JP2011217465A - Detection system of influence to three-phase distribution line of photovoltaic power generation equipment - Google Patents

Detection system of influence to three-phase distribution line of photovoltaic power generation equipment Download PDF

Info

Publication number
JP2011217465A
JP2011217465A JP2010081390A JP2010081390A JP2011217465A JP 2011217465 A JP2011217465 A JP 2011217465A JP 2010081390 A JP2010081390 A JP 2010081390A JP 2010081390 A JP2010081390 A JP 2010081390A JP 2011217465 A JP2011217465 A JP 2011217465A
Authority
JP
Japan
Prior art keywords
phase
distribution line
power generation
photovoltaic power
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081390A
Other languages
Japanese (ja)
Other versions
JP5506502B2 (en
Inventor
Nobuhiko Itaya
伸彦 板屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010081390A priority Critical patent/JP5506502B2/en
Publication of JP2011217465A publication Critical patent/JP2011217465A/en
Application granted granted Critical
Publication of JP5506502B2 publication Critical patent/JP5506502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Abstract

PROBLEM TO BE SOLVED: To detect an influence to a three-part distribution line caused by photovoltaic power generation equipment installed at a single-phase low-voltage distribution line of a general home and an individual consumer on assumption that the photovoltaic power generation equipment may rapidly be diffused to the general home and the individual consumer in future.SOLUTION: This detection system for influence to the three-phase distribution line of the photovoltaic power generation equipment comprises an each-phase current measurement device 5 which detects a current of each phase of a power distribution line at the three-phase side of a distribution line transformer 2 which converts three phases to a single phase, and an estimation part 11 which discriminates trends of a magnitude and a change of the each-phase current at each prescribed time on the basis of the each-phase current measured by the each-phase current measurement device and estimates that the imbalance of the each-phase current of the distribution line at the three-phase side is caused by the photovoltaic power generation equipment installed at the single-phase side low-voltage distribution line of the distribution line transformer.

Description

この発明は、太陽光発電設備の三相配電線への影響検出システム、特に単相低圧配電線に接続の太陽光発電設備の増加による三相配電線への影響を検出するシステムに関するものであり、配電系統における計画、運用、制御等に寄与可能なものである。   The present invention relates to a system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line, and more particularly to a system for detecting an influence on a three-phase distribution line due to an increase in the number of photovoltaic power generation facilities connected to a single-phase low-voltage distribution line. It can contribute to planning, operation, control, etc. in the system.

マイクロガスタービンや風力発電などの分散型電源の電力系統への連系または解列を判別するシステムは開発されている。(例えば特開2007−110829号公報参照)   Systems have been developed that discriminate between interconnection and disconnection of a distributed power source such as a micro gas turbine or wind power generation. (See, for example, Japanese Patent Application Laid-Open No. 2007-110829)

ところで、太陽光発電設備が家庭や小口需要家に今後急速に普及することを想定した場合、その配電線への影響を検知する方策、配電線への影響への対応策を事前に検討しておくことが好ましい。   By the way, if it is assumed that solar power generation equipment will rapidly spread to households and small-lot customers in the future, measures to detect the influence on the distribution line and countermeasures to the influence on the distribution line should be examined in advance. It is preferable to keep it.

特開2007−110829号公報(図5及びその説明)Japanese Patent Laying-Open No. 2007-110829 (FIG. 5 and description thereof)

家庭や小口需要家に設置される太陽光発電設備が今後急速に増加した場合、当該家庭や小口需要家に設置の太陽光発電設備の台数、容量、配電線への接続箇所などは数値として把握することは可能であるが、家庭や小口需要家に設置される太陽光発電設備は単相低圧配電線に設置されるため、三相配電線への影響が考えられるが、現状では当該影響の検出方策については未だ提案されていない。   If the number of photovoltaic power generation equipment installed in households and small consumers will increase rapidly in the future, the number of solar power generation equipment installed in the households and small consumers, capacity, connection points to distribution lines, etc. will be grasped as numerical values. Although it is possible, the photovoltaic power generation equipment installed in homes and small consumers will be installed in single-phase low-voltage distribution lines, so it may have an impact on three-phase distribution lines. No policy has been proposed yet.

この発明は、太陽光発電設備が家庭や小口需要家に今後急速に普及することを想定し、家庭や小口需要家の単相低圧配電線に設置される太陽光発電設備による三相配電線への影響を検出することを目的とするものである。   The present invention assumes that solar power generation equipment will rapidly spread to households and small consumers in the future, and that the three-phase distribution lines by solar power generation equipment installed in single-phase low-voltage distribution lines of homes and small consumers The purpose is to detect the influence.

この発明に係る太陽光発電設備の三相配電線への影響検出システムは、三相を単相に変換する配電線変圧器の三相側の配電線の各相の電流を検出する各相電流計測装置、及びこの各相電流計測装置が測定した各相電流に基づき各相電流の所定時間毎の大きさ及び変化の傾向を判別し前記三相側配電線の各相の電流の不平衡が前記配電線変圧器の単相側低圧配電線に設置の太陽光発電設備に起因していることを推定する推定部を備えた太陽光発電設備の三相配電線への影響検出システムである。   The system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line according to the present invention is a phase current measurement for detecting a current of each phase of a distribution line on the three-phase side of a distribution line transformer that converts three phases into a single phase. Device, and the phase current measured by each phase current measuring device, the magnitude and change tendency of each phase current every predetermined time are determined, and the current imbalance of each phase of the three-phase distribution line is This is a system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line, which includes an estimation unit that estimates that it is caused by the photovoltaic power generation facility installed on the single-phase low-voltage distribution line of the distribution line transformer.

この発明は、三相を単相に変換する配電線変圧器の三相側の配電線の各相の電流を検出する各相電流計測装置、及びこの各相電流計測装置が測定した各相電流に基づき各相電流の所定時間毎の大きさ及び変化の傾向を判別し前記三相側配電線の各相の電流の不平衡が前記配電線変圧器の単相側低圧配電線に設置の太陽光発電設備に起因していることを推定する推定部を備えた太陽光発電設備の三相配電線への影響検出システムであるので、家庭や小口需要家の単相低圧配電線に設置される太陽光発電設備による三相配電線への影響を検出することが可能となる効果がある。   The present invention relates to each phase current measuring device that detects a current of each phase of a distribution line on the three-phase side of a distribution line transformer that converts three phases into a single phase, and each phase current measured by each phase current measuring device. The current of each phase of the three-phase distribution line is unbalanced and the current of each phase of the three-phase distribution line is unbalanced on the single-phase low-voltage distribution line of the distribution line transformer. Because it is a system for detecting the impact on the three-phase distribution line of the photovoltaic power generation facility with an estimation unit that estimates that it is caused by the photovoltaic power generation facility, the solar system installed on the single-phase low-voltage distribution line of homes and small consumers There is an effect that it becomes possible to detect the influence of the photovoltaic power generation facility on the three-phase distribution line.

