JP2011219333A - Quick-hardening mortar for spraying having small electric resistance, quick-hardening hardened body for spraying and corrosion prevention method for steel material inside concrete structure using the same - Google Patents

Quick-hardening mortar for spraying having small electric resistance, quick-hardening hardened body for spraying and corrosion prevention method for steel material inside concrete structure using the same Download PDF

Info

Publication number
JP2011219333A
JP2011219333A JP2010092807A JP2010092807A JP2011219333A JP 2011219333 A JP2011219333 A JP 2011219333A JP 2010092807 A JP2010092807 A JP 2010092807A JP 2010092807 A JP2010092807 A JP 2010092807A JP 2011219333 A JP2011219333 A JP 2011219333A
Authority
JP
Japan
Prior art keywords
mortar
hardening
quick
spraying
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010092807A
Other languages
Japanese (ja)
Other versions
JP5697888B2 (en
Inventor
Kenji Yamamoto
賢司 山本
Takanori Yamagishi
隆典 山岸
Toru Yagi
徹 八木
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010092807A priority Critical patent/JP5697888B2/en
Publication of JP2011219333A publication Critical patent/JP2011219333A/en
Application granted granted Critical
Publication of JP5697888B2 publication Critical patent/JP5697888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide quick-hardening mortar for spraying not drooping even if increasing a water binder ratio, and having small electric resistance and small contraction, and to provide a corrosion prevention method by the same, for further reducing the contraction, maintaining the small electric resistance for a long period, and not disturbing permeation of chlorine gas or the like.SOLUTION: The quick-hardening mortar for spraying having the small electric resistance uses a quick-hardening mortar composition wherein a binder containing cement and a quick-hardening material, a fine aggregate, a water reducing agent, and water are blended, can be obtained by adding aluminum sulfate to a quick-hardening mortar having a no-tapping mortar flow value of 200-320 mm prepared by use of a mortar composition having the water binder ratio of 30-55% and a unit water amount of 250-400 kg/m, and has a contraction amount ≤-800×10. A hardened body of the quick-hardening mortar for spraying has electric resistivity ≤100 kΩcm. A quick-hardening mortar hardened body is formed by coating an organic-inorganic composite coating-film curing agent on the surface of the hardened body of the quick-hardening mortar for spraying. The corrosion prevention method for steel material inside a concrete structure uses the quick-hardening mortar hardened body.

Description

本発明は、塩害等により鋼材腐食を受けたコンクリート構造物の電気防食に用いる急硬性吹付け用モルタル、急硬性吹付け用硬化体、及びそれを用いたコンクリート構造物内部にある鋼材の防食方法に関する。   The present invention relates to a rapid-hardening mortar for use in the electrical protection of a concrete structure that has been corroded by steel damage due to salt damage, a hardened body for rapid-hardening spraying, and a method for preventing the corrosion of steel in a concrete structure using the same. About.

コンクリート構造物内部にある鉄筋等の鋼材は、ある塩分濃度以上の状態に晒されると、腐食電池が発生し、陽極となる鋼材に電気腐食が発生する。
このような、腐食電池の発生により誘発される鋼材の腐食を防止する手段として、コンクリート構造物に陽極を設置し、該陽極からコンクリート中の鋼材に直流電流を流し続けることにより、コンクリート中の鋼材の電位を制御し、鋼材の腐食反応を電気化学的に抑制する電気防食工法が推奨されており、コンクリート構造物の補修工法の一つとして利用されている。
When a steel material such as a reinforcing bar in a concrete structure is exposed to a state of a certain salt concentration or more, a corrosion battery is generated, and an electric corrosion is generated in the steel material serving as an anode.
As a means for preventing such corrosion of steel caused by the generation of corrosion batteries, an anode is installed in a concrete structure, and a direct current is allowed to flow from the anode to the steel in the concrete, thereby making the steel in the concrete. An anti-corrosion method that controls the electric potential of the steel and electrochemically suppresses the corrosion reaction of the steel material is recommended, and is used as one of the repair methods for concrete structures.

例えば、表面近傍のコンクリート中に陽極を設置し、この陽極からコンクリート中の鋼材(陰極)に向かって継続的に電流を流す防食工法がある。そして、この電流が適切に流れている限り、鋼材の腐食による劣化の進行が抑制できるものである。   For example, there is a corrosion prevention method in which an anode is installed in concrete near the surface, and current is continuously passed from the anode toward a steel material (cathode) in the concrete. As long as this current flows appropriately, the progress of deterioration due to corrosion of the steel material can be suppressed.

しかしながら、この方法では、時間の経過とともに、防食に必要な防食電流が減少し、長期にわたり陽極と鋼材との間に有効な電位差を維持することが困難であった。
この防食工法に用いられる陽極材としては、チタン系やカーボン系のロッドやリボンなどが多く用いられているが、この陽極の抵抗率を低減するためや不活性化を防止するために、当該陽極の性能を保護するための保護材料で陽極周辺を充填・被覆する必要があり、しかも、既設コンクリートと一体化する必要がある。
この保護材料としてモルタルが用いられる。
However, with this method, as the time elapses, the anticorrosion current necessary for anticorrosion decreases, and it has been difficult to maintain an effective potential difference between the anode and the steel material over a long period of time.
As the anode material used in this anticorrosion method, titanium-based or carbon-based rods or ribbons are often used. In order to reduce the resistivity of the anode or to prevent inactivation, the anode material is used. It is necessary to fill and cover the periphery of the anode with a protective material for protecting the performance of the material, and to integrate with the existing concrete.
Mortar is used as this protective material.

そして、鋼材の防食効果を上げるには、陽極の周囲に充填されたモルタルの硬化体の電気抵抗を小さくし、電流を流れやすくする必要がある。
また、このモルタル硬化体にひび割れが生じると電流が流れにくくなるため、ひび割れの要因である収縮を小さくする必要がある。
And in order to raise the corrosion-proof effect of steel materials, it is necessary to make small the electrical resistance of the hardening body of the mortar with which the circumference | surroundings of the anode were filled, and to make an electric current flow easily.
In addition, when cracks occur in the cured mortar, it is difficult for current to flow, so it is necessary to reduce the shrinkage that is the cause of the cracks.

モルタル硬化体の電気抵抗を小さくするには、水結合材比や単位水量を大きくして、モルタル硬化体中の自由水の量を多くすることが好ましい。
しかしながら、水結合材比や単位水量を大きくすると、モルタルの流動性が大きくなってダレが生じるため、そのままでは使用できない場合がある。また、水結合材比や単位水量を大きくすると、乾燥収縮が大きくなるので、電気抵抗を小さくすることと、収縮を小さくすることとを両立させるのは難しいことであった。
In order to reduce the electrical resistance of the mortar cured body, it is preferable to increase the amount of free water in the mortar cured body by increasing the water binder ratio and unit water amount.
However, when the water binder ratio and the unit water amount are increased, the flowability of the mortar increases and sagging occurs, so that it may not be used as it is. Further, when the water binder ratio and the unit water amount are increased, the drying shrinkage increases, so it is difficult to achieve both reduction in electrical resistance and reduction in shrinkage.

モルタル硬化体の電気抵抗を小さくする方法としては、亜硝酸リチウムや粘土鉱物を含むモルタルを使用する方法が提案されている(特許文献1、特許文献2参照)。
しかしながら、乾燥によりモルタル硬化体の表面から水分が逸散し、長期的には電気抵抗が大きくなるという課題があった。
As a method for reducing the electric resistance of the mortar cured body, a method using mortar containing lithium nitrite or clay mineral has been proposed (see Patent Document 1 and Patent Document 2).
However, there is a problem that moisture is dissipated from the surface of the cured mortar body due to drying, and electrical resistance increases in the long term.

一方、モルタル硬化体の収縮を低減する方法としては、膨張材、収縮低減剤、及び繊維等を併用し、さらに、使用する膨張材として、組成や粒度の異なる二種類の膨張材を組み合わせて使用することが提案されている(特許文献3、特許文献4参照)。   On the other hand, as a method for reducing the shrinkage of the cured mortar, an expansion material, a shrinkage reducing agent, and fibers are used in combination, and as the expansion material to be used, two types of expansion materials having different compositions and particle sizes are used in combination. Has been proposed (see Patent Document 3 and Patent Document 4).

また、有機−無機複合型塗膜養生剤をモルタルやコンクリートの硬化体の表面に塗布することにより、乾燥による水分の逸散を低減して乾燥収縮を抑制することに加え、中性化や外部からの塩分の浸透を抑制することが提案されている(特許文献5参照)。
しかしながら、有機−無機複合型塗膜養生剤をモルタルやコンクリートの硬化体の表面に塗布することが電気抵抗に関して、どのような効果が発揮されるかについては知られていなかった。
Also, by applying organic-inorganic composite coating curing agent to the surface of mortar and concrete hardened bodies, in addition to reducing moisture dissipation due to drying and suppressing drying shrinkage, neutralization and external It has been proposed to suppress the permeation of salt from (see Patent Document 5).
However, it has not been known what effect the application of the organic-inorganic composite type film curing agent to the surface of a mortar or concrete hardened body with respect to electrical resistance.

