JP2011220159A - Controller of internal combustion engine - Google Patents

Controller of internal combustion engine Download PDF

Info

Publication number
JP2011220159A
JP2011220159A JP2010088598A JP2010088598A JP2011220159A JP 2011220159 A JP2011220159 A JP 2011220159A JP 2010088598 A JP2010088598 A JP 2010088598A JP 2010088598 A JP2010088598 A JP 2010088598A JP 2011220159 A JP2011220159 A JP 2011220159A
Authority
JP
Japan
Prior art keywords
combustion
spark plug
fuel injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010088598A
Other languages
Japanese (ja)
Other versions
JP4852162B2 (en
Inventor
Teruaki Kawakami
輝明 川上
Tetsuya Honda
哲也 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010088598A priority Critical patent/JP4852162B2/en
Publication of JP2011220159A publication Critical patent/JP2011220159A/en
Application granted granted Critical
Publication of JP4852162B2 publication Critical patent/JP4852162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To prevent combustion variation or flame out due to the deterioration of the condition of an ignition plug in a direct injection spark ignition type internal combustion engine forming a gaseous combustion mixture around the ignition plug and carrying out a stratified charge combustion operation.SOLUTION: The controller of the internal combustion engine is provided with a fuel injection valve for directly injecting the fuel to the combustion chamber of the internal combustion engine, a fuel injection quantity control means for controlling the quantity of the fuel injection from the fuel injection valve, an intake flow rate control means for controlling the intake flow rate of air flowing into the combustion chamber, an ignition plug for spark-igniting a gaseous mixture formed of fuel injected from the fuel injection valve and air flowing into the combustion chamber and an ignition plug condition detecting means for detecting the condition of the ignition plug. When it is detected by the ignition plug condition detecting means that the condition of the ignition plug is made worse, the concentration of the gaseous mixture in the combustion chamber is raised while keeping the stratified charge combustion operation.

Description

この発明は、内燃機関の制御装置、特に、点火プラグ近傍に可燃混合気を形成し成層燃焼運転が行われる直噴火花点火方式内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for a direct injection spark ignition internal combustion engine in which a flammable mixture is formed in the vicinity of a spark plug and a stratified combustion operation is performed.

成層燃焼が行われる直噴火花点火式内燃機関では、圧縮行程に於いて内燃機関の燃焼室に直接燃料を噴射して点火プラグ近傍のみに可燃混合気を形成し、成層リーン燃焼を実現することができる。成層リーン燃焼では、点火プラグ近傍に可燃範囲の混合気を存在させ、それ以外の領域は空気が占めているため、内燃機関の出力を制御する場合には点火プラグ近傍の混合気の量を制御するだけでよく、一般的な均質混合気を供給する内燃機関のように吸入混合気量を制御する必要がない。そのため、ポンピングロスに起因する出力損失を低減することができ、燃費改善方策として有効である。   In a direct-injection spark-ignition internal combustion engine in which stratified combustion is performed, fuel is directly injected into the combustion chamber of the internal combustion engine during the compression stroke to form a combustible mixture only in the vicinity of the spark plug, thereby realizing stratified lean combustion. Can do. In stratified lean combustion, an air-fuel mixture in the combustible range exists in the vicinity of the spark plug, and air is occupied in other areas. Therefore, when controlling the output of the internal combustion engine, the amount of the air-fuel mixture in the vicinity of the spark plug is controlled. There is no need to control the amount of intake mixture as in an internal combustion engine that supplies a general homogeneous mixture. Therefore, the output loss due to the pumping loss can be reduced, which is effective as a fuel efficiency improvement measure.

圧縮行程に噴射された燃料は、噴射口から噴射された後に分裂や蒸発とともに空気を取り込みながら、点火プラグ近傍に可燃混合気を形成する。この可燃混合気は、点火プラグの火花放電ギャップに火花放電することで燃焼する。しかし、内燃機関の回転数や負荷といった運転条件が変化することによって燃焼室の温度や吸気流動も変化するので、噴射された燃料の分裂や蒸発の状態も変わり、点火プラグ近傍の混合気形成も変化する。   The fuel injected in the compression stroke forms a combustible air-fuel mixture in the vicinity of the spark plug while taking in air together with splitting and evaporation after being injected from the injection port. This combustible mixture is burned by spark discharge in the spark discharge gap of the spark plug. However, as the operating conditions such as the engine speed and load change, the temperature of the combustion chamber and the intake air flow also change, so the state of splitting and evaporation of the injected fuel also changes, and the mixture formation near the spark plug also occurs. Change.

燃料の分裂や蒸発が進み難く、混合気濃度が可燃範囲より低くなりやすい運転条件が連続的に続いた場合には、点火プラグ近傍に未蒸発の液相燃料が存在しやすくなり、点火プラグに付着した燃料が完全燃焼することなくカーボンとなって点火プラグのくすぶり汚損となる。点火プラグのくすぶり汚損が進行すると、点火プラグの電極間に火花放電用の高電圧を印加しても火花放電ギャップに火花放電せずにリーク電流として流れてしまい、燃焼変動や最悪の場合には失火に陥ってしまう。   When the operating conditions in which fuel splitting or evaporation is difficult to proceed and the mixture concentration tends to be lower than the flammable range continue continuously, non-evaporated liquid phase fuel tends to exist near the spark plug, and the spark plug The adhering fuel becomes carbon without complete combustion, and smoldering fouling of the spark plug. When the smoldering contamination of the spark plug progresses, even if a high voltage for spark discharge is applied between the electrodes of the spark plug, it will flow as a leak current without spark discharge in the spark discharge gap. It falls into misfire.

そこで、従来、燃焼室全体の空燃比を理論空燃比よりも高い空燃比にして成層燃焼を行う筒内噴射式エンジンの制御装置に於いて、点火プラグへのカーボンの付着に起因する点火異常が検出されたときに、成層燃焼運転時よりも空燃比を下げ、且つ少なくとも一部の燃料の噴射タイミングを進ませるカーボン除去運転に切り換えることで、エンジンの運転状態が悪化するのを防ぐようにした装置が開示されている(例えば、特許文献1参照)。   Therefore, conventionally, in an in-cylinder injection engine control apparatus that performs stratified combustion by setting the air-fuel ratio of the entire combustion chamber to be higher than the stoichiometric air-fuel ratio, there is an ignition abnormality caused by carbon adhesion to the spark plug. When detected, switching to carbon removal operation that lowers the air-fuel ratio than at the time of stratified combustion operation and advances the injection timing of at least a part of the fuel, prevents the engine operating condition from deteriorating An apparatus is disclosed (for example, see Patent Document 1).

特許文献1に開示された従来の装置によれば、成層燃焼運転からカーボン除去運転に切り換え、成層燃焼運転時よりも空燃比を下げることで燃焼状態が良くなり、点火プラグに付着したカーボンが自己清浄作用によって自ずと焼却されて点火異常が解消される。   According to the conventional device disclosed in Patent Document 1, the combustion state is improved by switching from the stratified combustion operation to the carbon removal operation and lowering the air-fuel ratio compared to the stratified combustion operation, and the carbon adhering to the spark plug is self-generated. By the cleaning action, it is incinerated by itself and the ignition abnormality is eliminated.

