) * 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
EP3680919A1 (en) * 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
JP2020113644A (en) * 2019-01-11 2020-07-27 京セラ株式会社 Core component, method of manufacturing same, and inductor
US10867737B2 (en) 2017-09-12 2020-12-15 Murata Manufacturing Co., Ltd. Drum core and coil component
US20210104346A1 (en) * 2019-10-08 2021-04-08 Murata Manufacturing Co., Ltd. Coil component and method of manufacturing coil component
JP2021090033A (en) * 2019-12-06 2021-06-10 株式会社村田製作所 Winding core, coil component, and manufacturing method of coil component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319107A (en) * 1987-06-22 1988-12-27 Matsushita Electric Works Ltd Extruder die
JPS6436107U (en) * 1987-08-28 1989-03-06
JPH05275256A (en) * 1992-03-27 1993-10-22 Kyocera Corp Powder press molding method and chip coil manufactured by it
JPH07278607A (en) * 1994-04-14 1995-10-24 Nippon Steel Corp Powder molding method using segmental die
JPH08213719A (en) * 1995-01-31 1996-08-20 Kyocera Corp Ceramic board for chip-like electronic device and production thereof
JP2001035737A (en) * 1999-07-21 2001-02-09 Nippon Carbide Ind Co Inc Ceramic bobbin
JP2003068549A (en) * 2001-08-28 2003-03-07 Sumitomo Special Metals Co Ltd Manufacturing method of ferrite core
JP2004023333A (en) * 2002-06-14 2004-01-22 Hitachi Metals Ltd Non-reciprocal circuit element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319107A (en) * 1987-06-22 1988-12-27 Matsushita Electric Works Ltd Extruder die
JPS6436107U (en) * 1987-08-28 1989-03-06
JPH05275256A (en) * 1992-03-27 1993-10-22 Kyocera Corp Powder press molding method and chip coil manufactured by it
JPH07278607A (en) * 1994-04-14 1995-10-24 Nippon Steel Corp Powder molding method using segmental die
JPH08213719A (en) * 1995-01-31 1996-08-20 Kyocera Corp Ceramic board for chip-like electronic device and production thereof
JP2001035737A (en) * 1999-07-21 2001-02-09 Nippon Carbide Ind Co Inc Ceramic bobbin
JP2003068549A (en) * 2001-08-28 2003-03-07 Sumitomo Special Metals Co Ltd Manufacturing method of ferrite core
JP2004023333A (en) * 2002-06-14 2004-01-22 Hitachi Metals Ltd Non-reciprocal circuit element