また、電気防食では、陽極から酸素が発生し、陽極の電位が塩素発生電位まで上昇すると、電気泳動で陽極側に移動した塩化物イオンが、次亜塩素酸や塩素ガスとなり、陽極近傍のモルタルを劣化させることがあるため、モルタル硬化体中でこれら次亜塩素酸や塩素ガスを透過しやすいようにすることも必要である。   In the case of cathodic protection, when oxygen is generated from the anode and the potential of the anode rises to the chlorine generation potential, chloride ions that have moved to the anode side by electrophoresis become hypochlorous acid or chlorine gas, and mortar near the anode. It is also necessary to make these hypochlorous acid and chlorine gas permeate easily in the mortar cured body.

また、電気防食は、塩害を受ける桟橋や護岸等の海洋構造物等に適用される場合が多く、海洋構造物の補修は、干潮から満潮になるまでの限られた時間内に行う必要があり、硬化時間が短く、強度発現が速やかであり、早期開放できる材料が求められている。   In addition, cathodic protection is often applied to offshore structures such as piers and seawalls that are subject to salt damage, and repair of offshore structures must be done within a limited time from low tide to high tide. There is a need for a material that has a short curing time, a rapid onset of strength, and can be opened early.

特開2005−281037号公報JP 2005-281037 A 特開2006−248792号公報JP 2006-248792 A 特開2007−238745号公報JP 2007-238745 A 特開2007−320832号公報JP 2007-320832 A 特開2007−308354号公報JP 2007-308354 A

本発明は、水結合材比を高くしてもダレが生じず、電気抵抗が小さく、収縮が小さい急硬性吹付け用モルタルを提供する。また、収縮をさらに低減し、長期的に電気抵抗を小さく保ち、塩素ガスなどの透過を妨げないモルタル硬化体を用いた、コンクリート構造物内部にある鋼材の防食方法を提供する。   The present invention provides a rapid-curing mortar that does not sag even when the water binder ratio is increased, has low electrical resistance, and has low shrinkage. Moreover, the corrosion prevention method of the steel materials inside a concrete structure using the mortar hardening body which reduces shrinkage further, keeps electrical resistance small for a long term, and does not prevent permeation | transmission of chlorine gas etc. is provided.

本発明は、セメントと急硬材を含有する結合材、細骨材、減水剤、及び水を配合した急硬性モルタル組成物を使用してなり、水結合材比が30〜55%、単位水量が250〜400kg/m3のモルタル配合を用いて調製した、0打モルタルフロー値が200〜320mmのモルタルに、硫酸アルミニウムを添加して得られ、その硬化体の電気抵抗率が100kΩ・cm以下で、収縮量が-800×10-6以下である電気抵抗の小さい急硬性吹付け用モルタルであり、セメント100部に対して、硫酸アルミニウムを0.1〜10部添加する該急硬性吹付け用モルタルであり、該急硬性吹付け用モルタルを硬化してなる急硬性吹付け用モルタル硬化体であり、該急硬性吹付け用モルタル硬化体の表面に、有機−無機複合型塗膜養生剤を塗布してなる急硬性モルタル硬化体であり、有機−無機複合型塗膜剤が、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を含有してなる該急硬性モルタル硬化体であり、有機−無機複合型塗膜剤の膨潤性粘土鉱物が、合成フッ素雲母である該急硬性モルタル硬化体であり、有機−無機複合型塗膜剤の使用量が、100〜500g/m2である該急硬性モルタル硬化体であり、該急硬性吹付け用モルタル硬化体を用いた、コンクリート構造物内部にある鋼材の防食方法であり、該急硬性モルタル硬化体を用いた、コンクリート構造物内部にある鋼材の防食方法である。 The present invention uses a rapid hardening mortar composition containing a cement, a rapid hardening material containing a cement, a fine aggregate, a water reducing agent, and water, and has a water binding material ratio of 30 to 55% and a unit water amount. Is obtained by adding aluminum sulfate to a mortar with a 0-stroke mortar flow value of 200 to 320 mm, prepared using a mortar formulation of 250 to 400 kg / m 3 , and the electrical resistivity of the cured product is 100 kΩ · cm or less And a rapid-hardening spraying mortar having a small electrical resistance and having a shrinkage of −800 × 10 −6 or less, wherein 0.1 to 10 parts of aluminum sulfate is added to 100 parts of cement. It is a mortar cured body for rapid curing obtained by curing the mortar for rapid curing spraying, and an organic-inorganic composite type coating curing agent is applied to the surface of the mortar cured body for rapid curing spraying. Is a hardened cured mortar, and the organic-inorganic composite coating agent is A hardened mortar cured product comprising a synthetic resin aqueous dispersion, a water-soluble resin, and a swellable clay mineral, and the swellable clay mineral of the organic-inorganic composite coating agent is a synthetic fluorine mica It is a hardened mortar cured body, and the amount of the organic-inorganic composite coating agent used is 100 to 500 g / m 2 . This is a method for preventing corrosion of a steel material inside a concrete structure, and a method for preventing corrosion of a steel material inside a concrete structure using the hardened mortar.

本発明は、水結合材比を高くしてもダレがなく、電気抵抗が小さく、収縮が小さい急硬性吹付け用モルタルを提供する。また、収縮をさらに低減し、長期的に電気抵抗を小さく保ち、塩素ガスなどの透過を妨げない、急硬性吹付け用モルタルの防食方法を提供する。
これらを電気防食に用いることにより、コンクリート構造物中の鋼材の防食において、高い防食効果が得られる。
The present invention provides a quick-hardening mortar that does not sag even when the water binder ratio is increased, has low electrical resistance, and has low shrinkage. Further, the present invention provides a method for preventing corrosion of rapid hardening spraying mortar that further reduces shrinkage, keeps electric resistance small for a long time, and does not prevent permeation of chlorine gas or the like.
By using these for electrocorrosion protection, a high anticorrosion effect is obtained in the anticorrosion of the steel material in the concrete structure.

以下、本発明を詳細に説明する。
なお、本発明における部や%は特に規定しない限り、質量基準で示す。
Hereinafter, the present invention will be described in detail.
In the present invention, “part” and “%” are based on mass unless otherwise specified.

本発明では、セメントと急硬材を含有する結合材、細骨材、及び減水剤等を用い、水結合材比が30〜55%、単位水量が250〜400kg/m3、0打モルタルフロー値が200〜320mmの流動性の高いモルタルに、硫酸アルミニウムを添加し、その硬化体の電気抵抗率が100kΩ・cm以下で、収縮量が-800×10-6以下である急硬性吹付け用モルタルを調製する。 In the present invention, a binder, a fine aggregate, a water reducing agent and the like containing cement and a rapid hardening material are used, the water binder ratio is 30 to 55%, the unit water amount is 250 to 400 kg / m 3 , and the zero-stroke mortar flow. For rapid-hardening spraying, in which aluminum sulfate is added to mortar with a high fluidity of 200 to 320 mm, the electrical resistivity of the cured product is 100 kΩ · cm or less, and the shrinkage is -800 × 10 -6 or less Prepare mortar.

本発明では、セメントと急硬材を含有する結合材を使用する。
結合材とは、セメント、急硬材に加えて、必要に応じ併用するシリカフューム、高炉水砕スラグ、フライアッシュ、膨張材、急硬材、及び高強度混和材等の各種混和材との配合物をいう。
In the present invention, a binder containing cement and a hardened material is used.
In addition to cement and rapid-hardening material, the binder is a combination of silica fume, blast furnace granulated slag, fly ash, expansive material, rapid-hardening material, and high-strength admixture used in combination as necessary. Say.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、また、石灰石粉末や高炉徐冷スラグ微粉末を混合したフィラーセメント、並びに、各種の産業廃棄物を主原料として製造された環境調和型セメント、いわゆるエコセメントなどが挙げられ、これらのうちの一種又は二種以上が使用可能である。   As the cement used in the present invention, various portland cements such as normal, early strength, very early strength, low heat, and moderate heat, various mixed cements obtained by mixing blast furnace slag, fly ash, or silica with these portland cements, and , Limestone powder and blast furnace slow-cooled slag fine powder, and environmentally friendly cement made from various industrial wastes as main raw materials, so-called eco-cement. More than species can be used.

本発明で使用する急硬材は、カルシウムアルミネートと石膏を主成分とする。カルシウムアルミネートはCaOとAl23を主要化学成分とする化合物、固溶体、ガラス質若しくはこれらの何れか1種以上が混合した物の総称であり、本発明ではそのいずれかであって、水和活性を有するものなら特に制限されない。例えば、12CaO・7Al23、11CaO・7Al23・CaF2、4CaO・3Al23・SO3などを挙げることができ、アルミナセメントでもよい。硬化時間を調整するために、炭酸カリウムやクエン酸等の凝結調整剤を適宜使用する。
急硬材を使用することにより、硬化時間が短く、強度発現が速やかであり、早期開放できるため、干潮から満潮になるまでの限られた時間内に桟橋等の海洋構造物を補修しなければならない場合や、緊急工事において、効率的な工事が行える。
The rapid-hardening material used in the present invention is mainly composed of calcium aluminate and gypsum. Calcium aluminate is a general term for a compound containing CaO and Al 2 O 3 as main chemical components, a solid solution, a glassy material, or a mixture of any one or more of them, and in the present invention, either There is no particular limitation as long as it has a sum activity. For example, 12CaO · 7Al 2 O 3, 11CaO · 7Al 2 O 3 · CaF 2, 4CaO · 3Al 2 O 3 · SO 3 , etc. can be mentioned, or alumina cement. In order to adjust the curing time, a setting regulator such as potassium carbonate or citric acid is appropriately used.
By using a hardened material, the hardening time is short, the strength is developed quickly, and it can be opened early, so it is necessary to repair marine structures such as jetty within a limited time from low tide to high tide. Efficient construction can be performed in case of failure or emergency construction.