特開平11−125131号公報JP-A-11-125131

特許文献1に開示された従来の技術の場合、点火異常が検出された直後に成層燃焼運転からカーボン除去運転に切り換えるようにしているので、燃費の悪化が大きい。又、点火異常が検出された直後から、燃料の噴射タイミングを均質燃焼となる吸気行程以前に早めており、成層燃焼時よりもポンピングロスに起因する出力損失が多くなり、燃費が悪化する。更に、成層燃焼となる圧縮行程に於いて燃料の噴射タイミングを早めた場合、点火プラグに燃料の噴霧が到達するタイミングが早まるので点火タイミングを変更する必要が生じる。通常、点火タイミングは燃焼効率が最も良いタイミングに設定されているが、点火タイミング変更による燃焼効率の低下分を補う為に燃費は悪化する。   In the case of the conventional technique disclosed in Patent Document 1, since the stratified combustion operation is switched to the carbon removal operation immediately after the ignition abnormality is detected, the fuel consumption is greatly deteriorated. Immediately after the ignition abnormality is detected, the fuel injection timing is advanced before the intake stroke in which homogeneous combustion is performed, and the output loss due to the pumping loss is larger than that in the stratified combustion, and the fuel consumption is deteriorated. Further, when the fuel injection timing is advanced in the compression stroke that is stratified combustion, the timing at which the fuel spray reaches the spark plug is advanced, so that it is necessary to change the ignition timing. Normally, the ignition timing is set to the timing at which the combustion efficiency is the best, but the fuel consumption deteriorates to compensate for the decrease in combustion efficiency due to the ignition timing change.

この発明は、従来の装置に於ける前述のような課題を解決するためになされたものであって、点火プラグのくすぶり汚損によって燃焼が不安定となった際に、燃費の悪化を最小限に抑制しつつ点火プラグを正常な状態に復帰させて燃焼状態を安定させることができる内燃機関の制御装置を提供することを目的とする。   The present invention has been made to solve the above-described problems in conventional devices, and minimizes deterioration in fuel consumption when combustion becomes unstable due to smoldering fouling of a spark plug. An object of the present invention is to provide a control apparatus for an internal combustion engine that can stabilize the combustion state by returning the spark plug to a normal state while suppressing the ignition plug.

この発明による内燃機関の制御装置は、内燃機関の燃焼室に直接燃料を噴射する燃料噴射弁と、前記燃料噴射弁から噴射される燃料量を制御する燃料噴射量制御手段と、前記燃焼室に吸入する空気の吸気流量を制御する吸気流量制御手段と、前記燃料噴射弁から噴射された燃料と燃焼室に吸入する空気で形成される可燃混合気に火花点火する点火プラグと、前記点火プラグの状態を検出する点火プラグ状態検出手段とを備え、前記点火プラグの近傍に形成された可燃混合気に前記点火プラグの火花点火により成層燃焼運転を行うようにした直噴火花点火式内燃機関であって、前記点火プラグ状態検出手段により前記点火プラグの状態悪化を検出した場合は、前記成層燃焼運転のまま、前記燃焼室の混合気濃度を高めるようにしたものである。   An internal combustion engine control apparatus according to the present invention includes a fuel injection valve that directly injects fuel into a combustion chamber of the internal combustion engine, a fuel injection amount control means that controls the amount of fuel injected from the fuel injection valve, An intake flow rate control means for controlling the intake flow rate of the intake air, an ignition plug that sparks and ignites a combustible air-fuel mixture formed by the fuel injected from the fuel injection valve and the air sucked into the combustion chamber, A direct-injection spark-ignition internal combustion engine that includes a spark plug state detection means for detecting a state, and that performs a stratified combustion operation on the combustible air-fuel mixture formed in the vicinity of the spark plug by spark ignition of the spark plug. When the ignition plug state detection means detects the deterioration of the ignition plug state, the mixture concentration in the combustion chamber is increased while the stratified combustion operation is being performed.

この発明による内燃機関の制御装置によれば、点火プラグ状態検出手段により点火プラグの状態悪化を検出した場合は、成層燃焼運転のまま、燃焼室の混合気濃度を高めるようにしたので、点火プラグ近傍の混合気濃度を高めることで点火プラグ近傍の燃焼が良くなり、点火プラグに付着したカーボンが自己清浄作用によって自ずと焼却されるので、燃費の悪化を抑制しつつ点火プラグのくすぶり汚損を解消し、燃焼変動や失火のない良好な燃焼を得ることができる。   According to the control device for an internal combustion engine according to the present invention, when the deterioration of the ignition plug state is detected by the ignition plug state detection means, the mixture concentration in the combustion chamber is increased while the stratified combustion operation is maintained. By increasing the concentration of the air-fuel mixture in the vicinity, combustion near the spark plug is improved, and the carbon adhering to the spark plug is naturally incinerated by the self-cleaning action, thereby eliminating smoldering fouling of the spark plug while suppressing fuel consumption deterioration. Good combustion without combustion fluctuations and misfires can be obtained.

この発明の実施の形態1及び実施の形態2による内燃機関の制御装置を示す概略構成図である。It is a schematic block diagram which shows the control apparatus of the internal combustion engine by Embodiment 1 and Embodiment 2 of this invention. この発明の実施の形態1及び実施の形態2による内燃機関の制御装置に於けるECUの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of ECU in the control apparatus of the internal combustion engine by Embodiment 1 and Embodiment 2 of this invention. この発明の実施の形態1及び実施の形態2による内燃機関の制御装置に於ける成層燃焼実行時の燃料噴射タイミングでの燃料噴霧形状を示す説明図である。It is explanatory drawing which shows the fuel spray shape in the fuel-injection timing at the time of stratified combustion execution in the control apparatus of the internal combustion engine by Embodiment 1 and Embodiment 2 of this invention. この発明の実施の形態1による内燃機関の制御装置に於ける制御内容を示すフローチャートである。It is a flowchart which shows the control content in the control apparatus of the internal combustion engine by Embodiment 1 of this invention.

点火プラグ正常時とくすぶり汚損時のイオン電流値波形を説明する説明図である。It is explanatory drawing explaining the ion current value waveform at the time of a spark plug normal, and the time of smoldering pollution. この発明の実施の形態2による内燃機関の制御装置に於ける制御内容を示すフローチャートである。It is a flowchart which shows the control content in the control apparatus of the internal combustion engine by Embodiment 2 of this invention. この発明の実施の形態2による内燃機関の制御装置に於ける排気温度と燃焼温度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the exhaust temperature in the control apparatus of the internal combustion engine by Embodiment 2 of this invention, and combustion temperature. この発明の実施の形態2による内燃機関の制御装置に於ける燃焼温度に基づく補正量を示す図である。It is a figure which shows the corrected amount based on the combustion temperature in the control apparatus of the internal combustion engine by Embodiment 2 of this invention.

実施の形態1.
図1は、この発明の実施の形態1及び実施の形態2による内燃機関の制御装置を示す概略構成図である。図1に示す内燃機関は、直噴火花点火式内燃機関であり、内燃機関本体1には、複数の気筒を備えているが、説明の便宜上、一つの気筒のみを図示している。図1に於いて、内燃機関本体1には、燃焼室2を往復運動するピストン3を備え、往復運動することにより吸気弁9を経由して燃焼室2へ空気を導入し、また混合気の燃焼圧力を運動エネルギーに変換し、さらに燃焼後の既燃ガスを排気弁8から排出する。内燃機関本体1には、吸気弁9及び排気弁8を介して、吸気管4及び排気管5が接続されている。燃料噴射弁10は、内燃機関本体1に設けられており、加圧された燃料を燃焼室2に直接噴射する。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram showing an internal combustion engine control apparatus according to Embodiments 1 and 2 of the present invention. The internal combustion engine shown in FIG. 1 is a direct-injection spark ignition internal combustion engine, and the internal combustion engine main body 1 includes a plurality of cylinders, but only one cylinder is shown for convenience of explanation. In FIG. 1, an internal combustion engine body 1 is provided with a piston 3 that reciprocates in a combustion chamber 2. By reciprocating, air is introduced into the combustion chamber 2 via an intake valve 9, The combustion pressure is converted into kinetic energy, and the burned gas after combustion is discharged from the exhaust valve 8. An intake pipe 4 and an exhaust pipe 5 are connected to the internal combustion engine body 1 via an intake valve 9 and an exhaust valve 8. The fuel injection valve 10 is provided in the internal combustion engine body 1 and directly injects pressurized fuel into the combustion chamber 2.