この発明の実施の形態1を示す図で、単相低圧配電線に接続の太陽光発電設備の三相配電線への影響検出システムのシステム構成の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the system configuration | structure of the influence detection system to the three-phase distribution line of the photovoltaic power generation equipment connected to a single phase low voltage distribution line. この発明の実施の形態1を示す図で、三相を単相に変換する配電線変圧器と太陽光発電設備の接続関係の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the connection relation of the distribution line transformer which converts a three phase into a single phase, and photovoltaic power generation equipment. この発明の実施の形態1を示す図で、図2における三相配電線のa相の電流データ、および、その長期変動データと短期変動データの時間的変化の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the time change of the a phase current data of the three-phase distribution line in FIG. 2, and its long-term variation data and short-term variation data. この発明の実施の形態1を示す図で、図2における三相配電線のa相、b相、c相の各相電流の短期変動データの時間的変化を比較して例示する図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which compares and illustrates the time change of the short-term fluctuation data of each phase current of the a phase of the three-phase distribution line in FIG. 2, b phase, and c phase. この発明の実施の形態1を示す図で、図4における各相短期変動データの1分毎の値をプロットした事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example which plotted the value for every minute of each phase short-term fluctuation data in FIG. この発明の実施の形態2を示す図で、単相低圧配電線に接続の太陽光発電設備の三相配電線への影響検出システムのシステム構成の他の事例を示す図である。It is a figure which shows Embodiment 2 of this invention, and is a figure which shows the other example of the system configuration | structure of the influence detection system to the three-phase distribution line of the photovoltaic power generation equipment connected to a single phase low voltage distribution line.

実施の形態1.
以下、この発明の実施の形態1を図1〜図5により説明する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS.

単相低圧配電線に接続の太陽光発電設備の三相配電線への影響検出システムのシステム構成の事例を示す図1において、電力系統には例えば6600Vの多数の三相高圧配電線1〜1nがあり、三相高圧配電線1〜1nの各々には当該三相高圧配電線を一次側とする多数の配電線変圧器2があり、当該配電線変圧器2の2次側には110V/220Vの単相三線式の低圧配電線があり、110Vが供給される一般家庭や220Vが供給される小口需要家等の低圧配電需要家3,3,・・・3には、太陽光発電設備4が、電力系統の分散電源として、今後急速に普及する傾向があり、単相の低圧配電線に接続される太陽光発電装置の台数が急速に増加する傾向がある。   In FIG. 1 showing an example of the system configuration of an influence detection system for a three-phase distribution line of a photovoltaic power generation facility connected to a single-phase low-voltage distribution line, the power system includes, for example, a large number of three-phase high-voltage distribution lines 1 to 1n of 6600V. Each of the three-phase high-voltage distribution lines 1 to 1n has a number of distribution line transformers 2 with the three-phase high-voltage distribution lines as the primary side, and the secondary side of the distribution line transformer 2 has 110V / 220V There is a single-phase three-wire low-voltage distribution line, and the low-voltage distribution customers 3, 3,... However, as a distributed power source of the power system, it tends to spread rapidly in the future, and the number of photovoltaic power generators connected to a single-phase low-voltage distribution line tends to increase rapidly.

三相高圧配電線1は周知の区分開閉器SWにより適宜区分されており、この区分開閉器に三相高圧配電線1の各相の電流の電流値を計測する各相電流計測装置5が設けられ、この各相電流計測装置5の出力は送信機6から通信ネットワーク7を経由して監視端末(パソコン、サーバ、監視機器、監視装置等)に送信される。   The three-phase high-voltage distribution line 1 is appropriately divided by a well-known division switch SW, and each phase current measuring device 5 for measuring the current value of each phase of the three-phase high-voltage distribution line 1 is provided in this division switch. The output of each phase current measuring device 5 is transmitted from the transmitter 6 to the monitoring terminal (personal computer, server, monitoring device, monitoring device, etc.) via the communication network 7.

監視端末8は、前記送信機6から送信された各相電流値データを受信・保存する計測データ受診・保存部9、各相電流値を長期変動部分と短期変動部分に分離する各相電流変化検出部10、各相電流値の長期変動データと短期変動データとから接続相の偏りを分析・推定する不平衡要因推定部11、不平衡要因推定部11での分析結果を人間または他の装置に情報提供する接続相推定結果提示部12を有している。また、計測データ受診・保存部9、各相電流変化検出部10、不平衡要因推定部11、及び接続相推定結果提示部12は、太陽光発電設備を不平衡要因と推定する不平衡要因推定処理装置あるいは不平衡要因推定処理システムの構成部品の一部である部分装置である。   The monitoring terminal 8 includes a measurement data reception / storage unit 9 that receives and stores each phase current value data transmitted from the transmitter 6, and each phase current change that separates each phase current value into a long-term fluctuation part and a short-term fluctuation part. The detection unit 10, the unbalance factor estimation unit 11 that analyzes and estimates the bias of the connected phase from the long-term variation data and the short-term variation data of each phase current value, and the analysis result in the unbalance factor estimation unit 11 is a human or other device The connection phase estimation result presenting unit 12 for providing information to is provided. Further, the measurement data examination / storage unit 9, each phase current change detection unit 10, the unbalance factor estimation unit 11, and the connected phase estimation result presentation unit 12 estimate the unbalance factor that estimates the photovoltaic power generation facility as an unbalance factor. It is a partial device that is a part of a component of the processing device or the unbalance factor estimation processing system.

なお、図1では三相高圧配電線1以外の他の三相高圧配電線についても多数の前記配電線変圧器、前記一般家庭、前記小口需要家、前記区分開閉器、前記各相電流検出装置、前記送信機が接続されているが、説明の簡明化のため図示省略してある。以降の説明においても三相高圧配電線1を代表として説明する。   In addition, in FIG. 1, other than the three-phase high-voltage distribution line 1, other three-phase high-voltage distribution lines also include a large number of the distribution line transformer, the general household, the small consumer, the section switch, and each phase current detection device. The transmitter is connected, but is not shown for the sake of simplicity. In the following description, the three-phase high-voltage distribution line 1 will be described as a representative.

配電線変圧器2は、例えば図2に示すように、1次側の三相高圧配電線は6600V、1次巻線のa相、b相間の巻線に電磁結合された2次巻線の両端が単相低圧配電線に接続され、110Vの一般家庭の太陽光発電設備4はその交流出力端が110Vの単相低圧配電線に、220Vの小口需要家の太陽光発電設備はその交流出力端が110Vの単相低圧
配電線に、それぞれ接続される。
For example, as shown in FIG. 2, the distribution line transformer 2 has a primary-side three-phase high-voltage distribution line of 6600V, a primary winding a-phase, and a secondary winding electromagnetically coupled to a b-phase winding. Both ends are connected to a single-phase low-voltage distribution line, 110V ordinary household photovoltaic power generation equipment 4 is an AC output end is a 110V single-phase low-voltage distribution line, 220V small-scale consumer photovoltaic power generation equipment is the AC output Each end is connected to a 110V single-phase low-voltage distribution line.

太陽光発電設備4は、直流をインバータで直流/交流変換して、交流出力を一般家庭、小口需要家の負荷に自給し、余剰電力を単相低圧配電線に供給する。単相低圧配電線が事故などにより停電すると前記余剰電力の単相低圧配電線への供給は停止され、前記余剰電力の単相低圧配電線への供給が再開は、単相低圧配電線への商用電源からの通電開始から所定時間後に行われ、単相低圧配電線の商用電源からの通電開始から前記余剰電力の単相低圧配電線への供給開始までの間は、単相低圧配電線の各負荷への給電は専ら商用電源から行われ、この間は前記余剰電力の単相低圧配電線への供給量に見合う電力量を商用電源側から余分に供給する。   The photovoltaic power generation facility 4 converts direct current into direct current / alternating current with an inverter, supplies the alternating current output to a load of ordinary households and small consumers, and supplies surplus power to the single-phase low-voltage distribution line. When a single-phase low-voltage distribution line fails due to an accident or the like, supply of the surplus power to the single-phase low-voltage distribution line is stopped, and supply of the surplus power to the single-phase low-voltage distribution line is resumed. It is performed after a predetermined time from the start of energization from the commercial power source, and from the start of energization from the commercial power source of the single-phase low-voltage distribution line to the start of supply of the surplus power to the single-phase low-voltage distribution line, Power is supplied to each load exclusively from a commercial power source, and during this time, an extra amount of power corresponding to the amount of surplus power supplied to the single-phase low-voltage distribution line is supplied from the commercial power source side.

