JP2011218373A - Coining method and apparatus for the same - Google Patents

Coining method and apparatus for the same Download PDF

Info

Publication number
JP2011218373A
JP2011218373A JP2010087132A JP2010087132A JP2011218373A JP 2011218373 A JP2011218373 A JP 2011218373A JP 2010087132 A JP2010087132 A JP 2010087132A JP 2010087132 A JP2010087132 A JP 2010087132A JP 2011218373 A JP2011218373 A JP 2011218373A
Authority
JP
Japan
Prior art keywords
coining
shearing
shearing hole
hole
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010087132A
Other languages
Japanese (ja)
Other versions
JP5392168B2 (en
Inventor
Eisaku Sakurada
栄作 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010087132A priority Critical patent/JP5392168B2/en
Publication of JP2011218373A publication Critical patent/JP2011218373A/en
Application granted granted Critical
Publication of JP5392168B2 publication Critical patent/JP5392168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Punching Or Piercing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coining method by which the fatigue property of the whole sheared hole is improved by imparting sufficient and uniform compressive residual stress to both ends of the sheared hole and the whole inner peripheral surface of the sheared hole in the coining of one time.SOLUTION: An object of coining having the sheared hole is placed on a first die and the object of coining is pressed against the first die by a second die which is opposed to the first die. While inserting a center core which is projected from the distal end of a conning punch which is opposed to the second die and makes a set with the first punch into the sheared hole from one end of the sheared hole until arriving at the second die, the other end and the inner peripheral surface of the sheared hole are deformed plastically by the second die and the center core and also burrs which exist in the peripheral part of the one end of the sheared hole are crushed by the coining punch.

Description

本発明は、鉄鋼材料、軽合金材料等の金属板材に、せん断加工を施して打抜き孔、飾り孔等のせん断加工孔を形成したときに発生したバリを圧潰するコイニング加工方法及びその装置に関する。   The present invention relates to a coining method and an apparatus for crushing burrs generated when a shearing hole such as a punched hole or a decorative hole is formed on a metal plate material such as a steel material or a light alloy material.

特に、せん断加工孔の両端及び内周面に圧縮の残留応力を付与して、せん断加工孔部の疲労特性を向上させることができるコイニング加工方法及びその装置に関する。   In particular, the present invention relates to a coining method and an apparatus for applying the compressive residual stress to both ends and the inner peripheral surface of the shearing hole to improve the fatigue characteristics of the shearing hole.

金属板材、特に、鋼板材は、塑性加工性に優れるため、打抜き加工等のせん断加工で、打抜き孔や飾り孔等のせん断加工孔を形成することができる。   Since a metal plate material, particularly a steel plate material, is excellent in plastic workability, a shearing hole such as a punched hole or a decorative hole can be formed by a shearing process such as a punching process.

せん断加工孔には、せん断加工を施す側から、ダレ面、せん断面、破断面、及び、バリを有する。   The shearing hole has a sagging surface, a shearing surface, a fracture surface, and burrs from the side on which shearing is performed.

せん断加工孔の一端に発生したバリは、その突起形状故に、バリの発生部分に応力が集中しやすく、疲労破壊の起点となることが多いことから、バリを除去しておくことが望ましい。また、美観の点からも、バリを除去することは一般的に行われている。   Since the burr generated at one end of the shearing hole has a protrusion shape, stress tends to concentrate on the burr generation part and often becomes a starting point of fatigue failure. Therefore, it is desirable to remove the burr. Moreover, removal of burrs is generally performed from the point of view of beauty.

せん断加工孔の一端に発生したバリを除去する方法として、コイニング加工がある。非特許文献1には、熱間圧延高強度鋼板の打抜き孔(せん断加工孔)のバリ発生側に、円錐形のパンチでコイニング加工を施してバリを除去する方法が開示されている。   As a method of removing burrs generated at one end of the shearing hole, there is a coining process. Non-Patent Document 1 discloses a method of removing burrs by performing coining with a conical punch on the burr generation side of a punched hole (shearing hole) of a hot-rolled high-strength steel sheet.

非特許文献1に開示される方法は、せん断加工孔のバリが発生側から、円錐形のパンチの頭部を、せん断加工孔に挿入し、応力集中の原因となる突起形状を有するバリを圧潰するとともに、コイニング加工によって、せん断加工孔のバリ発生部周辺を圧縮変形することで、せん断加工孔のバリ発生部周辺に圧縮の残留応力を付与し、せん断加工孔部の疲労特性向上を図るものである。   In the method disclosed in Non-Patent Document 1, the head of the conical punch is inserted into the shearing hole from the side where the burrs of the shearing hole are generated, and the burrs having a protrusion shape that causes stress concentration are crushed. In addition, by compressing and deforming around the burr generation part of the shearing hole by coining, compressive residual stress is applied around the burr generation part of the shearing hole, and the fatigue characteristics of the shearing hole part are improved. It is.

しかしながら、非特許文献1の方法では、圧縮の残留応力が付与されるのは、せん断加工孔のバリ発生側端部と、せん断加工孔の内周面のうち、バリ発生部近傍のみに留まることから、せん断加工孔の両端及び内周面全体における疲労特性の改善は充分ではなかった。   However, in the method of Non-Patent Document 1, the compressive residual stress is applied only in the vicinity of the burr generation part of the burr generation side end of the shearing hole and the inner peripheral surface of the shearing hole. Therefore, the improvement of fatigue characteristics at both ends of the shearing hole and the entire inner peripheral surface was not sufficient.

特に、せん断加工孔のうち、バリが発生している端部と反対側のダレ面は、せん断加工時に引き伸ばされているため、引張の残留応力が付与されていおり、せん断加工孔全体の疲労特性を著しく低下させる原因となっている。   In particular, the sag surface on the opposite side to the end where burrs are generated in the shearing hole is stretched during the shearing process, so that a residual tensile stress is applied, and the fatigue characteristics of the entire shearing hole Is a cause of significantly lowering.

せん断加工孔のダレ面側から、上記の円錐パンチを挿入して、せん断加工孔のダレ面側端部と、せん断加工孔の内周面のうちのダレ面近傍に圧縮変形させることは可能であるが、コイニング加工を、バリ発生側とダレ面側とで2回行う必要があり、せん断加工孔を設けた部材の製造コストの上昇を招くという問題がある。   It is possible to insert the above-mentioned conical punch from the sag surface side of the shearing hole and compress it to the sag surface side end of the shearing hole and the vicinity of the sag surface of the inner peripheral surface of the shearing hole. However, it is necessary to perform coining twice on the burr generation side and the sag surface side, which increases the manufacturing cost of the member provided with the shearing hole.

そして、せん断加工孔の両端から円錐パンチでコイニング加工を施した場合、せん断加工孔の両端近傍は、充分に圧縮変形され、付与される圧縮の残留応力も充分に大きいものの、せん断加工孔の内周面のうち、せん断加工孔を設けた部材の板厚中心付近は、充分に圧縮変形されず、付与される圧縮の残留応力も小さい。   When coining is performed with a conical punch from both ends of the shearing hole, the vicinity of both ends of the shearing hole is sufficiently compressed and deformed, and the applied residual stress is sufficiently large. Of the peripheral surface, the vicinity of the thickness center of the member provided with the shearing hole is not sufficiently compressed and deformed, and the applied compressive residual stress is small.

また、せん断加工孔の内周面全体としてみた場合、付与される圧縮の残留応力が均一でないため、せん断加工孔部全体の疲労特性を改善することが難しい。   Further, when viewed as the entire inner peripheral surface of the shearing hole, it is difficult to improve the fatigue characteristics of the entire shearing hole because the applied compressive residual stress is not uniform.

十代田哲夫、三浦正明、中谷道治、熱延ハイテンにおける打抜穴疲労特性の改善、神戸製鋼技報、日本、2004年12月、Vol.54、No.3、第29頁〜第32頁Tetsuo Toyoda, Masaaki Miura, Michi Nakatani, Improvement of punched hole fatigue properties in Hot Rolled High Ten, Kobe Steel Technical Report, Japan, December 2004, Vol. 54, no. 3, pages 29-32

本発明は、上記従来技術における問題に鑑み、金属板材をせん断加工して形成したせん断加工孔の一端に発生したバリをコイニング加工で圧潰するにあたり、1回のコイニング加工で、せん断加工孔の両端と、せん断加工孔の内周面全体に充分かつ均一な圧縮の残留応力を付与し、せん断加工孔全体の疲労特性を向上させることができるコイニング加工方法及びその装置を提供することを目的とする。   In view of the above problems in the prior art, the present invention provides a single coining process for crushing a burr generated at one end of a shearing hole formed by shearing a metal plate material. An object of the present invention is to provide a coining method and apparatus capable of imparting sufficient and uniform compressive residual stress to the entire inner peripheral surface of the shearing hole and improving the fatigue characteristics of the entire shearing hole. .

まず、本発明者らは、金属板材をせん断加工して形成したせん断加工孔を有するコイニング加工対象物を、第一金型と第二金型とコイニングパンチとを有するコイニング加工装置を使用して、せん断加工孔のバリ発生側からコイニング加工した際に、コイニングパンチの先端形状と、コイニングパンチの挿入量によって、せん断加工孔の内周面に付与される残留応力の分布がどのように変化するかを数値解析で調査した。   First, the present inventors use a coining processing apparatus having a first mold, a second mold, and a coining punch for a coining object having a shearing hole formed by shearing a metal plate material. When the coining process is performed from the burr generation side of the shearing hole, how the distribution of residual stress applied to the inner peripheral surface of the shearing hole changes depending on the tip shape of the coining punch and the amount of coining punch inserted. This was investigated by numerical analysis.

図9は、コイニング加工装置とコイニング加工対象物の数値解析モデルの要部を模式化した縦断面図である。   FIG. 9 is a longitudinal cross-sectional view schematically showing the main parts of a coining machine and a numerical analysis model of a coining object.

第一金型10に載置された板厚が3mmのコイニング加工対象物100は、第二金型30で第一金型10に押え付けられ、第一金型10及び第二金型30が、コイニングパンチ20の方向(図9において下方向)へ移動することで、せん断加工孔120はコイニング加工される。なお、コイニング加工対象物100は、バリ発生側110をコイニングパンチ20側にして載置される。   The coining object 100 having a plate thickness of 3 mm placed on the first mold 10 is pressed against the first mold 10 by the second mold 30, and the first mold 10 and the second mold 30 are moved. The shearing hole 120 is coined by moving in the direction of the coining punch 20 (downward in FIG. 9). The coining object 100 is placed with the burr generation side 110 as the coining punch 20 side.

実際のコイニング加工において、第一金型10、コイニングパンチ20、第二金型30、コイニング加工対象物100は、図9の一点鎖線に対して線対称であることから、数値解析の計算時間を短縮するため、図9に示すように右半分のモデルで数値計算した。   In the actual coining process, the first die 10, the coining punch 20, the second die 30, and the coining object 100 are axisymmetric with respect to the one-dot chain line in FIG. In order to shorten, numerical calculation was performed with the right half model as shown in FIG.

図9に示すように、コイニングパンチ20の先端は、先細り形状とし、角度θが45°と60°の場合について数値解析した。   As shown in FIG. 9, the tip of the coining punch 20 was tapered, and numerical analysis was performed when the angle θ was 45 ° and 60 °.

また、コイニングパンチ20の挿入量を、0〜2mmの範囲で変化させて数値解析した。なお、コイニングパンチ20の挿入量は、コイニングパンチ20の先端面21が、せん断加工孔120のバリ発生側110端面に達したところを原点とした、図9中のUで示す長さとした。 Further, the amount of insertion of the coining punch 20 was changed in a range of 0 to 2 mm, and numerical analysis was performed. The insertion amount of the coining punch 20 was the length indicated by Uy in FIG. 9 with the point where the tip surface 21 of the coining punch 20 reached the burr generation side 110 end surface of the shearing hole 120 as the origin.

結果を図10に示す。図10は、コイニングパンチ20の先端形状及びコイニングパンチ20の挿入量Uと、せん断加工孔120に付与された残留応力との関係を示すグラフである。図10(a)はせん断加工孔120のバリ発生側の残留応力を、図10(b)はせん断加工孔120のダレ面側の残留応力を示す。 The results are shown in FIG. Figure 10 is a graph showing insertion amount and U y of tip shape and coining punch 20 of coining punch 20, the relationship between the residual stress imparted to shearing hole 120. 10A shows the residual stress on the burr generation side of the shearing hole 120, and FIG. 10B shows the residual stress on the sag surface side of the shearing hole 120.

なお、せん断加工孔120のバリ発生側の残留応力とは、せん断加工孔120のバリ発生側110の端面からせん断加工孔120のせん断面117と破断面118との境界130までの範囲で、せん断加工孔120の内周面に付与された残留応力の平均値である。   The residual stress on the burr generation side of the shearing hole 120 is a range from the end surface of the burr generation side 110 of the shearing hole 120 to the boundary 130 between the shearing surface 117 of the shearing hole 120 and the fracture surface 118. This is an average value of residual stress applied to the inner peripheral surface of the processed hole 120.

また、せん断加工孔120のダレ側の残留応力とは、せん断加工孔120のダレ面側115の端面から深さが0.5mmまでの範囲で、せん断加工孔120の内周面に付与された残留応力の平均値である。   The residual stress on the sag side of the shearing hole 120 is applied to the inner peripheral surface of the shearing hole 120 within a range of a depth of 0.5 mm from the end surface on the sag surface side 115 of the shearing hole 120. It is the average value of residual stress.

図10(a)及び(b)において、正の残留応力値は引張の圧縮応力を、負の残留応力値は圧縮の残留応力を示す。   10A and 10B, a positive residual stress value indicates a tensile compressive stress, and a negative residual stress value indicates a compressive residual stress.

図10(a)及び図10(b)から明らかなように、コイニングパンチ20の挿入量Uの増加とともに、せん断加工孔120のバリ発生側の残留応力は小さくなる(圧縮の残留応力が大きくなる)が、せん断加工孔120のダレ面側の残留応力は、コイニングパンチ20の挿入量Uが約0.7mmとなった時点で、減少が飽和する(圧縮の残留応力が付与が飽和する)。 FIG. 10 (a) and as is clear from FIG. 10 (b), the with increasing insertion amount U y of coining punch 20, the residual stress of the burr side of the shearing hole 120 becomes small (large compressive residual stress is made) is the residual stress of the sagging side of the shearing hole 120, when the insertion amount U y of coining punch 20 was about 0.7 mm, decrease saturation (residual compressive stress is imparted is saturated ).

コイニング加工対象物100は、バリ発生側110では、コイニングパンチ20の挿入が進行するとともに圧縮変形される。   The coining object 100 is compressed and deformed on the burr generation side 110 as the coining punch 20 is inserted.

これに対し、ダレ面側115では、コイニング加工対象物100が、コイニングパンチ20の挿入方向に圧縮変形しながら、せん断加工孔120の中心軸方向(図9において上方向)に伸張変形するため、せん断加工孔120のダレ面側内周面に圧縮の残留応力を付与することは難しい。   On the other hand, on the sag surface side 115, the coining object 100 is stretched and deformed in the direction of the central axis of the shearing hole 120 (upward in FIG. 9) while compressively deforming in the insertion direction of the coining punch 20. It is difficult to apply compressive residual stress to the inner peripheral surface of the shearing hole 120 on the sag surface side.

そこで、本発明者らは、コイニングパンチ20の先端21から、コイニングパンチ20よりも細い中芯を突出させ、その中芯の先端が、せん断加工孔120のダレ面側115に到達するまで、中芯をせん断加工孔120に挿入させつつ、この中芯で、せん断加工孔のダレ面及び内周面を塑性変形させるとともに、コイニングパンチ20でバリを圧潰し、せん断加工孔120の両端と、せん断加工孔120の内周面全体とを圧縮変形させることにより、せん断加工孔120の両端及び内周面全体に圧縮応力を付与し、せん断加工孔120全体の疲労特性を向上させることができることを知見した。   Therefore, the present inventors project a core that is thinner than the coining punch 20 from the tip 21 of the coining punch 20 until the tip of the core reaches the sag surface side 115 of the shearing hole 120. While the core is inserted into the shearing hole 120, the sag surface and the inner peripheral surface of the shearing hole are plastically deformed with the middle core, and the burrs are crushed by the coining punch 20, and both ends of the shearing hole 120 are sheared. Knowledge that compressive deformation of the entire inner peripheral surface of the processing hole 120 can impart compressive stress to both ends and the entire inner peripheral surface of the shearing hole 120, thereby improving the fatigue characteristics of the entire shearing hole 120. did.

本発明は、上記の知見に基づきなされたもので、その要旨は次の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)せん断加工孔の一端周縁部に発生したバリを圧潰するコイニング加工方法であって、
前記せん断加工孔を有するコイニング加工対象物を第一金型に載置し、該第一金型に対向する第二金型で前記コイニング加工対象物を前記第一金型に押え付け、前記第二金型に対向し前記第一金型と一組をなすコイニングパンチの先端から突出させた中芯を、前記せん断加工孔の一端から、前記せん断加工孔に、前記第二金型に到達するまで挿入しつつ、前記第二金型と前記中芯とで、前記せん断加工孔の他端及び内周面を塑性変形させるとともに、前記バリを前記コイニングパンチで圧潰することを特徴とするコイニング加工方法。
(1) A coining method for crushing burrs generated at one peripheral edge of a shearing hole,
A coining object having the shearing hole is placed on a first mold, the coining object is pressed against the first mold by a second mold facing the first mold, and the first mold is pressed. A core that protrudes from the tip of a coining punch that faces the two molds and forms a pair with the first mold reaches the second mold from one end of the shearing hole to the shearing hole. The other die and the inner peripheral surface of the shearing hole are plastically deformed with the second mold and the center core while the burrs are crushed by the coining punch. Method.

(2)前記中芯の先端が、前記せん断加工孔の深さ方向所定位置に達するまで、前記中芯の外周面と前記せん断加工孔の内周面との間に、間隙が存在することを特徴とする上記(1)に記載のコイニング加工方法。 (2) A gap exists between the outer peripheral surface of the core and the inner peripheral surface of the shearing hole until the tip of the core reaches a predetermined position in the depth direction of the shearing hole. The coining method according to (1), characterized in that it is characterized in that

(3)前記せん断加工孔の深さ方向所定位置は、前記せん断加工孔の、せん断面と破断面との境界よりも、前記中芯の挿入方向手前であることを特徴とする上記(1)又は(2)に記載のコイニング加工方法。 (3) The above-mentioned (1), wherein the predetermined position in the depth direction of the shearing hole is closer to the insertion direction of the core than the boundary between the shearing surface and the fracture surface of the shearing hole. Or the coining processing method as described in (2).

(4)前記中芯が前端部と本体部とを有する前端部付中芯であり、前記前端部の外周が前記本体部の外周よりも小さいことを特徴とする上記(1)〜(3)のいずれかに記載のコイニング加工方法。 (4) The above (1) to (3), wherein the core is a center core with a front end having a front end and a main body, and the outer periphery of the front end is smaller than the outer periphery of the main body. A coining method according to any one of the above.

(5)前記せん断加工孔が、打抜き加工孔であることを特徴とする上記(1)〜(4)のいずれかに記載のコイニング加工方法。 (5) The coining method according to any one of (1) to (4), wherein the shearing hole is a punching hole.