排気管5に於ける排気弁8の近傍には、燃焼温度を推定するための排気温度を検出する排気温度センサ6が設けられている。吸気管4の途中に設けられたスロットルバルブ7は、例えばDCモータ若しくはステッピングモータ等により開閉量が制御され、燃焼室2への吸気流量を制御する。   In the vicinity of the exhaust valve 8 in the exhaust pipe 5, an exhaust temperature sensor 6 for detecting the exhaust temperature for estimating the combustion temperature is provided. The throttle valve 7 provided in the middle of the intake pipe 4 is controlled in its opening / closing amount by, for example, a DC motor or a stepping motor, and controls the intake flow rate to the combustion chamber 2.

前述の燃料噴射弁10は、エンジンコントロールユニット(以下、ECUと称する)12からの信号に基づいて開弁し、燃焼室2へ加圧燃料を直接噴射する。噴射された燃料と吸気管4から流入する空気により燃焼室2に成層混合気が形成され、点火プラグ11により着火される。   The fuel injection valve 10 is opened based on a signal from an engine control unit (hereinafter referred to as ECU) 12 and directly injects pressurized fuel into the combustion chamber 2. A stratified mixture is formed in the combustion chamber 2 by the injected fuel and air flowing from the intake pipe 4, and is ignited by the spark plug 11.

車室内等に設けられたECU12は、燃料噴射弁10による燃料噴射量を制御する燃料噴射量制御、及び吸気管4からの吸気流量を制御する吸気流量制御等を実行するマイクロコンピュータシステムにより構成されており、入出力インターフェース13、中央演算処理装置14、ROM15、RAM16、駆動回路17を備えている。   The ECU 12 provided in the passenger compartment or the like is constituted by a microcomputer system that executes fuel injection amount control for controlling the fuel injection amount by the fuel injection valve 10, intake air flow control for controlling the intake air flow from the intake pipe 4, and the like. And an input / output interface 13, a central processing unit 14, a ROM 15, a RAM 16, and a drive circuit 17.

ECU12の入力側には、排気温度センサ6、及びその他の各種センサ(図示せず)、スイッチ類(図示せず)が接続されている。入出力インターフェース13に入力された排気温度センサ6及び各種センサの出力は、A/D変換されてECU12内へ取り込まれる
。中央演算処理装置14は、A/D変換された入力信号に基づいて、各種の演算処理を実行する。駆動回路17は、中央演算処理装置14による演算結果に基づいて、各種アクチュエータ用制御信号を出力し、燃料噴射弁10、スロットルバルブ7等を夫々駆動する。
An exhaust temperature sensor 6, other various sensors (not shown), and switches (not shown) are connected to the input side of the ECU 12. Outputs of the exhaust temperature sensor 6 and various sensors input to the input / output interface 13 are A / D converted and taken into the ECU 12. The central processing unit 14 executes various kinds of arithmetic processing based on the A / D converted input signal. The drive circuit 17 outputs various actuator control signals based on the calculation result by the central processing unit 14, and drives the fuel injection valve 10, the throttle valve 7, and the like.

又、点火プラグ11の状態を検出する手段として、燃焼室2で燃焼時に発生するイオンに基づき燃焼状態を検出する為のイオン電流検出回路18が設けられている。燃焼状態が良ければ点火プラグ11の状態も良く、悪ければ点火プラグ11の状態が悪いと判断する。イオン電流検出回路18に設けられたバイアス回路(図示せず)から点火プラグ11にバイアス電圧を印加することで燃焼室2に発生したイオンが流れ、燃焼室2に発生したイオンはイオン電流検出回路18によりイオン電流として検出される。   Further, as means for detecting the state of the spark plug 11, an ion current detection circuit 18 is provided for detecting the combustion state based on ions generated during combustion in the combustion chamber 2. If the combustion state is good, the state of the spark plug 11 is good, and if it is bad, it is determined that the state of the spark plug 11 is bad. By applying a bias voltage to the spark plug 11 from a bias circuit (not shown) provided in the ion current detection circuit 18, ions generated in the combustion chamber 2 flow, and the ions generated in the combustion chamber 2 are ion current detection circuits. 18 is detected as an ion current.

図2は、この発明の実施の形態1及び実施の形態2による内燃機関の制御装置で実行される制御のブロック図であり、点火プラグ状態検出手段121と、燃焼形態切替手段122と、燃焼温度推定手段123と、吸気流量制御手段124と、燃料噴射量制御手段125を備える。   FIG. 2 is a block diagram of the control executed by the control apparatus for an internal combustion engine according to the first and second embodiments of the present invention, and includes a spark plug state detecting means 121, a combustion mode switching means 122, a combustion temperature. An estimation unit 123, an intake air flow rate control unit 124, and a fuel injection amount control unit 125 are provided.

点火プラグ状態検出手段121は、イオン電流検出回路18により検出したイオン電流に基づいて点火プラグ11の状態を検出し、点火プラグ11の状態を示す信号を燃焼形態切替手段122に入力する。燃焼形態切替手段122は、入力された点火プラグ状態検出手段121からの信号が点火プラグ121の状態が悪化していないことを示している場合は、燃焼形態を成層燃焼のままとする信号を吸気流量制御手段124、及び燃料噴射量制御手段125に入力する。燃焼形態を成層燃焼のままとする信号を燃焼形態切替手段122から受けた吸気流量制御手段124と燃料噴射量制御手段125は、夫々、補正量「1.0」を乗算して吸気流量、及び燃料噴射量の演算を行う。   The spark plug state detection unit 121 detects the state of the spark plug 11 based on the ion current detected by the ion current detection circuit 18 and inputs a signal indicating the state of the spark plug 11 to the combustion mode switching unit 122. When the input signal from the spark plug state detection unit 121 indicates that the state of the spark plug 121 has not deteriorated, the combustion mode switching unit 122 takes in a signal to keep the combustion mode as stratified combustion. Input to the flow rate control means 124 and the fuel injection amount control means 125. The intake flow rate control means 124 and the fuel injection amount control means 125 that have received a signal to keep the combustion mode as stratified combustion from the combustion mode switching means 122 respectively multiply the correction amount “1.0” and the intake flow rate, and The fuel injection amount is calculated.

一方、燃焼形態切替手段122に入力された点火プラグ状態検出手段121からの信号が点火プラグ11の状態が悪化していることを示している場合は、燃焼形態切替手段122は、燃焼形態の切り替えを決定し、その切り替えを決定した燃焼形態を示す信号を吸気流量制御手段124、及び燃料噴射量制御手段125に入力する。例えば、燃焼形態切替手段122は、点火プラグの状態が悪化していることを示す信号を受けた場合に、前述の演算に於ける補正回数が20回以下であれば燃焼形態は成層燃焼のままとし、補正回数が20回を超えているなら成層燃焼での点火プラグの回復は困難と判断して、燃焼形態を成層燃焼から均質燃焼に切り替える決定を行い、その切り替えに対応する信号を吸気流量制御手段124と燃料噴射量制御手段125に入力する。   On the other hand, when the signal from the spark plug state detection unit 121 input to the combustion mode switching unit 122 indicates that the state of the spark plug 11 has deteriorated, the combustion mode switching unit 122 switches the combustion mode. And a signal indicating the combustion mode for which switching is determined is input to the intake flow rate control means 124 and the fuel injection amount control means 125. For example, when the combustion mode switching means 122 receives a signal indicating that the state of the ignition plug has deteriorated, the combustion mode remains stratified combustion if the number of corrections in the above calculation is 20 or less. If the number of corrections exceeds 20, it is determined that it is difficult to recover the spark plug in stratified combustion, and the combustion mode is determined to be switched from stratified combustion to homogeneous combustion. This is input to the control means 124 and the fuel injection amount control means 125.