また、配電線が事故などにより配電線が停電すると、負荷の種類によっては、負荷が停止し、再起動操作するまでは負荷0の状態になる負荷もあり、その場合は、再起動されるまでは当該負荷の分だけ全体の負荷量が小さくなるが、太陽光発電設備4が前記余剰電力の単相低圧配電線への供給を開始すると、太陽光発電設備4の前記余剰電力量が負荷への過剰供給となる。   In addition, when the distribution line is interrupted due to an accident or the like, depending on the type of load, there is a load that stops until it is restarted. However, when the photovoltaic power generation facility 4 starts supplying the surplus power to the single-phase low-voltage distribution line, the surplus power amount of the photovoltaic power generation facility 4 is reduced to the load. Oversupply.

また、太陽光発電設備4は、雨天あるいは曇天及び快晴の場合はその出力は一定であるが、雨天あるいは曇天及び快晴以外の天候、つまり雲が存在する晴れの状態では、太陽光発電設備4の太陽光受光パネルに入射される太陽光は雲により間欠的に遮られるので、太陽光発電設備4の出力は変動する。   Further, the output of the solar power generation equipment 4 is constant in the case of rainy weather, cloudy weather, and clear weather, but in the weather other than rainy weather, cloudy weather, and clear weather, that is, in a sunny state where clouds exist, Since the sunlight incident on the solar light receiving panel is intermittently blocked by the clouds, the output of the solar power generation equipment 4 varies.

太陽光発電設備4の出力が変動すると、単相低圧配電線に供給される太陽光発電設備4の余剰電力の供給量も同様に変動する。
この余剰電力の供給量の変動の影響で、配電線変圧器2の一次側の三相高圧配電線のa相電流Ia及びb相電流Ibが同様に変動し、c相電流Icは影響が小さく変動量が少ない。
When the output of the solar power generation facility 4 fluctuates, the surplus power supply amount of the solar power generation facility 4 supplied to the single-phase low-voltage distribution line also varies in the same manner.
Due to the fluctuation of the supply amount of surplus power, the a-phase current Ia and the b-phase current Ib of the three-phase high-voltage distribution line on the primary side of the distribution line transformer 2 similarly fluctuate, and the c-phase current Ic has a small influence. The amount of fluctuation is small.

配電線変圧器2の一次側の三相高圧配電線のa相電流Ia及びb相電流Ibが同様に変動し、c相電流Icは影響が小さく変動量が少ないのは、太陽光発電設備4が接続される単相低圧配電線が接続される2次巻線が、三相1次巻線のa相−b相間巻線に電磁結合されているからであるが、太陽光発電設備4が接続される単相低圧配電線が接続される2次巻線が、三相1次巻線のa相−c相間巻線に電磁結合されておれば、単相低圧配電線に供給される太陽光発電設備4の余剰電力の供給量の変動により配電線変圧器2の一次側の三相高圧配電線のa相電流Ia及びc相電流Icが同様に変動し、b相電流Ibは影響が小さく変動量が少ない。同様に、太陽光発電設備4が接続される単相低圧配電線が接続される2次巻線が、三相1次巻線のb相−c相間巻線に電磁結合されておれば、単相低圧配電線に供給される太陽光発電設備4の余剰電力の供給量の変動により配電線変圧器2の一次側の三相高圧配電線のb相電流Ib及びc相電流Icが同様に変動し、a相電流Iaは影響が小さく変動量が少ない。
換言すれば、単相低圧配電線に接続された太陽光発電設備4の影響で、三相高圧配電線の三相には不平衡電流が流れる。
The a-phase current Ia and the b-phase current Ib of the three-phase high-voltage distribution line on the primary side of the distribution line transformer 2 fluctuate in the same manner, and the c-phase current Ic has a small influence and a small fluctuation amount. This is because the secondary winding to which the single-phase low-voltage distribution line connected to is connected to the a-phase-b winding of the three-phase primary winding is electromagnetically coupled. If the secondary winding to which the single-phase low-voltage distribution line to be connected is electromagnetically coupled to the a-phase-c phase winding of the three-phase primary winding, the sun supplied to the single-phase low-voltage distribution line The a-phase current Ia and the c-phase current Ic of the three-phase high-voltage distribution line on the primary side of the distribution line transformer 2 fluctuate in the same manner due to fluctuations in the surplus power supply amount of the photovoltaic power generation facility 4, and the b-phase current Ib is affected. Small and less variable. Similarly, if the secondary winding to which the single-phase low-voltage distribution line to which the photovoltaic power generation equipment 4 is connected is electromagnetically coupled to the b-phase to c-phase windings of the three-phase primary winding, The b-phase current Ib and the c-phase current Ic of the three-phase high-voltage distribution line on the primary side of the distribution line transformer 2 similarly fluctuate due to fluctuations in the amount of surplus power supplied from the photovoltaic power generation equipment 4 supplied to the phase low-voltage distribution line. However, the a-phase current Ia has a small influence and a small fluctuation amount.
In other words, an unbalanced current flows in the three phases of the three-phase high-voltage distribution line due to the influence of the photovoltaic power generation equipment 4 connected to the single-phase low-voltage distribution line.

快晴あるいは雲が少なく、太陽光発電設備4の太陽光受光パネルに入射される太陽光の光量が多い場合は太陽光発電設備4の発電量も大きくなり、単相低圧配電線への前記余剰電力の供給量も多くなり、また、太陽光発電設備4の設置台数が急速に増加すれば、相応に単相低圧配電線への前記余剰電力の供給量も多くなる。
換言すれば、前記三相高圧配電線の三相不平衡電流は大きくなる。
When the amount of sunlight incident on the solar light receiving panel of the solar power generation facility 4 is large, the amount of power generated by the solar power generation facility 4 increases, and the surplus power to the single-phase low-voltage distribution line In addition, if the number of installed solar power generation facilities 4 increases rapidly, the amount of surplus power supplied to the single-phase low-voltage distribution line will increase accordingly.
In other words, the three-phase unbalanced current of the three-phase high-voltage distribution line is increased.

太陽光発電設備4の設置台数が急速に増加すれば、相応に単相低圧配電線への前記余剰
電力の供給量も多くなれば、前記三相高圧配電線の大きな三相不平衡電流が恒常的に流れることになり、三相負荷には太陽光発電設備4の影響による電流増加相に恒常的に定格電流を超える過電流が流れ、負荷の耐久寿命が短くなる懸念が生じる可能性がある。
If the number of installed photovoltaic power generation facilities 4 increases rapidly, if the amount of surplus power supplied to the single-phase low-voltage distribution line increases correspondingly, a large three-phase unbalanced current of the three-phase high-voltage distribution line will become constant. There is a possibility that overcurrent exceeding the rated current constantly flows in the current increasing phase due to the influence of the photovoltaic power generation equipment 4 in the three-phase load, and there is a concern that the durable life of the load may be shortened. .

一方、単相低圧配電線が接続される2次巻線が、三相1次巻線のどの相間巻線に電磁結合されているのかは一般の電気工事に依存していることから定かでないのが通例である。また、太陽光発電設備が配電系統のどの相に接続されているかを把握することは、需要家の数が膨大で非常に大きな労力を要するため実施されておらず、今後も実施見込みは少ないと考えられる。   On the other hand, it is not clear which secondary winding to which the single-phase low-voltage distribution line is connected is electromagnetically coupled to which interphase winding of the three-phase primary winding because it depends on general electrical work. Is customary. In addition, grasping to which phase of the distribution system the photovoltaic power generation equipment is connected has not been carried out because the number of consumers is enormous and requires a great deal of labor. Conceivable.