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369532A (en) * 2016-05-13 2017-11-21 株式会社村田制作所 The manufacture method of ceramic core, wire wound electronic component and ceramic core
US10867737B2 (en) 2017-09-12 2020-12-15 Murata Manufacturing Co., Ltd. Drum core and coil component
CN110021475A (en) * 2017-12-26 2019-07-16 株式会社村田制作所 Winding core and its manufacturing method, winding core aggregate
CN110021475B (en) * 2017-12-26 2022-01-14 株式会社村田制作所 Method for manufacturing core for winding
CN110581002B (en) * 2018-06-11 2023-06-30 株式会社村田制作所 Coil element
US11823830B2 (en) 2018-06-11 2023-11-21 Murata Manufacturing Co., Ltd. Coil component
JP2019216146A (en) * 2018-06-11 2019-12-19 株式会社村田製作所 Coil component
US11551855B2 (en) 2018-06-11 2023-01-10 Murata Manufacturing Co., Ltd. Coil component
JP7140257B2 (en) 2018-06-11 2022-09-21 株式会社村田製作所 coil parts
JP7021605B2 (en) 2018-06-11 2022-02-17 株式会社村田製作所 Coil parts
CN110581002A (en) * 2018-06-11 2019-12-17 株式会社村田制作所 Coil component
JP2021193755A (en) * 2018-06-11 2021-12-23 株式会社村田製作所 Coil component
CN109830368A (en) * 2018-10-08 2019-05-31 柳州凯通新材料科技有限公司 A kind of technique of high-speed motor battery core granulating powders
EP3696830A1 (en) * 2019-01-11 2020-08-19 Kyocera Corporation Core component, method of manufacturing same, and inductor
JP7173873B2 (en) 2019-01-11 2022-11-16 京セラ株式会社 CORE COMPONENTS, ITS MANUFACTURING METHOD, AND INDUCTORS
JP2020113644A (en) * 2019-01-11 2020-07-27 京セラ株式会社 Core component, method of manufacturing same, and inductor
JP2020113763A (en) * 2019-01-11 2020-07-27 京セラ株式会社 Core component, method of manufacturing the same, inductor, choke coil, noise filter, and transformer
JP2020113764A (en) * 2019-01-11 2020-07-27 京セラ株式会社 Core component, method of manufacturing the same, inductor, choke coil, noise filter, and transformer
EP3680923A1 (en) * 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
US11749441B2 (en) 2019-01-11 2023-09-05 Kyocera Corporation Core component, method of manufacturing same, and inductor
CN111435626A (en) * 2019-01-11 2020-07-21 京瓷株式会社 Core member, method of manufacturing core member, and inductor
CN111435618A (en) * 2019-01-11 2020-07-21 京瓷株式会社 Core member, method of manufacturing core member, and inductor
CN111435627A (en) * 2019-01-11 2020-07-21 京瓷株式会社 Core member, method of manufacturing core member, and inductor
US20200227198A1 (en) * 2019-01-11 2020-07-16 Kyocera Corporation Core component, method of manufacturing same, and inductor
EP3680924A1 (en) * 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
JP7173874B2 (en) 2019-01-11 2022-11-16 京セラ株式会社 CORE COMPONENTS, ITS MANUFACTURING METHOD, AND INDUCTORS
JP2020113643A (en) * 2019-01-11 2020-07-27 京セラ株式会社 Core component, method of manufacturing same, and inductor
EP3680919A1 (en) * 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
US11581120B2 (en) 2019-01-11 2023-02-14 Kyocera Corporation Core component, method of manufacturing same, and inductor
US20210104346A1 (en) * 2019-10-08 2021-04-08 Murata Manufacturing Co., Ltd. Coil component and method of manufacturing coil component
US11923118B2 (en) * 2019-10-08 2024-03-05 Murata Manufacturing Co., Ltd. Coil component and method of manufacturing coil component
JP7172971B2 (en) 2019-12-06 2022-11-16 株式会社村田製作所 WINDING CORE, COIL COMPONENT, AND COIL COMPONENT MANUFACTURING METHOD
JP2021090033A (en) * 2019-12-06 2021-06-10 株式会社村田製作所 Winding core, coil component, and manufacturing method of coil component

Similar Documents

Publication Publication Date Title
JP2011223025A (en) Ceramic core and manufacturing method thereof and chip-shaped electronic components using the same
US11887771B2 (en) Electronic component and method for manufacturing electronic component
US10867739B2 (en) Ceramic core, wire-wound electronic component, and method for producing ceramic core
JP7190527B2 (en) Manufacturing method of integrated chip inductor with metal powder core
JP6388426B2 (en) Coil parts manufacturing method
JP6477591B2 (en) Ceramic core, wire wound electronic component, and method for manufacturing ceramic core
CN104681231B (en) Monolithic electronic component and its manufacture method and the plate with the monolithic electronic component
TWI647720B (en) Coil part
US20090029185A1 (en) Magnetic device and manufacturing method thereof
KR20010049529A (en) Method for manufacturing ceramic substrate and non-fired ceramic substrate
JP2012079870A (en) Electronic component
TWI496173B (en) Inductance element
CN109494051A (en) Drum type core and coil component
CN110828108A (en) Magnetic matrix containing metal magnetic particles and electronic component containing the same
CN109273210A (en) Coil device
EP2779182A2 (en) Electronic component and method for manufacturing electronic component
KR102064027B1 (en) Sheet type inductor
JP2010135758A (en) Ferrite molding, ferrite ground body, ferrite magnetic core, manufacturing method, molding method and device, and grinding method and device
JP5093975B2 (en) Ceramic core, manufacturing method thereof, and chip-shaped electronic component using the same
KR20220052886A (en) Coil electronic component
CN114334357A (en) Electronic component, method for manufacturing electronic component, circuit board, and electronic apparatus
JP2012104547A (en) Electronic component and manufacturing method thereof
JP2006019706A (en) Coil-encapsulated dust core manufacturing method and coil encapsulated dust core
CN112562967B (en) Core for inductance component, and method for manufacturing core
JPH05275256A (en) Powder press molding method and chip coil manufactured by it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001