前述の切り替えに対応する信号を受けた吸気流量制御手段124と燃料噴射量制御手段125は、混合気濃度を高めるために、吸気流量と燃料噴射量に予め実験から求めた点火プラグ11の復帰に必要な補正量を乗算して吸気流量と燃料噴射量等を夫々演算する。したがって、燃焼温度推定手段123は省略することができる。又、点火プラグ11の悪化状態を検出した直後から均質燃焼に切り替えるのではなく、成層燃焼のまま点火プラグ近傍の混合気濃度を高めて点火プラグ11の復帰を目指すようにして燃費の悪化を最小限に抑制する。   The intake flow rate control means 124 and the fuel injection amount control means 125, which have received the signal corresponding to the switching described above, return the spark plug 11 to the return of the spark plug 11 previously obtained from experiments in order to increase the mixture concentration. Multiply the necessary correction amount to calculate the intake air flow rate and the fuel injection amount. Therefore, the combustion temperature estimating means 123 can be omitted. Also, instead of switching to homogeneous combustion immediately after detecting the deterioration state of the spark plug 11, the mixture concentration in the vicinity of the spark plug is increased with stratified combustion to aim at the return of the spark plug 11 to minimize the deterioration of fuel consumption. Limit to the limit.

尚、予め実験から求めた補正量に代えて、排気温度センサ6により検出した排気温度に基づいて燃焼温度推定手段123により推定した燃焼温度に応じて吸気流量と燃料噴射量に乗算補正するようにすれば、燃料の分裂や蒸発に寄与する燃焼温度に即した精度の高い補正を行うことができる。この場合は、この発明の実施の形態2に相当する内燃機関の制御装置として後述する。   It should be noted that the intake air flow rate and the fuel injection amount are multiplied and corrected in accordance with the combustion temperature estimated by the combustion temperature estimating means 123 based on the exhaust gas temperature detected by the exhaust gas temperature sensor 6 instead of the correction amount previously obtained from the experiment. By doing so, it is possible to perform highly accurate correction in accordance with the combustion temperature that contributes to fuel splitting and evaporation. This case will be described later as an internal combustion engine control device corresponding to Embodiment 2 of the present invention.

スロットルバルブ7及び燃料噴射弁10は、吸気流量制御手段124及び燃料噴射量制御手段125により夫々補正を反映して演算された吸気流量と燃料噴射量に基づき駆動される。   The throttle valve 7 and the fuel injection valve 10 are driven based on the intake flow rate and the fuel injection amount calculated by reflecting the correction by the intake flow rate control means 124 and the fuel injection amount control means 125, respectively.

以上述べた構成により、点火プラグ11の近傍の混合気濃度を高めることで点火プラグ11の近傍の燃焼が良くなり、点火プラグ11に付着したカーボン等が自己清浄作用によって自ずと焼却されるので、燃費の悪化を最小限に抑制しつつ点火プラグのくすぶり汚損を解消し、燃焼変動や失火のない良好な燃焼を得ることができる。   With the above-described configuration, by increasing the air-fuel mixture concentration in the vicinity of the spark plug 11, combustion in the vicinity of the spark plug 11 is improved, and carbon or the like adhering to the spark plug 11 is naturally incinerated by a self-cleaning action. As a result, smoldering fouling of the spark plug can be solved while minimizing the deterioration of the ignition plug, and good combustion without combustion fluctuation and misfire can be obtained.

ここで、成層燃焼が行われる直噴火花点火式内燃機関での混合気形成について説明する。図3は、この発明の実施の形態1及び実施の形態2による内燃機関の制御装置に於ける成層燃焼実行時の燃料噴射タイミングでの燃料噴霧形状を示す説明図である。図3に於いて、燃焼室2、ピストン3、排気弁8、吸気弁9、燃料噴射弁10、及び点火プラグ11は、図1により説明した通りである。実線により囲む領域19は、燃料噴射弁10から噴射された燃料のうち蒸発不十分で液体噴霧が多く含まれる液相領域を示す。液相領域19の外側を破線で囲む領域20は、液相領域19と同様に噴射された燃料であるが、噴霧の外周部分であり燃料噴霧の分裂と蒸発が進んで燃料が気化した気相領域を示す。   Here, the air-fuel mixture formation in the direct injection spark ignition internal combustion engine in which stratified combustion is performed will be described. FIG. 3 is an explanatory diagram showing a fuel spray shape at the fuel injection timing when stratified combustion is executed in the control apparatus for an internal combustion engine according to the first and second embodiments of the present invention. In FIG. 3, the combustion chamber 2, the piston 3, the exhaust valve 8, the intake valve 9, the fuel injection valve 10, and the spark plug 11 are as described with reference to FIG. A region 19 surrounded by a solid line indicates a liquid phase region in which the fuel injected from the fuel injection valve 10 is insufficiently evaporated and contains a large amount of liquid spray. A region 20 surrounded by a broken line outside the liquid phase region 19 is fuel injected in the same manner as the liquid phase region 19, but is an outer peripheral portion of the spray. Indicates the area.

成層燃焼は、燃料噴射弁10から噴射された燃料を燃料噴射弁10の近傍に設置した点火プラグ11により火花点火する方式である。そのため、点火プラグ11の先端の電極に点火が可能な気相領域20が含まれる必要がある。もし、液相領域19が点火プラグ11の先端の電極に含まれると、混合気はオーバーリッチ状態となり、点火プラグ11の電極が燃料によって濡らされ火花放電が阻害され失火するか、点火しても液相燃料の燃焼により燃焼変動が増加する。逆に、点火プラグ11の先端の電極が気相領域20から離れるとオーバーリーンとなり、オーバーリッチ時と同様に燃焼変動が増加する。   Stratified combustion is a method in which the fuel injected from the fuel injection valve 10 is spark-ignited by a spark plug 11 installed in the vicinity of the fuel injection valve 10. For this reason, the electrode at the tip of the spark plug 11 needs to include the gas phase region 20 that can be ignited. If the liquid phase region 19 is included in the electrode at the tip of the spark plug 11, the air-fuel mixture becomes over-rich, and the electrode of the spark plug 11 is wetted by the fuel and the spark discharge is hindered or misfires. Combustion fluctuations increase due to combustion of liquid phase fuel. On the contrary, when the electrode at the tip of the spark plug 11 is separated from the gas phase region 20, it becomes over lean, and the combustion fluctuation increases as in the case of over rich.

燃焼が不安定な状態では燃焼温度が低くなり、燃料の分裂や蒸発が進まないので気相領域20は狭まり、点火プラグ11の近傍の混合気はオーバーリーンとなる。オーバーリーンが原因で着火性能が低下し、燃焼しにくい液相領域の燃料の一部が点火プラグに付着してくすぶりに至る。   When the combustion is unstable, the combustion temperature is low, and fuel splitting or evaporation does not proceed, so the gas phase region 20 is narrowed and the air-fuel mixture near the spark plug 11 becomes over lean. Due to overlean, the ignition performance is reduced, and a part of the fuel in the liquid phase region that is difficult to burn adheres to the spark plug, resulting in smoldering.