また、前記三相高圧配電線の三相不平衡電流は、単相低圧配電線に接続される負荷の影響もあり、前記三相高圧配電線の三相不平衡電流の変動は、単相低圧配電線に接続される負荷の変動にも依存する。   In addition, the three-phase unbalanced current of the three-phase high-voltage distribution line is also affected by the load connected to the single-phase low-voltage distribution line. It depends on the fluctuation of the load connected to the distribution line.

ところが、発明者の各種検討や試験の結果、三相を単相に変換する配電線変圧器の三相側の配電線の各相の電流を検出し、各相電流に基づき各相電流の所定時間毎の大きさ及び変化の傾向から、三相側での三相不平衡電流が太陽光発電設備に起因していることを推定することができることが判明した。   However, as a result of various examinations and tests by the inventor, the current of each phase of the distribution line on the three-phase side of the distribution line transformer that converts the three phases to a single phase is detected, and each phase current is determined based on each phase current. It became clear from the tendency of the magnitude | size and change for every hour that the three-phase unbalanced current in the three-phase side originated in the photovoltaic power generation equipment.

その技術的根拠を事例により以下に説明する。   The technical basis will be explained below with examples.

図1の各相電流計測装置5、送信機6、通信ネットワーク7にて、配電線(三相・高圧)の各相電流値データを計測・伝送し、その各相電流の1分程度の所定時間T1の平均値データを、不平衡要因推定処理装置8に保存する。ここで、保存するデータを平均値データとする点と平均の周期が重要であり、1分程度の平均値とすることで以降の分析の妨げとなるランダムな変動を取り除くことが出来る。以降、各相電流データは、1分値平均を使用するものとする。   Each phase current measuring device 5, transmitter 6 and communication network 7 in FIG. 1 measure and transmit each phase current value data of a distribution line (three-phase / high voltage), and a predetermined value of about 1 minute of each phase current. The average value data of the time T1 is stored in the unbalance factor estimation processing device 8. Here, the point that the data to be stored is average value data and the average cycle are important, and by setting the average value for about 1 minute, random fluctuations that hinder subsequent analysis can be removed. Hereinafter, the 1-minute average is used for each phase current data.

図1の各相電流変化検出部10では、各相電流データに、時定数T2の時刻補正付き一次遅れ処理を行うことにより、各相電流データを長期変動データと短期変動データに分離する。T2>T1である。
ここで、時定数T2の時刻補正付き一次遅れ処理とは、各相電流データに対して時定数T2の一次遅れ処理を行い、さらに時定数T2だけ前にシフトすることにより、各相電流1分値平均データから各相電流長期変動データを作成する処理である。
時定数T2だけ前にシフトする理由は、単純に一次遅れ処理を行うと時刻がT2だけ遅れるためである。なお、時定数T2は10分程度が妥当である。
さらに、各相電流データから各相電流長期変動データを差し引くことにより、各相電流短期変動データを作成する。各相電流短期変動データは電流値が1分程度の平均値であり、一次遅れ処理の時定数T2が10分程度であるため、短期変動とは、1分以上10分以下程度の変動である。
Each phase current change detection unit 10 in FIG. 1 separates each phase current data into long-term variation data and short-term variation data by performing first-order lag processing with time correction of the time constant T2 on each phase current data. T2> T1.
Here, the primary delay processing with time correction of the time constant T2 is the first delay processing of the time constant T2 with respect to each phase current data, and further shifted forward by the time constant T2, whereby each phase current 1 minute. This is a process for creating each phase current long-term fluctuation data from the value average data.
The reason for shifting forward by the time constant T2 is that the time is delayed by T2 if the first-order lag processing is simply performed. It is appropriate that the time constant T2 is about 10 minutes.
Furthermore, each phase current short-term fluctuation data is created by subtracting each phase current long-term fluctuation data from each phase current data. Each phase current short-term fluctuation data is an average value of current value of about 1 minute, and the time constant T2 of the first-order lag processing is about 10 minutes, so short-term fluctuation is a fluctuation of about 1 to 10 minutes. .

三相電流の相は、a相、b相、c相の3つから構成されるが、図2に、a相電流データ、および、その長期変動データ(a相電流長期変動データ)と短期変動データ(a相電流短期変動データ)のイメージを示す。図3において、21はa相電流、22はa相電流長期変動データ、23はa相電流短期変動データである。   The three-phase current phase is composed of three phases: a-phase, b-phase, and c-phase. Fig. 2 shows a-phase current data and its long-term fluctuation data (a-phase current long-term fluctuation data) and short-term fluctuation. An image of data (a-phase current short-term fluctuation data) is shown. In FIG. 3, reference numeral 21 denotes a-phase current, 22 denotes a-phase current long-term fluctuation data, and 23 denotes a-phase current short-term fluctuation data.

図1の不平衡要因推定部11では、a相、b相、c相の電流短期変動データを比較する
ことにより、要因別の不平衡状況を分析・推定する。図4は各相電流の短期変動データ比較の一例である。
The unbalance factor estimation unit 11 in FIG. 1 analyzes and estimates the unbalanced situation for each factor by comparing the current short-term fluctuation data of the a-phase, b-phase, and c-phase. FIG. 4 is an example of short-term fluctuation data comparison of each phase current.

また、図5は、各相短期変動データを各時刻断面でプロットしたイメージであり、図4に示す各相電流の短期変動データを1分毎にa相、b相、c相の組(例えば、図4の31
に示す断面を、図5の1プロットとする)で読み取り、3次元グラフにプロットしたイメージ図である。
換言すれば、例えば、図5における1プロット点d1では、図示のように、a相電流値はIad1、b相電流値はIbd1、c相電流値はIcd1である。
FIG. 5 is an image obtained by plotting the short-term fluctuation data of each phase at each time section. The short-term fluctuation data of each phase current shown in FIG. 4 is a set of a phase, b phase, and c phase every minute (for example, , 31 in FIG.
FIG. 6 is an image diagram obtained by reading the section shown in FIG.
In other words, for example, at one plot point d1 in FIG. 5, the a-phase current value is Iad1, the b-phase current value is Ibd1, and the c-phase current value is Icd1, as shown.

なお、プロットは1日分ではなく、過去1ヶ月間程度の期間をまとめて1つのプロット
図を作成する。
Note that the plot is not for one day, but a single plot is created by summarizing periods of the past month.

なお、図5はイメージをわかりやすくするため、a相、b相、c相ともに短期変動デー
タの絶対値でプロットしている。
In FIG. 5, the a-phase, b-phase, and c-phase are plotted as absolute values of short-term fluctuation data for easy understanding of the image.

以降、図4、図5に基づいて、太陽光発電設備が三相電流不平衡要因であると推定する根拠を説明する。
各相電流短期変動データの発生源は、大きく見て、以下の2つに分けられる。
(1)家庭用太陽光発電量が雲の流れにより一時的に太陽が隠れて発電量が変化することにより発生する短期変動。
(2)負荷の短期変動、太陽光発電以外の分散型電源の短期変動。
Hereinafter, the grounds for estimating that the photovoltaic power generation facility is a three-phase current imbalance factor will be described with reference to FIGS. 4 and 5.
The generation source of each phase current short-term fluctuation data is roughly divided into the following two.
(1) Short-term fluctuations that occur when the amount of photovoltaic power generation for home use changes because the sun is temporarily hidden by the flow of clouds.
(2) Short-term fluctuations in load and short-term fluctuations in distributed power sources other than solar power generation.

(1)の短期変動は、太陽光発電時間帯(昼間)に限定され、ほとんどの場合、着目している配電線に接続している太陽光発電設備全体で一斉に1分〜10分の短期変動が発生し、短期変動発生時刻も昼間時間帯の中でランダムである。図4の33は、太陽光発電時間帯の一例を示す。
これに対して(2)の短期変動は、着目している配電線に接続している負荷または分散型電源が一斉に変動する場合は、例えば昼休みの工場停止や夕方の家庭負荷の負荷の立ち上がり等、計画的な要因または経済活動の要因によるため短期変動発生時刻が集中する。例えば、図4の32の短期変動が負荷の一斉変動である場合は、平日は毎日同じ時間帯で同じような短期変動が発生する。図5の42は、このような負荷の一斉変動による短期変動プロット例である。
The short-term fluctuations in (1) are limited to the solar power generation time zone (daytime), and in most cases, the short-term fluctuation is 1 to 10 minutes for the entire solar power generation equipment connected to the distribution line of interest. Variation occurs, and the short-term variation occurrence time is also random during the daytime period. 4 of FIG. 4 shows an example of a solar power generation time zone.
On the other hand, the short-term fluctuation in (2) is when the load connected to the distribution line of interest or the distributed power supply fluctuates all at once, for example, the factory stop at lunch break or the rise of the load of household load in the evening Due to planned factors or economic activities, short-term fluctuation occurrence times are concentrated. For example, if 32 short-term fluctuations in FIG. 4 are simultaneous fluctuations of the load, the same short-term fluctuations occur in the same time zone every day on weekdays. Reference numeral 42 in FIG. 5 is a short-term fluctuation plot example due to simultaneous fluctuations of such a load.

また、(2)の短期変動において、着目している配電線に接続している負荷または分散型電源が一斉に変動しない場合は発生頻度は多いものの、各相ともに小さな短期変動となり、図5の43に示すようにプロットが原点付近に集中する。
さらに、全く突発的、または、偶然による大きな短期変動は、発生頻度が低く、図5のプロット数としては限られる。
In addition, in the short-term fluctuation of (2), if the load or distributed power source connected to the distribution line of interest does not fluctuate all at once, the occurrence frequency is high, but each phase has a small short-term fluctuation, and as shown in FIG. As shown at 43, the plots are concentrated near the origin.
Furthermore, the occurrence of large-scale short-term fluctuations that are completely sudden or by chance is low in frequency and limited as the number of plots in FIG.

従って、図5のプロットのうち、以下のプロットを除いたもののほとんどが、雲の流れによる太陽光発電量の変動で発生したものとなる。
(A)太陽光発電時間帯以外の短期変動プロット。
(B)原点付近の短期変動プロット。
(C)各相短期変動の比率(a相:b相:c相)が同等かつ、同時間帯に集中している短
期変動プロット。
Therefore, most of the plots in FIG. 5 excluding the following plots are generated due to fluctuations in the amount of photovoltaic power generated by the cloud flow.
(A) Short-term fluctuation plot other than solar power generation time zone.
(B) Short-term fluctuation plot near the origin.
(C) A short-term fluctuation plot in which the ratio of short-term fluctuations in each phase (a phase: b phase: c phase) is equivalent and concentrated in the same time zone.

こうして抽出した、雲の流れによる太陽光発電量の変動で発生したプロット群41に対して、図5のグラフの原点0を通りプロット密度の濃い部分の中心付近を通る直線(図5の41c)を重回帰分析により求める。この直線41cは、太陽光発電設備群の接続相の偏りを示すものである。   A straight line (41c in FIG. 5) passing through the origin 0 of the graph of FIG. 5 and passing through the center of the dark portion of the plot density 41 with respect to the plot group 41 generated by the fluctuation of the photovoltaic power generation amount due to the cloud flow extracted in this way. Is obtained by multiple regression analysis. This straight line 41c shows the bias of the connection phase of a photovoltaic power generation equipment group.

さらに、図1の計測器5、または、図1の送信機6に日射計を取り付け、日射量の1分
平均値を電流値データと同期させて図1の不平衡要因推定処理装置8に取り込み、日射量の短期変動と同期する各相電流値短期変動のみを使用することにより、太陽光発電設備群の接続相の偏りをより高精度に求めることができる。
1 is attached to the measuring instrument 5 of FIG. 1 or the transmitter 6 of FIG. 1, and the one-minute average value of the amount of solar radiation is synchronized with the current value data and taken into the unbalance factor estimation processing device 8 of FIG. By using only the short-term fluctuations of the respective phase current values that are synchronized with the short-term fluctuations of the amount of solar radiation, it is possible to obtain the bias of the connected phases of the photovoltaic power generation equipment group with higher accuracy.

図1の接続相推定結果提示部12では、単相低圧配電線に接続する家庭用太陽光発電全体としての位相の偏り、特定時間帯の短期電流変動とその位相の偏りについての情報を、画面表示により運用者に提示、または、他装置の入力情報として提示する。   The connection phase estimation result presentation unit 12 of FIG. 1 displays information on the phase deviation as a whole of the household photovoltaic power generation connected to the single-phase low-voltage distribution line, short-term current fluctuations in a specific time zone, and information on the phase deviation. Presented to the operator by display, or presented as input information of another device.

このように、三相不平衡検出・分析および要因推定機能を有する太陽光発電設備の三相配電線への影響検出システムは、特に、接続相の情報を一元管理していない単相受電の一般需要家に設置された太陽光発電設備に関し、配電線単位に家庭用太陽光発電設備の接続相の偏りを推定・提示することが出来る。   In this way, the system for detecting the effects on the three-phase distribution lines of photovoltaic power generation facilities that have three-phase imbalance detection and analysis and factor estimation functions, in particular, the general demand for single-phase power reception that does not centrally manage the information on the connected phases Regarding the photovoltaic power generation equipment installed in the house, it is possible to estimate and present the bias of the connection phase of the domestic photovoltaic power generation equipment for each distribution line.

この実施の形態1によれば、例えば家庭用太陽光発電設備の接続相が配電線全体でどのように偏っているか、負荷の接続相がどのように偏っているかといった発生要因別の接続相の偏りを推定することができる。これにより、膨大な需要家数の接続相データ管理を行うことなく、不平衡要因を推定・提示することが可能となり、不平衡対策立案に寄与できることが期待される。   According to the first embodiment, for example, how the connection phase of the household photovoltaic power generation equipment is biased in the entire distribution line, how the connection phase of the load is biased, etc. The bias can be estimated. As a result, it is possible to estimate and present the unbalance factor without managing the connected phase data of a large number of customers, and it is expected that it can contribute to the unbalance countermeasure planning.

一般需要家の接続相管理、すなわち、家電製品などの負荷や太陽光発電設備などの分散型電源が配電系統のどの相に接続されているかを把握することは、需要家の数が膨大で非常に大きな労力を要するため実施されておらず、今後も実施見込みがない。このため、一般需要家に起因する三相不平衡の発生要因・発生箇所は把握できておらず、不平衡対策を立案することが困難となっている。
一方、太陽光発電設備の急速な普及により電力系統の三相不平衡率が大きくなると、三相負荷の熱損による過熱等の実害が発生し、また、配電線過電流管理の観点からもある相のみ過負荷となるため配電線設備運用効率が低下する。今後一般需要家での太陽光発電の普及に伴い、三相不平衡の発生要因・発生箇所の把握はますます困難となるため、その推定・把握は重要となってくる。発生箇所の把握は、各相電流計測装置を区分開閉器あるいは区分開閉器の近傍に設置すれば、区分開閉器の位置は把握されていることから的確に行える。
Connected phase management of general consumers, that is, to know which phase of the distribution system is connected to the load of home appliances and distributed power sources such as solar power generation facilities, the number of consumers is enormous This is not implemented because it requires a lot of labor, and there is no prospect of implementation in the future. For this reason, the cause and location of the three-phase imbalance caused by general consumers cannot be grasped, and it is difficult to plan an imbalance countermeasure.
On the other hand, when the three-phase unbalance rate of the power system increases due to the rapid spread of photovoltaic power generation facilities, actual damage such as overheating due to heat loss of the three-phase load occurs, and also from the viewpoint of distribution line overcurrent management Since only the phase is overloaded, the distribution line facility operation efficiency is reduced. As solar power generation will become more popular among general consumers in the future, it will become increasingly difficult to determine the cause and location of the three-phase imbalance, so that estimation and understanding will be important. The location of the occurrence can be identified accurately by installing each phase current measuring device in the vicinity of the section switch or the section switch because the position of the section switch is known.

国内では、太陽光発電設備の設置及びその容量は登録する制度になっていることから、太陽光発電設備の数、容量は、数値的に把握できることから、この発明の実施の形態1により太陽光発電設備の接続相の偏りを推定・提示することが出来ることにより、配電系統における計画、運用、制御に寄与できることが期待される。   In Japan, since the installation of solar power generation facilities and their capacities are registered, the number and capacity of solar power generation facilities can be grasped numerically. It can be expected to contribute to planning, operation and control in the distribution system by being able to estimate and present the bias of the connected phase of the power generation equipment.

実施の形態2.
以下、この発明の実施の形態2を、単相低圧配電線に接続の太陽光発電設備の三相配電線への影響検出システムのシステム構成の他の事例を示す図6によって説明する。
Embodiment 2. FIG.
Hereinafter, Embodiment 2 of the present invention will be described with reference to FIG. 6 showing another example of the system configuration of the influence detection system for the three-phase distribution line of the photovoltaic power generation facility connected to the single-phase low-voltage distribution line.

配電系統の運用においては、1つの配電線を区分開閉器等により複数の区間に分割して管理しており、事故時に別ルートから電力融通する場合、この区間単位で融通可否を見積る。従って、家庭用太陽光発電設備の接続相の偏りもこの区間単位で推定・提示することが望ましい。図6に例示してあるように、各区分開閉器対応して1つの配電線に複数の電流計測装置5、送信機6を配置し、図6の計測データ受信・保存部9では、各電流計測点の電流差を算出して、その電流差に対して処理を行うことにより、隣り合う各相電流計測装置間に接続する需要家に絞って不平衡要因推定を行うことができる。ただし、各各相電流計測装置間で同期が取られている必要がある。   In the operation of the distribution system, one distribution line is divided into a plurality of sections and managed by a section switch or the like, and when power is interchanged from another route at the time of an accident, the availability of interchange is estimated for each section. Therefore, it is desirable to estimate and present the bias of the connection phase of the household photovoltaic power generation equipment in this section unit. As illustrated in FIG. 6, a plurality of current measuring devices 5 and transmitters 6 are arranged on one distribution line corresponding to each section switch, and the measurement data reception / storage unit 9 in FIG. By calculating the current difference at the measurement point and processing the current difference, it is possible to estimate the unbalance factor focusing on the consumers connected between the adjacent phase current measurement devices. However, it is necessary for each phase current measuring device to be synchronized.

このように、同期のとれた複数の各相電流計測装置を1つの配電線に配置することにより、より細かな地域別に家庭用太陽光発電設備の接続相の偏りを推定・提示することが出来る。   Thus, by arranging a plurality of synchronized phase current measuring devices on one distribution line, it is possible to estimate and present the bias of the connection phase of the household solar power generation facility for each more detailed area. .

なお、各図中、同一符合は同一または相当部分を示す。   In addition, in each figure, the same code | symbol shows the same or an equivalent part.

前述の実施の形態1,2によれば、それらの変形例も含め以下の技術的特徴がある。
特徴1:三相を単相に変換する配電線変圧器の三相側の配電線の各相の電流を検出する各相電流計測装置、及びこの各相電流計測装置が測定した各相電流に基づき各相電流の所定時間毎の大きさ及び変化の傾向を判別し前記三相側配電線の各相の電流の不平衡が前記配電線変圧器の単相側低圧配電線に設置の太陽光発電設備に起因していることを推定する推定部を備えた太陽光発電設備の三相配電線への影響検出システムである。
特徴2:特徴1の太陽光発電設備の三相配電線への影響検出システムにおいて、前記三相側配電線に設けられた区分開閉器に前記各相電流計測装置が設けられていることを特徴とする太陽光発電設備の三相配電線への影響検出システムである。なお、前記各相電流計測装置は必ずしも区分開閉器に設ける必要はない。
特徴3:特徴1または特徴2の太陽光発電設備の三相配電線への影響検出システムにおいて、前記三相側配電線に設けられた区分開閉器によって区分される前記三相配電線の区分単位で前記推定部が前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システムである。
特徴4:特徴1〜特徴3の何れか一の太陽光発電設備の三相配電線への影響検出システムにおいて、前記推定部が通信ネットワークを介して複数の前記各相電流計測装置から各相電流情報を入手し前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システムである。
特徴5:特徴4の太陽光発電設備の三相配電線への影響検出システムにおいて、隣接する各相電流計測装置の出力から導出した各相電流の電流差から前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システムである。
特徴6:特徴1〜特徴5の何れか一の太陽光発電設備の三相配電線への影響検出システムにおいて、前記各相電流計測装置で計測された各相電流のそれぞれの所定時間t1毎の平均値を求めた各相電流データと当該各相電流データを前記所定時間t1より長い時定数t2での一次遅れ処理により求めた長期変動データとの差により求めた短期変動データにより、前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システムである。
特徴7:特徴6の太陽光発電設備の三相配電線への影響検出システムにおいて、前記各相電流計測装置側で前記各相電流データが生成され、前記推定部側で前記長期変動データ及び前記短期変動データが生成されることを特徴とする太陽光発電設備の三相配電線への影響検出システムである。
特徴8:特徴6の太陽光発電設備の三相配電線への影響検出システムにおいて、前記各相電流計測装置側で前記各相電流データと前記長期変動データとが生成され、前記推定部側で前記短期変動データが生成されることを特徴とする太陽光発電設備の三相配電線への影響検出システムである。
特徴9:特徴6の太陽光発電設備の三相配電線への影響検出システムにおいて、前記各相電流計測装置側で前記各相電流データと前記長期変動データと前記短期変動データとが生成されることを特徴とする太陽光発電設備の三相配電線への影響検出システムである。
特徴10:特徴1〜特徴9の何れか一に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、雨天あるいは曇天及び快晴以外の太陽光発電設備の出力が時間的に変化する天候における日照時間内の前記各相電流に基づき前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システム。
特徴11:配電線(三相・高圧)の各相電流値データを受信・保存する計測データ受信・保存部と、各相電流値を長期変動部分と短期変動部分に分離する各相電流変化検出部と、各相電流値の長期変動部分と短期変動部分から接続相の偏りを分析・推定する不平衡要因推定部と、分析結果を人間または他の装置に情報提供する接続相推定結果提示部を内部機能として備えていることを特徴とする不平衡要因推定処理装置である。
特徴12:配電線(三相・高圧)の各相電流値を計測する計測器と、計測データ(各相電流値)を不平衡要因推定処理装置に送信する送信機と、各相電流値を受信・分析・結果提示する不平衡要因推定処理装置を備えることを特徴とする三相不平衡検出・分析および要因推定装置である。
According to the above-described first and second embodiments, the following technical features including those modifications are provided.
Feature 1: Each phase current measurement device that detects the current of each phase of the distribution line on the three-phase side of the distribution line transformer that converts three phases into a single phase, and each phase current measured by each phase current measurement device Based on the current distribution of each phase of the three-phase distribution line, the unbalance in the current of each phase of the three-phase distribution line is the sunlight installed in the single-phase low-voltage distribution line of the distribution transformer. It is an influence detection system to the three-phase distribution line of the photovoltaic power generation equipment provided with the estimation part which presumes that it originates in power generation equipment.
Feature 2: In the system for detecting the influence on the three-phase distribution line of the photovoltaic power generation facility of feature 1, the respective phase current measuring device is provided in a section switch provided on the three-phase side distribution line. This is a system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line. Note that the phase current measuring devices are not necessarily provided in the section switches.
Feature 3: In the system for detecting the influence on the three-phase distribution line of the photovoltaic power generation facility of Feature 1 or Feature 2, the unit of division of the three-phase distribution line divided by the division switch provided on the three-phase distribution line The estimation part performs the said estimation, It is an influence detection system to the three-phase distribution line of the photovoltaic power generation equipment characterized by the above-mentioned.
Feature 4: In the system for detecting an influence on the three-phase distribution line of the photovoltaic power generation facility according to any one of features 1 to 3, the estimation unit receives each phase current information from the plurality of phase current measuring devices via a communication network. And detecting the influence on a three-phase distribution line of a photovoltaic power generation facility.
Feature 5: In the system for detecting the influence of the photovoltaic power generation facility on the three-phase distribution line of Feature 4, the estimation is performed from the current difference between the phase currents derived from the outputs of the adjacent phase current measuring devices. This is a system for detecting the influence of photovoltaic power generation facilities on three-phase distribution lines.
Feature 6: In the system for detecting an influence on the three-phase distribution line of the photovoltaic power generation facility according to any one of features 1 to 5, an average of each phase current measured by each phase current measuring device at each predetermined time t1 The estimation is performed based on the short-term fluctuation data obtained from the difference between each phase current data for which the value has been obtained and the long-term fluctuation data obtained by the first-order lag processing with the time constant t2 longer than the predetermined time t1. This is a system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line.
Feature 7: In the system for detecting the influence of the photovoltaic power generation facility on the three-phase distribution line of feature 6, the phase current data is generated on the phase current measuring device side, and the long-term fluctuation data and the short-term data are generated on the estimation unit side. This is a system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line, characterized in that fluctuation data is generated.
Feature 8: In the system for detecting the influence of the photovoltaic power generation facility on the three-phase distribution line of Feature 6, the phase current data and the long-term variation data are generated on the phase current measuring device side, and the estimation unit side This is a system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line, characterized in that short-term fluctuation data is generated.
Feature 9: In the system for detecting the influence of the photovoltaic power generation facility on the three-phase distribution line of feature 6, the phase current data, the long-term variation data, and the short-term variation data are generated on the phase current measuring device side. This is a system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line.
Feature 10: Weather in which the output of the solar power generation equipment other than rainy weather, cloudy weather, and clear weather changes with time in the system for detecting the influence of the solar power generation equipment on the three-phase distribution line according to any one of features 1 to 9 A system for detecting an influence on a three-phase distribution line of a photovoltaic power generation facility, characterized in that the estimation is performed based on the phase currents within the sunshine hours.
Feature 11: Measurement data receiving / storing unit that receives and saves each phase current value data of distribution line (three-phase / high voltage), and each phase current change detection that separates each phase current value into long-term fluctuation part and short-term fluctuation part , An unbalance factor estimation unit that analyzes and estimates the bias of the connected phase from the long-term fluctuation part and the short-term fluctuation part of each phase current value, and a connection phase estimation result presentation part that provides the analysis result to humans or other devices Is provided as an internal function.
Feature 12: Measuring instrument that measures each phase current value of distribution lines (three-phase / high voltage), transmitter that sends measurement data (each phase current value) to the unbalance factor estimation processing device, and each phase current value A three-phase unbalance detection / analysis and factor estimation device comprising an unbalance factor estimation processing device for receiving, analyzing and presenting results.

1〜1n 三相高圧配電線、
2 配電線変圧器、
3 低圧配電需要家、
4 太陽光発電設備、
5 各相電流計測装置、
6 送信機、
7 通信ネットワーク、
8 監視端末、
9 計測データ受診・保存部、
10 各相電流変化検出部、
11 不平衡要因推定部、
12 接続相推定結果提示部、
SW 区分開閉器。
1-1n Three-phase high-voltage distribution line,
2 Distribution line transformer,
3 Low voltage distribution customers
4 Solar power generation equipment,
5 Each phase current measuring device,
6 Transmitter,
7 Communication network,
8 monitoring terminals,
9 Measurement data consultation and storage department,
10 Each phase current change detector,
11 Unbalance factor estimation part,
12 connection phase estimation result presentation unit,
SW Division switch.

Claims (10)

三相を単相に変換する配電線変圧器の三相側の配電線の各相の電流を検出する各相電流計測装置、及びこの各相電流計測装置が測定した各相電流に基づき各相電流の所定時間毎の大きさ及び変化の傾向を判別し前記三相側配電線の各相の電流の不平衡が前記配電線変圧器の単相側低圧配電線に設置の太陽光発電設備に起因していることを推定する推定部を備えた太陽光発電設備の三相配電線への影響検出システム。   Each phase current measurement device that detects the current of each phase of the distribution line on the three-phase side of the distribution line transformer that converts three phases to a single phase, and each phase based on each phase current measured by each phase current measurement device Distinguishing the magnitude of current and the tendency of change every predetermined time, the current imbalance of each phase of the three-phase distribution line is in the photovoltaic power generation equipment installed in the single-phase low-voltage distribution line of the distribution line transformer An influence detection system for a three-phase distribution line of a photovoltaic power generation facility provided with an estimation unit for estimating the cause. 請求項1に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、前記三相側配電線に設けられた区分開閉器に前記各相電流計測装置が設けられていることを特徴とする太陽光発電設備の三相配電線への影響検出システム。   The influence detection system to the three-phase distribution line of the photovoltaic power generation facility according to claim 1, wherein each of the phase current measuring devices is provided in a section switch provided in the three-phase side distribution line. Detection system for three-phase distribution lines of solar power generation facilities. 請求項1または請求項2に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、前記三相側配電線に設けられた区分開閉器によって区分される前記三相配電線の区分単位で前記推定部が前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システム。   The influence detection system to the three-phase distribution line of the photovoltaic power generation facility according to claim 1 or 2, wherein the unit of the three-phase distribution line is divided by a division switch provided on the three-phase distribution line. The estimation part performs the said estimation, The influence detection system to the three-phase distribution line of the solar power generation facility characterized by the above-mentioned. 請求項1〜請求項3の何れか一に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、前記推定部が通信ネットワークを介して複数の前記各相電流計測装置から各相電流情報を入手し前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システム。   The influence detection system to the three-phase distribution line of the photovoltaic power generation facility according to any one of claims 1 to 3, wherein the estimation unit receives a plurality of phase currents from a plurality of phase current measuring devices via a communication network. A system for detecting an influence on a three-phase distribution line of a photovoltaic power generation facility, characterized by obtaining information and performing the estimation. 請求項4に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、隣接する各相電流計測装置の出力から導出した各相電流の電流差から前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システム。   5. The system for detecting an influence on a three-phase distribution line of a photovoltaic power generation facility according to claim 4, wherein the estimation is performed from a current difference between phase currents derived from outputs of adjacent phase current measuring devices. A system for detecting the impact of photovoltaic power generation facilities on three-phase distribution lines. 請求項1〜請求項5の何れか一に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、前記各相電流計測装置で計測された各相電流のそれぞれの所定時間t1毎の平均値を求めた各相電流データと当該各相電流データを前記所定時間t1より長い時定数t2での一次遅れ処理により求めた長期変動データとの差により求めた短期変動データにより、前記推定を行うことを特徴とする太陽光発電設備の三相配電線への影響検出システム。   In the influence detection system to the three-phase distribution line of the photovoltaic power generation facility according to any one of claims 1 to 5, each phase current measured by each phase current measuring device for each predetermined time t1 The estimation is performed based on the short-term fluctuation data obtained by the difference between each phase current data for which the average value is obtained and the long-term fluctuation data obtained by the first-order lag processing with the time constant t2 longer than the predetermined time t1. A system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line. 請求項6に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、前記各相電流計測装置側で前記各相電流データが生成され、前記推定部側で前記長期変動データ及び前記短期変動データが生成されることを特徴とする太陽光発電設備の三相配電線への影響検出システム。   The influence detection system for the three-phase distribution line of the photovoltaic power generation facility according to claim 6, wherein each phase current data is generated on the phase current measuring device side, and the long-term fluctuation data and the short-term data are generated on the estimation unit side. A system for detecting the influence of a photovoltaic power generation facility on a three-phase distribution line, wherein fluctuation data is generated. 請求項6に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、前記各相電流計測装置側で前記各相電流データと前記長期変動データとが生成され、前記推定部側で前記短期変動データが生成されることを特徴とする太陽光発電設備の三相配電線への影響検出システム。   In the influence detection system to the three-phase distribution line of the photovoltaic power generation facility according to claim 6, the phase current data and the long-term variation data are generated on the phase current measuring device side, and the estimation unit side A system for detecting the effects of three-phase distribution lines on photovoltaic power generation facilities, characterized in that short-term fluctuation data is generated. 請求項6に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、前記各相電流計測装置側で前記各相電流データと前記長期変動データと前記短期変動データとが生成されることを特徴とする太陽光発電設備の三相配電線への影響検出システム。   In the influence detection system to the three-phase distribution line of the photovoltaic power generation facility according to claim 6, the phase current data, the long-term variation data, and the short-term variation data are generated on the phase current measuring device side. A system for detecting the effects of solar power generation facilities on three-phase distribution lines. 請求項1〜請求項9の何れか一に記載の太陽光発電設備の三相配電線への影響検出システムにおいて、雨天あるいは曇天及び快晴以外の太陽光発電設備の出力が時間的に変化する天候における日照時間内の前記各相電流に基づき前記推定を行うことを特徴とする太陽
光発電設備の三相配電線への影響検出システム。
In the influence detection system to the three-phase distribution line of the photovoltaic power generation equipment according to any one of claims 1 to 9, in the weather in which the output of the photovoltaic power generation equipment other than rainy weather or cloudy weather and clear weather changes with time. An influence detection system for a three-phase distribution line of a photovoltaic power generation facility, wherein the estimation is performed based on each phase current within a sunshine period.
JP2010081390A 2010-03-31 2010-03-31 Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines Active JP5506502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081390A JP5506502B2 (en) 2010-03-31 2010-03-31 Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081390A JP5506502B2 (en) 2010-03-31 2010-03-31 Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines

Publications (2)

Publication Number Publication Date
JP2011217465A true JP2011217465A (en) 2011-10-27
JP5506502B2 JP5506502B2 (en) 2014-05-28

Family

ID=44946637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081390A Active JP5506502B2 (en) 2010-03-31 2010-03-31 Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines

Country Status (1)

Country Link
JP (1) JP5506502B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032908A (en) * 2012-08-06 2014-02-20 Jsr Corp Binder composition for negative electrode of power storage device
JP2017005893A (en) * 2015-06-11 2017-01-05 一般財団法人電力中央研究所 Determination method for connection phase, determination device and determination program
CN110957960A (en) * 2019-12-10 2020-04-03 合肥阳光新能源科技有限公司 Method and device for determining current collection circuit of photovoltaic power station and photovoltaic power station
JP2020141490A (en) * 2019-02-28 2020-09-03 東京電力ホールディングス株式会社 Connection phase estimation device, connection phase estimation program, and connection phase estimation method
JP2020150729A (en) * 2019-03-14 2020-09-17 河村電器産業株式会社 Power distribution balance monitoring system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064941A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Distributed power supply analysis system
JP2004088978A (en) * 2002-08-29 2004-03-18 Toshiba Corp Device and program for deciding power quality of power distribution system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064941A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Distributed power supply analysis system
JP2004088978A (en) * 2002-08-29 2004-03-18 Toshiba Corp Device and program for deciding power quality of power distribution system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032908A (en) * 2012-08-06 2014-02-20 Jsr Corp Binder composition for negative electrode of power storage device
JP2017005893A (en) * 2015-06-11 2017-01-05 一般財団法人電力中央研究所 Determination method for connection phase, determination device and determination program
JP2020141490A (en) * 2019-02-28 2020-09-03 東京電力ホールディングス株式会社 Connection phase estimation device, connection phase estimation program, and connection phase estimation method
JP7215226B2 (en) 2019-02-28 2023-01-31 東京電力ホールディングス株式会社 Connected phase estimating device, connected phase estimating program, and connected phase estimating method
JP2020150729A (en) * 2019-03-14 2020-09-17 河村電器産業株式会社 Power distribution balance monitoring system
JP7200016B2 (en) 2019-03-14 2023-01-06 河村電器産業株式会社 Distribution balance monitoring system
CN110957960A (en) * 2019-12-10 2020-04-03 合肥阳光新能源科技有限公司 Method and device for determining current collection circuit of photovoltaic power station and photovoltaic power station
CN110957960B (en) * 2019-12-10 2022-11-18 阳光新能源开发股份有限公司 Method and device for determining current collection circuit of photovoltaic power station and photovoltaic power station

Also Published As

Publication number Publication date
JP5506502B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
Karimi et al. Photovoltaic penetration issues and impacts in distribution network–A review
Sayed et al. SCADA and smart energy grid control automation
US20180143037A1 (en) Systems and methods to manage and control renewable distributed energy resources
US10656663B2 (en) Apparatuses including utility meter, power electronics, and communications circuitry, and related methods of operation
JP5788306B2 (en) Distribution system monitoring control device and distribution system monitoring control method
US10019024B2 (en) Methods and apparatus for detecting and correcting instabilities within a power distribution system
JP5506502B2 (en) Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines
US9647458B2 (en) Distributed phase balancing
Datta et al. Selection of islanding detection methods based on multi-criteria decision analysis for grid-connected photovoltaic system applications
JP6717705B2 (en) Power system
JP2014017976A (en) Energy management system and energy management method
Misak et al. A novel approach to adaptive active relay protection system in single phase AC coupling Off-Grid systems
JP6782442B2 (en) Measuring equipment, measuring system and computer system
WO2018144009A1 (en) Power management methods for a circuit of a substation, and related apparatuses and computer program products
Roscoe et al. Increasing security of supply by the use of a local power controller during large system disturbances
JP6723906B2 (en) Power system
JP2018084564A (en) Power system and method of installing ammeter
Nale et al. Protection schemes for sustainable microgrids
Kroposki Prevention of unintentional islands in power systems with distributed resources
JP6730172B2 (en) Power system
WO2018225455A1 (en) Power management system, power storage system, transmission method, and program
Sarvani et al. Detection of power grid synchronization failure on sensing frequency and voltage beyond the acceptable range and load protection
JP2020022317A (en) Control system, control method, and program
JP2019118170A (en) Power control device, power control method, and program
Alobaid et al. A Comprehensive Review and Assessment of Islanding Detection Techniques for PV Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R151 Written notification of patent or utility model registration

Ref document number: 5506502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250