本発明で使用する細骨材は特に限定されるものではない。その具体例としては、例えば、ケイ砂、石灰砂、高炉水砕スラグ細骨材、再生細骨材、及び重量細骨材等が挙げられる。
また、高炉徐冷スラグ細骨材、電気炉酸化期スラグ系細骨材、並びに、フェロニッケルスラグ、フェロクロムスラグ、銅スラグ、亜鉛スラグ、及び鉛スラグなどを総称する非鉄精錬スラグ細骨材等が、橄欖岩(かんらん岩)系細骨材、いわゆるオリビンサンド、及びエメリー鉱等が挙げられる。本発明では、これらのうちの一種又は二種以上が使用可能である。
細骨材の使用量は特に限定されるものではなく、用途や要求される作業性に応じて適宜調整される。
The fine aggregate used in the present invention is not particularly limited. Specific examples thereof include silica sand, lime sand, blast furnace granulated slag fine aggregate, recycled fine aggregate, and heavy fine aggregate.
In addition, blast furnace slow-cooled slag fine aggregate, electric furnace oxidation stage slag fine aggregate, and non-ferrous smelted slag fine aggregate that collectively refers to ferronickel slag, ferrochrome slag, copper slag, zinc slag, lead slag, etc. , Peridotite fine aggregates, so-called olivine sand, emery ore and the like. In the present invention, one or more of these can be used.
The amount of fine aggregate used is not particularly limited, and is appropriately adjusted according to the application and required workability.

本発明で使用する減水剤は特に限定されるものではない。その具体例としては、例えば、ナフタレン系減水剤としては、エヌエムビー社製、商品名「レオビルドSP-9」シリーズ、花王社製、商品名「マイティ2000」シリーズ、及び日本製紙社製、商品名「サンフローHS-100」などが挙げられる。また、メラミン系減水剤としては、日本シーカ社製、商品名「シーカメント1000」シリーズや日本製紙社製、商品名「サンフローHS-40」などが挙げられる。さらに、アミノスルホン酸系減水剤としては、フローリック社製、商品名「FP-200」シリーズなどが挙げられる。ポリカルボン酸系減水剤としては、エヌエムビー社製、商品名「レオビルドSP-8」シリーズ、グレースケミカルズ社製、商品名「ダーレックススーパー100PHX」、及び竹本油脂社製、商品名「チューポールHP-8」シリーズや「チューポールHP-11」シリーズなどが挙げられる。本発明ではこれら減水剤のうちの一種又は二種以上が使用可能である。
減水剤の使用量は特に限定されるものではなく、用途や要求される作業性に応じて適宜調整される。
The water reducing agent used in the present invention is not particularly limited. Specific examples thereof include, for example, naphthalene-based water reducing agents, manufactured by NMB, trade name "Leo Build SP-9" series, Kao Corporation, trade name "Mighty 2000" series, and Nippon Paper Industries, trade name " Sunflow HS-100 ". Examples of the melamine water reducing agent include Nippon Seika Co., Ltd., trade name “Sea Cament 1000” series, Nippon Paper Industries Co., Ltd., trade name “Sunflow HS-40”, and the like. Furthermore, examples of the aminosulfonic acid water reducing agent include a product name “FP-200” series manufactured by Floric. Polycarboxylic acid-based water reducing agents are manufactured by NMB, trade name "Leo Build SP-8" series, Grace Chemicals, trade name "Darlex Super 100PHX", and Takemoto Yushi Co., Ltd., trade name "Tupol HP- 8 "series and" Tupole HP-11 "series. In the present invention, one or more of these water reducing agents can be used.
The amount of water reducing agent used is not particularly limited, and is appropriately adjusted according to the application and required workability.

本発明では、セメント、急硬材、骨材、及び減水剤などとともに、石灰石微粉末、高炉徐冷スラグ微粉末、下水汚泥焼却灰やその溶融スラグ、都市ゴミ焼却灰やその溶融スラグ、パルプスラッジ焼却灰等の混和材料、消泡剤、防錆剤、防凍剤、スチールファイバー、ビニロンファイバー、炭素繊維、及びワラストナイト繊維等の繊維物質、ポリマー、ベントナイトなどの粘土鉱物、並びに、ハイドロタルサイトなどのアニオン交換体等のうちの一種又は二種を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   In the present invention, cement, rapid hardwood, aggregate, water reducing agent, limestone fine powder, blast furnace slow-cooled slag fine powder, sewage sludge incinerated ash and its molten slag, municipal waste incinerated ash and its molten slag, pulp sludge Admixture materials such as incinerated ash, antifoaming agent, rust inhibitor, antifreeze agent, fiber materials such as steel fiber, vinylon fiber, carbon fiber and wollastonite fiber, clay minerals such as polymer and bentonite, and hydrotalcite It is possible to use 1 type or 2 types of anion exchangers etc., etc. in the range which does not inhibit substantially the objective of this invention.

本発明では、セメント、急硬材、細骨材、水、及び減水剤を含有する急硬性モルタル組成物を用いて急硬性モルタルを調製する。
急硬性モルタルを調製する際の水結合材比は、30〜55%であり、35〜50%が好ましい。水セメント比が30%未満では、急硬性モルタル硬化体中の自由水の量が少なくなるため、電気抵抗が大きくなり、充分な防食効果が得られなくなるおそれがあり、55%を超えると、硫酸アルミニウムを添加しても吹付けたときにダレが生じる場合がある。
In the present invention, a rapid hardening mortar is prepared using a rapid hardening mortar composition containing cement, rapid hardening material, fine aggregate, water, and a water reducing agent.
The water binder ratio when preparing the quick-hardening mortar is 30 to 55%, preferably 35 to 50%. If the water-cement ratio is less than 30%, the amount of free water in the hardened mortar hardened body is reduced, which may increase the electrical resistance and may not provide a sufficient anticorrosive effect. Even when aluminum is added, sagging may occur when sprayed.

ここで、急硬性吹付け用モルタルとは、吹付けで使う急硬性を有するモルタルであり、吹付けたときにダレないことが求められる。ダレが生じると、壁や天井部分等の施工でモルタルが流れてしまう。ダレの目安として、JIS R 5201によるモルタルフロー値(15打モルタルフロー値)で120〜180mm程度が好ましい。120mm未満ではモルタルの流動性が小さすぎて、コンクリートとの付着性が小さくなる場合があり、180mmを超えるとダレが生じる場合がある。   Here, the rapid hardening spraying mortar is a mortar having rapid hardening used for spraying, and is required to be free from dripping when sprayed. When sagging occurs, mortar flows through the construction of walls and ceilings. As a measure of sagging, a mortar flow value (15-stroke mortar flow value) according to JIS R 5201 is preferably about 120 to 180 mm. If it is less than 120 mm, the fluidity of the mortar is too small, and the adhesion to concrete may be reduced, and if it exceeds 180 mm, sagging may occur.

また、モルタルを調製する際の単位水量は、250〜400kg/m3であり、289〜337kg/m3が好ましい。250kg/m3未満では、吹付けモルタル硬化体又はモルタル硬化体(以下、本硬化体という)中の自由水の量が少なくなるため、電気抵抗が大きくなり、充分な防食効果が得られなくなる場合があり、400kg/m3を超えると、硫酸アルミニウムを添加してもダレが生じる場合がある。 The unit amount of water in the preparation of mortar is 250~400kg / m 3, 289~337kg / m 3 is preferred. If it is less than 250 kg / m 3 , the amount of free water in the sprayed mortar hardened body or mortar hardened body (hereinafter referred to as the main cured body) is reduced, resulting in an increase in electrical resistance and insufficient anticorrosion effect. If it exceeds 400 kg / m 3 , dripping may occur even if aluminum sulfate is added.

0打モルタルフロー値とは、JISR 5201においてフローテーブルをタッピングしない、静置状態でのモルタルフロー値を指すもので、本発明では、200〜320mmであり、235〜275mmが好ましい。200mm未満では、電気抵抗が大きくなり、充分な防食効果が得られなくなる場合があり、320mmを超えると、材料分離が生じやすくなる場合がある。   The zero-strike mortar flow value refers to a mortar flow value in a stationary state without tapping the flow table in JISR 5201. In the present invention, it is 200 to 320 mm, and preferably 235 to 275 mm. If it is less than 200 mm, the electric resistance increases, and a sufficient anticorrosion effect may not be obtained. If it exceeds 320 mm, material separation may easily occur.

本発明では、セメント、急硬材、細骨材、水、及び減水剤を含有する急硬性モルタル組成物を用い、水結合材比が30〜55%、単位水量が250〜400kg/m3で、0打モルタルフロー値が200〜320mmという流動性の高い急硬性モルタルに、硫酸アルミニウムを添加することにより、水結合材比が高くてもダレない急硬性吹付け用モルタルを調製する。 In the present invention, a rapid mortar composition containing cement, rapid hardening material, fine aggregate, water, and a water reducing agent is used, the water binder ratio is 30 to 55%, and the unit water amount is 250 to 400 kg / m 3 . By adding aluminum sulfate to a quick-flowing hard mortar having a 0-stroke mortar flow value of 200 to 320 mm, a quick-hardening mortar that does not sag even when the water binder ratio is high is prepared.

本発明で使用する硫酸アルミニウムは、流動性の高い急硬性モルタルの凝結を促進して、ダレない急硬性吹付け用モルタルとする。硫酸アルミニウムは結晶水を含む粉体や無水物の粉体、水溶液があり、いずれも使用できるが、流動性の高い急硬性モルタルとの混合性が良好なことから、水溶液の使用が好ましい。   The aluminum sulfate used in the present invention promotes the setting of a rapid-hardening mortar having high fluidity, thereby making a quick-hardening spraying mortar that does not sag. Aluminum sulfate includes powder containing water of crystallization, an anhydrous powder, and an aqueous solution, and any of them can be used. However, the use of an aqueous solution is preferable because of its good miscibility with rapid-hardening mortar having high fluidity.

本発明で使用する硫酸アルミニウムの添加量は、セメント100部に対して、固形分換算で0.1〜10部が好ましく、0.5〜5部がより好ましい。0.1部未満ではダレが生じ、10部を超えて添加すると、圧縮強度が小さくなる場合がある。   The addition amount of aluminum sulfate used in the present invention is preferably 0.1 to 10 parts, more preferably 0.5 to 5 parts in terms of solid content, relative to 100 parts of cement. If it is less than 0.1 part, sagging occurs, and if it is added in excess of 10 parts, the compressive strength may be reduced.

本発明において、硫酸アルミニウムの添加方法は特に限定されるものではないが、所定の水結合材比と単位水量のモルタルを練混ぜた後に添加することにより、ダレない、良好な急硬性吹付け用モルタルが得られやすいことから好ましい。   In the present invention, the method of adding aluminum sulfate is not particularly limited, but by adding a mortar having a predetermined water binder ratio and unit water amount after kneading, there is no dripping and good rapid hardening spraying. It is preferable because mortar is easily obtained.

混合装置としては、既存のいかなる装置も使用可能であり、例えば、ハンドミキサ、グラウトミキサ、ダマカットミキサ、二軸ミキサ、オムニミキサ、パン型ミキサ、遊星型ミキサ、及び傾胴ミキサなどが使用可能である。   As the mixing device, any existing device can be used, for example, a hand mixer, a grout mixer, a damacut mixer, a biaxial mixer, an omni mixer, a pan mixer, a planetary mixer, and a tilting mixer can be used. is there.

本硬化体の電気抵抗率は、100kΩ・cm以下であり、収縮量は-800×10-6以下である。 The cured product has an electrical resistivity of 100 kΩ · cm or less and a shrinkage of −800 × 10 −6 or less.

本硬化体の電気抵抗率は、100kΩ・cm以下であり、50kΩ・cm以下が好ましい。電気抵抗率が100kΩ・cmを超えると、電流が流れにくくなり、充分な防食効果が得られなくなる場合がある。   The electric resistivity of the cured product is 100 kΩ · cm or less, preferably 50 kΩ · cm or less. When the electrical resistivity exceeds 100 kΩ · cm, it becomes difficult for current to flow, and a sufficient anticorrosion effect may not be obtained.

また、本硬化体の収縮量は-800×10-6以下であり、-600×10-6以下が好ましい。収縮量が-800×10-6を超えるとひび割れが発生しやすくなり、電流が流れにくくなって、充分な防食効果が得られなくなる場合がある。 Further, the shrinkage of the cured product is −800 × 10 −6 or less, preferably −600 × 10 −6 or less. If the amount of shrinkage exceeds -800 × 10 -6 , cracks are likely to occur, current may not flow easily, and a sufficient anticorrosion effect may not be obtained.

本発明では、本硬化体の収縮量を低減するため、即ち、収縮量を-800×10-6以下とするために、膨張材、収縮低減剤、及び繊維を併用することは好ましい。 In the present invention, in order to reduce the shrinkage amount of the cured product, that is, to reduce the shrinkage amount to −800 × 10 −6 or less, it is preferable to use an expansion material, a shrinkage reducing agent, and fibers in combination.

ここで、膨張材は特に限定されるものではなく、いかなるものでも使用可能である。その種類としては、遊離石灰や遊離マグネシアを含むものが挙げられるが、長期安定性の観点から、遊離石灰を含む膨張材が好ましい。   Here, the expansion material is not particularly limited, and any material can be used. Although the thing containing free lime and free magnesia is mentioned as the kind, From the viewpoint of long-term stability, the expansion | swelling material containing free lime is preferable.

遊離石灰を含む膨張材としては、例えば、遊離石灰−無水セッコウ系膨張材、遊離石灰−水硬性化合物系膨張材、並びに、遊離石灰−水硬性化合物−無水セッコウ系膨張材等が挙げられる。
本発明では、膨張性能が良好なことから、遊離石灰−水硬性化合物−無水セッコウ系膨張材を用いることが好ましい。
Examples of the expanding material containing free lime include a free lime-anhydrous gypsum-based expanding material, a free lime-hydraulic compound-based expanding material, and a free lime-hydraulic compound-anhydrous gypsum-based expanding material.
In this invention, since expansion | swelling performance is favorable, it is preferable to use a free lime-hydraulic compound-anhydrous gypsum-type expansion | swelling material.

ここで、水硬性化合物としては、例えば、アウイン、カルシウムフェライト、カルシウムアルミノフェライト、カルシウムシリケート、及びカルシウムアルミネートなどの一種又は二種以上が挙げられる。
遊離石灰−水硬性化合物−無水セッコウ系膨張材において、水硬性化合物が、アウイン、カルシウムフェライト、及びカルシウムアルミノフェライトなどの一種又は二種以上から構成される膨張材は、遊離石灰から消石灰を生成するとともに、水硬性化合物と無水セッコウからエトリンガイトも生成する。このため、エトリンガイトに因んで、カルシウムサルホアルミネート系膨張材と称されるものや、エトリンガイト−石灰複合系膨張材と称されるものがある。
このような膨張材としては、各社より市販されている膨張材や静的破砕材が利用可能である。膨張材や静的破砕材は、多数市販されており、その代表例としては、電気化学工業社製、商品名「デンカCSA」や「デンカパワーCSA」、住友大阪セメント社製、商品名「サクス」、太平洋マテリアル社製、商品名「エクスパン」、「N-EX」、「ブライスター」、及び「太平洋ジプカル」などが挙げられる。
Here, examples of the hydraulic compound include one or more of Auin, calcium ferrite, calcium aluminoferrite, calcium silicate, and calcium aluminate.
In the free lime-hydraulic compound-anhydrous gypsum-based expansive material, the expansive material in which the hydraulic compound is composed of one or more of Auin, calcium ferrite, and calcium aluminoferrite produces slaked lime from the free lime. At the same time, ettringite is also produced from hydraulic compounds and anhydrous gypsum. For this reason, there exist what is called a calcium sulfoaluminate type | system | group expansion | swelling material and what is called an ettringite-lime composite type | system | group expansion | swelling material in connection with ettringite.
As such an expanding material, an expanding material or a static crushing material marketed by each company can be used. A large number of inflatables and static crushed materials are commercially available, and representative examples thereof include those manufactured by Denki Kagaku Kogyo Co., Ltd., trade names “Denka CSA” and “Denka Power CSA”, Sumitomo Osaka Cement Co., Ltd. ", Trade name" Expan "," N-EX "," Breister ", and" Pacific Gypcal "manufactured by Taiheiyo Material.

膨張材の粒度は特に限定されるものではないが、通常、ブレーン比表面積値(以下、ブレーン値という)で2,500〜10,000cm2/gが好ましい。
膨張材の使用量は、セメント100部に対して、2〜20部が好ましい。
The particle size of the intumescent material is not particularly limited, but usually it is preferably 2,500 to 10,000 cm 2 / g in terms of the specific surface area of brain (hereinafter referred to as “brain value”).
The amount of the expansion material used is preferably 2 to 20 parts with respect to 100 parts of cement.

収縮低減剤としては、収縮低減成分が一般式RO(AO)nH(Rは炭素数4〜6のアルキル基、Aは炭素数2〜3の一種又は二種のアルキレン基、nは1〜10の整数)で示される低級アルコールのアルキレンオキサイド付加物を主体としたものや、一般式X{O(AO)nR}m(ただし、Xは2〜8個の水酸基を有する化合物の残基、AOは炭素数2〜18のオキシアルキレン基、Rは水素原子、炭素数1〜18の炭化水素基、又は炭素数2〜18のアシル基、nは30〜1,000、mは2〜8)で示され、そのオキシアルキレン基の60mol%以上はオキシエチレン基であるポリオキシアルキレン誘導体等が使用可能である。
収縮低減剤の使用量は、セメント100部に対して、1〜6部が好ましい。
As the shrinkage reducing agent, the shrinkage reducing component is represented by the general formula RO (AO) nH (R is an alkyl group having 4 to 6 carbon atoms, A is one or two alkylene groups having 2 to 3 carbon atoms, and n is 1 to 10). Or an alkylene oxide adduct of a lower alcohol represented by the general formula X {O (AO) nR} m (where X is a residue of a compound having 2 to 8 hydroxyl groups, AO Is an oxyalkylene group having 2 to 18 carbon atoms, R is a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an acyl group having 2 to 18 carbon atoms, n is 30 to 1,000, and m is 2 to 8) A polyoxyalkylene derivative in which 60 mol% or more of the oxyalkylene group is an oxyethylene group can be used.
The amount of shrinkage reducing agent used is preferably 1 to 6 parts per 100 parts of cement.

繊維は特に限定されるものではなく、一般に市販されているものが使用でき、具体的には、高強度のビニロン繊維やポリエチレン繊維等が挙げられる。
繊維の使用量は、結合材、細骨材、及び減水剤を含有してなる急硬性モルタル組成物100容量部中、0.01〜1.0容量部が好ましい。
The fibers are not particularly limited, and commercially available products can be used, and specific examples include high-strength vinylon fibers and polyethylene fibers.
The amount of the fiber used is preferably 0.01 to 1.0 part by volume in 100 parts by volume of the rapid-hardening mortar composition containing the binder, fine aggregate, and water reducing agent.

本発明では、本硬化体の表面に、有機−無機複合型塗膜養生剤を塗布することは、収縮量をさらに低減し、ひび割れを抑制できるばかりでなく、長期的に本硬化体の電気抵抗を小さく保つことができることから好ましい。   In the present invention, applying the organic-inorganic composite type film curing agent to the surface of the cured body not only can further reduce the shrinkage and suppress cracking, but also can provide long-term electrical resistance of the cured body. Is preferable because it can be kept small.

防食工法では、エポキシ樹脂等による塗装もあるが、エポキシ樹脂等を塗装すると、陽極で発生した塩素ガスなどが透過しないため、陽極近傍のモルタルが劣化し、塗膜の変色や剥がれが起こる。一方、本発明の有機−無機複合型塗膜養生剤では、水分の逸散を抑制するが、塩素ガスなどは緩やかに透過するため、モルタルや塗膜が劣化しない。   In the anticorrosion method, there is also coating with an epoxy resin or the like, but when an epoxy resin or the like is applied, chlorine gas generated at the anode does not permeate, so that the mortar near the anode deteriorates and the coating film is discolored or peeled off. On the other hand, the organic-inorganic composite type coating curing agent of the present invention suppresses the dissipation of moisture, but chlorine gas and the like permeate slowly, so that the mortar and coating film do not deteriorate.

本発明の有機−無機複合型塗膜養生剤とは、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を、また、さらに、これらと架橋剤とを主成分とするものである。   The organic-inorganic composite type coating curing agent of the present invention is composed of a synthetic resin aqueous dispersion, a water-soluble resin, and a swellable clay mineral, and these and a crosslinking agent as main components.

ここで、合成樹脂水性分散体とは、一般的には合成樹脂エマルジョンであり、芳香族ビニル単量体、脂肪族共役ジエン系単量体、エチレン系不飽和脂肪酸単量体、及びその他の共重合可能な単量体の内から一種又は二種以上を乳化重合して得られるものである。例えば、スチレンを主体としたスチレン・ブタジエン系ラテックス、スチレン・アクリル系エマルジョンやスチレンと共重合したメチルメタクリレート・ブタジエン系ラテックス、エチレン・アクリルエマルジョンである。合成樹脂エマルジョンには、カルボキシル基又はヒドロキシ基を有するものがより望ましい。
ここで、乳化重合は、重合すべき単量体を混合し、これに乳化剤や重合開始剤等を加え水系で行なう一般的な乳化重合方法である。
膨潤性粘土鉱物との配合安定性を得るには、アンモニア、アミン類、及びカセイソーダなどの塩基性物質を使用し、pH5以上に調整したものが好ましい。
合成樹脂水性分散体の粒子径は、一般的に100〜300nmであるが、60〜100nm程度の小さい粒子径のものが好ましい。
Here, the synthetic resin aqueous dispersion is generally a synthetic resin emulsion, and includes an aromatic vinyl monomer, an aliphatic conjugated diene monomer, an ethylenically unsaturated fatty acid monomer, and other co-polymers. It is obtained by emulsion polymerization of one or two or more of polymerizable monomers. For example, styrene / butadiene latex mainly composed of styrene, styrene / acrylic emulsion, methyl methacrylate / butadiene latex copolymerized with styrene, and ethylene / acrylic emulsion. The synthetic resin emulsion is more preferably one having a carboxyl group or a hydroxy group.
Here, the emulsion polymerization is a general emulsion polymerization method in which a monomer to be polymerized is mixed, and an emulsifier, a polymerization initiator, etc. are added to the monomer and the reaction is carried out in an aqueous system.
In order to obtain blending stability with the swellable clay mineral, it is preferable to use a basic substance such as ammonia, amines, and caustic soda and adjust the pH to 5 or more.
The particle diameter of the synthetic resin aqueous dispersion is generally 100 to 300 nm, but preferably has a small particle diameter of about 60 to 100 nm.

水溶性樹脂としては、加工澱粉又はその誘導体、セルロース誘導体、ポリ酢酸ビニルの鹸化物又はその誘導体、スルホン酸基を有する重合体又はその塩、アクリル酸の重合体や共重合体又はこれらの塩、アクリルアミドの重合体や共重合体、ポリエチレングリコール、及びオキサゾリン基含有重合体等が挙げられ、そのうちの一種又は二種以上の使用が可能である。
水溶性樹脂としては、純水への溶解度が常温で1%以上であるものであれば良く、樹脂単位重量当たりの水素結合性基又はイオン性基が10〜60%であることが好ましい。
また、平均分子量は2,000〜1,000,000が好ましい。
水溶性樹脂の使用量は、合成樹脂水性分散体の固形分100部に対して、固形分換算で0.05〜200部が好ましい。
Examples of water-soluble resins include modified starch or derivatives thereof, cellulose derivatives, saponified polyvinyl acetate or derivatives thereof, polymers having sulfonic acid groups or salts thereof, polymers or copolymers of acrylic acid or salts thereof, Examples include acrylamide polymers and copolymers, polyethylene glycol, and oxazoline group-containing polymers, and one or more of them can be used.
The water-soluble resin may be one having a solubility in pure water of 1% or more at room temperature, and preferably has 10 to 60% of hydrogen bonding groups or ionic groups per unit weight of the resin.
The average molecular weight is preferably 2,000 to 1,000,000.
The amount of the water-soluble resin used is preferably 0.05 to 200 parts in terms of solid content with respect to 100 parts of solid content of the synthetic resin aqueous dispersion.

膨潤性粘土鉱物としては、スクメタイト属に属する層状ケイ酸塩鉱物が挙げられる。例えば、バイデライト、ノントロナイト、サポナイト、マイカ、及びベントナイトなどである。これらは天然品、合成品、及び加工処理品のいずれであっても使用可能である。
そのうち、日本ベントナイト工業会、標準試験方法 JBAS-104-77に準じた方法で測定した膨潤力が20ml/2g以上の粘土鉱物、特に、ベントナイトが好ましい。
また、イオン交換当量が100g当たり、10ミリ当量以上ものが好ましい。
さらに、そのアスペクト比が50〜5,000のものが好ましい。アスペクト比とは、電子顕微鏡写真により求めた層状に分散した粘土鉱物の長さ/厚みの比である。
膨潤性粘土鉱物の使用量は、合成樹脂水性分散体の固形分100部に対して、1〜50部が好ましい。
Examples of swellable clay minerals include layered silicate minerals belonging to the scumite genus. For example, beidellite, nontronite, saponite, mica and bentonite. Any of natural products, synthetic products, and processed products can be used.
Among them, clay minerals having a swelling power of 20 ml / 2 g or more measured by a method according to the Japan Bentonite Industry Association, standard test method JBAS-104-77, particularly bentonite is preferred.
Further, the ion exchange equivalent is preferably 10 milliequivalents or more per 100 g.
Furthermore, those having an aspect ratio of 50 to 5,000 are preferred. The aspect ratio is the length / thickness ratio of the clay mineral dispersed in a layer form determined by an electron micrograph.
The amount of the swellable clay mineral used is preferably 1 to 50 parts with respect to 100 parts of the solid content of the synthetic resin aqueous dispersion.