この発明の実施の形態1及び実施の形態2による内燃機関の制御装置では、点火プラグ11が悪化した場合に、燃料噴射量と吸気流量を制御することで混合気濃度を高めて、噴霧の外周部分の燃料が分裂や蒸発する量を増加させるものであり、点火プラグ11の近傍の気相領域20が広がり着火性能が向上する。更に、燃焼室2の混合気濃度を高めることで、燃焼による発生エネルギーが増加して燃焼温度が上昇するので、燃料の蒸発促進効果が向上し可燃範囲となる成層混合気が形成しやすくなり、燃焼状態は良くなる。その結果、燃料の完全燃焼による点火プラグの自己清浄作用は有効に発揮されるので、点火プラグに付着したカーボンは焼き切られてくすぶり汚損を解消できる。   In the control apparatus for an internal combustion engine according to the first and second embodiments of the present invention, when the spark plug 11 deteriorates, the mixture concentration is increased by controlling the fuel injection amount and the intake air flow rate, so that the outer periphery of the spray is increased. This increases the amount of fuel splitting or evaporating, and the gas phase region 20 in the vicinity of the spark plug 11 spreads to improve the ignition performance. Further, by increasing the air-fuel mixture concentration in the combustion chamber 2, the energy generated by combustion increases and the combustion temperature rises, so that the effect of promoting fuel evaporation is improved and a stratified air-fuel mixture that becomes a combustible range is easily formed, The combustion state is improved. As a result, the self-cleaning action of the spark plug due to the complete combustion of the fuel is effectively exhibited, so that the carbon adhering to the spark plug is burned out and smoldering contamination can be eliminated.

以下、この発明の実施の形態1による内燃機関の制御装置について、具体的に説明する。前述したように、点火プラグ11の悪化を検出した場合には、混合気濃度を高めることで点火プラグ11の近傍まで気相領域20を広げて着火性能を向上し、燃焼による発生エネルギーを増加させて燃焼温度を上げる。燃焼温度を上げることで燃料の分裂や蒸発を促進できるので、混合気を可燃範囲に復帰させると共に、燃料の完全燃焼により点火プラグ11を正常な状態に復帰できる。   The internal combustion engine control apparatus according to Embodiment 1 of the present invention will be specifically described below. As described above, when the deterioration of the spark plug 11 is detected, the gas phase region 20 is expanded to the vicinity of the spark plug 11 by increasing the air-fuel mixture concentration to improve the ignition performance, and the generated energy due to combustion is increased. Raise the combustion temperature. By raising the combustion temperature, fuel splitting and evaporation can be promoted, so that the air-fuel mixture can be returned to the combustible range and the spark plug 11 can be returned to the normal state by complete combustion of the fuel.

そこで、先ずは、燃料噴射量を増加すると共に吸気流量を減少させることで混合気濃度を高める。点火プラグ11の悪化検出の直後には燃焼形態を変更せずに、成層燃焼の状態で点火プラグ11の近傍のみの混合気を可燃混合気にして燃費の悪化を最小限に抑制する。成層燃焼状態での補正で改善されないようであれば、燃焼形態を均質燃焼に切り替えることで点火プラグ11の悪化状態からより確実に正常な状態へ回復させる。   Therefore, first, the air-fuel mixture concentration is increased by increasing the fuel injection amount and decreasing the intake flow rate. Immediately after the detection of the deterioration of the spark plug 11, the combustion mode is not changed, and the air-fuel mixture only in the vicinity of the ignition plug 11 in the stratified combustion state is made combustible to suppress the deterioration of fuel consumption to a minimum. If it is not improved by the correction in the stratified combustion state, the combustion mode is switched to the homogeneous combustion, so that the ignition plug 11 is more reliably restored to the normal state from the deteriorated state.

成層燃焼は点火プラグ11の近傍のみに可燃混合気を作るのに対し、均質燃焼は燃焼室2全体を可燃混合気とするので、着火性能が向上する。更に、均質燃焼では燃焼室2全体の空気に対して可燃混合気を作ることになり成層燃焼時よりも燃料噴射量が増加するので、燃焼による発生エネルギーは増加して燃焼温度が高くなる。燃焼温度がより高くなることで、燃料の分裂と蒸発が活発になり、点火プラグ復帰の効果がより大きくなる。   While stratified combustion creates a combustible air-fuel mixture only in the vicinity of the spark plug 11, homogeneous combustion uses the entire combustion chamber 2 as a combustible air-fuel mixture, improving the ignition performance. Further, in the homogeneous combustion, a combustible air-fuel mixture is formed with respect to the air in the entire combustion chamber 2, and the amount of fuel injection is increased as compared to the time of stratified combustion. As the combustion temperature becomes higher, fuel splitting and evaporation become active, and the effect of returning the spark plug becomes larger.

図4は、この発明の実施の形態1による内燃機関の制御装置に於ける制御内容を示すフローチャートである。図4に於いて、先ず、ステップS101によりイオン電流を用いて点火プラグ11の状態を検出する。イオン電流は、主にガソリン等の炭化水素系燃料が燃焼する過程で火炎中にラジカルと称される電荷を帯びた中間生成物に由来して生じるマイクロアンペア程度の微弱な電気の流れである。   FIG. 4 is a flowchart showing the contents of control in the control apparatus for an internal combustion engine according to Embodiment 1 of the present invention. In FIG. 4, first, in step S101, the state of the spark plug 11 is detected using the ion current. The ionic current is a weak electric current of about microampere generated mainly from an intermediate product having a charge called radical in a flame in the course of combustion of a hydrocarbon fuel such as gasoline.

図5は、この発明の実施の形態1及び実施の形態2による内燃機関の制御装置に於ける点火プラグ正常時とくすぶり汚損時のイオン電流値を示す波形図である。図5に於いて、縦軸はイオン電流値、横軸はクランク角を示す。図5に示すように、点火プラグ11のくすぶり汚損時にはリーク電流がイオン電流検出時に重畳する。この点に着目し、図4に於けるステップS101ではイオン電流検出回路18により検出される電流の挙動をモニタすることで点火プラグ11の状態を検出する。   FIG. 5 is a waveform diagram showing ion current values when the ignition plug is normal and when smoldering is dirty in the control apparatus for an internal combustion engine according to the first and second embodiments of the present invention. In FIG. 5, the vertical axis represents the ion current value, and the horizontal axis represents the crank angle. As shown in FIG. 5, the leakage current is superimposed when the ionic current is detected when the spark plug 11 is smoldering dirty. Focusing on this point, in step S101 in FIG. 4, the state of the spark plug 11 is detected by monitoring the behavior of the current detected by the ion current detection circuit 18.

そこで、ステップS101では、混合気が燃焼する際に発生するイオン電流発生期間以外のクランク角度、例えば、図5に示すように、排気行程が終了するクランク角度d1のタイミングに於いて、イオン電流値がイオン電流ピーク値の10[%]に相当する所定の判定値以上であれば点火プラグ11がくすぶり汚損により悪化していると判定し(Y)、所定の判定値未満であれば、点火プラグ11は良好であると判定する(N)。   Therefore, in step S101, the ionic current value is determined at the crank angle other than the ionic current generation period generated when the air-fuel mixture burns, for example, at the timing of the crank angle d1 at which the exhaust stroke ends as shown in FIG. Is greater than or equal to a predetermined determination value corresponding to 10% of the ionic current peak value, it is determined that the spark plug 11 has deteriorated due to smoldering contamination (Y). 11 is determined to be good (N).