(6)金属板材をせん断加工して形成した、せん断加工孔を有するコイニング加工対象物を載置する第一金型と、
前記第一金型に対向し、前記コイニング加工対象物を前記第一金型に押え付ける第二金型と、
前記第二金型に対向し前記第一金型と一組をなす、前記せん断加工孔の一端に形成されたバリを圧潰するコイニングパンチと、
前記コイニングパンチから突出し、前記せん断加工孔の、せん断面と破断面との境界の内周よりも大きく、前記せん断加工孔の一端の内周よりも小さい外周を有する中芯と
を備え、
前記中芯が、前記せん断加工孔の一端から、前記せん断加工孔に挿入され、前記中芯の先端を、前記第二金型に到達させることを特徴とするコイニング加工装置。
(6) a first mold for placing a coining object having a shearing hole formed by shearing a metal plate;
A second mold facing the first mold and pressing the coining object to the first mold;
A coining punch that crushes a burr formed at one end of the shearing hole, facing the second mold and forming a set with the first mold;
A core that protrudes from the coining punch and has an outer circumference that is larger than the inner circumference of the boundary between the shearing surface and the fracture surface of the shearing hole and smaller than the inner circumference of one end of the shearing hole;
The coining processing apparatus, wherein the core is inserted into the shearing hole from one end of the shearing hole, and the tip of the core reaches the second mold.

(7)前記中芯の外周が、前記せん断加工孔の、せん断面と破断面との境界の内周よりも、所定値だけ大きいを特徴とする上記(6)に記載のコイニング加工装置。 (7) The coining apparatus according to (6), wherein an outer periphery of the core is larger by a predetermined value than an inner periphery of a boundary between the shear surface and the fracture surface of the shearing hole.

(8)前記所定値の最大値が、前記せん断加工孔を形成する、せん断加工パンチとせん断加工ダイとの間隙の上限値と、前記金属板材の板厚値との積であることを特徴とする上記(7)に記載のコイニング加工装置。 (8) The maximum value of the predetermined value is a product of an upper limit value of a gap between a shearing punch and a shearing die forming the shearing hole and a plate thickness value of the metal plate material. The coining apparatus according to (7) above.

(9)前記中芯が前端部と本体部とを有する前端部付中芯であり、前記前端部の外周が前記本体部の外周よりも小さいことを特徴とする上記(6)〜(8)のいずれかに記載のコイニング加工装置。 (9) The above (6) to (8), wherein the center core is a center core with a front end portion having a front end portion and a main body portion, and an outer periphery of the front end portion is smaller than an outer periphery of the main body portion. A coining apparatus according to any one of the above.

(10)前記前端部付中芯の本体部の外周が、前記せん断加工孔の一端の内周と同じであることを特徴とする上記(9)に記載のコイニング加工装置。 (10) The coining apparatus according to (9), wherein an outer periphery of the main body portion of the core with the front end is the same as an inner periphery of one end of the shearing hole.

(11)前記せん断加工孔が、打抜き加工孔であることを特徴とする上記(6)〜(10)のいずれかに記載のコイニング加工装置。 (11) The coining apparatus according to any one of (6) to (10), wherein the shearing hole is a punching hole.

本発明によれば、コイニングパンチで、せん断加工孔のバリを圧潰し、せん断加工孔のバリ発生部を圧縮変形させることに加えて、コイニングパンチから突出させた中芯をせん断加工孔に挿入することによって、せん断加工孔の、バリ発生部とは反対側のダレ面と、せん断加工孔の内周面を圧縮変形させることができ、1回のコイニング加工で、せん断加工孔の両端及び内周面全体に圧縮の残留応力を付与することにより、せん断加工孔部全体の疲労特性を向上させることができる。   According to the present invention, in addition to crushing the burr of the shearing hole with the coining punch and compressing and deforming the burr generation part of the shearing hole, the center core protruding from the coining punch is inserted into the shearing hole. Therefore, the sag surface of the shearing hole opposite to the burr generating part and the inner peripheral surface of the shearing hole can be compressed and deformed, and both ends and inner periphery of the shearing hole can be formed by one coining process. By applying compressive residual stress to the entire surface, the fatigue characteristics of the entire shearing hole can be improved.

本発明のコイニング加工方法を実施するためのコイニング加工装置の一例を示す縦断面図である。図1(a)はコイニング加工対象物を第一金型に載置した状態、図1(b)はコイニング加工対象物を第二金型で第一金型に押し付けた状態、図1(c)はコイニング加工中の状態を示す。It is a longitudinal cross-sectional view which shows an example of the coining processing apparatus for enforcing the coining processing method of this invention. FIG. 1A shows a state where a coining object is placed on the first mold, FIG. 1B shows a state where the coining object is pressed against the first mold by the second mold, FIG. ) Indicates the state during coining. コイニングパンチ及び中芯の先端部の要部を拡大した拡大縦断面図である。It is the expanded longitudinal cross-sectional view which expanded the principal part of the coining punch and the front-end | tip part of a center core. 中芯の先端が、せん断加工孔の深さ方向所定位置を超えたときの状態を示す縦断面模式図である。図3(a)は、中芯の先端が、せん断加工孔の深さ方向所定位置を超え、せん断面と破断面との境界の手前にあるとき、図3(b)は、中芯の先端が、第二金型に到達したときを示す。It is a longitudinal cross-sectional schematic diagram which shows a state when the front-end | tip of a center core exceeds the depth direction predetermined position of a shearing hole. FIG. 3A shows a case where the tip of the center core exceeds the predetermined position in the depth direction of the shearing hole and is in front of the boundary between the shear surface and the fracture surface. FIG. Shows when the second mold is reached. 鋼板を円筒パンチでせん断加工したコイニング対象物を、本発明のコイニング加工方法でコイニング加工するときの、せん断加工孔、コイニングパンチの先端、中芯の先端の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the shearing hole, the front-end | tip of a coining punch, and the front-end | tip of a center core, when coining the coining target object which carried out the shearing process of the steel plate with the cylindrical punch by the coining processing method of this invention. せん断加工孔が円筒パンチで形成され、コイニングパンチ及び中芯が円筒形状であるときの、変形前の材料と変形後の材料が流動する空間との位置関係を、中芯を省略して示した縦断面図である。The positional relationship between the material before deformation and the space in which the material after deformation flows when the shearing hole is formed by a cylindrical punch and the coining punch and the core are cylindrical is shown. It is a longitudinal cross-sectional view. コイニングパンチから突出した前端部付中芯を示す斜視図である。It is a perspective view which shows the core with a front end part which protruded from the coining punch. 円筒パンチ以外の形状のせん断加工パンチでせん断加工孔を形成しコイニング対象物としたときの、せん断加工孔と前端部付中芯に関し、せん断加工孔のバリ発生側内周と、せん断面と破断面との境界の内周と、前端部付中芯の本体部の外周面と、前端部付中芯の前端部の外縁部とについて、中心軸周りの位置関係を示した説明図である。When a shearing hole is formed with a shearing punch of a shape other than a cylindrical punch and used as a coining object, the inner periphery with the burr on the shearing hole, the shear surface, It is explanatory drawing which showed the positional relationship of the surroundings of a central axis about the inner periphery of the boundary with a cross section, the outer peripheral surface of the main-body part of a core with a front end part, and the outer edge part of the front end part of a core with a front end part. 円筒パンチでせん断加工孔を形成したコイニング加工対象物を、本発明の方法でコイニング加工したときの、中芯の外周の大きさと、せん断加工孔に付与される残留応力との関係を数値計算によって求めた結果を示すグラフである。図8(a)はせん断加工孔のバリ発生側の残留応力を、図8(b)はせん断加工孔のダレ面側の残留応力を示す。When a coining object in which a shearing hole is formed by a cylindrical punch is coined by the method of the present invention, the relationship between the size of the outer periphery of the core and the residual stress applied to the shearing hole is numerically calculated. It is a graph which shows the calculated | required result. 8A shows the residual stress on the burr generation side of the shearing hole, and FIG. 8B shows the residual stress on the sag surface side of the shearing hole. コイニング加工装置とコイニング加工対象物の数値解析モデルの要部を模式化した縦断面図である。It is the longitudinal cross-sectional view which modeled the principal part of the numerical analysis model of a coining processing apparatus and a coining process target object. コイニングパンチの先端形状及びコイニングパンチの挿入量と、せん断加工孔に付与された残留応力との関係を数値解析で求めた結果を示すグラフである。図10(a)はせん断加工孔のバリ発生側の残留応力を、図10(b)はせん断加工孔のダレ面側の残留応力を示す。It is a graph which shows the result of having calculated | required the relationship between the tip shape of a coining punch, the insertion amount of a coining punch, and the residual stress provided to the shearing hole by numerical analysis. 10A shows the residual stress on the burr generation side of the shearing hole, and FIG. 10B shows the residual stress on the sag surface side of the shearing hole.

本発明の実施形態を、図面を用いて説明する。図1は、本発明のコイニング加工方法を実施するためのコイニング加工装置の一例を示す縦断面図である。図1(a)はコイニング加工対象物を第一金型に載置した状態、図1(b)はコイニング加工対象物を第二金型で第一金型に押し付けた状態、図1(c)はコイニング加工中の状態を示す。図1中、符号1は本発明のコイニング加工装置を示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an example of a coining apparatus for carrying out the coining method of the present invention. FIG. 1A shows a state where a coining object is placed on the first mold, FIG. 1B shows a state where the coining object is pressed against the first mold by the second mold, FIG. ) Indicates the state during coining. In FIG. 1, reference numeral 1 denotes a coining apparatus of the present invention.

コイニング加工装置1は、第一金型10とコイニングパンチ20と第二金型30とを有する。第一金型10と第二金型30とは対向する位置に配設される。コイニングパンチ20は、第二金型30に対向し、第一金型10と一組をなして配設される。コイニングパンチ20は、コイニングパンチ20の先端から突出する中芯40を有する。   The coining apparatus 1 includes a first die 10, a coining punch 20, and a second die 30. The 1st metal mold | die 10 and the 2nd metal mold | die 30 are arrange | positioned in the position which opposes. The coining punch 20 faces the second mold 30 and is arranged in a pair with the first mold 10. The coining punch 20 has a center core 40 protruding from the tip of the coining punch 20.

第一金型10とコイニングパンチ20とは、摺動するように配設されてもよいし、それぞれが一定の間隙を有して配設されてもよいが、一組をなすものとする。   The first mold 10 and the coining punch 20 may be arranged so as to slide, or may be arranged with a certain gap between them, but they form a set.

コイニング加工装置1は、図示しないプレス加工装置に取り付けられ、第二金型30を上下移動させることでコイニング加工を行う。第一金型10及び中芯40の、第二金型30と反対の側には、弾性体60を備える。   The coining processing apparatus 1 is attached to a press processing apparatus (not shown) and performs coining by moving the second mold 30 up and down. An elastic body 60 is provided on the side of the first mold 10 and the core 40 opposite to the second mold 30.

コイニング加工対象物100は、第一金型10に載置される。コイニング加工対象物100は、鋼板をせん断加工して貫通孔を形成したもので、せん断加工孔120を有する。   The coining object 100 is placed on the first mold 10. The coining object 100 is formed by shearing a steel plate to form a through hole, and has a shearing hole 120.

せん断加工孔120の内周面125は、ダレ面116、せん断面117、破断面118、バリ119を有する。コイニング加工対象物100を第一金型10に載置する際には、図1(a)に示すように、前記せん断加工孔120の一端(バリ119発生側)をコイニングパンチ20側(図1(a)において下側)にする。   The inner peripheral surface 125 of the shearing hole 120 has a sag surface 116, a shear surface 117, a fracture surface 118, and a burr 119. When placing the coining object 100 on the first mold 10, as shown in FIG. 1A, one end (burr 119 generation side) of the shearing hole 120 is connected to the coining punch 20 side (FIG. 1). (Lower side in (a)).

コイニング加工対象物100は、鋼板をせん断加工したものに限られず、アルミニウム合金等の非鉄金属の板材をせん断加工したものでもよい。   The coining object 100 is not limited to a steel plate that is sheared, but may be a nonferrous metal plate such as an aluminum alloy that is sheared.

せん断加工方法は、打抜き加工が一般的であるが、これに限られるものではなく、ファインブランキング等であってもよい。   The shearing method is generally punching, but is not limited to this, and may be fine blanking or the like.

第一金型10に載置されたコイニング加工対象物100は、第一金型10に対向する第二金型30で第一金型10に押え付けられる。そして、図1(b)に示すように、コイニングパンチ20の先端から突出した中芯40は、前記せん断加工孔120の一端(バリ119発生側)から、せん断加工孔120に、中芯40の先端41が第二金型30に到達するまで挿入される。   The coining object 100 placed on the first mold 10 is pressed against the first mold 10 by the second mold 30 facing the first mold 10. As shown in FIG. 1B, the core 40 protruding from the tip of the coining punch 20 is connected to the shearing hole 120 from one end of the shearing hole 120 (burr 119 generation side). The tip 41 is inserted until it reaches the second mold 30.

第二金型30は、さらに、コイニングパンチ20側に移動され、図1(c)に示すように、コイニング加工対象物100のバリ発生側110を、コイニングパンチ20で圧縮変形させる。このとき、コイニングパンチ20で、せん断加工孔120の一端周縁部に発生したバリ119は圧潰される。   The second mold 30 is further moved to the coining punch 20 side, and the burr generation side 110 of the coining object 100 is compressed and deformed by the coining punch 20 as shown in FIG. At this time, the burr 119 generated at the peripheral edge of the one end of the shearing hole 120 is crushed by the coining punch 20.

図2は、コイニングパンチ20及び中芯40の先端部の要部を拡大した拡大縦断面図である。   FIG. 2 is an enlarged vertical cross-sectional view in which main parts of the tip portions of the coining punch 20 and the core 40 are enlarged.

せん断加工孔120の内周面125は、せん断面117と破断面118との境界130において、せん断加工孔120の内周が最も小さい。また、せん断加工孔120の内周面125のうち、せん断加工孔120の一端である、バリ119の発生している部分の内周が最も大きい。   The inner peripheral surface 125 of the shearing hole 120 has the smallest inner periphery of the shearing hole 120 at the boundary 130 between the shearing surface 117 and the fracture surface 118. Moreover, the inner periphery of the part which the burr | flash 119 generate | occur | produced which is one end of the shearing hole 120 among the inner peripheral surfaces 125 of the shearing hole 120 is the largest.

中芯40の外周の大きさは、せん断面117と破断面118との境界130の内周よりも大きく、せん断加工孔120の一端(バリ119の発生側の端部)の内周よりも小さい必要がある。   The size of the outer periphery of the core 40 is larger than the inner periphery of the boundary 130 between the shear surface 117 and the fracture surface 118 and smaller than the inner periphery of one end of the shearing hole 120 (end on the generation side of the burr 119). There is a need.

中芯40の外周の大きさが、せん断加工孔120の一端(バリ119の発生側の端部)の内周よりも大きいと、第二金型30をコイニングパンチ20側に移動させたときに、中芯40がせん断加工孔120に挿入されることなく、せん断加工孔120の一端(バリ119の発生側の端部)が圧潰(座屈)する。   When the size of the outer periphery of the core 40 is larger than the inner periphery of one end of the shearing hole 120 (end on the generation side of the burr 119), the second die 30 is moved to the coining punch 20 side. Without inserting the core 40 into the shearing hole 120, one end of the shearing hole 120 (the end on the generation side of the burr 119) is crushed (buckled).

中芯40の外周の大きさが、せん断面117と破断面118との境界130の内周よりも小さいと、中芯40の先端41が、第二金型30に到達したとき(図1(b)及び図1(c)参照)に、中芯40の外周が、せん断加工孔120の内周面125に接触せず、かつ、せん断加工孔120の他端(ダレ面116側の端部)にも接触しない。   When the size of the outer periphery of the core 40 is smaller than the inner periphery of the boundary 130 between the shear surface 117 and the fracture surface 118, the tip 41 of the core 40 reaches the second mold 30 (FIG. 1 ( b) and FIG. 1C), the outer periphery of the center core 40 does not contact the inner peripheral surface 125 of the shearing hole 120, and the other end of the shearing hole 120 (the end on the sag surface 116 side). ) Also does not touch.

中芯40の外周の大きさを、せん断面117と破断面118との境界130の内周よりも大きく、せん断加工孔120の一端(バリ119の発生側の端部)の内周よりも小さくすることで、中芯40をせん断加工孔120に挿入したとき、中芯40の先端41が、せん断加工孔120の深さ方向所定位置200に達するまで、中芯40の外周面とせん断加工孔120の内周面125との間には、空隙Gが存在する。   The size of the outer periphery of the center core 40 is larger than the inner periphery of the boundary 130 between the shear surface 117 and the fracture surface 118 and smaller than the inner periphery of one end of the shearing hole 120 (end on the burr 119 generation side). Thus, when the core 40 is inserted into the shearing hole 120, the outer peripheral surface of the core 40 and the shearing hole until the tip 41 of the core 40 reaches a predetermined position 200 in the depth direction of the shearing hole 120. A gap G exists between the inner peripheral surface 125 of 120.

中芯40の先端41が、せん断加工孔120の深さ方向所定位置200を超えて、中芯40をせん断加工孔120に挿入されたとき、中芯40の外周面で、せん断加工孔120の内周面125を塑性変形させる。   When the front end 41 of the center core 40 exceeds the predetermined position 200 in the depth direction of the shearing hole 120 and the center core 40 is inserted into the shearing hole 120, the outer periphery of the center core 40 has the outer periphery of the shearing hole 120. The inner peripheral surface 125 is plastically deformed.

せん断加工孔120の深さ方向所定位置200は、中芯40の外周の大きさと、せん断加工孔120の内周が等しくなる位置である。   The predetermined position 200 in the depth direction of the shearing hole 120 is a position where the size of the outer periphery of the core 40 is equal to the inner periphery of the shearing hole 120.

せん断加工孔120の内周の大きさが、せん断加工孔120の一端(バリ119の発生側の端部)で最も大きく、せん断面117と破断面118の境界130に向かって小さくなっていくことから、せん断加工孔120の深さ方向所定位置200は、せん断面117と破断面118との境界130よりも、中芯30の挿入方向手前(図1において下側)となる。   The size of the inner periphery of the shearing hole 120 is the largest at one end of the shearing hole 120 (the end on the burr 119 generation side) and decreases toward the boundary 130 between the shearing surface 117 and the fracture surface 118. Therefore, the predetermined position 200 in the depth direction of the shearing hole 120 is closer to the insertion direction of the core 30 (lower side in FIG. 1) than the boundary 130 between the shearing surface 117 and the fracture surface 118.

図3は、中芯40の先端41が、せん断加工孔120の深さ方向所定位置200を超えたときの状態を示す縦断面模式図である。図3(a)は、中芯40の先端41が、せん断加工孔120の深さ方向所定位置200を超え、せん断面117と破断面118との境界130の手前にあるとき、図3(b)は、中芯40の先端41が、第二金型30に到達したときを示す。   FIG. 3 is a schematic vertical cross-sectional view showing a state where the tip 41 of the core 40 has exceeded a predetermined position 200 in the depth direction of the shearing hole 120. FIG. 3A shows a state where the tip 41 of the core 40 exceeds the predetermined position 200 in the depth direction of the shearing hole 120 and is in front of the boundary 130 between the shear surface 117 and the fracture surface 118. ) Indicates when the tip 41 of the core 40 has reached the second mold 30.

中芯40の先端41が、深さ方向所定位置200を超え、境界130の手前にあるとき、図3(a)の矢印で示すように、コイニング加工対象物100を構成する材料は、第二金型30の方向に塑性流動する。   When the tip 41 of the core 40 exceeds the predetermined position 200 in the depth direction and is in front of the boundary 130, the material constituting the coining object 100 is the second as shown by the arrow in FIG. Plastic flow in the direction of the mold 30.

そして、中芯40がさらに挿入され、中芯40の先端41が第二金型30に到達したとき、図3(b)に示すように、中芯40が挿入される前の変形前材料70は、ダレ面116と第二金型30と中芯40とで囲まれた空間71へ塑性流動しながら圧縮変形される。   When the core 40 is further inserted and the tip 41 of the core 40 reaches the second mold 30, as shown in FIG. 3B, the pre-deformation material 70 before the core 40 is inserted. Is compressed and deformed while plastically flowing into a space 71 surrounded by the sag surface 116, the second mold 30, and the core 40.

図3(a)及び図3(b)から明らかなように、せん断加工孔120の深さ方向所定位置200よりも第二金型30側(図3(a)及び図3(b)において上側)にあるコイニング対象物100を構成する材料は、圧縮変形され、せん断加工孔120の内周面125に圧縮の残留応力が付与される。   As apparent from FIGS. 3A and 3B, the second mold 30 side (the upper side in FIGS. 3A and 3B) from the predetermined position 200 in the depth direction of the shearing hole 120. The material constituting the coining object 100 is compressed and deformed, and compressive residual stress is applied to the inner peripheral surface 125 of the shearing hole 120.

せん断加工孔120の一端(バリ119発生側)は、図1(c)に示すように、コイニングパンチ20で圧縮変形され、せん断加工孔120の他端(ダレ面116側)は、第二金型30で圧縮変形され、せん断加工孔120の一端と他端との間の内周面125は、中芯30で圧縮変形されることで、せん断加工孔120全体に圧縮の残留応力が付与され、せん断加工孔120全体の疲労特性を向上させることができる。   As shown in FIG. 1C, one end of the shearing hole 120 is compressed and deformed by the coining punch 20, and the other end (sagging surface 116 side) of the shearing hole 120 is the second gold. The inner peripheral surface 125 between one end and the other end of the shearing hole 120 is compressed and deformed by the mold 30, and compression residual stress is applied to the entire shearing hole 120 by being compressed and deformed by the core 30. In addition, the fatigue characteristics of the entire shearing hole 120 can be improved.

そして、圧縮変形された、せん断加工孔120の両端及び内周面は、表面粗さも改善され、美観が向上することはもちろんのこと、せん断加工孔120の表面の切り欠きによる疲労特性の劣化も低減される。   Then, both ends and the inner peripheral surface of the shearing hole 120 that have been compressed and deformed have improved surface roughness and improved aesthetics, as well as deterioration of fatigue characteristics due to notch in the surface of the shearing hole 120. Reduced.

せん断加工孔120が、鋼板から円筒パンチでせん断加工(打抜き加工)されるときは、せん断加工孔120の断面と、そのせん断加工孔120をコイニング加工するコイニングパンチ20及び中芯40の断面は図4に示すようになる。   When the shearing hole 120 is sheared (punched) from a steel plate with a cylindrical punch, the cross section of the shearing hole 120 and the cross section of the coining punch 20 and the core 40 for coining the shearing hole 120 are shown in FIG. As shown in FIG.

図4は、鋼板を円筒パンチでせん断加工したコイニング対象物100を、本発明のコイニング加工方法でコイニング加工するときの、せん断加工孔120、コイニングパンチ20の先端、中芯40の先端の要部を示す縦断面図である。   FIG. 4 shows a main part of the shearing hole 120, the tip of the coining punch 20, and the tip of the core 40 when the coining object 100 obtained by shearing a steel plate with a cylindrical punch is coined by the coining method of the present invention. FIG.

せん断加工孔120の一端(バリ119発生側)は直径φ、せん断面117と破断面118との境界130は直径φである。そして、直径φと直径φの関係は、φ<φであり、直径φは、せん断加工孔120の内周面125のうちで最小径である。 One end (burr 119 generation side) of the shearing hole 120 has a diameter φ 0 , and a boundary 130 between the shear surface 117 and the fracture surface 118 has a diameter φ 1 . The relationship between the diameter φ 1 and the diameter φ 0 is φ 10 , and the diameter φ 1 is the smallest diameter among the inner peripheral surfaces 125 of the shearing hole 120.

中芯40の外周は、境界130の内周よりも大きく、せん断加工孔130の一端(バリ119発生側)の内周よりも小さくする必要があることから、φ<φ<φの関係を満たす必要がある。 Since the outer periphery of the core 40 is larger than the inner periphery of the boundary 130 and needs to be smaller than the inner periphery of one end of the shearing hole 130 (burr 119 generation side), φ 130 It is necessary to satisfy the relationship.

φの下限値は、図3(b)において、変形前材料70の体積と空間71の体積とがつり合うような値とすることが好ましい。 The lower limit value of φ 3 is preferably a value such that the volume of the material 70 before deformation and the volume of the space 71 are balanced in FIG.

せん断加工孔120のダレ面116周辺は、鋼板をせん断加工するときに、引き伸ばされていることから、ダレ面116の周辺は、引張の残留応力が存在している状態であることが一般的である。   Since the periphery of the sag surface 116 of the shearing hole 120 is stretched when the steel plate is sheared, the periphery of the sag surface 116 is generally in a state in which residual tensile stress exists. is there.

このような状態で、中芯30によって変形前材料70が塑性変形され、空間71に塑性流動したとき(図3(b)参照)、変形前材料70の体積と空間71の体積とがつり合っている場合には、せん断加工孔120のダレ面116側の残留応力はゼロに近くなる。   In this state, when the pre-deformation material 70 is plastically deformed by the core 30 and plastically flows into the space 71 (see FIG. 3B), the volume of the pre-deformation material 70 and the volume of the space 71 are balanced. In this case, the residual stress on the sag surface 116 side of the shearing hole 120 is close to zero.

図5は、せん断加工孔120が円筒パンチで形成され、コイニングパンチ20及び中芯40が円筒形状である(図4参照)ときの、変形前材料70と空間71(図3(b)参照)との位置関係を、中芯30を省略して示した縦断面図である。   FIG. 5 shows a pre-deformation material 70 and a space 71 (see FIG. 3B) when the shearing hole 120 is formed by a cylindrical punch and the coining punch 20 and the core 40 have a cylindrical shape (see FIG. 4). It is the longitudinal cross-sectional view which abbreviate | omitted the core 30 and showed the positional relationship with these.

図5に示すように、ダレ面116とせん断面117との変化点140を原点としてx−y座標を定義し、ダレ面116を、放物線y=(d/d )xで近似する。 As shown in FIG. 5, the xy coordinates are defined with the change point 140 between the sagging surface 116 and the shearing surface 117 as the origin, and the sagging surface 116 is approximated by a parabola y = (d 0 / d 1 2 ) x 2 . To do.

このとき、変形前材料70の体積と空間71の体積のつり合いは、次の(a)式で表され、(a)式におけるφが、φの好ましい下限値である。
2/3×(d /d)×(φ−φ3/2+1/2{t−(d−d)}×(φ−φ)+2/3×d×d=0 ・・・(a)
At this time, the balance of the volume of the volume and the space 71 of the undeformed material 70 is represented by the following formula (a), a preferable lower limit value of phi 3 is, phi 3 in formula (a).
2/3 × (d 1 2 / d 0 ) × (φ 3 −φ 1 ) 3/2 +1/2 {t− (d 1 −d 2 )} × (φ 3 −φ 1 ) + 2/3 × d 0 × d 1 = 0 (a)

ここで、図5に示すように、tはコイニング加工対象物100の板厚、dはダレ面116のせん断加工孔120の周方向幅、dはダレ面116のコイニング対象物100の板厚方向高さ、dはせん断面117のコイニング対象物100の板厚方向高さ、φはせん断加工孔120の一端(バリ119発生側)の直径、φはせん断加工孔120の境界130の直径、φは中芯40の直径である。 Here, as shown in FIG. 5, t is the plate thickness of the coining object 100, d 0 is the circumferential width of the shearing hole 120 on the sag surface 116, and d 1 is the plate of the coining object 100 on the sag surface 116. The height in the thickness direction, d 2 is the height in the plate thickness direction of the coining object 100 on the shear surface 117, φ 0 is the diameter of one end of the shearing hole 120 (burr 119 generation side), and φ 1 is the boundary of the shearing hole 120. 130 in diameter, phi 3 is the diameter of the central core 40.

一方、中芯40の直径φの上限値は、せん断加工孔120を形成する際の、せん断加工パンチとせん断加工ダイとの間隙の上限値と、コイニング対象物100の板厚値との積に、せん断加工孔120のせん断面117と破断面118の境界130の直径φの値を加えたものであることが好ましい。 On the other hand, the upper limit value of the diameter φ 3 of the core 40 is the product of the upper limit value of the gap between the shearing punch and the shearing die when forming the shearing hole 120 and the plate thickness value of the coining object 100. In addition, it is preferable to add the value of the diameter φ 1 of the boundary 130 between the shearing surface 117 of the shearing hole 120 and the fracture surface 118.

図5において、中芯40の直径φの上限値は、φ+Ctである。ここで、Cはせん断加工孔120を形成する際の、せん断加工パンチとせん断加工ダイとの間隙(クリアランス)の上限値である。なお、コイニング対象物100の板厚値tは、せん断加工孔形成前の鋼板の板厚値tと同一であるものとする。 In FIG. 5, the upper limit value of the diameter φ 3 of the center core 40 is φ 1 + Ct. Here, C is the upper limit value of the clearance (clearance) between the shearing punch and the shearing die when the shearing hole 120 is formed. In addition, the plate thickness value t of the coining target object 100 shall be the same as the plate thickness value t of the steel plate before shearing hole formation.

せん断加工パンチとせん断加工ダイとの間隙は、せん断加工孔の直径及び深さ、せん断加工孔を形成する鋼板の材質によって適正範囲が決まっているが、その適正範囲の上限値を間隙Cとする。   The appropriate range of the gap between the shearing punch and the shearing die is determined by the diameter and depth of the shearing hole and the material of the steel plate forming the shearing hole. The upper limit of the appropriate range is defined as the gap C. .

ここで、中芯40の直径φの上限値をφ+Ct、即ち、せん断面117と破断面118との境界130の直径φにCtを加えた値としたのは次の理由による。 Here, the upper limit value of the diameter φ 3 of the core 40 is set to φ 1 + Ct, that is, the value obtained by adding Ct to the diameter φ 1 of the boundary 130 between the shear surface 117 and the fracture surface 118 is as follows.

中芯40の直径φがφ+Ctを超えると、せん断加工孔120に中芯40が挿入されたときに、せん断加工孔120の内周面125に中芯40の先端41が食い込んでしまう。 When the diameter φ 3 of the core 40 exceeds φ 1 + Ct, when the core 40 is inserted into the shearing hole 120, the tip 41 of the core 40 bites into the inner peripheral surface 125 of the shearing hole 120. .

先端41が、せん断加工孔120の内周面125に食い込んだまま中芯40の挿入が進行すると、中芯40の外周でせん断加工孔120の内周面125を削ぎ落としてしまうため、中芯40の先端41が第二金型30に到達したときに、ダレ面側115(図1(a)参照)に、削ぎ落とされた内周面125がバリとなって残るため、せん断加工孔120のダレ面側115端部の意匠性が損なわれる。   When the insertion of the core 40 proceeds with the tip 41 biting into the inner peripheral surface 125 of the shearing hole 120, the inner peripheral surface 125 of the shearing hole 120 is scraped off at the outer periphery of the central core 40. When the tip 41 of 40 reaches the second mold 30, the scraped inner peripheral surface 125 remains as burrs on the sag surface side 115 (see FIG. 1A). The design of the end portion 115 of the sag surface is impaired.

したがって、中芯40の外周49が、せん断加工孔120の内周面125を削ぎ落とすことなく、しごき加工するためには、中芯40の直径φをφ+Ct以下とすることが好ましい。 Thus, the outer periphery 49 of the central core 40, shearing hole 120 inner peripheral surface 125 without scraped off of, for ironing, it is preferable that the diameter phi 3 of the central core 40 than phi 1 + Ct.

また、中芯40が前端部と本体部とを有する前端部付中芯であり、前端部の外周を本体部の外周よりも小さくした場合には、φ=φとすることができる。 Further, when the center core 40 is a center core with a front end portion having a front end portion and a main body portion, and the outer periphery of the front end portion is made smaller than the outer periphery of the main body portion, φ 0 = φ 3 can be obtained.

図6は、コイニングパンチ20から突出した前端部付中芯45を示す斜視図である。前端部付中芯45は、本体部46と前端部47とを有する。   FIG. 6 is a perspective view showing the core 45 with a front end protruding from the coining punch 20. The center core 45 with the front end portion has a main body portion 46 and a front end portion 47.

本体部46の直径をφ、前端部47の直径をφ(φ<φ)としたとき、φ=φとすることができる。前端部47の外縁部48にRを付与するとさらに好ましい。 When the diameter of the main body 46 is φ 3 and the diameter of the front end portion 47 is φ 223 ), φ 0 = φ 3 can be established. More preferably, R is applied to the outer edge portion 48 of the front end portion 47.

中芯40を、このような前端部付中芯45とすることで、前端部付中芯45の先端41がせん断加工孔120に挿入されるとき、せん断加工孔120の中心軸と前端部付中芯45の中心軸が僅かにずれている場合でも、前端部付中芯45の外縁部48がせん断加工孔120のバリ119発生側の内周に接触せず、円滑に前端部付中芯45をせん断加工孔に挿入することができる。   By setting the middle core 40 as such a middle core 45 with a front end, when the front end 41 of the middle core 45 with the front end is inserted into the shearing hole 120, the center axis of the shearing hole 120 and the front end are attached. Even when the center axis of the center core 45 is slightly shifted, the outer edge 48 of the center core 45 with the front end does not contact the inner periphery of the shearing hole 120 on the burr 119 generation side, and the center core with the front end smoothly. 45 can be inserted into the shearing hole.

それ故、本体部46の直径φを、前端部付中芯45が挿入される入口となる、せん断加工孔120の一端(バリ119発生側)の直径φ(図4参照)と同一にすることができる。つまり、せん断加工孔120の内周面125に塑性変形を加える、本体部46の直径φが上限値となるため、せん断加工孔120の内周面125全体に、充分な圧縮の残留応力を付与することができる。 Therefore, the diameter φ 3 of the main body 46 is the same as the diameter φ 0 (see FIG. 4) of one end (the burr 119 generation side) of the shearing hole 120 that serves as an inlet into which the center core 45 with the front end is inserted. can do. That is, added to plastic deformation on the inner peripheral surface 125 of the shearing hole 120, since the diameter phi 3 of the main body portion 46 is the upper limit value, the entire inner peripheral surface 125 of the shearing hole 120, the residual stress of sufficient compression Can be granted.

これまで、中芯40の外周の大きさ及びせん断加工孔120の大きさについて、説明を簡略化するために、せん断加工孔120を円筒パンチでせん断加工する例で示した実施形態については、これに限られるものではなく、本発明の効果は同様である。   So far, in order to simplify the description of the size of the outer periphery of the core 40 and the size of the shearing hole 120, the embodiment shown in the example in which the shearing hole 120 is sheared with a cylindrical punch will be described. The effects of the present invention are not limited to the above.

その理由は、φ及びφはせん断加工孔120の重心の位置からの距離として定義し、せん断加工孔120の形状に対する中芯40のφ及びφは、せん断加工孔の重心の位置からの距離として定義したからである。 The reason is that φ 0 and φ 1 are defined as the distance from the position of the center of gravity of the shearing hole 120, and φ 2 and φ 3 of the center core 40 with respect to the shape of the shearing hole 120 are the positions of the center of gravity of the shearing hole. This is because it is defined as the distance from

つまり、せん断加工孔120の内周面125における任意の位置を表す寸法φ及びφと、中芯40の外周における任意の位置を表す寸法φ及びφは、せん断加工孔120及び中芯40の深さ方向位置(図4及び図6において上下方向位置)によって変化するが、φ、φ、φ及びφの開始線(基準線)は同一であることから、φ、φ、φ及びφそれぞれの値によって表されたせん断加工孔120及び中芯40における任意の位置は、相対的位置関係として一義的に決まるからである。 That is, the dimensions φ 0 and φ 1 representing an arbitrary position on the inner peripheral surface 125 of the shearing hole 120 and the dimensions φ 2 and φ 3 representing an arbitrary position on the outer periphery of the core 40 are the shearing hole 120 and the middle Although it varies depending on the position in the depth direction of the core 40 (the vertical position in FIGS. 4 and 6), since the start lines (reference lines) of φ 0 , φ 1 , φ 2 and φ 3 are the same, φ 0 , Φ 1 , φ 2, and φ 3, the arbitrary positions in the shearing hole 120 and the center core 40 are uniquely determined as a relative positional relationship.

せん断加工孔120を円筒パンチ以外でせん断加工する例としては、楕円や、頂点にRを設けた多角形等があり、例えば、図7に示すような形状とすることもできる。   Examples of shearing the shearing hole 120 by means other than a cylindrical punch include an ellipse, a polygon having an R at the apex, and the like, for example, as shown in FIG.

図7は、円筒パンチ以外の形状のせん断加工パンチでせん断加工孔を形成しコイニング対象物100としたときの、せん断加工孔120と前端部付中芯45に関し、せん断加工孔120のバリ発生側内周120と、せん断面117と破断面118との境界130の内周と、前端部付中芯45の本体部46の外周49と、前端部付中芯45の前端部47の外縁部48とについて、中心軸周りの位置関係を示した説明図である。   FIG. 7 shows a burr generation side of the shearing hole 120 with respect to the shearing hole 120 and the center core 45 with the front end when the shearing hole is formed with a shearing punch having a shape other than the cylindrical punch to form the coining object 100. The inner periphery 120, the inner periphery of the boundary 130 between the shear surface 117 and the fracture surface 118, the outer periphery 49 of the main body portion 46 of the front end-attached core 45, and the outer edge 48 of the front end portion 47 of the front end-attached core 45. It is explanatory drawing which showed the positional relationship of the periphery of a center axis | shaft.

図7に示したように、本体部46(図6参照)の外周49が、せん断面117と破断面118(図4参照)との境界130よりも大きく、せん断加工孔120の一端(バリ119発生側)の内周120(図4参照)よりも小さいことが必要である。   As shown in FIG. 7, the outer periphery 49 of the main body portion 46 (see FIG. 6) is larger than the boundary 130 between the shear surface 117 and the fracture surface 118 (see FIG. 4), and one end (burr 119) of the shearing hole 120. It is necessary to be smaller than the inner circumference 120 (see FIG. 4) on the generation side.

前端部付中芯45は、前端部47の外縁部48(図6参照)が本体部46の外周49(図6参照)よりも小さいため、本体部46の外周49と、せん断加工孔120の一端(バリ119発生側)内周120とを同じにしてもよい。   Since the outer edge portion 48 (see FIG. 6) of the front end portion 47 is smaller than the outer periphery 49 (see FIG. 6) of the main body portion 46, the inner core 45 with the front end portion is smaller than the outer periphery 49 of the main body portion 46 and the shearing hole 120. One end (burr 119 generation side) inner circumference 120 may be the same.

また、本体部46の外周の大きさの下限値は、図7におけるA−A線に沿う断面が、図3(b)となるときに、変形前材料70の体積と、空間71の体積とがつり合うような本体部46の外周の大きさとすることが好ましい。   Moreover, the lower limit value of the size of the outer periphery of the main body 46 is the volume of the pre-deformation material 70 and the volume of the space 71 when the cross section taken along the line AA in FIG. It is preferable to set the size of the outer periphery of the main body 46 so as to be balanced.

一方、本体部46の外周の大きさの上限は、せん断加工孔120のせん断面117と破断面118との境界130の内周の大きさよりも、Ct×2に相当する分だけ大きくすることが好ましい。即ち、図7において、本体部46の外周49と境界130との距離Lの上限値は、Ctとすることが好ましい。   On the other hand, the upper limit of the size of the outer periphery of the main body 46 may be made larger by the amount corresponding to Ct × 2 than the size of the inner periphery of the boundary 130 between the shear surface 117 and the fracture surface 118 of the shearing hole 120. preferable. That is, in FIG. 7, the upper limit value of the distance L between the outer periphery 49 of the main body 46 and the boundary 130 is preferably Ct.

ここで、Cはせん断加工孔120を形成する際の、せん断加工パンチとせん断加工ダイとの間隙の上限値である。なお、コイニング対象物100の板厚値tは、せん断加工孔形成前の鋼板の板厚値tと同一であるものとする。   Here, C is the upper limit value of the gap between the shearing punch and the shearing die when the shearing hole 120 is formed. In addition, the plate thickness value t of the coining target object 100 shall be the same as the plate thickness value t of the steel plate before shearing hole formation.

次に、本発明を実施例でさらに説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, the present invention will be further described with reference to examples. Conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is examples of these one condition. It is not limited to. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

円筒パンチを用いて、せん断加工孔120を形成したコイニング加工対象物100について、図4に示した第一金型10、コイニングパンチ20、第二金型30、及び、中芯40を用いて、せん断加工孔120をコイニング加工し、中芯40の外周の大きさと、せん断加工孔120に付与される残留応力との関係を求めた。   About the coining object 100 in which the shearing hole 120 is formed using the cylindrical punch, using the first mold 10, the coining punch 20, the second mold 30, and the center core 40 shown in FIG. 4, The shearing hole 120 was coined, and the relationship between the size of the outer periphery of the core 40 and the residual stress applied to the shearing hole 120 was determined.

まず、数値解析で、事前検討を行った。せん断加工孔120のせん断面117と破断面118との境界130の直径φを10.00mmとした。また、せん断加工対象物100の板厚は、せん断加工前の鋼板と同一の3.00mmとした。そして、中芯30の直径φを10.00〜10.25mmの範囲で変化させ、(φ−φ)を0〜−0.25mmの範囲で変化させて数値解析した。 First, a preliminary study was conducted by numerical analysis. Diameter phi 1 of the boundary 130 between the shearing hole 120 Jae sectional 117 and broken surface 118 was set to 10.00 mm. Moreover, the plate | board thickness of the shearing target object 100 was 3.00 mm same as the steel plate before a shearing process. Then, the diameter φ 3 of the core 30 was changed in the range of 10.00 to 10.25 mm, and (φ 1 −φ 3 ) was changed in the range of 0 to −0.25 mm, and numerical analysis was performed.

結果を図8に示す。図8(a)はせん断加工孔120のバリ119発生側の残留応力を、図8(b)はせん断加工孔120のダレ面116側の残留応力を示す。   The results are shown in FIG. 8A shows the residual stress on the burr 119 generation side of the shearing hole 120, and FIG. 8B shows the residual stress on the sag surface 116 side of the shearing hole 120.

なお、せん断加工孔120のバリ119発生側の残留応力とは、せん断加工孔120のバリ119発生側の端面からせん断面117と破断面118の境界130までの範囲で、せん断加工孔120の内周面125に付与された残留応力値の平均値である。   The residual stress on the burr 119 generation side of the shearing hole 120 is the range from the end surface of the burr 119 generation side of the shearing hole 120 to the boundary 130 between the shearing surface 117 and the fracture surface 118. This is an average value of residual stress values applied to the peripheral surface 125.

また、せん断加工孔120のダレ面116側の残留応力とは、せん断加工孔120のダレ面116側の端面から深さ0.5mmまでの範囲で、せん断加工孔120の内周面125に付与された残留応力の平均値である。   Further, the residual stress on the sag surface 116 side of the shearing hole 120 is given to the inner peripheral surface 125 of the shearing hole 120 within a range from the end surface on the sag surface 116 side of the shearing hole 120 to a depth of 0.5 mm. It is the average value of the applied residual stress.

そして、図8(a)及び図8(b)において、正の残留応力は引張の残留応力を、負の残留応力は圧縮の残留応力を示す。   8A and 8B, a positive residual stress indicates a tensile residual stress, and a negative residual stress indicates a compressive residual stress.

図8(a)及び図8(b)から明らかなように、中芯40の直径φが大きくなるとともに、バリ119発生側、ダレ面116側ともに、残留応力の値が小さくなる、即ち、圧縮の残留応力が多く付与されていることが確認できた。 Figure 8 (a) and as is clear from FIG. 8 (b), with a diameter phi 3 of the central core 40 increases, burr 119 occurs side, the sagging face 116 side both the value of the residual stress is reduced, i.e., It was confirmed that a large amount of compressive residual stress was applied.

また、図8(a)において、(φ−φ)が−0.15mm以下であっても、残留応力値は、−1000MPaでほぼ一定である。これは、(φ−φ)を−0.15mm以下にしても、圧縮の残留応力を付与する効果が飽和してしまうことを意味している。 Further, in FIG. 8A, even when (φ 1 −φ 3 ) is −0.15 mm or less, the residual stress value is substantially constant at −1000 MPa. This means that even if (φ 1 −φ 3 ) is set to −0.15 mm or less, the effect of applying compressive residual stress is saturated.

したがって、(φ−φ)の下限値は、−0.15mmが好ましい。即ち、φの上限値は、φ+0.15mmであることが好ましい。 Therefore, the lower limit value of (φ 1 −φ 3 ) is preferably −0.15 mm. That is, the upper limit value of φ 3 is preferably φ 1 +0.15 mm.

そして、図8(b)において、(φ−φ)が−0.05mm以上であると、残留応力値が正、即ち、圧縮の残留応力とならない。 In FIG. 8B, when (φ 1 −φ 3 ) is −0.05 mm or more, the residual stress value is positive, that is, the compressive residual stress is not obtained.

したがって、(φ−φ)の上限値は、−0.05mmが好ましい。即ち、φの下限値は、φ+0.05mmであることが好ましい。 Therefore, the upper limit value of (φ 1 −φ 3 ) is preferably −0.05 mm. That is, the lower limit value of φ 3 is preferably φ 1 +0.05 mm.

以上の実施例により、本願発明のコイニング加工方法で、せん断加工孔部に圧縮の残留応力を充分に付与できることが確認できた。   From the above examples, it was confirmed that the residual stress of compression could be sufficiently applied to the shearing hole by the coining method of the present invention.

なお、上述したところは、本発明の実施形態を例示したものにすぎず、本発明は、特許請求の範囲の記載範囲内において種々変更を加えることができる。   In addition, the place mentioned above is only what illustrated embodiment of this invention, and this invention can add a various change within the description range of a claim.

前述したように、本発明によれば、コイニングパンチで、せん断加工孔のバリを圧潰し、せん断加工孔のバリ発生部を圧縮変形させることに加えて、コイニングパンチから突出させた中芯をせん断加工孔に挿入することによって、せん断加工孔の、バリ発生部とは反対側のダレ面と、せん断加工孔の内周面を圧縮変形させることができ、1回のコイニング加工で、せん断加工孔全体に圧縮の残留応力を付与することにより、せん断加工孔全体の疲労特性を向上させることが可能となる。本発明は、工業上、利用価値の高いものである。   As described above, according to the present invention, in addition to crushing the burr of the shearing hole with the coining punch and compressing and deforming the burr generation part of the shearing hole, the core protruding from the coining punch is sheared. By inserting into the processing hole, the sag surface of the shearing hole on the side opposite to the burr generating part and the inner peripheral surface of the shearing hole can be compressed and deformed. By applying compressive residual stress to the whole, it is possible to improve the fatigue characteristics of the entire sheared hole. The present invention has high utility value industrially.

1 コイニング加工装置
10 第一金型
20 コイニングパンチ
30 第二金型
40 中芯
41 先端
45 前端部付中芯
47 前端部
48 外縁部
49 外周
60 弾性体
70 変形前材料
71 空間
100 コイニング対象物
110 バリ発生側
115 ダレ面側
116 ダレ面
117 せん断面
118 破断面
119 バリ
120 せん断加工孔
125 内周面
130 境界
140 変化点
200 深さ方向所定位置
G 空隙
DESCRIPTION OF SYMBOLS 1 Coining processing apparatus 10 1st metal mold | die 20 Coining punch 30 2nd metal mold | die 40 Center core 41 Front-end | tip 45 Center core with a front end 47 Front end part 48 Outer edge part 49 Outer periphery 60 Elastic body 70 Material before deformation 71 Space 100 Coining object 110 Burr generation side 115 Sag surface side 116 Sag surface 117 Shear surface 118 Fracture surface 119 Burr 120 Shearing hole 125 Inner peripheral surface 130 Boundary 140 Change point 200 Depth direction predetermined position G Gap

Claims (11)

せん断加工孔の一端周縁部に発生したバリを圧潰するコイニング加工方法であって、
前記せん断加工孔を有するコイニング加工対象物を第一金型に載置し、該第一金型に対向する第二金型で前記コイニング加工対象物を前記第一金型に押え付け、前記第二金型に対向し前記第一金型と一組をなすコイニングパンチの先端から突出させた中芯を、前記せん断加工孔の一端から、前記せん断加工孔に、前記第二金型に到達するまで挿入しつつ、前記第二金型と前記中芯とで、前記せん断加工孔の他端及び内周面を塑性変形させるとともに、前記バリを前記コイニングパンチで圧潰することを特徴とするコイニング加工方法。
A coining method for crushing burrs generated at one peripheral edge of a shearing hole,
A coining object having the shearing hole is placed on a first mold, the coining object is pressed against the first mold by a second mold facing the first mold, and the first mold is pressed. A core that protrudes from the tip of a coining punch that faces the two molds and forms a pair with the first mold reaches the second mold from one end of the shearing hole to the shearing hole. The other die and the inner peripheral surface of the shearing hole are plastically deformed with the second mold and the center core while the burrs are crushed by the coining punch. Method.
前記中芯の先端が、前記せん断加工孔の深さ方向所定位置に達するまで、前記中芯の外周面と前記せん断加工孔の内周面との間に、間隙が存在することを特徴とする請求項1に記載のコイニング加工方法。   A gap exists between the outer peripheral surface of the core and the inner peripheral surface of the shearing hole until the tip of the core reaches a predetermined position in the depth direction of the shearing hole. The coining method according to claim 1. 前記せん断加工孔の深さ方向所定位置は、前記せん断加工孔の、せん断面と破断面との境界よりも、前記中芯の挿入方向手前であることを特徴とする請求項1又は2に記載のコイニング加工方法。   The predetermined position in the depth direction of the shearing hole is before the insertion direction of the core from the boundary between the shearing surface and the fracture surface of the shearing hole. Coining method. 前記中芯が前端部と本体部とを有する前端部付中芯であり、前記前端部の外周が前記本体部の外周よりも小さいことを特徴とする請求項1〜3のいずれか1項に記載のコイニング加工方法。   The said center core is a center core with a front end part which has a front-end part and a main-body part, The outer periphery of the said front-end part is smaller than the outer periphery of the said main-body part, The any one of Claims 1-3 characterized by the above-mentioned. The coining method described. 前記せん断加工孔が、打抜き加工孔であることを特徴とする請求項1〜4のいずれか1項に記載のコイニング加工方法。   The coining method according to any one of claims 1 to 4, wherein the shearing hole is a punching hole. 金属板材をせん断加工して形成した、せん断加工孔を有するコイニング加工対象物を載置する第一金型と、
前記第一金型に対向し、前記コイニング加工対象物を前記第一金型に押え付ける第二金型と、
前記第二金型に対向し前記第一金型と一組をなす、前記せん断加工孔の一端に形成されたバリを圧潰するコイニングパンチと、
前記コイニングパンチから突出し、前記せん断加工孔の、せん断面と破断面との境界の内周よりも大きく、前記せん断加工孔の一端の内周よりも小さい外周を有する中芯と
を備え、
前記中芯が、前記せん断加工孔の一端から、前記せん断加工孔に挿入され、前記中芯の先端を、前記第二金型に到達させることを特徴とするコイニング加工装置。
A first mold for placing a coining object having a shearing hole formed by shearing a metal plate;
A second mold facing the first mold and pressing the coining object to the first mold;
A coining punch that crushes a burr formed at one end of the shearing hole, facing the second mold and forming a set with the first mold;
A core that protrudes from the coining punch and has an outer circumference that is larger than the inner circumference of the boundary between the shearing surface and the fracture surface of the shearing hole and smaller than the inner circumference of one end of the shearing hole;
The coining processing apparatus, wherein the core is inserted into the shearing hole from one end of the shearing hole, and the tip of the core reaches the second mold.
前記中芯の外周が、前記せん断加工孔の、せん断面と破断面との境界の内周よりも、所定値だけ大きいを特徴とする請求項6に記載のコイニング加工装置。   The coining apparatus according to claim 6, wherein an outer periphery of the center core is larger by a predetermined value than an inner periphery of a boundary between the shear surface and the fracture surface of the shearing hole. 前記所定値の最大値が、前記せん断加工孔を形成する、せん断加工パンチとせん断加工ダイとの間隙の上限値と、前記金属板材の板厚値との積であることを特徴とする請求項7に記載のコイニング加工装置。   The maximum value of the predetermined value is a product of an upper limit value of a gap between a shearing punch and a shearing die that form the shearing hole and a plate thickness value of the metal plate material. The coining processing apparatus according to 7. 前記中芯が前端部と本体部とを有する前端部付中芯であり、前記前端部の外周が前記本体部の外周よりも小さいことを特徴とする請求項6〜8のいずれか1項に記載のコイニング加工装置。   The said center core is a center core with a front end part which has a front-end part and a main-body part, The outer periphery of the said front-end part is smaller than the outer periphery of the said main-body part, The any one of Claims 6-8 characterized by the above-mentioned. The coining processing apparatus described. 前記前端部付中芯の本体部の外周が、前記せん断加工孔の一端の内周と同じであることを特徴とする請求項9に記載のコイニング加工装置。   The coining apparatus according to claim 9, wherein an outer periphery of the main body portion of the core with the front end is the same as an inner periphery of one end of the shearing hole. 前記せん断加工孔が、打抜き加工孔であることを特徴とする請求項6〜10のいずれか1項に記載のコイニング加工装置。   The coining apparatus according to any one of claims 6 to 10, wherein the shearing hole is a punching hole.
JP2010087132A 2010-04-05 2010-04-05 Coining method and apparatus Active JP5392168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010087132A JP5392168B2 (en) 2010-04-05 2010-04-05 Coining method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087132A JP5392168B2 (en) 2010-04-05 2010-04-05 Coining method and apparatus

Publications (2)

Publication Number Publication Date
JP2011218373A true JP2011218373A (en) 2011-11-04
JP5392168B2 JP5392168B2 (en) 2014-01-22

Family

ID=45036017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087132A Active JP5392168B2 (en) 2010-04-05 2010-04-05 Coining method and apparatus

Country Status (1)

Country Link
JP (1) JP5392168B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111243A2 (en) * 2013-01-16 2014-07-24 Rehau Ag + Co Method for producing a polymer motor vehicle component
KR20170106422A (en) 2015-02-25 2017-09-20 신닛테츠스미킨 카부시키카이샤 Shear working method
KR20180100378A (en) 2016-02-08 2018-09-10 신닛테츠스미킨 카부시키카이샤 Shear working method
JP2019030899A (en) * 2017-08-09 2019-02-28 新日鐵住金株式会社 Shear processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104092A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Improvement of punching accuracy
JPS6182937A (en) * 1984-09-28 1986-04-26 Nissan Motor Co Ltd Manufacture of hollow stock
JPS63123536A (en) * 1986-11-13 1988-05-27 Mitsubishi Electric Corp Return treating device for base plate
JPH01177035U (en) * 1988-06-02 1989-12-18
JP2006181633A (en) * 2004-12-28 2006-07-13 Amada Co Ltd Chamfering die and chamfering method of punch press
JP2009248162A (en) * 2008-04-09 2009-10-29 Nippon Steel Corp Punching method and punching device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104092A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Improvement of punching accuracy
JPS6182937A (en) * 1984-09-28 1986-04-26 Nissan Motor Co Ltd Manufacture of hollow stock
JPS63123536A (en) * 1986-11-13 1988-05-27 Mitsubishi Electric Corp Return treating device for base plate
JPH01177035U (en) * 1988-06-02 1989-12-18
JP2006181633A (en) * 2004-12-28 2006-07-13 Amada Co Ltd Chamfering die and chamfering method of punch press
JP2009248162A (en) * 2008-04-09 2009-10-29 Nippon Steel Corp Punching method and punching device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111243A2 (en) * 2013-01-16 2014-07-24 Rehau Ag + Co Method for producing a polymer motor vehicle component
WO2014111243A3 (en) * 2013-01-16 2014-09-12 Rehau Ag + Co Method for rounding edges of polymer motor vehicle components
US10226901B2 (en) 2013-01-16 2019-03-12 Rehau Ag + Co Method for rounding edges of polymer motor vehicle components
KR20170106422A (en) 2015-02-25 2017-09-20 신닛테츠스미킨 카부시키카이샤 Shear working method
US10639698B2 (en) 2015-02-25 2020-05-05 Nippon Steel Corporation Shearing method
KR20180100378A (en) 2016-02-08 2018-09-10 신닛테츠스미킨 카부시키카이샤 Shear working method
US10639699B2 (en) 2016-02-08 2020-05-05 Nippon Steel Corporation Shearing method
JP2019030899A (en) * 2017-08-09 2019-02-28 新日鐵住金株式会社 Shear processing method

Also Published As

Publication number Publication date
JP5392168B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5392168B2 (en) Coining method and apparatus
JP7066315B2 (en) Burling processing equipment, burring processing method, metal parts manufacturing method, burring processed products and metal parts
Soares et al. Study of the punch–die clearance influence on the sheared edge quality of thick sheets
KR102000859B1 (en) Shear working method
TWI711498B (en) Formed material manufacturing method and formed material
Totre et al. An overview of factors affecting in blanking processes
JP5387022B2 (en) Punching method using chamfering die and hole punching device for metal plate stretch flange processing
JP2010158688A (en) Shearing/forming method
JP4846517B2 (en) Shearing method and apparatus in which reverse presser is lowered from upper surface of die
JP2006224121A (en) Steel sheet punching tool, and punching method using the same
CN105414233A (en) Backward extrusion die with back pressure and processing technology adopting same
US20150047406A1 (en) Method of reducing wrinkles in pressed sheet metal components
CN104404407B (en) A kind of arc forging residual stress abatement device
JP5645527B2 (en) Punch die and screw hole machining method using the punch die
EP2786814A1 (en) Method for manufacturing seamless pipe
JP5268715B2 (en) Manufacturing method of connecting rod and coining type apparatus used therefor
JP5157716B2 (en) Method for manufacturing universal joint yoke
JP2010052006A (en) Coining method after punching and coining punch
JP6448482B2 (en) Manufacturing method of pressed products
JP2016073987A (en) Device and method for manufacturing end-thickened steel pipe
Chung et al. A study on the improvement of the accuracy of a shaving process using a progressive die
JP7230582B2 (en) Shearing method and shearing device
Çavuşoğlu An investigation of punch radius and clearance effects on the sheet metal blanking process
JP2006077266A (en) Method for sizing sintered component, metallic mold for sizing and sintered component produced by using the mold
JP2011115817A (en) Welding member and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5392168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350