架橋剤とは、水溶性樹脂や合成樹脂水性分散体が有するカルボキシル基、アミド基、及び水酸基等の親水性官能基と反応して、架橋、高分子化(三次元網目構造)、又は疎水化するものであり、カルボキシル基と付加反応を起こすオキサゾリン基を有するものが水溶性樹脂をも兼ねるので好ましい。
架橋剤の使用量は、合成樹脂水性分散体と水溶性樹脂の合計の固形分100部に対して、固形分換算で0.01〜30部が好ましい。
A cross-linking agent reacts with a hydrophilic functional group such as a carboxyl group, an amide group, and a hydroxyl group contained in an aqueous dispersion of a water-soluble resin or synthetic resin to crosslink, polymerize (three-dimensional network structure), or hydrophobize. Those having an oxazoline group that undergoes an addition reaction with a carboxyl group are also preferable because they also serve as water-soluble resins.
The amount of the crosslinking agent used is preferably 0.01 to 30 parts in terms of solid content with respect to 100 parts of the total solid content of the synthetic resin aqueous dispersion and the water-soluble resin.

本発明では、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を混合して、また、さらに、これらと架橋剤とを反応させて、有機−無機複合型塗膜養生剤を調製する。   In the present invention, an organic-inorganic composite type coating curing agent is prepared by mixing an aqueous synthetic resin dispersion, a water-soluble resin, and a swellable clay mineral, and further reacting these with a crosslinking agent. .

有機−無機複合型塗膜養生剤の合成方法は、水溶性樹脂と膨潤性粘土鉱物をあらかじめ水中で混合した後に、合成樹脂水性分散体と架橋剤を混合する方法が好ましい。   As a method for synthesizing the organic-inorganic composite-type coating curing agent, a method in which a water-soluble resin and a swellable clay mineral are mixed in water in advance and then a synthetic resin aqueous dispersion and a crosslinking agent are mixed.

有機−無機複合型塗膜養生剤の被覆方法は、均一に養生被覆膜が形成できる方法であれば特に限定されるものではなく、撒布したり、塗布したり、吹付けしたりすることが可能である。
有機−無機複合型塗膜養生剤は、急硬性吹付け用モルタルの凝結が終結した後、表面に塗布することが好ましい。時間が経つと、急硬性吹付け用モルタルの表面が乾燥し、ひび割れが発生しやすくなる。
このような有機−無機複合型塗膜養生剤としては、電気化学工業社の「RISフルコート」や「クラッコフ」、東亞合成社の「CA2」シリーズを用いることができる。
本発明の急硬性吹付け用モルタル硬化体に、本発明の塗膜養生剤を塗布することにより、長さ変化率をさらに低減してひび割れを抑制するばかりでなく、長期的に急硬性吹付け用モルタル硬化体の電気抵抗を小さく保ち、防食効果を高めることができる。
The organic-inorganic composite-type film curing agent coating method is not particularly limited as long as it can form a uniform curing coating film, and can be distributed, applied, or sprayed. Is possible.
The organic-inorganic composite type film curing agent is preferably applied to the surface after the setting of the rapid curing spray mortar is completed. Over time, the surface of the rapid-hardening spray mortar dries and cracks tend to occur.
As such an organic-inorganic composite type film curing agent, “RIS full coat” and “Krakoff” manufactured by Denki Kagaku Kogyo Co., Ltd. and “CA2” series manufactured by Toagosei Co., Ltd. can be used.
By applying the coating film curing agent of the present invention to the hardened mortar cured body of the present invention, not only can the length change rate be further reduced to suppress cracking, but also rapid curing spraying over the long term. The electrical resistance of the cured mortar can be kept small and the anticorrosion effect can be enhanced.

有機−無機複合型塗膜養生剤の使用量は特に限定されるものではないが、1m2当たり、100〜500gが好ましく、150〜400gがより好ましい。100g未満では、長期的に電気抵抗を小さく保つ効果が充分でなくなる場合があり、500gを超えると、塩素ガスなどが透過しにくくなる場合がある。 Although the usage-amount of an organic-inorganic composite type coating film curing agent is not specifically limited, 100-500g per 1 m < 2 > is preferable and 150-400g is more preferable. If it is less than 100 g, the effect of keeping the electrical resistance small in the long term may not be sufficient, and if it exceeds 500 g, chlorine gas or the like may not easily permeate.

以下に実験例を挙げて本発明を具体的に説明するが、本発明はこれらの実験例に限定されるものではない。   The present invention will be specifically described below with reference to experimental examples, but the present invention is not limited to these experimental examples.

「実験例1」
セメントと、セメント100部に対し、急硬材25部、膨張材A5部、膨張材B5部、及び収縮低減剤3部の混和材からなる結合材、細骨材、減水剤、及び繊維を配合して急硬性モルタル組成物を調製し、急硬性モルタル組成物100容量部中、繊維を0.15容量部として、表1に示す、水結合材比と単位水量のモルタル配合を用い、表1に示すモルタルフロー値の急硬性吹付け用モルタルを調製した。硬化時間が30〜60分程度になるように凝結調整剤を加えた。
その後、セメント100部に対して、硫酸アルミニウムを固形分換算で1部添加して吹付けた。硫酸アルミニウムを添加する前後でモルタルフロー値を測定し、添加後のダレの有無と作業性を評価した。4×4×16cmの供試体を作製し、材齢28日で電気抵抗率と長さ変化率を測定した。既設コンクリート板の上に、縦30cm、横30cm、厚さ3cmとなるように急硬性吹付け用モルタルを打設し、材齢28日でひび割れの発生状況を観察した。
"Experiment 1"
A cement, 100 parts of cement, 25 parts of hardened material, 5 parts of expanded material, 5 parts of expanded material, and 3 parts of shrinkage reducing agent are combined with a binder, fine aggregate, water reducing agent, and fiber. Then, a quick-hardening mortar composition was prepared, and 100 parts by weight of the quick-hardening mortar composition, with 0.15 volume parts of fiber, using the mortar composition of water binder ratio and unit water amount shown in Table 1, shown in Table 1. A mortar for mortar flow value was prepared. A setting modifier was added so that the curing time was about 30 to 60 minutes.
Thereafter, 1 part of aluminum sulfate in terms of solid content was added and sprayed on 100 parts of cement. The mortar flow value was measured before and after the addition of aluminum sulfate, and the presence or absence of sagging after the addition and workability were evaluated. A 4 × 4 × 16 cm specimen was prepared, and the electrical resistivity and the rate of change in length were measured at a material age of 28 days. A quick-hardening mortar was placed on an existing concrete board so that it was 30 cm long, 30 cm wide and 3 cm thick, and the occurrence of cracks was observed at the age of 28 days.

<使用材料>
セメント :普通ポルトランドセメント、密度3.15g/cm3、ブレーン値3,100cm2/g
急硬材 :12CaO・7Al23と無水石膏の等量混合物、ブレーン値6000cm2/g
膨張材A :エトリンガイト−石灰複合系膨張材、ブレーン値3,000cm2/g
膨張材B :カルシウムサルホアルミネート系膨張材、ブレーン値6,000cm2/g
収縮低減剤:粉末収縮低減剤、市販品
繊維 :ビニロン繊維、密度1.30g/cm3、市販品
減水剤 :β−ナフタレンスルホン酸系減水剤、市販品
凝結調整剤:炭酸カリウムとクエン酸の混合物
細骨材 :石灰石砕砂、密度2.70g/cm3
硫酸アルミニウム:水溶液(固形分濃度27%)、市販品
<Materials used>
Cement: Ordinary Portland cement, density 3.15g / cm 3 , brain value 3,100cm 2 / g
Rapid hardwood: Equal mixture of 12CaO · 7Al 2 O 3 and anhydrous gypsum, brain value 6000cm 2 / g
Expansion material A: Ettlingite-lime composite expansion material, brain value 3,000 cm 2 / g
Expansion material B: Calcium sulfoaluminate-based expansion material, brain value 6,000 cm 2 / g
Shrinkage reducing agent: powder shrinkage reducing agent, commercially available fiber: vinylon fiber, density 1.30 g / cm 3 , commercially available water reducing agent: β-naphthalenesulfonic acid-based water reducing agent, commercially available product coagulation adjusting agent: mixture of potassium carbonate and citric acid Fine aggregate: Limestone crushed sand, density 2.70 g / cm 3
Aluminum sulfate: aqueous solution (solid concentration 27%), commercial product

<測定方法>
モルタルフロー値:調製した急硬性モルタルをJIS R 5201に準拠して測定。但し、硫酸アルミニウムの添加前は0打モルタルフロー値、添加後は15打モルタルフロー値(それぞれフローテーブルをタッピングしない静置状態での値と、15回タッピング後の値)。
電気抵抗率:供試体を作製した翌日に脱型し、20℃、60%RHで養生した後、四電極法にて測定(印加電圧10V、測定周波数73.3Hz)。
長さ変化率:JIS A1171に準拠。収縮量の評価
ダレの有無:調製した急硬性吹付け用モルタルを吹付け、ダレが生じた場合を×、ダレがない場合を○とした。
ひび割れ :ひび割れ抵抗性で、ひび割れが発生した場合を×、ひび割れの発生がない場合を○とした。
<Measurement method>
Mortar flow value: Measure the prepared quick-hardening mortar according to JIS R 5201. However, before the addition of aluminum sulfate, the mortar flow value was 0 strokes, and after the addition, the mortar flow value was 15 strokes (values in a stationary state without tapping the flow table and values after 15 taps).
Electrical resistivity: Demolded the day after the specimen was prepared, cured at 20 ° C and 60% RH, and then measured by the four-electrode method (applied voltage 10V, measuring frequency 73.3Hz).
Length change rate: Conforms to JIS A1171. Evaluation of shrinkage: Presence / absence of dripping: The prepared quick-hardening mortar was sprayed.
Cracks: The crack resistance was rated as x when cracking occurred and ◯ when cracking did not occur.

Figure 2011219333
Figure 2011219333

表1より、水結合材比が高く、単位水量が多く、流動性の高いモルタルに硫酸アルミニウムを添加することにより、モルタルフロー値を低減し、ダレがなく、電気抵抗率が小さい急硬性吹付け用モルタルを調製できる。また、膨張材、収縮低減剤、及び繊維の併用により、収縮を低減できる。   From Table 1, the ratio of water binder is high, the amount of unit water is large, and aluminum sulfate is added to mortar with high fluidity to reduce the mortar flow value. Mortar can be prepared. Moreover, shrinkage | contraction can be reduced by combined use of an expansion material, a shrinkage reducing agent, and a fiber.

「実験例2」
水結合材比を42%、単位水量を300kg/m3、硫酸アルミニウムを添加する前の0打モルタルフロー値を250mmとし、表2に示す硫酸アルミニウムを使用し、圧縮強度を測定したこと以外は実験例1と同様に行った。結果を表2に併記する。
"Experimental example 2"
Except that the water binding material ratio was 42%, the unit water volume was 300 kg / m 3 , the zero-strike mortar flow value before adding aluminum sulfate was 250 mm, and the compressive strength was measured using the aluminum sulfate shown in Table 2. It carried out similarly to Experimental example 1. The results are also shown in Table 2.

<測定方法>
圧縮強度 :JIS R5201に準拠し、材齢3時間で測定。
<Measurement method>
Compressive strength: Measured at a material age of 3 hours in accordance with JIS R5201.

Figure 2011219333
Figure 2011219333

表2より、硫酸アルミニウムを添加することにより、ダレがなく、電気抵抗率が小さく、強度発現性が良好な急硬性吹付け用モルタルを調製できる。
また、材齢3時間での圧縮強度が高く、早期開放できるため、限られた時間内に補修しなければならない場合や、緊急工事において、効率的な工事が行える。
From Table 2, the addition of aluminum sulfate makes it possible to prepare a quick-hardening spraying mortar with no droop, low electrical resistivity, and good strength development.
In addition, since the compressive strength at the age of 3 hours is high and it can be opened early, it is possible to carry out efficient construction when repairs must be made within a limited time or in emergency construction.

「実験例3」
実験No. 1-4で使用した急硬性吹付け用モルタルを使用し、表3に示す塗布量で有機−無機複合型塗膜養生剤を塗布したこと以外は実験例1と同様に行った。
なお、比較のために、従来の塗膜養生剤を使用した場合についても同様に行った。結果を表3に併記する。
"Experiment 3"
The experiment was conducted in the same manner as in Experimental Example 1 except that the rapid-hardening spraying mortar used in Experiment No. 1-4 was used and the organic-inorganic composite type coating curing agent was applied in the coating amount shown in Table 3.
In addition, it carried out similarly about the case where the conventional coating film curing agent is used for the comparison. The results are also shown in Table 3.

<使用材料>
有機−無機複合型塗膜養生剤:アクリル樹脂-フッ素雲母の複合型塗膜養生剤
従来の塗膜養生剤:EVA系塗膜養生剤、市販品
<Materials used>
Organic-inorganic composite coating curing agent: Acrylic resin-fluorine mica composite coating curing agent Conventional coating curing agent: EVA coating curing agent, commercial product

Figure 2011219333
Figure 2011219333

表3より、有機−無機複合型塗膜養生剤を塗布することにより、モルタルの収縮がさらに低減されるばかりでなく、電気抵抗がさらに低減される。一方、従来の塗膜養生剤を塗布した場合には、そのような効果は見られない。   From Table 3, not only the shrinkage of the mortar is further reduced but also the electrical resistance is further reduced by applying the organic-inorganic composite type film curing agent. On the other hand, when a conventional coating film curing agent is applied, such an effect is not seen.

「実験例4」
単位セメント量が330kg/m3、水セメント比が60%、s/aが52%、NaClの添加量が12kg/m3のコンクリートで15×15×53cmの供試体を作製した。
このとき、供試体の軸方向の中央にφ13mmのみがき鋼棒を設置した。コンクリートの表面近傍を切削し、陽極のチタンリボンを埋設した後、実験No.1- 4の急硬性吹付け用モルタルを充填した。その後その表面に有機−無機複合型塗膜養生剤を200g/m2となるように塗布した。電流密度0.03A/m2で電気防食を行い、実験開始直後、1ヵ月後、6ヵ月後、及び1年後のモルタル硬化体の電気抵抗率を測定した。
また、1年後にみがき鋼棒の発錆の有無と急硬性吹付け用モルタルと塗膜の劣化の有無を観察した。
なお、有機−無機複合型塗膜養生剤を用いない場合と、比較として、有機系塗料を塗布した場合についても同様に行った。結果を表4に併記する。
"Experimental example 4"
A 15 × 15 × 53 cm specimen was made of concrete having a unit cement amount of 330 kg / m 3 , a water cement ratio of 60%, an s / a of 52%, and a NaCl addition amount of 12 kg / m 3 .
At this time, a φ13 mm post-rolled steel bar was placed in the center of the specimen in the axial direction. After cutting the vicinity of the concrete surface and embedding the anode titanium ribbon, it was filled with mortar for rapid hardening spraying of Experiment No.1-4. Thereafter, an organic-inorganic composite type coating curing agent was applied to the surface so as to be 200 g / m 2 . Electrocorrosion protection was performed at a current density of 0.03 A / m 2 , and the electrical resistivity of the mortar cured body was measured immediately after the start of the experiment, after 1 month, after 6 months, and after 1 year.
Further, after 1 year, the presence or absence of rusting of the polished steel bar and the presence or absence of deterioration of the rapid hardening mortar and the coating film were observed.
In addition, it carried out similarly about the case where an organic type coating material is apply | coated as a comparison with the case where an organic-inorganic composite type coating film curing agent is not used. The results are also shown in Table 4.

<使用材料>
有機系塗料:エポキシ系、市販品
<Materials used>
Organic paint: Epoxy, commercially available

Figure 2011219333
Figure 2011219333

表4より、本発明の急硬性吹付け用モルタルを使用し、その表面に有機−無機複合型塗膜養生剤を塗布することにより、長期的にモルタル硬化体の電気抵抗を小さく保つことができ、モルタルと塗膜の劣化がなく、高い防食効果が得られる。
一方、有機系塗料を使用した場合には、みがき鋼棒の発錆を抑制するが、塩素ガスなどが透過せず、モルタル硬化体と塗膜が劣化するため、長期的にモルタル硬化体の電気抵抗が増加する。
From Table 4, the electrical resistance of the cured mortar can be kept small for a long time by using the mortar for rapid curing spraying of the present invention and applying the organic-inorganic composite type film curing agent on the surface thereof. In addition, there is no deterioration of the mortar and the coating film, and a high anticorrosive effect is obtained.
On the other hand, when organic paint is used, rusting of polished steel bars is suppressed, but chlorine gas does not permeate and the mortar hardened body and coating film deteriorate. Resistance increases.

本発明によれば、水結合材比を高くしてもダレがなく、電気抵抗と収縮の両方が小さい急硬性吹付け用モルタルが得られ、また、収縮をさらに低減し、長期的にモルタル硬化体の電気抵抗を小さく保ち、塩素ガスなどの透過を妨げないものであり、塩害等により鋼材腐食を受けたコンクリート構造物の電気防食に用いた場合、コンクリート構造物内部にある鋼材の防食効果を高めることができる。また、硬化時間が短く、強度発現が速やかであり、早期開放できるため、干潮から満潮になるまでの限られた時間内に桟橋等の海洋構造物を補修しなければならない場合や、緊急工事において、効率的な工事が行える。   According to the present invention, there is no drooping even when the water binder ratio is increased, and a quick hardening mortar with low electrical resistance and shrinkage is obtained. It keeps the electrical resistance of the body small and does not impede the permeation of chlorine gas, etc. When used for the electrical protection of concrete structures that have undergone steel corrosion due to salt damage, etc., the corrosion protection effect of the steel materials inside the concrete structure Can be increased. Also, because the curing time is short, the strength is developed quickly, and it can be opened early, it is necessary to repair marine structures such as jetty within a limited time from low tide to high tide, or in emergency construction Efficient construction can be done.

Claims (9)

セメントと急硬材を含有する結合材、細骨材、減水剤、及び水を配合した急硬性モルタル組成物を使用してなり、水結合材比が30〜55%、単位水量が250〜400kg/m3のモルタル配合を用いて調製した、0打モルタルフロー値が200〜320mmのモルタルに、硫酸アルミニウムを添加して得られ、その硬化体の電気抵抗率が100kΩ・cm以下で、収縮量が-800×10-6以下である電気抵抗の小さい急硬性吹付け用モルタル。 It uses a hardened mortar composition containing cement and a quick hardener-containing binder, fine aggregate, water reducing agent, and water, with a water binder ratio of 30-55% and unit water volume of 250-400kg. obtained by adding aluminum sulfate to a mortar with a 0-stroke mortar flow value of 200 to 320 mm, prepared using a mortar composition of / m 3 , and the electrical resistivity of the cured product is 100 kΩ · cm or less, and the amount of shrinkage A quick-hardening mortar with low electrical resistance that is less than -800 x 10-6 . セメント100部に対して、硫酸アルミニウムを固形分換算で0.1〜10部添加して練混ぜて得られる、請求項1に記載の電気抵抗の小さい急硬性吹付け用モルタル。 The quick-hardening spraying mortar with low electrical resistance according to claim 1, obtained by adding 0.1 to 10 parts of aluminum sulfate in terms of solid content and mixing with 100 parts of cement. 請求項1又は請求項2に記載の電気抵抗の小さい急硬性吹付け用モルタルが硬化してなる急硬性吹付け用モルタル硬化体。 A hardened mortar body for rapid-hardening spraying obtained by curing the mortar for quick-hardening spraying according to claim 1 or 2 having a low electrical resistance. 請求項3に記載の急硬性吹付け用モルタル硬化体の表面に、有機−無機複合型塗膜養生剤を塗布してなる急硬性モルタル硬化体。 A hardened mortar hardened body obtained by applying an organic-inorganic composite film curing agent to the surface of the hardened mortar hardened body for spraying according to claim 3. 有機−無機複合型塗膜剤が、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を含有してなる請求項4に記載の急硬性モルタル硬化体。 The rapid hardening mortar hardened | cured material of Claim 4 in which an organic-inorganic composite type coating agent contains a synthetic resin aqueous dispersion, a water-soluble resin, and a swellable clay mineral. 有機−無機複合型塗膜剤の膨潤性粘土鉱物が、合成フッ素雲母である請求項5に記載の急硬性モルタル硬化体。 The hardened mortar hardened body according to claim 5, wherein the swellable clay mineral of the organic-inorganic composite coating agent is synthetic fluorine mica. 有機−無機複合型塗膜剤の使用量が、100〜500g/m2である請求項4〜6のうちのいずれか1項に記載の急硬性モルタル硬化体。 Organic - inorganic usage composite coating agent, rapid hardening mortar cured body according to any one of claims 4 to 6 is 100 to 500 g / m 2. 請求項3に記載の急硬性吹付け用モルタル硬化体を用いた、コンクリート構造物内部にある鋼材の防食方法。 The corrosion prevention method of the steel materials inside a concrete structure using the mortar hardening body for rapid hardening spraying of Claim 3. 請求項4〜請求項7のうちのいずれか1項に記載の急硬性モルタル硬化体を用いた、コンクリート構造物内部にある鋼材の防食方法。 The corrosion prevention method of the steel materials inside a concrete structure using the rapid hardening mortar hardening body of any one of Claims 4-7.
JP2010092807A 2010-04-14 2010-04-14 Rapid hardening mortar with low electrical resistance, rapid hardening hardened body, and method for preventing corrosion of steel in concrete structure using the same Active JP5697888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092807A JP5697888B2 (en) 2010-04-14 2010-04-14 Rapid hardening mortar with low electrical resistance, rapid hardening hardened body, and method for preventing corrosion of steel in concrete structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092807A JP5697888B2 (en) 2010-04-14 2010-04-14 Rapid hardening mortar with low electrical resistance, rapid hardening hardened body, and method for preventing corrosion of steel in concrete structure using the same

Publications (2)

Publication Number Publication Date
JP2011219333A true JP2011219333A (en) 2011-11-04
JP5697888B2 JP5697888B2 (en) 2015-04-08

Family

ID=45036784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092807A Active JP5697888B2 (en) 2010-04-14 2010-04-14 Rapid hardening mortar with low electrical resistance, rapid hardening hardened body, and method for preventing corrosion of steel in concrete structure using the same

Country Status (1)

Country Link
JP (1) JP5697888B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323238B1 (en) 2011-12-05 2013-10-30 한국건설기술연구원 Shocrete composition and construction method using the same
JP2018159204A (en) * 2017-03-22 2018-10-11 株式会社奥村組 Reinforcement method for concrete column
JP2018159205A (en) * 2017-03-22 2018-10-11 株式会社奥村組 Sprayed mortar for reinforcement
JP2023038655A (en) * 2021-09-07 2023-03-17 株式会社日東コンクリート工業 Producing method of pre-cured material for hydraulic composition and producing method of hydraulic composition
KR102568500B1 (en) * 2022-12-26 2023-09-05 주식회사 삼표산업 Plastering omitable wet self-filling mortar composition for flooring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273605A (en) * 2005-03-28 2006-10-12 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement mortar obtained by using the same
JP2009190944A (en) * 2008-02-15 2009-08-27 Denki Kagaku Kogyo Kk Mortar for plasterer having small electric resistance, hardened body using it, and corrosion prevention method for steel material inside of concrete structure using it
JP2010076998A (en) * 2008-09-29 2010-04-08 Denki Kagaku Kogyo Kk Mortar for plasterer having small electric resistance, hardened body using the same and corrosion prevention method for steel material in concrete structure using the hardened body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273605A (en) * 2005-03-28 2006-10-12 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement mortar obtained by using the same
JP2009190944A (en) * 2008-02-15 2009-08-27 Denki Kagaku Kogyo Kk Mortar for plasterer having small electric resistance, hardened body using it, and corrosion prevention method for steel material inside of concrete structure using it
JP2010076998A (en) * 2008-09-29 2010-04-08 Denki Kagaku Kogyo Kk Mortar for plasterer having small electric resistance, hardened body using the same and corrosion prevention method for steel material in concrete structure using the hardened body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323238B1 (en) 2011-12-05 2013-10-30 한국건설기술연구원 Shocrete composition and construction method using the same
JP2018159204A (en) * 2017-03-22 2018-10-11 株式会社奥村組 Reinforcement method for concrete column
JP2018159205A (en) * 2017-03-22 2018-10-11 株式会社奥村組 Sprayed mortar for reinforcement
JP7103755B2 (en) 2017-03-22 2022-07-20 株式会社奥村組 Spray mortar for reinforcement
JP7103754B2 (en) 2017-03-22 2022-07-20 株式会社奥村組 Reinforcement method for concrete columns
JP2023038655A (en) * 2021-09-07 2023-03-17 株式会社日東コンクリート工業 Producing method of pre-cured material for hydraulic composition and producing method of hydraulic composition
JP7315252B2 (en) 2021-09-07 2023-07-26 株式会社日東コンクリート工業 Method for producing pre-cured material for hydraulic composition and method for producing hydraulic composition
KR102568500B1 (en) * 2022-12-26 2023-09-05 주식회사 삼표산업 Plastering omitable wet self-filling mortar composition for flooring

Also Published As

Publication number Publication date
JP5697888B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5631024B2 (en) Anti-corrosion method for reinforcing bars inside reinforced concrete structures
JP5697888B2 (en) Rapid hardening mortar with low electrical resistance, rapid hardening hardened body, and method for preventing corrosion of steel in concrete structure using the same
JP4593384B2 (en) Anticorrosive composite and process for producing the same
JP4382614B2 (en) Cement admixture and cement composition using the same
JP4813148B2 (en) Organic-inorganic composite type coating curing agent, mortar or concrete using the same, and processing method
JP4563878B2 (en) Anticorrosive composite and process for producing the same
JP5185047B2 (en) Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP5242188B2 (en) Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP6033636B2 (en) Repair mortar for spraying with low electrical resistance and repair method using the same
JP2007153714A (en) Cement admixture and cement composition
JP5308270B2 (en) Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete
JP4642650B2 (en) Surface coated mortar or concrete
JP4593383B2 (en) Anticorrosive composite and process for producing the same
JP2006248792A (en) Lightweight conductive cement composition and protective material for electrolytic protection obtained by using the conductive cement composition
JP2010241664A (en) Cement concrete hardened body, and method for preventing corrosion of steel material in concrete structure using the same
JP5340692B2 (en) Cement admixture and cement composition
JP2011219332A (en) Quick-hardening mortar for plasterer having small electric resistance, quick-hardening mortar hardened body for the plasterer and corrosion prevention method for steel material inside concrete structure using the same
JP5697357B2 (en) Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same
JP5697358B2 (en) Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same
JP5259360B2 (en) Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP2007119259A (en) Organic-inorganic composite coating film-curing agent, mortar or concrete using the same, and its treatment method
JP4744933B2 (en) Method for treating high fluid mortar or high fluid concrete and hardened cement
JP5020543B2 (en) Mortar or concrete processing method and hardened cement
JP2016003342A (en) Attachable sacrificial anode material capable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

R150 Certificate of patent or registration of utility model

Ref document number: 5697888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250