ステップS101に於いて点火プラグ11が悪化していないと判断した場合(N)には吸気流量及び燃料噴射量を補正する必要がないので、ステップS102に進んで吸気流量に補正値「1.0」を乗算し、次にステップS103に進んで燃料噴射量に補正量「1.0」を乗算し、次のステップS104に於いて補正回数をリセットして本ルーチンを終了する。ここで、補正回数は燃料噴射量と吸気流量を補正した回数を意味する。   If it is determined in step S101 that the spark plug 11 has not deteriorated (N), it is not necessary to correct the intake air flow rate and the fuel injection amount. And then proceeds to step S103 to multiply the fuel injection amount by the correction amount “1.0”. In the next step S104, the number of corrections is reset and this routine is terminated. Here, the number of corrections means the number of corrections of the fuel injection amount and the intake flow rate.

一方、ステップS101に於いて点火プラグ11の状態が悪化していると判断した場合(Y)は,ステップS105に進み、燃焼形態を均質燃焼に切り替えるべきかを判断する
ため、燃料噴射量と吸気流量の補正回数が例えば20回を超えたか否かを判断する。ステップS105にて補正回数が20回以下と判定した(N)場合は、ステップS106に進んで燃焼形態を成層燃焼のままとし、次にステップS107に進んで混合気濃度を高めるために吸気流量補正として2割吸気流量を減少させるように補正し、次にステップS108に於いて燃料噴射量を2割増量補正する。ステップS107での吸気流量補正、及びステップS108での燃料噴射量補正に於ける補正量は、実験から予め算出した固定値を用いる。
On the other hand, if it is determined in step S101 that the state of the spark plug 11 has deteriorated (Y), the process proceeds to step S105, and in order to determine whether the combustion mode should be switched to homogeneous combustion, the fuel injection amount and the intake air It is determined whether or not the correction number of the flow rate has exceeded 20 times, for example. If it is determined in step S105 that the number of corrections is 20 or less (N), the flow proceeds to step S106, the combustion mode remains as stratified combustion, and then the flow proceeds to step S107 to increase the air-fuel mixture concentration. As shown in FIG. 11, the fuel injection amount is corrected to decrease by 20%, and then in step S108, the fuel injection amount is corrected by 20%. As the correction amount in the intake air flow rate correction in step S107 and the fuel injection amount correction in step S108, a fixed value calculated in advance from an experiment is used.

混合気濃度を高めて分裂や蒸発する燃料量を増加させることで点火プラグ11の近傍に気相領域を形成し、更に燃焼による発生エネルギーが増加するので、燃焼温度が上昇し、燃料噴射時の燃焼室温度も必然的に高まる。点火プラグ11の悪化によって燃焼状態が悪化し、燃焼温度が低下したことで可燃範囲から外れた点火プラグ11の近傍の混合気濃度は、燃焼温度を高めることで可燃範囲に復帰させることができる。次に、ステップS112により補正回数を「1」加算して本ルーチンを終了する。   A gas phase region is formed in the vicinity of the spark plug 11 by increasing the air-fuel mixture concentration to increase the amount of fuel to be split or evaporated, and the generated energy due to combustion increases, so that the combustion temperature rises and fuel injection occurs. The combustion chamber temperature will inevitably increase. The air-fuel mixture concentration in the vicinity of the spark plug 11 deviating from the combustible range due to the deterioration of the spark plug 11 and the combustion state being deteriorated and the combustion temperature being lowered can be returned to the combustible range by increasing the combustion temperature. Next, in step S112, “1” is added to the number of corrections, and this routine is terminated.

一方、ステップS105に於いて補正回数が20回を超えていると判定した場合(Y)に於いて、それでも点火プラグ11の状態が改善されないのであれば、成層燃焼での点火プラグ11の復帰は困難であると判断し、ステップS109に於いて成層燃焼から均質燃焼に切替える。均質燃焼への切替えは、燃料噴射時期を圧縮行程から吸気行程に変更すると共に、ステップS110とステップS111に於いて、夫々吸気流量と燃料噴射量を均質燃焼に即した値に補正し、ステップS112に進んで、補正回数に「1」を加えて処理を終了する。燃焼形態を均質燃焼として、燃焼室全体を可燃混合気にすることで着火性能は向上し、燃料を完全燃焼させることができるので、点火プラグ11に付着したカーボンを確実に焼き切り点火プラグのくすぶりを解消することができる。   On the other hand, if it is determined in step S105 that the number of corrections exceeds 20 (Y), if the state of the spark plug 11 is still not improved, the return of the spark plug 11 in stratified combustion is In step S109, the stratified charge combustion is switched to the homogeneous combustion. For switching to homogeneous combustion, the fuel injection timing is changed from the compression stroke to the intake stroke, and in steps S110 and S111, the intake air flow rate and the fuel injection amount are respectively corrected to values corresponding to the homogeneous combustion, and step S112. Then, the process is terminated by adding “1” to the number of corrections. By making the combustion form homogeneous combustion and making the entire combustion chamber a combustible mixture, the ignition performance is improved and the fuel can be burned completely, so that the carbon adhering to the spark plug 11 is surely burned out and the smoldering of the spark plug is ensured. Can be resolved.

以上のように、この発明の実施の形態1による内燃機関の制御装置によれば、点火プラグ近傍の混合気濃度を高めることで着火性能が向上し燃焼状態を良くすることができるので、点火プラグに付着したカーボンが自己清浄作用によって自ずと焼却されて、点火プラグのくすぶり汚損を解消できる。又、点火プラグの悪化検出直後には成層燃焼で点火プラグの悪化状態からの復帰を実行するので、燃費の悪化を最小限に抑制しつつ、燃焼変動や失火のない良好な燃焼を得ることができる。   As described above, according to the control apparatus for an internal combustion engine according to the first embodiment of the present invention, the ignition performance can be improved and the combustion state can be improved by increasing the mixture concentration in the vicinity of the spark plug. The carbon adhering to the carbon is naturally incinerated by the self-cleaning action, and the smoldering contamination of the spark plug can be eliminated. Immediately after detecting the deterioration of the spark plug, the stratified combustion is performed to recover from the deterioration state of the spark plug, so that it is possible to obtain good combustion without fluctuation of combustion and misfire while minimizing deterioration of fuel consumption. it can.

実施の形態2.
実施の形態1では点火プラグの状態が悪化していると判断した場合は、吸気流量と燃料噴射量の補正を実験から予め算出した固定値としたが、実施の形態2では排気温度から推定した燃焼温度に応じて吸気流量と燃料噴射量の補正を行うことで、燃料の分裂や蒸発に寄与する燃焼温度に即した精度の高い補正を行うようにしたものである。実施の形態1に於ける図1及び図2に示す構成は、実施の形態2に於いても同様である。
Embodiment 2. FIG.
In the first embodiment, when it is determined that the state of the spark plug has deteriorated, the correction of the intake air flow rate and the fuel injection amount is a fixed value calculated in advance from experiments, but in the second embodiment, it is estimated from the exhaust temperature. By correcting the intake air flow rate and the fuel injection amount according to the combustion temperature, a highly accurate correction corresponding to the combustion temperature contributing to fuel splitting and evaporation is performed. The configuration shown in FIG. 1 and FIG. 2 in the first embodiment is the same in the second embodiment.

以下、この発明の実施の形態2による内燃機関の制御装置について説明する。図6は、この発明の実施の形態2による内燃機関の制御装置に於ける制御内容を示すフローチャートである。図6に於いて、ステップS201からステップS204までの点火プラグ11が正常時の処理は、実施の形態1と同様であるので説明を省略する。   Hereinafter, a control apparatus for an internal combustion engine according to Embodiment 2 of the present invention will be described. FIG. 6 is a flowchart showing the control contents in the control apparatus for an internal combustion engine according to the second embodiment of the present invention. In FIG. 6, the processing when the spark plug 11 is normal from step S201 to step S204 is the same as that in the first embodiment, and thus the description thereof is omitted.

ステップS201に於いて、点火プラグ11が悪化していると判断すると、ステップS205にて排気弁8の近傍に設置された排気温度センサ6により検出された排気温度に基づいて燃焼温度を推定する。図7に示す排気温度と燃焼温度との関係に基づいて推定する。即ち、図7はこの発明の実施の形態2による内燃機関の制御装置に於ける排気温度と燃焼温度の関係を示す説明図である。図7に於いて、縦軸は燃焼温度、横軸は排気温度を示す。   If it is determined in step S201 that the spark plug 11 has deteriorated, the combustion temperature is estimated based on the exhaust temperature detected by the exhaust temperature sensor 6 installed in the vicinity of the exhaust valve 8 in step S205. The estimation is based on the relationship between the exhaust temperature and the combustion temperature shown in FIG. That is, FIG. 7 is an explanatory view showing the relationship between the exhaust temperature and the combustion temperature in the control apparatus for an internal combustion engine according to the second embodiment of the present invention. In FIG. 7, the vertical axis represents the combustion temperature, and the horizontal axis represents the exhaust temperature.

次にステップS206に進み、実施の形態1の場合と同様に、燃焼形態を均質燃焼に切り替えるべきかを判断するため、燃料噴射量と吸気流量の補正回数が例えば20回を超えているか否かを判断する。ステップS206に於いて補正回数が20回以下であると判定した場合(N)は、ステップS207に進んで燃焼形態を成層燃焼のままとし、次に、ステップS208とステップS209に於いて、混合気濃度を高めるために、図8を参照して推定した燃焼温度に応じた補正量を導き出し、吸気流量と燃料噴射量に夫々その補正量を乗算して補正する。   Next, the process proceeds to step S206, and in the same manner as in the first embodiment, whether or not the number of corrections of the fuel injection amount and the intake air flow rate exceeds 20, for example, to determine whether the combustion mode should be switched to the homogeneous combustion. Judging. If it is determined in step S206 that the number of corrections is 20 or less (N), the process proceeds to step S207, where the combustion mode is left as stratified combustion, and then in step S208 and step S209, the air-fuel mixture In order to increase the concentration, a correction amount corresponding to the combustion temperature estimated with reference to FIG. 8 is derived, and corrected by multiplying the intake air flow rate and the fuel injection amount by the respective correction amounts.

図8は、この発明の実施の形態2による内燃機関の制御装置に於ける燃焼温度に基づく補正量を示す図であり、縦軸は補正量、横軸は燃焼温度を示している。吸気流量と燃料噴射量の補正量は、図8に示すように、燃焼温度が高ければ小さくし、燃焼温度が低ければ大きく設定する。尚、排気温度以外の筒内圧波形等から燃焼温度を推定して補正量を決定しても良い。   FIG. 8 is a diagram showing a correction amount based on the combustion temperature in the control apparatus for an internal combustion engine according to the second embodiment of the present invention. The vertical axis shows the correction amount, and the horizontal axis shows the combustion temperature. As shown in FIG. 8, the correction amount of the intake flow rate and the fuel injection amount is set to be small when the combustion temperature is high, and is set to be large when the combustion temperature is low. The correction amount may be determined by estimating the combustion temperature from a cylinder pressure waveform other than the exhaust temperature.

一方、ステップS206に於いて補正回数が20回以上であると判断した場合(Y)は、実施の形態1の場合と同様にステップS210からステップS212により燃焼形態を均質燃焼に切り替えて燃料噴射量と吸気流量を均質燃焼に即した値に補正し、ステップS213に進んで補正回数に「1」を加算して処理を終了する。   On the other hand, if it is determined in step S206 that the number of corrections is 20 or more (Y), the fuel injection amount is switched from step S210 to step S212 to homogeneous combustion in the same manner as in the first embodiment. And the intake air flow rate is corrected to a value in line with the homogeneous combustion, the process proceeds to step S213, and "1" is added to the number of corrections, and the process is terminated.

以上のように、この発明の実施の形態2による内燃機関の制御装置によれば、点火プラグ近傍の推定した燃焼温度に応じて精度よく混合気濃度を高めることで燃焼が良くなり、点火プラグに付着したカーボンが自己清浄作用によって自ずと焼却されるので、燃費の悪化を抑制しつつ点火プラグのくすぶり汚損を解消し、燃焼変動や失火のない良好な燃焼を得ることができる。   As described above, according to the control apparatus for an internal combustion engine according to the second embodiment of the present invention, combustion is improved by accurately increasing the mixture concentration according to the estimated combustion temperature in the vicinity of the spark plug. Since the adhering carbon is naturally incinerated by the self-cleaning action, it is possible to eliminate smoldering fouling of the spark plug while suppressing deterioration of fuel consumption, and to obtain good combustion without combustion fluctuation and misfire.

1 内燃機関本体 2 燃焼室
3 ピストン 4 吸気管
5 排気管 6 排気温度センサ
7 スロットルバルブ 8 排気弁
9 吸気弁 10 燃料噴射弁
11 点火プラグ 12 ECU
13 入出力インターフェース 14 中央演算処理装置
15 ROM 16 RAM
17 駆動回路 18 イオン電流検出回路
121 点火プラグ状態検出手段 122 燃焼形態切替手段
123 燃焼温度推定手段 124 吸気流量制御手段
125 燃料噴射量制御手段
DESCRIPTION OF SYMBOLS 1 Internal combustion engine main body 2 Combustion chamber 3 Piston 4 Intake pipe 5 Exhaust pipe 6 Exhaust temperature sensor 7 Throttle valve 8 Exhaust valve 9 Intake valve 10 Fuel injection valve 11 Spark plug 12 ECU
13 I / O interface 14 Central processing unit 15 ROM 16 RAM
17 Drive circuit 18 Ion current detection circuit 121 Spark plug state detection means 122 Combustion mode switching means 123 Combustion temperature estimation means 124 Intake flow rate control means 125 Fuel injection amount control means

Claims (8)

内燃機関の燃焼室に直接燃料を噴射する燃料噴射弁と、
前記燃料噴射弁から噴射する燃料噴射量を制御する燃料噴射量制御手段と、
前記燃焼室に吸入する空気の吸気流量を制御する吸気流量制御手段と、
前記燃料噴射弁から噴射された燃料と燃焼室に吸入する空気とで形成される混合気に火花点火する点火プラグと、
前記点火プラグの状態を検出する点火プラグ状態検出手段と、
を備え、前記点火プラグの近傍に形成された混合気に前記点火プラグの火花点火により成層燃焼運転を行うようにした直噴火花点火式内燃機関であって、
前記点火プラグ状態検出手段により前記点火プラグの状態悪化を検出した場合は、前記成層燃焼運転のまま、前記燃焼室の混合気濃度を高めることを特徴とする内燃機関の制御装置。
A fuel injection valve for directly injecting fuel into the combustion chamber of the internal combustion engine;
Fuel injection amount control means for controlling the fuel injection amount injected from the fuel injection valve;
An intake flow rate control means for controlling an intake flow rate of air sucked into the combustion chamber;
A spark plug that sparks and ignites an air-fuel mixture formed by the fuel injected from the fuel injection valve and the air sucked into the combustion chamber;
Spark plug state detecting means for detecting the state of the spark plug;
A direct-injection spark-ignition internal combustion engine configured to perform stratified combustion operation by spark ignition of the spark plug in an air-fuel mixture formed in the vicinity of the spark plug,
The control apparatus for an internal combustion engine, wherein when the deterioration of the state of the spark plug is detected by the spark plug state detecting means, the mixture concentration in the combustion chamber is increased while the stratified combustion operation is continued.
前記点火プラグ状態検出手段により前記点火プラグの状態悪化を検出した場合は、前記燃料噴射量を増加させるように前記燃料噴射量制御手段による前記燃料噴射量を補正することを特徴とする請求項1に記載の内燃機関の制御装置。   2. The fuel injection amount by the fuel injection amount control unit is corrected so as to increase the fuel injection amount when the ignition plug state detection unit detects deterioration of the state of the spark plug. The control apparatus of the internal combustion engine described in 1. 前記燃料噴射量の補正は、予め求めた前記点火プラグの状態復帰に必要な補正量に基づいて行うことを特徴とする請求項2に記載の内燃機関の制御装置。   3. The control apparatus for an internal combustion engine according to claim 2, wherein the correction of the fuel injection amount is performed based on a correction amount required for returning the state of the spark plug obtained in advance. 前記点火プラグ状態検出手段により前記点火プラグの状態悪化を検出した場合は、前記吸気流量を減少させるように前記吸気流量制御手段による前記吸気流量を補正することを特徴とする請求項1乃至3のうちの何れか一項に記載の内燃機関の制御装置。   4. The intake flow rate by the intake flow rate control unit is corrected so as to decrease the intake flow rate when the ignition plug state detection unit detects deterioration of the state of the spark plug. The control apparatus for an internal combustion engine according to any one of the above. 前記吸気流量の補正は、予め求めた前記点火プラグの状態復帰に必要な補正量に基づいて行うことを特徴とする請求項4に記載の内燃機関の制御装置。   5. The control apparatus for an internal combustion engine according to claim 4, wherein the correction of the intake air flow rate is performed based on a correction amount required for returning the state of the spark plug obtained in advance. 前記内燃機関に於ける前記混合気の燃焼温度を推定する燃焼温度推定手段を備え、
前記点火プラグ状態検出手段により前記点火プラグの状態悪化を検出した場合は、前記燃焼温度推定手段により推定した燃焼温度に基づいて前記燃料噴射量を増加させるように前記燃料噴射量制御手段による前記燃料噴射量を補正することを特徴とする請求項1又は2に記載の内燃機関の制御装置。
Combustion temperature estimating means for estimating the combustion temperature of the air-fuel mixture in the internal combustion engine,
When the deterioration of the ignition plug state is detected by the ignition plug state detection unit, the fuel injection amount control unit increases the fuel injection amount based on the combustion temperature estimated by the combustion temperature estimation unit. The control apparatus for an internal combustion engine according to claim 1 or 2, wherein the injection amount is corrected.
前記内燃機関に於ける前記混合気の燃焼温度を推定する燃焼温度推定手段を備え、
前記点火プラグ状態検出手段により前記点火プラグの状態悪化を検出した場合は、前記燃焼温度推定手段により推定した燃焼温度に基づいて前記吸気流量を減少させるように前記吸気流量制御手段による前記吸気流量を補正することを特徴とする請求項1、4、6のうちの何れか一項に記載の内燃機関の制御装置。
Combustion temperature estimating means for estimating the combustion temperature of the air-fuel mixture in the internal combustion engine,
When the ignition plug state detecting means detects deterioration of the state of the spark plug, the intake flow rate by the intake flow rate control means is reduced so that the intake flow rate is decreased based on the combustion temperature estimated by the combustion temperature estimating means. The control device for an internal combustion engine according to any one of claims 1, 4, and 6, wherein correction is performed.
前記内燃機関の燃焼形態を、均質燃焼と成層燃焼のうちの一方から他方へ切り替える燃焼形態切替手段を備え、
点火プラグ状態の悪化を検出した場合に於いて前記補正が所定回数を超えて行われたことを判定した場合は、前記燃焼形態切替手段により前記成層燃焼から前記均質燃焼に切り替えることを特徴とする請求項1乃至7のうちの何れか一項に記載の内燃機関の制御装置。
Combustion mode switching means for switching the combustion mode of the internal combustion engine from one of homogeneous combustion and stratified combustion to the other,
When it is determined that the correction has been performed more than a predetermined number of times when the deterioration of the spark plug state is detected, the combustion mode switching means switches from the stratified combustion to the homogeneous combustion. The control device for an internal combustion engine according to any one of claims 1 to 7.
JP2010088598A 2010-04-07 2010-04-07 Control device for internal combustion engine Expired - Fee Related JP4852162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010088598A JP4852162B2 (en) 2010-04-07 2010-04-07 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010088598A JP4852162B2 (en) 2010-04-07 2010-04-07 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011220159A true JP2011220159A (en) 2011-11-04
JP4852162B2 JP4852162B2 (en) 2012-01-11

Family

ID=45037453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010088598A Expired - Fee Related JP4852162B2 (en) 2010-04-07 2010-04-07 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4852162B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048827A (en) * 2013-09-04 2015-03-16 マツダ株式会社 Engine start-up control device
CN105386885A (en) * 2014-08-21 2016-03-09 通用汽车环球科技运作有限责任公司 Engine emission control system including combustion chamber temperature monitoring system
US11268468B2 (en) 2018-04-09 2022-03-08 Denso Corporation Air-fuel ratio control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048827A (en) * 2013-09-04 2015-03-16 マツダ株式会社 Engine start-up control device
CN105386885A (en) * 2014-08-21 2016-03-09 通用汽车环球科技运作有限责任公司 Engine emission control system including combustion chamber temperature monitoring system
US10196998B2 (en) 2014-08-21 2019-02-05 GM Global Technology Operations LLC Engine emission control system including combustion chamber temperature monitoring system
US11268468B2 (en) 2018-04-09 2022-03-08 Denso Corporation Air-fuel ratio control device

Also Published As

Publication number Publication date
JP4852162B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4036906B2 (en) In-cylinder injection internal combustion engine control device
RU2633208C1 (en) Controller for internal combustion engine
JP2005201082A (en) Fuel injection control device for engine
US20080028842A1 (en) Combustion State Determination Method Of Internal Combustion Engine
JP2006183548A (en) Control device for internal combustion engine
US8006663B2 (en) Post-start controller for diesel engine
KR101542540B1 (en) Control device of internal combustion engine with supercharger
US10247113B2 (en) Control apparatus for internal combustion engine
JP2009024682A (en) Control device for spray guide type cylinder injection internal combustion engine
US20030034009A1 (en) Fuel injection control for internal combustion engine
JP4852162B2 (en) Control device for internal combustion engine
JP2018105171A (en) Control device of internal combustion engine
JP2007083951A (en) Hybrid vehicle control apparatus
JP2012184688A (en) Catalyst early warming-up controller for internal combustion engine
JP3847052B2 (en) Fuel injection control device for internal combustion engine
JP2018105191A (en) Control device of internal combustion engine
JP2008014275A (en) Control device for internal combustion engine
JP2007255232A (en) Air-fuel ratio control device of internal combustion engine
JP2007138802A (en) Combustion condition detection device for internal combustion engine
JP2019031912A (en) Control device of internal combustion engine
JP5276692B2 (en) Control device for internal combustion engine
JP3944985B2 (en) Control device for direct injection internal combustion engine
JP4232710B2 (en) Control device for hydrogenated internal combustion engine
JP3567830B2 (en) Ignition control device for internal combustion engine
JP2010138720A (en) Ignition control device for engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R151 Written notification of patent or utility model registration

Ref document number: 4852162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees