JP5697357B2 - Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same - Google Patents
Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same Download PDFInfo
- Publication number
- JP5697357B2 JP5697357B2 JP2010088541A JP2010088541A JP5697357B2 JP 5697357 B2 JP5697357 B2 JP 5697357B2 JP 2010088541 A JP2010088541 A JP 2010088541A JP 2010088541 A JP2010088541 A JP 2010088541A JP 5697357 B2 JP5697357 B2 JP 5697357B2
- Authority
- JP
- Japan
- Prior art keywords
- mortar
- water
- steel
- spraying
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Working Measures On Existing Buildindgs (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、塩害等により鋼材腐食を受けたコンクリート構造物の電気防食に用いる吹付け用モルタル、それを用いた硬化体、及びそれを用いたコンクリート構造物内部にある鋼材の防食方法に関する。 The present invention relates to a mortar for spraying used for electric protection of a concrete structure subjected to corrosion by a steel material due to salt damage, a cured body using the same, and a method for preventing corrosion of a steel material inside the concrete structure using the mortar.
コンクリート構造物内部にある鉄筋等の鋼材は、ある塩分濃度以上の状態に晒されると、腐食電池が発生し、陽極となる鋼材に電気腐食が発生する。
このような、腐食電池の発生により誘発される鋼材の腐食を防止する手段として、コンクリート構造物に陽極を設置し、該陽極からコンクリート中の鋼材に直流電流を流し続けることにより、コンクリート中の鋼材の電位を制御し、鋼材の腐食反応を電気化学的に抑制する電気防食工法が推奨されており、コンクリート構造物の補修工法の一つとして利用されている。
When a steel material such as a reinforcing bar in a concrete structure is exposed to a state of a certain salt concentration or more, a corrosion battery is generated, and an electric corrosion is generated in the steel material serving as an anode.
As a means for preventing such corrosion of steel caused by the generation of corrosion batteries, an anode is installed in a concrete structure, and a direct current is allowed to flow from the anode to the steel in the concrete, thereby making the steel in the concrete. An anti-corrosion method that controls the electric potential of the steel and electrochemically suppresses the corrosion reaction of the steel material is recommended, and is used as one of the repair methods for concrete structures.
例えば、表面近傍のコンクリート中に陽極を設置し、この陽極からコンクリート中の鋼材(陰極)に向かって継続的に電流を流す防食工法がある。そして、この電流が適切に流れている限り、鋼材の腐食による劣化の進行が抑制できるものである。 For example, there is a corrosion prevention method in which an anode is installed in concrete near the surface, and current is continuously passed from the anode toward a steel material (cathode) in the concrete. As long as this current flows appropriately, the progress of deterioration due to corrosion of the steel material can be suppressed.
しかしながら、この方法では、時間の経過とともに、防食に必要な防食電流が減少し、長期にわたり陽極と鋼材との間に有効な電位差を維持することが困難であった。
この防食工法に用いられる陽極材としては、チタン系やカーボン系のロッドやリボンなどが多く用いられているが、この陽極の抵抗率を低減するためや不活性化を防止するために、当該陽極の性能を保護するための保護材料で陽極周辺を充填・被覆し、既設コンクリートと一体化する必要がある。この保護材料としてモルタルが用いられる。
However, with this method, as the time elapses, the anticorrosion current necessary for anticorrosion decreases, and it has been difficult to maintain an effective potential difference between the anode and the steel material over a long period of time.
As the anode material used in this anticorrosion method, titanium-based or carbon-based rods or ribbons are often used. In order to reduce the resistivity of the anode or to prevent inactivation, the anode material is used. It is necessary to fill and cover the periphery of the anode with a protective material to protect the performance of the steel and integrate it with the existing concrete. Mortar is used as this protective material.
鋼材の防食効果を上げるには、陽極の周囲に充填されたモルタルの硬化体の電気抵抗を小さくし、電流を流れやすくする必要がある。また、このモルタル硬化体にひび割れが生じると電流が流れにくくなるため、ひび割れの要因である収縮を小さくする必要がある。 In order to increase the anticorrosion effect of the steel material, it is necessary to reduce the electrical resistance of the hardened mortar filled around the anode so that the current flows easily. In addition, when cracks occur in the cured mortar, it is difficult for current to flow, so it is necessary to reduce the shrinkage that is the cause of the cracks.
モルタル硬化体の電気抵抗を小さくするには、水結合材比や単位水量を大きくして、モルタル硬化体中の自由水の量を多くすることが好ましい。
しかしながら、水結合材比や単位水量を大きくすると、モルタルの流動性が大きくなってダレが生じるため、そのままでは使用できない場合がある。また、水結合材比や単位水量を大きくすると、乾燥収縮が大きくなるので、電気抵抗を小さくすることと、収縮を小さくすることとを両立させるのは難しい。
In order to reduce the electrical resistance of the mortar cured body, it is preferable to increase the amount of free water in the mortar cured body by increasing the water binder ratio and unit water amount.
However, when the water binder ratio and the unit water amount are increased, the flowability of the mortar increases and sagging occurs, so that it may not be used as it is. Further, when the water binder ratio and the unit water amount are increased, drying shrinkage increases, so it is difficult to achieve both reduction in electrical resistance and reduction in shrinkage.
モルタル硬化体の電気抵抗を小さくする方法としては、亜硝酸リチウムや粘土鉱物を含むモルタルを使用する方法が提案されている(特許文献1、特許文献2参照)。
しかしながら、乾燥によりモルタル硬化体の表面から水分が逸散し、長期的には電気抵抗が大きくなるという課題があった。
As a method for reducing the electric resistance of the mortar cured body, a method using mortar containing lithium nitrite or clay mineral has been proposed (see Patent Document 1 and Patent Document 2).
However, there is a problem that moisture is dissipated from the surface of the cured mortar body due to drying, and electrical resistance increases in the long term.
一方、モルタル硬化体の収縮を低減する方法としては、膨張材、収縮低減剤、及び繊維等を併用し、さらに、使用する膨張材として、組成や粒度の異なる二種類の膨張材を組み合わせて使用することが提案されている(特許文献3、特許文献4参照)。 On the other hand, as a method for reducing the shrinkage of the cured mortar, an expansion material, a shrinkage reducing agent, and fibers are used in combination, and as the expansion material to be used, two types of expansion materials having different compositions and particle sizes are used in combination. Has been proposed (see Patent Document 3 and Patent Document 4).
有機−無機複合型塗膜養生剤をモルタルやコンクリートの硬化体の表面に塗布することにより、乾燥による水分の逸散を低減して乾燥収縮を抑制することに加え、中性化や外部からの塩分の浸透を抑制することが提案されている(特許文献5参照)。
しかしながら、有機−無機複合型塗膜養生剤をモルタルやコンクリートの硬化体の表面に塗布することが電気抵抗に関して、どのような効果が発揮されるかについては知られていない。
By applying organic-inorganic composite coating curing agent to the surface of mortar and concrete hardened bodies, in addition to reducing moisture dissipation due to drying and suppressing drying shrinkage, neutralization and external It has been proposed to suppress salt penetration (see Patent Document 5).
However, it is not known what effect the application of the organic-inorganic composite type film curing agent to the surface of a cured body of mortar or concrete will have on the electrical resistance.
電気防食では、陽極から酸素が発生し、陽極の電位が塩素発生電位まで上昇すると、電気泳動で陽極側に移動した塩化物イオンが、次亜塩素酸や塩素ガスとなり、陽極近傍のモルタルを劣化させることがあるため、モルタル硬化体中でこれら次亜塩素酸や塩素ガスを透過しやすいようにすることも必要である。 In cathodic protection, when oxygen is generated from the anode and the potential of the anode rises to the chlorine generation potential, chloride ions that have moved to the anode side by electrophoresis become hypochlorous acid or chlorine gas, which deteriorates the mortar near the anode. Therefore, it is necessary to make these hypochlorous acid and chlorine gas permeate easily in the mortar cured body.
本発明は、水結合材比を高くしてもダレが生じず、電気抵抗が小さく、収縮が小さい吹付け用モルタルを提供する。また、収縮をさらに低減し、長期的に電気抵抗を小さく保ち、塩素ガスなどの透過を妨げないモルタル硬化体を用いた、コンクリート構造物内部にある鋼材の防食方法を提供する。 The present invention provides a spraying mortar that does not sag even when the water binder ratio is increased, has low electrical resistance, and has low shrinkage. Moreover, the corrosion prevention method of the steel materials inside a concrete structure using the mortar hardening body which reduces shrinkage further, keeps electrical resistance small for a long term, and does not prevent permeation | transmission of chlorine gas etc. is provided.
本発明は、前記課題を解決するために、次のような構成をとるものである。
(1)セメントを含有する結合材、細骨材、減水剤、及び水を配合したモルタル組成物を使用してなり、水結合材比が35〜55%、単位水量が250〜400kg/m3のモルタル配合を用いて調製した、0打モルタルフロー値が200〜320mmのモルタルに、アルミン酸ナトリウムを
、セメント100部に対して、固形分換算で0.3〜5.0部添加して得られ、その硬化体の電気抵抗率が100kΩ・cm以下で、長さ変化率が-800×10-6以下である吹付け用モルタルである。
(2)前記吹付け用モルタルを硬化してなるモルタル硬化体である。
(3)前記モルタル硬化体の表面に、有機−無機複合型塗膜養生剤を塗布してなるモルタル硬化体である。
(4)前記有機−無機複合型塗膜養生剤が、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を含有してなる前記(3)のモルタル硬化体である。
(5)前記有機−無機複合型塗膜養生剤の膨潤性粘土鉱物が、合成フッ素雲母である前記(4)のモルタル硬化体である。
(6)前記有機−無機複合型塗膜養生剤の使用量が、100〜500g/m2である前記(3)〜(5)のうちのいずれか1のモルタル硬化体である。
(7)前記(2)のモルタル硬化体を用いて、コンクリート構造物に陽極を設置し、前記陽極からコンクリート中の鋼材に直流電流を流し続けることにより、鋼材の腐食反応を電気化学的に抑制する、コンクリート構造物内部にある鋼材の防食方法である。
(8)前記(3)〜(6)のうちのいずれか1のモルタル硬化体を用いて、コンクリート構造物に陽極を設置し、前記陽極からコンクリート中の鋼材に直流電流を流し続けることにより、鋼材の腐食反応を電気化学的に抑制する、コンクリート構造物内部にある鋼材の防食方法である。
In order to solve the above problems, the present invention has the following configuration.
(1) A mortar composition containing cement-containing binder, fine aggregate, water reducing agent, and water is used. The water binder ratio is 35 to 55%, and the unit water volume is 250 to 400 kg / m 3. Obtained by adding 0.3 to 5.0 parts in terms of solid content of sodium aluminate to 100 parts of cement to a mortar with a 0-stroke mortar flow value of 200 to 320 mm prepared using a mortar formulation of A spraying mortar with a body electrical resistivity of 100 kΩ · cm or less and a length change rate of −800 × 10 −6 or less.
(2) A mortar cured body obtained by curing the spraying mortar.
(3) A mortar cured body obtained by applying an organic-inorganic composite coating film curing agent to the surface of the mortar cured body.
(4) The mortar cured body according to (3), wherein the organic-inorganic composite-type film curing agent contains a synthetic resin aqueous dispersion, a water-soluble resin, and a swellable clay mineral.
(5) The mortar cured body according to (4), wherein the swellable clay mineral of the organic-inorganic composite-type coating film curing agent is a synthetic fluorine mica.
(6) The mortar cured body according to any one of (3) to (5), wherein the organic-inorganic composite-type coating curing agent is used in an amount of 100 to 500 g / m 2 .
(7) Using the mortar cured body of (2) above , an anode is installed in a concrete structure, and a direct current is continuously passed from the anode to the steel material in the concrete, thereby inhibiting the corrosion reaction of the steel material electrochemically. This is an anticorrosion method for steel inside a concrete structure.
(8) Using the mortar hardened body according to any one of (3) to (6) above, by installing an anode in a concrete structure and continuously flowing a direct current from the anode to the steel material in the concrete, This is a method for preventing corrosion of a steel material inside a concrete structure, which electrochemically suppresses the corrosion reaction of the steel material.
本発明は、水結合材比を高くしてもダレがなく、電気抵抗が小さく、収縮が小さい吹付け用モルタルを提供する。また、収縮をさらに低減し、長期的に電気抵抗を小さく保ち、塩素ガスなどの透過を妨げない、吹付け用モルタルの防食方法を提供する。
これらを電気防食に用いることにより、コンクリート構造物中の鋼材の防食において、高い防食効果が得られる。
The present invention provides a mortar for spraying that does not sag even when the water binder ratio is increased, has low electrical resistance, and has low shrinkage. Further, the present invention provides a corrosion prevention method for spraying mortar that further reduces shrinkage, keeps electric resistance small in the long term, and does not prevent permeation of chlorine gas or the like.
By using these for electrocorrosion protection, a high anticorrosion effect is obtained in the anticorrosion of the steel material in the concrete structure.
以下、本発明を詳細に説明する。
なお、本発明における部や%は特に規定しない限り、質量基準で示す。
Hereinafter, the present invention will be described in detail.
In the present invention, “part” and “%” are based on mass unless otherwise specified.
本発明では、セメントを含有する結合材、細骨材、及び減水剤等を用い、水結合材比が35〜55%、単位水量が250〜400kg/m3、0打モルタルフロー値が200〜320mmの流動性の高いモルタルに、アルミン酸ナトリウムを、セメント100部に対して、0.3〜5.0部添加し、そのモルタル硬化体の電気抵抗率が100kΩ・cm以下で、長さ変化率が-800×10-6以下である吹付け用モルタルを調製する。 In the present invention, a cement-containing binder, fine aggregate, water reducing agent and the like are used, the water binder ratio is 35 to 55%, the unit water amount is 250 to 400 kg / m 3 , and the zero-stroke mortar flow value is 200 to Add 0.3 to 5.0 parts of sodium aluminate to 320 parts of cement with high fluidity of 320 mm. The electrical resistivity of the hardened mortar is 100 kΩ · cm or less, and the rate of change in length is -800. Prepare spraying mortar that is × 10 -6 or less.
本発明では、セメントを含有する結合材を使用する。
結合材とは、セメント、又はセメントと、必要に応じ併用するシリカフューム、高炉水砕スラグ、フライアッシュ、膨張材、急硬材、及び高強度混和材等の各種混和材との配合物をいう。
In the present invention, a binder containing cement is used.
The binder refers to cement or a combination of cement and various admixtures such as silica fume, blast furnace granulated slag, fly ash, expansion material, rapid hardening material, and high-strength admixture used in combination as necessary.
本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、また、石灰石粉末や高炉徐冷スラグ微粉末を混合したフィラーセメント、並びに、各種の産業廃棄物を主原料として製造された環境調和型セメント、いわゆるエコセメントなどが挙げられ、これらのうちの一種又は二種以上が使用可能である。 As the cement used in the present invention, various portland cements such as normal, early strength, very early strength, low heat, and moderate heat, various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash, or silica, , Limestone powder and blast furnace slow-cooled slag fine powder, and environmentally friendly cement made from various industrial wastes as main raw materials, so-called eco-cement. More than species can be used.
本発明で使用する細骨材は特に限定されるものではない。その具体例としては、例えば、ケイ砂、石灰砂、高炉水砕スラグ細骨材、再生細骨材、及び重量細骨材等が挙げられる。
また、高炉徐冷スラグ細骨材、電気炉酸化期スラグ系細骨材、並びに、フェロニッケルスラグ、フェロクロムスラグ、銅スラグ、亜鉛スラグ、及び鉛スラグなどを総称する非鉄精錬スラグ細骨材等が、橄欖岩(かんらん岩)系細骨材、いわゆるオリビンサンド、及びエメリー鉱等が挙げられる。本発明では、これらのうちの一種又は二種以上が使用可能である。
細骨材の使用量は特に限定されるものではなく、用途や要求される作業性に応じて適宜調整される。
The fine aggregate used in the present invention is not particularly limited. Specific examples thereof include silica sand, lime sand, blast furnace granulated slag fine aggregate, recycled fine aggregate, and heavy fine aggregate.
In addition, blast furnace slow-cooled slag fine aggregate, electric furnace oxidation stage slag fine aggregate, and non-ferrous smelted slag fine aggregate that collectively refers to ferronickel slag, ferrochrome slag, copper slag, zinc slag, lead slag, etc. , Peridotite fine aggregates, so-called olivine sand, emery ore and the like. In the present invention, one or more of these can be used.
The amount of fine aggregate used is not particularly limited, and is appropriately adjusted according to the application and required workability.
本発明で使用する減水剤は特に限定されるものではない。その具体例としては、例えば、ナフタレン系減水剤としては、エヌエムビー社製、商品名「レオビルドSP-9」シリーズ、花王社製、商品名「マイティ2000」シリーズ、及び日本製紙社製、商品名「サンフローHS-100」などが挙げられる。また、メラミン系減水剤としては、日本シーカ社製、商品名「シーカメント1000」シリーズや日本製紙社製、商品名「サンフローHS-40」などが挙げられる。さらに、アミノスルホン酸系減水剤としては、フローリック社製、商品名「FP-200」シリーズなどが挙げられる。ポリカルボン酸系減水剤としては、エヌエムビー社製、商品名「レオビルドSP-8」シリーズ、グレースケミカルズ社製、商品名「ダーレックススーパー100PHX」、及び竹本油脂社製、商品名「チューポールHP-8」シリーズや「チューポールHP-11」シリーズなどが挙げられる。本発明ではこれら減水剤のうちの一種又は二種以上が使用可能である。
減水剤の使用量は特に限定されるものではなく、用途や要求される作業性に応じて適宜調整される。
The water reducing agent used in the present invention is not particularly limited. Specific examples thereof include, for example, naphthalene-based water reducing agents, manufactured by NMB, trade name "Leo Build SP-9" series, Kao Corporation, trade name "Mighty 2000" series, and Nippon Paper Industries, trade name " Sunflow HS-100 ". Examples of the melamine water reducing agent include Nippon Seika Co., Ltd., trade name “Sea Cament 1000” series, Nippon Paper Industries Co., Ltd., trade name “Sunflow HS-40”, and the like. Furthermore, examples of the aminosulfonic acid water reducing agent include a product name “FP-200” series manufactured by Floric. Polycarboxylic acid-based water reducing agents are manufactured by NMB, trade name "Leo Build SP-8" series, Grace Chemicals, trade name "Darlex Super 100PHX", and Takemoto Yushi Co., Ltd., trade name "Tupol HP- 8 "series and" Tupole HP-11 "series. In the present invention, one or more of these water reducing agents can be used.
The amount of water reducing agent used is not particularly limited, and is appropriately adjusted according to the application and required workability.
本発明では、セメント、骨材、及び減水剤等とともに、石灰石微粉末、高炉徐冷スラグ微粉末、下水汚泥焼却灰やその溶融スラグ、都市ゴミ焼却灰やその溶融スラグ、パルプスラッジ焼却灰等の混和材料、凝結調整剤、消泡剤、防錆剤、防凍剤、スチールファイバー、ビニロンファイバー、炭素繊維、及びワラストナイト繊維等の繊維物質、ポリマー、ベントナイトなどの粘土鉱物、並びに、ハイドロタルサイトなどのアニオン交換体等のうちの一種又は二種を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。 In the present invention, limestone fine powder, blast furnace slow-cooled slag fine powder, sewage sludge incinerated ash and its molten slag, municipal waste incinerated ash and its molten slag, pulp sludge incinerated ash, etc. Admixtures, setting modifiers, antifoaming agents, rust inhibitors, antifreeze agents, fiber materials such as steel fibers, vinylon fibers, carbon fibers, and wollastonite fibers, clay minerals such as polymers and bentonite, and hydrotalcite It is possible to use 1 type or 2 types of anion exchangers etc., etc. in the range which does not inhibit substantially the objective of this invention.
本発明では、結合材、細骨材、水、及び減水剤を含有するモルタル組成物を用いてモルタルを調製する。
モルタルを調製する際の水結合材比は、35〜55%であり、40〜50%が好ましい。水セメント比が35%未満では、モルタル硬化体中の自由水の量が少なくなるため、電気抵抗が大きくなり、充分な防食効果が得られなくなるおそれがあり、55%を超えると、アルミン酸ナトリウムを添加しても吹付けたときにダレが生じる場合がある。
In this invention, mortar is prepared using the mortar composition containing a binder, a fine aggregate, water, and a water reducing agent.
The water binder ratio in preparing the mortar is 35 to 55%, preferably 40 to 50%. If the water-cement ratio is less than 35%, the amount of free water in the mortar hardened body will be small, which may increase the electrical resistance and prevent sufficient corrosion protection. If it exceeds 55%, sodium aluminate Even when added, dripping may occur when sprayed.
ここで、吹付け用モルタルとは、吹付けで使うモルタルであり、吹付けたときにダレないことが求められる。ダレが生じると、壁や天井部分等の施工でモルタルが流れてしまう。ダレの目安として、JIS R 5201によるモルタルフロー値(15打モルタルフロー値)で120〜180mm程度が好ましい。120mm未満ではモルタルの流動性が小さすぎて、コンクリートとの付着性が小さくなるおそれがあり、180mmを超えるとダレが生じる場合がある。 Here, the mortar for spraying is a mortar used for spraying, and is required to be free from dripping when sprayed. When sagging occurs, mortar flows through the construction of walls and ceilings. As a measure of sagging, a mortar flow value (15-stroke mortar flow value) according to JIS R 5201 is preferably about 120 to 180 mm. If it is less than 120 mm, the fluidity of the mortar is too small, and the adhesion to concrete may be reduced. If it exceeds 180 mm, sagging may occur.
また、モルタルを調製する際の単位水量は、250〜400kg/m3であり、289〜337kg/m3が好ましい。250kg/m3未満では、モルタル硬化体中の自由水の量が少なくなるため、電気抵抗が大きくなり、充分な防食効果が得られなくなる場合があり、400kg/m3を超えると、アルミン酸ナトリウムを添加してもダレが生じる場合がある。 The unit amount of water in the preparation of mortar is 250~400kg / m 3, 289~337kg / m 3 is preferred. Is less than 250 kg / m 3, mode for Rutaru amount of free water cured material became less, the electric resistance increases, there is a case where sufficient anticorrosion effect can not be obtained, and when it exceeds 400 kg / m 3, aluminate Even if sodium is added, sagging may occur.
0打モルタルフロー値とは、JISR 5201においてフローテーブルをタッピングしない、静置状態でのモルタルフロー値を指すもので、本発明では、200〜320mmであり、235〜275mmが好ましい。200mm未満では、電気抵抗が大きくなり、充分な防食効果が得られなくなるおそれがあり、320mmを超えると、材料分離が生じやすくなる場合がある。 The zero-strike mortar flow value refers to a mortar flow value in a stationary state without tapping the flow table in JISR 5201. In the present invention, it is 200 to 320 mm, and preferably 235 to 275 mm. If the thickness is less than 200 mm, the electric resistance may increase and a sufficient anticorrosion effect may not be obtained. If the thickness exceeds 320 mm, material separation may easily occur.
本発明では、セメント、細骨材、水、及び減水剤を含有するモルタル組成物を用い、水結合材比が35〜55%、単位水量が250〜400kg/m3で、0打モルタルフロー値が200〜320mmという流動性の高いモルタルに、アルミン酸ナトリウムを添加することにより、水結合材比が高くてもダレない吹付け用モルタルを調製する。 In the present invention, a mortar composition containing cement, fine aggregate, water, and a water reducing agent is used, the water binder ratio is 35 to 55%, the unit water amount is 250 to 400 kg / m 3 , and the zero-stroke mortar flow value. By adding sodium aluminate to a mortar having a high fluidity of 200 to 320 mm, a spraying mortar that does not sag even if the water binder ratio is high is prepared.
本発明で使用するアルミン酸ナトリウムは、流動性の高いモルタルの凝結を促進して、ダレない吹付け用モルタルとする。アルミン酸ナトリウムは結晶水を含む粉体や無水物の粉体、水溶液があり、いずれも使用できるが、流動性の高いモルタルとの混合性が良好なことから、水溶液の使用が好ましい。 The sodium aluminate used in the present invention promotes the setting of a mortar having a high fluidity to form a dripping mortar. Sodium aluminate includes powder containing water of crystallization, an anhydrous powder, and an aqueous solution, and any of them can be used. However, the use of an aqueous solution is preferable because of good mixing with mortar having high fluidity.
本発明で使用するアルミン酸ナトリウムの添加量は、セメント100部に対して、固形分換算で0.3〜5.0部である。0.1部未満ではダレが生じ、10部を超えて添加すると、圧縮強度が小さくなる場合がある。 The amount of sodium aluminate used in the present invention is 0.3 to 5.0 parts in terms of solid content with respect to 100 parts of cement. If it is less than 0.1 part, sagging occurs, and if it is added in excess of 10 parts, the compressive strength may be reduced.
本発明において、アルミン酸ナトリウムの添加方法は特に限定されるものではないが、所定の水結合材比と単位水量のモルタルを練混ぜた後に添加することにより、ダレない、良好な吹付け用モルタルが得られやすいことから好ましい。 In the present invention, the method for adding sodium aluminate is not particularly limited, but by adding the mortar having a predetermined water binder ratio and unit water amount after kneading, the mortar for good spraying without dripping is added. Is preferred because it is easy to obtain.
混合装置としては、既存のいかなる装置も使用可能であり、例えば、ハンドミキサ、グラウトミキサ、ダマカットミキサ、二軸ミキサ、オムニミキサ、パン型ミキサ、遊星型ミキサ、及び傾胴ミキサなどが使用可能である。 As the mixing device, any existing device can be used, for example, a hand mixer, a grout mixer, a damacut mixer, a biaxial mixer, an omni mixer, a pan mixer, a planetary mixer, and a tilting mixer can be used. is there.
モルタル硬化体の電気抵抗率は、100kΩ・cm以下であり、長さ変化率は-800×10-6以下である。 The electric resistivity of the cured mortar is 100 kΩ · cm or less, and the rate of change in length is −800 × 10 −6 or less.
モルタル硬化体の電気抵抗率は、100kΩ・cm以下であり、50kΩ・cm以下が好ましい。電気抵抗率が100kΩ・cmを超えると、電流が流れにくくなり、充分な防食効果が得られなくなる場合がある。 The electric resistivity of the cured mortar is 100 kΩ · cm or less, preferably 50 kΩ · cm or less. When the electrical resistivity exceeds 100 kΩ · cm, it becomes difficult for current to flow, and a sufficient anticorrosion effect may not be obtained.
モルタル硬化体の長さ変化率は-800×10-6以下であり、-600×10-6以下が好ましい。長さ変化率が-800×10-6を超えるとひび割れが発生しやすくなり、電流が流れにくくなって、充分な防食効果が得られなくなる場合がある。 The length change rate of the cured mortar is −800 × 10 −6 or less, preferably −600 × 10 −6 or less. If the rate of change in length exceeds −800 × 10 −6 , cracks are likely to occur, current may not flow easily, and a sufficient anticorrosion effect may not be obtained.
本発明では、モルタル硬化体の収縮量を低減するため、即ち、長さ変化率を-800×10-6以下とするために、膨張材、収縮低減剤、及び繊維を併用することは好ましい。 In the present invention, in order to reduce the amount of shrinkage of the cured mortar , that is, in order to make the length change rate to be −800 × 10 −6 or less, it is preferable to use an expansion material, a shrinkage reducing agent, and a fiber in combination.
ここで、膨張材は特に限定されるものではなく、いかなるものでも使用可能である。その種類としては、遊離石灰や遊離マグネシアを含むものが挙げられるが、長期安定性の観点から、遊離石灰を含む膨張材が好ましい。 Here, the expansion material is not particularly limited, and any material can be used. Although the thing containing free lime and free magnesia is mentioned as the kind, From the viewpoint of long-term stability, the expansion | swelling material containing free lime is preferable.
遊離石灰を含む膨張材としては、例えば、遊離石灰−無水セッコウ系膨張材、遊離石灰−水硬性化合物系膨張材、並びに、遊離石灰−水硬性化合物−無水セッコウ系膨張材等が挙げられる。
本発明では、膨張性能が良好なことから、遊離石灰−水硬性化合物−無水セッコウ系膨張材を用いることが好ましい。
Examples of the expanding material containing free lime include a free lime-anhydrous gypsum-based expanding material, a free lime-hydraulic compound-based expanding material, and a free lime-hydraulic compound-anhydrous gypsum-based expanding material.
In this invention, since expansion | swelling performance is favorable, it is preferable to use a free lime-hydraulic compound-anhydrous gypsum-type expansion | swelling material.
ここで、水硬性化合物としては、例えば、アウイン、カルシウムフェライト、カルシウムアルミノフェライト、カルシウムシリケート、及びカルシウムアルミネートなどの一種又は二種以上が挙げられる。
遊離石灰−水硬性化合物−無水セッコウ系膨張材において、水硬性化合物が、アウイン、カルシウムフェライト、及びカルシウムアルミノフェライトなどの一種又は二種以上から構成される膨張材は、遊離石灰から消石灰を生成するとともに、水硬性化合物と無水セッコウからエトリンガイトも生成する。このため、エトリンガイトに因んで、カルシウムサルホアルミネート系膨張材と称されるものや、エトリンガイト−石灰複合系膨張材と称されるものがある。
このような膨張材としては、各社より市販されている膨張材や静的破砕材が利用可能である。膨張材や静的破砕材は、多数市販されており、その代表例としては、電気化学工業社製、商品名「デンカCSA」や「デンカパワーCSA」、住友大阪セメント社製、商品名「サクス」、太平洋マテリアル社製、商品名「エクスパン」、「N-EX」、「ブライスター」、及び「太平洋ジプカル」などが挙げられる。
Here, examples of the hydraulic compound include one or more of Auin, calcium ferrite, calcium aluminoferrite, calcium silicate, and calcium aluminate.
In the free lime-hydraulic compound-anhydrous gypsum-based expansive material, the expansive material in which the hydraulic compound is composed of one or more of Auin, calcium ferrite, and calcium aluminoferrite produces slaked lime from the free lime. At the same time, ettringite is also produced from hydraulic compounds and anhydrous gypsum. For this reason, there exist what is called a calcium sulfoaluminate type | system | group expansion | swelling material and what is called an ettringite-lime composite type | system | group expansion | swelling material in connection with ettringite.
As such an expanding material, an expanding material or a static crushing material marketed by each company can be used. A large number of inflatables and static crushed materials are commercially available, and representative examples thereof include those manufactured by Denki Kagaku Kogyo Co., Ltd., trade names “Denka CSA” and “Denka Power CSA”, Sumitomo Osaka Cement Co., Ltd. ", Trade name" Expan "," N-EX "," Breister ", and" Pacific Gypcal "manufactured by Taiheiyo Material.
膨張材の粒度は特に限定されるものではないが、通常、ブレーン比表面積値(以下、ブレーン値という)で2,500〜10,000cm2/gが好ましくい。
膨張材の使用量は、セメント100部に対して、2〜20部が好ましい。
The particle size of the intumescent material is not particularly limited, but usually it is preferably 2,500 to 10,000 cm 2 / g in terms of the specific surface area of the brain (hereinafter referred to as the brain value).
The amount of the expansion material used is preferably 2 to 20 parts with respect to 100 parts of cement.
収縮低減剤としては、収縮低減成分が一般式RO(AO)nH(Rは炭素数4〜6のアルキル基、Aは炭素数2〜3の一種又は二種のアルキレン基、nは1〜10の整数)で示される低級アルコールのアルキレンオキサイド付加物を主体としたものや、一般式X{O(AO)nR}m(ただし、Xは2〜8個の水酸基を有する化合物の残基、AOは炭素数2〜18のオキシアルキレン基、Rは水素原子、炭素数1〜18の炭化水素基、又は炭素数2〜18のアシル基、nは30〜1,000、mは2〜8)で示され、そのオキシアルキレン基の60mol%以上はオキシエチレン基であるポリオキシアルキレン誘導体等が使用可能である。
収縮低減剤の使用量は、セメント100部に対して、1〜6部が好ましい。
As the shrinkage reducing agent, the shrinkage reducing component is represented by the general formula RO (AO) nH (R is an alkyl group having 4 to 6 carbon atoms, A is one or two alkylene groups having 2 to 3 carbon atoms, and n is 1 to 10). Or an alkylene oxide adduct of a lower alcohol represented by the general formula X {O (AO) nR} m (where X is a residue of a compound having 2 to 8 hydroxyl groups, AO Is an oxyalkylene group having 2 to 18 carbon atoms, R is a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an acyl group having 2 to 18 carbon atoms, n is 30 to 1,000, and m is 2 to 8) A polyoxyalkylene derivative in which 60 mol% or more of the oxyalkylene group is an oxyethylene group can be used.
The amount of shrinkage reducing agent used is preferably 1 to 6 parts per 100 parts of cement.
繊維は特に限定されるものではなく、一般に市販されているものが使用でき、具体的には、高強度のビニロン繊維やポリエチレン繊維等が挙げられる。
繊維の使用量は、結合材、細骨材、及び減水剤を含有してなるモルタル組成物100容量部中、0.01〜1.0容量部が好ましい。
The fibers are not particularly limited, and commercially available products can be used, and specific examples include high-strength vinylon fibers and polyethylene fibers.
The amount of fiber used is preferably 0.01 to 1.0 part by volume in 100 parts by volume of a mortar composition containing a binder, fine aggregate, and a water reducing agent.
本発明では、モルタル硬化体の表面に、有機−無機複合型塗膜養生剤を塗布することは、収縮量をさらに低減し、ひび割れを抑制できるばかりでなく、長期的にモルタル硬化体の電気抵抗を小さく保つことができることから好ましい。 In the present invention, applying an organic-inorganic composite type film curing agent to the surface of the mortar cured body not only can further reduce the shrinkage and suppress cracking, but also can provide long-term electrical resistance of the mortar cured body. Is preferable because it can be kept small.
防食工法では、エポキシ樹脂等による塗装もあるが、エポキシ樹脂等を塗装すると、陽極で発生した塩素ガスなどが透過しないため、陽極近傍のモルタルが劣化し、塗膜の変色や剥がれが起こる。一方、本発明の有機−無機複合型塗膜養生剤では、水分の逸散を抑制するが、塩素ガスなどは緩やかに透過するため、モルタルや塗膜が劣化しない。 In the anticorrosion method, there is coating with an epoxy resin or the like. However, when the epoxy resin or the like is coated, chlorine gas generated at the anode does not permeate, so that the mortar near the anode is deteriorated and the coating film is discolored or peeled off. On the other hand, the organic-inorganic composite type coating curing agent of the present invention suppresses the dissipation of moisture, but chlorine gas and the like permeate slowly, so that the mortar and coating film do not deteriorate.
本発明の有機−無機複合型塗膜養生剤とは、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を、また、さらに、これらと架橋剤とを主成分とするものである。 The organic-inorganic composite type coating curing agent of the present invention is composed of a synthetic resin aqueous dispersion, a water-soluble resin, and a swellable clay mineral, and these and a crosslinking agent as main components.
ここで、合成樹脂水性分散体とは、一般的には合成樹脂エマルジョンであり、芳香族ビニル単量体、脂肪族共役ジエン系単量体、エチレン系不飽和脂肪酸単量体、及びその他の共重合可能な単量体の内から一種又は二種以上を乳化重合して得られるものである。例えば、スチレンを主体としたスチレン・ブタジエン系ラテックス、スチレン・アクリル系エマルジョンやスチレンと共重合したメチルメタクリレート・ブタジエン系ラテックス、エチレン・アクリルエマルジョンである。合成樹脂エマルジョンには、カルボキシル基又はヒドロキシ基を有するものがより望ましい。
ここで、乳化重合は、重合すべき単量体を混合し、これに乳化剤や重合開始剤等を加え水系で行なう一般的な乳化重合方法である。
膨潤性粘土鉱物との配合安定性を得るには、アンモニア、アミン類、及びカセイソーダなどの塩基性物質を使用し、pH5以上に調整したものが好ましい。
合成樹脂水性分散体の粒子径は、一般的に100〜300nmであるが、60〜100nm程度の小さい粒子径のものが好ましい。
Here, the synthetic resin aqueous dispersion is generally a synthetic resin emulsion, and includes an aromatic vinyl monomer, an aliphatic conjugated diene monomer, an ethylenically unsaturated fatty acid monomer, and other co-polymers. It is obtained by emulsion polymerization of one or two or more of polymerizable monomers. For example, styrene / butadiene latex mainly composed of styrene, styrene / acrylic emulsion, methyl methacrylate / butadiene latex copolymerized with styrene, and ethylene / acrylic emulsion. The synthetic resin emulsion is more preferably one having a carboxyl group or a hydroxy group.
Here, the emulsion polymerization is a general emulsion polymerization method in which a monomer to be polymerized is mixed, and an emulsifier, a polymerization initiator, etc. are added to the monomer and the reaction is carried out in an aqueous system.
In order to obtain blending stability with the swellable clay mineral, it is preferable to use a basic substance such as ammonia, amines, and caustic soda and adjust the pH to 5 or more.
The particle diameter of the synthetic resin aqueous dispersion is generally 100 to 300 nm, but preferably has a small particle diameter of about 60 to 100 nm.
水溶性樹脂としては、加工澱粉又はその誘導体、セルロース誘導体、ポリ酢酸ビニルの鹸化物又はその誘導体、スルホン酸基を有する重合体又はその塩、アクリル酸の重合体や共重合体又はこれらの塩、アクリルアミドの重合体や共重合体、ポリエチレングリコール、及びオキサゾリン基含有重合体等が挙げられ、そのうちの一種又は二種以上の使用が可能である。
水溶性樹脂としては、純水への溶解度が常温で1%以上であるものであれば良く、樹脂単位重量当たりの水素結合性基又はイオン性基が10〜60%であることが好ましい。
また、平均分子量は2,000〜1,000,000が好ましい。
水溶性樹脂の使用量は、合成樹脂水性分散体の固形分100部に対して、固形分換算で0.05〜200部が好ましい。
Examples of water-soluble resins include modified starch or derivatives thereof, cellulose derivatives, saponified polyvinyl acetate or derivatives thereof, polymers having sulfonic acid groups or salts thereof, polymers or copolymers of acrylic acid or salts thereof, Examples include acrylamide polymers and copolymers, polyethylene glycol, and oxazoline group-containing polymers, and one or more of them can be used.
The water-soluble resin may be one having a solubility in pure water of 1% or more at room temperature, and preferably has 10 to 60% of hydrogen bonding groups or ionic groups per unit weight of the resin.
The average molecular weight is preferably 2,000 to 1,000,000.
The amount of the water-soluble resin used is preferably 0.05 to 200 parts in terms of solid content with respect to 100 parts of solid content of the synthetic resin aqueous dispersion.
膨潤性粘土鉱物としては、スクメタイト属に属する層状ケイ酸塩鉱物が挙げられる。例えば、バイデライト、ノントロナイト、サポナイト、マイカ、及びベントナイトなどである。これらは天然品、合成品、及び加工処理品のいずれであっても使用可能である。
そのうち、日本ベントナイト工業会、標準試験方法 JBAS-104-77に準じた方法で測定した膨潤力が20ml/2g以上の粘土鉱物、特に、ベントナイトが好ましい。
また、イオン交換当量が100g当たり、10ミリ当量以上ものが好ましい。
さらに、そのアスペクト比が50〜5,000のものが好ましい。アスペクト比とは、電子顕微鏡写真により求めた層状に分散した粘土鉱物の長さ/厚みの比である。
膨潤性粘土鉱物の使用量は、合成樹脂水性分散体の固形分100部に対して、1〜50部が好ましい。
Examples of swellable clay minerals include layered silicate minerals belonging to the scumite genus. For example, beidellite, nontronite, saponite, mica and bentonite. Any of natural products, synthetic products, and processed products can be used.
Among them, clay minerals having a swelling power of 20 ml / 2 g or more measured by a method according to the Japan Bentonite Industry Association, standard test method JBAS-104-77, particularly bentonite is preferred.
Further, the ion exchange equivalent is preferably 10 milliequivalents or more per 100 g.
Furthermore, those having an aspect ratio of 50 to 5,000 are preferred. The aspect ratio is the length / thickness ratio of the clay mineral dispersed in a layer form determined by an electron micrograph.
The amount of the swellable clay mineral used is preferably 1 to 50 parts with respect to 100 parts of the solid content of the synthetic resin aqueous dispersion.
架橋剤とは、水溶性樹脂や合成樹脂水性分散体が有するカルボキシル基、アミド基、及び水酸基等の親水性官能基と反応して、架橋、高分子化(三次元網目構造)、又は疎水化するものであり、カルボキシル基と付加反応を起こすオキサゾリン基を有するものが水溶性樹脂をも兼ねるので好ましい。
架橋剤の使用量は、合成樹脂水性分散体と水溶性樹脂の合計の固形分100部に対して、固形分換算で0.01〜30部が好ましい。
A cross-linking agent reacts with a hydrophilic functional group such as a carboxyl group, an amide group, and a hydroxyl group contained in an aqueous dispersion of a water-soluble resin or synthetic resin to crosslink, polymerize (three-dimensional network structure), or hydrophobize. Those having an oxazoline group that undergoes an addition reaction with a carboxyl group are also preferable because they also serve as water-soluble resins.
The amount of the crosslinking agent used is preferably 0.01 to 30 parts in terms of solid content with respect to 100 parts of the total solid content of the synthetic resin aqueous dispersion and the water-soluble resin.
本発明では、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を混合して、また、さらに、これらと架橋剤とを反応させて、有機−無機複合型塗膜養生剤を調製する。 In the present invention, an organic-inorganic composite type coating curing agent is prepared by mixing an aqueous synthetic resin dispersion, a water-soluble resin, and a swellable clay mineral, and further reacting these with a crosslinking agent. .
有機−無機複合型塗膜養生剤の合成方法は、水溶性樹脂と膨潤性粘土鉱物をあらかじめ水中で混合した後に、合成樹脂水性分散体と架橋剤を混合する方法が好ましい。 As a method for synthesizing the organic-inorganic composite-type coating curing agent, a method in which a water-soluble resin and a swellable clay mineral are mixed in water in advance and then a synthetic resin aqueous dispersion and a crosslinking agent are mixed.
有機−無機複合型塗膜養生剤の被覆方法は、均一に養生被覆膜が形成できる方法であれば特に限定されるものではなく、撒布したり、塗布したり、吹付けしたりすることが可能である。
有機−無機複合型塗膜養生剤は、吹付け用モルタルの凝結が終結した後、表面に塗布することが好ましい。時間が経つと、モルタルの表面が乾燥し、ひび割れが発生しやすくなる。
このような有機−無機複合型塗膜養生剤としては、電気化学工業社の「RISフルコート」や「クラッコフ」、東亞合成社の「CA2」シリーズを用いることができる。
本発明のモルタル硬化体に、本発明の塗膜養生剤を塗布することにより、長さ変化率をさらに低減してひび割れを抑制するばかりでなく、長期的にモルタル硬化体の電気抵抗を小さく保ち、防食効果を高めることができる。
The organic-inorganic composite-type film curing agent coating method is not particularly limited as long as it can form a uniform curing coating film, and can be distributed, applied, or sprayed. Is possible.
The organic-inorganic composite-type film curing agent is preferably applied to the surface after the setting of the mortar for spraying is completed. Over time, the surface of the mortar dries and cracks tend to occur.
As such an organic-inorganic composite type film curing agent, “RIS full coat” and “Krakoff” manufactured by Denki Kagaku Kogyo Co., Ltd. and “CA2” series manufactured by Toagosei Co., Ltd. can be used.
The mortar cured body of the present invention, by applying a coating film curing agent of the present invention, not only suppress the cracks and further reduce the length variation rate, the electric resistance of the long-term mortar cured body decreases It can maintain and enhance the anti-corrosion effect.
有機−無機複合型塗膜養生剤の使用量は特に限定されるものではないが、1m2当たり、100〜500gが好ましく、150〜400gがより好ましい。100g未満では、長期的に電気抵抗を小さく保つ効果が充分でなくなるおそれがあり、500gを超えると、塩素ガスなどが透過しにくくなるおそれがある。 Although the usage-amount of an organic-inorganic composite type coating film curing agent is not specifically limited, 100-500g per 1 m < 2 > is preferable and 150-400g is more preferable. If it is less than 100 g, the effect of keeping the electrical resistance small in the long term may not be sufficient, and if it exceeds 500 g, chlorine gas or the like may be difficult to permeate.
以下に実験例を挙げて本発明を具体的に説明するが、本発明はこれらの実験例に限定されるものではない。 The present invention will be specifically described below with reference to experimental examples, but the present invention is not limited to these experimental examples.
「実験例1」
セメントと、セメント100部に対し、膨張材A5部、膨張材B5部、及び収縮低減剤3部の混和材からなる結合材、細骨材、減水剤、及び繊維を配合してモルタル組成物を調製し、モルタル組成物100容量部中、繊維を0.15容量部として、表1に示す、水結合材比と単位水量のモルタル配合を用い、表1に示すモルタルフロー値のモルタルを調製した。
その後、セメント100部に対して、アルミン酸ナトリウムを固形分換算で1部添加して吹付けた。アルミン酸ナトリウムを添加する前後でモルタルフロー値を測定し、添加後のダレの有無を評価した。4×4×16cmの供試体を作製し、材齢28日で電気抵抗率と長さ変化率を測定した。既設コンクリート板の上に、縦30cm、横30cm、厚さ3cmとなるように吹付け用モルタルを吹付け、材齢28日でひび割れの発生状況を観察した。結果を表1に併記する。
"Experiment 1"
A mortar composition comprising a cement, a binder, a fine aggregate, a water reducing agent, and a fiber composed of an admixture of 5 parts of an expanding material, 5 parts of an expanding material, and 3 parts of a shrinkage reducing agent with respect to 100 parts of cement. The mortar of the mortar flow value shown in Table 1 was prepared using 100 parts by volume of the mortar composition, 0.15 parts by volume of the fiber, and using the mortar composition of the water binder ratio and unit water amount shown in Table 1.
Thereafter, 1 part of sodium aluminate was added to 100 parts of cement and sprayed. The mortar flow value was measured before and after the addition of sodium aluminate, and the presence or absence of dripping after the addition was evaluated. A 4 × 4 × 16 cm specimen was prepared, and the electrical resistivity and the rate of change in length were measured at a material age of 28 days. The mortar for spraying was sprayed on the existing concrete board so as to be 30 cm long, 30 cm wide and 3 cm thick, and the occurrence of cracks was observed at the age of 28 days. The results are also shown in Table 1.
<使用材料>
セメント :普通ポルトランドセメント、密度3.15g/cm3、ブレーン値3,100cm2/g
膨張材A :エトリンガイト−石灰複合系膨張材、ブレーン値3,000cm2/g
膨張材B :カルシウムサルホアルミネート系膨張材、ブレーン値6,000cm2/g
収縮低減剤:粉末収縮低減剤、市販品
繊維 :ビニロン繊維、密度1.30g/cm3、市販品
減水剤 :β−ナフタレンスルホン酸系減水剤、市販品
細骨材 :石灰石砕砂、密度2.70g/cm3
アルミン酸ナトリウム:水溶液(固形分濃度50%)、市販品
<Materials used>
Cement: Ordinary Portland cement, density 3.15g / cm 3 , brain value 3,100cm 2 / g
Expansion material A: Ettlingite-lime composite expansion material, brain value 3,000 cm 2 / g
Expansion material B: Calcium sulfoaluminate-based expansion material, brain value 6,000 cm 2 / g
Shrinkage reducing agent: powder shrinkage reducing agent, commercial product fiber: vinylon fiber, density 1.30 g / cm 3 , commercial product water reducing agent: β-naphthalenesulfonic acid-based water reducing agent, commercial product fine aggregate: limestone crushed sand, density 2.70 g / cm 3
Sodium aluminate: aqueous solution (solid content 50%), commercial product
<測定方法>
モルタルフロー値:調製したモルタルをJIS R 5201に準拠して測定。但し、アルミン酸ナトリウムの添加前は0打モルタルフロー値、添加後は15打モルタルフロー値(それぞれフローテーブルをタッピングしない静置状態での値と、15回タッピング後の値)。
電気抵抗率:供試体を作製した翌日に脱型し、20℃、60%RHで養生した後、四電極法にて測定(印加電圧10V、測定周波数73.3Hz)。
長さ変化率:JIS A1171に準拠。収縮量の評価
ダレの有無:調製した吹付け用モルタルを吹付け、ダレが生じた場合を不可(×)、ダレがない場合を可(○)とした。
ひび割れ :ひび割れ抵抗性で、ひび割れが発生した場合を不可(×)、ひび割れの発生がない場合を可(○)とした。
<Measurement method>
Mortar flow value: Measure the prepared mortar according to JIS R 5201. However, before the addition of sodium aluminate, the mortar flow value was 0 strokes, and after the addition, the mortar flow value was 15 strokes (values in a stationary state without tapping the flow table and values after 15 taps).
Electrical resistivity: Demolded the day after the specimen was prepared, cured at 20 ° C and 60% RH, and then measured by the four-electrode method (applied voltage 10V, measuring frequency 73.3Hz).
Length change rate: Conforms to JIS A1171. Evaluation of shrinkage: Presence or absence of dripping: The prepared spraying mortar was sprayed.
Cracking: Crack resistance, where cracking occurred was not possible (x), and when cracking did not occur (good).
表1より、水結合材比が高く、単位水量が多く、流動性の高いモルタルにアルミン酸ナトリウムを添加することにより、モルタルフロー値を低減し、ダレがなく、電気抵抗率が小さい吹付け用モルタルを調製できる。また、膨張材、収縮低減剤、及び繊維の併用により、収縮を低減できる。 From Table 1, the ratio of water binder is high, the amount of unit water is large, and sodium aluminate is added to mortar with high fluidity to reduce the mortar flow value, no dripping, and low electrical resistivity. Mortar can be prepared. Moreover, shrinkage | contraction can be reduced by combined use of an expansion material, a shrinkage reducing agent, and a fiber.
「実験例2」
水結合材比を42%、単位水量を300kg/m3、アルミン酸ナトリウムを添加する前の0打モルタルフロー値を250mmとし、表2に示すアルミン酸ナトリウムを使用し、圧縮強度を測定したこと以外は実験例1と同様に行った。結果を表2に併記する。
"Experimental example 2"
The compressive strength was measured using 42% water binder ratio, 300kg / m 3 unit water volume, 250mm zero mortar flow value before adding sodium aluminate, and using sodium aluminate as shown in Table 2. Except for this, the same procedure as in Experimental Example 1 was performed. The results are also shown in Table 2.
<測定方法>
圧縮強度 :JIS R5201に準拠し、材齢28日で測定。
<Measurement method>
Compressive strength: Measured at a material age of 28 days in accordance with JIS R5201.
表2より、アルミン酸ナトリウムを添加することにより、ダレがなく、電気抵抗率が小さく、強度発現性が良好な吹付け用モルタルを調製できる。 From Table 2, by adding sodium aluminate, it is possible to prepare a mortar for spraying with no sagging, low electrical resistivity, and good strength development.
「実験例3」
実験No. 1-4で使用した吹付け用モルタルを使用し、表3に示す塗布量で有機−無機複合型塗膜養生剤を塗布したこと以外は実験例1と同様に行った。
なお、比較のために、従来の塗膜養生剤を使用した場合についても同様に行った。結果を表3に併記する。
"Experiment 3"
It was carried out in the same manner as in Experimental Example 1 except that the spraying mortar used in Experiment No. 1-4 was used and the organic-inorganic composite type film curing agent was applied in the coating amount shown in Table 3.
In addition, it carried out similarly about the case where the conventional coating film curing agent is used for the comparison. The results are also shown in Table 3.
<使用材料>
有機−無機複合型塗膜養生剤:アクリル樹脂-フッ素雲母の複合型塗膜養生剤
従来の塗膜養生剤:EVA系塗膜養生剤、市販品
<Materials used>
Organic-inorganic composite coating curing agent: Acrylic resin-fluorine mica composite coating curing agent Conventional coating curing agent: EVA coating curing agent, commercial product
表3より、有機−無機複合型塗膜養生剤を塗布することにより、モルタルの収縮がさらに低減されるばかりでなく、電気抵抗がさらに低減される。一方、従来の塗膜養生剤を塗布した場合には、そのような効果は見られない。 From Table 3, not only the shrinkage of the mortar is further reduced but also the electrical resistance is further reduced by applying the organic-inorganic composite type film curing agent. On the other hand, when a conventional coating film curing agent is applied, such an effect is not seen.
「実験例4」
単位セメント量が330kg/m3、水セメント比が60%、s/aが52%、NaClの添加量が12kg/m3のコンクリートで15×15×53cmの供試体を作製した。
このとき、供試体の軸方向の中央にφ13mmのみがき鋼棒を設置した。コンクリートの表面近傍を切削し、陽極のチタンリボンを埋設した後、実験No.1-4の吹付け用モルタルを充填した。その後その表面に有機−無機複合型塗膜養生剤を200g/m2となるように塗布した。電流密度0.03A/m2で電気防食を行い、実験開始直後、1ヵ月後、6ヵ月後、及び1年後のモルタル硬化体の電気抵抗率を測定した。
また、1年後にみがき鋼棒の発錆の有無と吹付け用モルタルと塗膜の劣化の有無を観察した。
なお、有機−無機複合型塗膜養生剤を用いない場合と、比較として、有機系塗料を塗布した場合についても同様に行った。結果を表4に併記する。
"Experimental example 4"
A 15 × 15 × 53 cm specimen was made of concrete having a unit cement amount of 330 kg / m 3 , a water cement ratio of 60%, an s / a of 52%, and a NaCl addition amount of 12 kg / m 3 .
At this time, a φ13 mm post-rolled steel bar was placed in the center of the specimen in the axial direction. After cutting near the surface of the concrete and embedding a titanium ribbon for the anode, the spraying mortar of Experiment No. 1-4 was filled. Thereafter, an organic-inorganic composite type coating curing agent was applied to the surface so as to be 200 g / m 2 . Electrocorrosion protection was performed at a current density of 0.03 A / m 2 , and the electrical resistivity of the mortar cured body was measured immediately after the start of the experiment, after 1 month, after 6 months, and after 1 year.
Further, after one year, the presence or absence of rusting of the polished steel bar and the presence or absence of deterioration of the mortar for spraying and the coating film were observed.
In addition, it carried out similarly about the case where an organic type coating material is apply | coated as a comparison with the case where an organic-inorganic composite type coating film curing agent is not used. The results are also shown in Table 4.
<使用材料>
有機系塗料:エポキシ系、市販品
<Materials used>
Organic paint: Epoxy, commercially available
表4より、本発明の吹付け用モルタルを使用し、それを硬化したモルタル硬化体の表面に有機−無機複合型塗膜養生剤を塗布することにより、長期的にモルタル硬化体の電気抵抗を小さく保つことができ、モルタルと塗膜の劣化がなく、高い防食効果が得られる。
一方、有機系塗料を使用した場合には、みがき鋼棒の発錆を抑制するが、塩素ガスなどが透過せず、モルタル硬化体と塗膜が劣化するため、長期的にモルタル硬化体の電気抵抗が増加する。
From Table 4, using the spray mortar of the present invention, the hardened surface of the mortar cured body in organic it - by applying the inorganic composite coating film curing agent, the electric resistance of the long-term mortar cured body It can be kept small, there is no deterioration of the mortar and the coating film, and a high anticorrosive effect is obtained.
On the other hand, when organic paint is used, rusting of polished steel bars is suppressed, but chlorine gas does not permeate and the mortar hardened body and coating film deteriorate. Resistance increases.
本発明によれば、水結合材比を高くしてもダレがなく、電気抵抗と収縮の両方が小さい吹付け用モルタルが得られ、また、収縮をさらに低減し、長期的にモルタル硬化体の電気抵抗を小さく保ち、塩素ガスなどの透過を妨げないものであり、塩害等により鋼材腐食を受けたコンクリート構造物の電気防食に用いた場合、コンクリート構造物内部にある鋼材の防食効果を高めることができる。 According to the present invention, it is possible to obtain a mortar for spraying that has no sagging even when the water binder ratio is increased, and that both electric resistance and shrinkage are small. The electrical resistance is kept small and does not prevent the permeation of chlorine gas, etc., and when used for the electrical protection of concrete structures that have been subjected to steel corrosion due to salt damage, etc., enhance the corrosion protection effect of the steel materials inside the concrete structure Can do.
Claims (8)
By using the mortar hardened body according to any one of claims 3 to 6 , an anode is installed in a concrete structure, and a direct current is allowed to flow from the anode to a steel material in the concrete, thereby producing a steel material. A method for preventing corrosion of steel inside a concrete structure, which electrochemically suppresses corrosion reactions .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010088541A JP5697357B2 (en) | 2010-04-07 | 2010-04-07 | Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010088541A JP5697357B2 (en) | 2010-04-07 | 2010-04-07 | Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011219290A JP2011219290A (en) | 2011-11-04 |
JP5697357B2 true JP5697357B2 (en) | 2015-04-08 |
Family
ID=45036748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010088541A Expired - Fee Related JP5697357B2 (en) | 2010-04-07 | 2010-04-07 | Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5697357B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6033636B2 (en) * | 2012-10-25 | 2016-11-30 | デンカ株式会社 | Repair mortar for spraying with low electrical resistance and repair method using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4772352B2 (en) * | 2005-03-28 | 2011-09-14 | 電気化学工業株式会社 | Cement admixture, cement composition, and cement mortar using the same |
JP5242188B2 (en) * | 2008-02-15 | 2013-07-24 | 電気化学工業株式会社 | Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar |
-
2010
- 2010-04-07 JP JP2010088541A patent/JP5697357B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011219290A (en) | 2011-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5631024B2 (en) | Anti-corrosion method for reinforcing bars inside reinforced concrete structures | |
JP5697888B2 (en) | Rapid hardening mortar with low electrical resistance, rapid hardening hardened body, and method for preventing corrosion of steel in concrete structure using the same | |
JP4382614B2 (en) | Cement admixture and cement composition using the same | |
JP4593384B2 (en) | Anticorrosive composite and process for producing the same | |
JP4813148B2 (en) | Organic-inorganic composite type coating curing agent, mortar or concrete using the same, and processing method | |
JP5185047B2 (en) | Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar | |
JP5242188B2 (en) | Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar | |
JP6033636B2 (en) | Repair mortar for spraying with low electrical resistance and repair method using the same | |
JP4579724B2 (en) | Lightweight conductive cement mortar cured body and anode protective material for cathodic protection comprising the conductive cement mortar cured body | |
JP2007153714A (en) | Cement admixture and cement composition | |
JP2007001803A (en) | Corrosion preventive composite material and its manufacturing method | |
JP5308270B2 (en) | Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar | |
JP4647767B2 (en) | Hydraulic composition and its paste, mortar, concrete | |
JP4642650B2 (en) | Surface coated mortar or concrete | |
JP4593383B2 (en) | Anticorrosive composite and process for producing the same | |
JP2010241664A (en) | Cement concrete hardened body, and method for preventing corrosion of steel material in concrete structure using the same | |
JP5697357B2 (en) | Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same | |
JP5020544B2 (en) | Organic-inorganic composite type coating curing agent, mortar or concrete treatment method using the same, and hardened cement | |
JP5697358B2 (en) | Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same | |
JP5259360B2 (en) | Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar | |
JP2011219332A (en) | Quick-hardening mortar for plasterer having small electric resistance, quick-hardening mortar hardened body for the plasterer and corrosion prevention method for steel material inside concrete structure using the same | |
JP2007119259A (en) | Organic-inorganic composite coating film-curing agent, mortar or concrete using the same, and its treatment method | |
JP2010100471A (en) | Cement admixture and cement composition | |
JP4744933B2 (en) | Method for treating high fluid mortar or high fluid concrete and hardened cement | |
JP5020543B2 (en) | Mortar or concrete processing method and hardened cement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130917 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20131007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131024 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140716 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5697357 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |