JP2011217282A - Modulator - Google Patents

Modulator Download PDF

Info

Publication number
JP2011217282A
JP2011217282A JP2010085475A JP2010085475A JP2011217282A JP 2011217282 A JP2011217282 A JP 2011217282A JP 2010085475 A JP2010085475 A JP 2010085475A JP 2010085475 A JP2010085475 A JP 2010085475A JP 2011217282 A JP2011217282 A JP 2011217282A
Authority
JP
Japan
Prior art keywords
signal
phase
amplitude
optical
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010085475A
Other languages
Japanese (ja)
Other versions
JP5760202B2 (en
Inventor
Tatsutoshi Shioda
達俊 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2010085475A priority Critical patent/JP5760202B2/en
Publication of JP2011217282A publication Critical patent/JP2011217282A/en
Application granted granted Critical
Publication of JP5760202B2 publication Critical patent/JP5760202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a modulator that is applicable to technologies for optical signal storage, optical signal recovery, optical channel change, optical signal control, and the like.SOLUTION: The modulator includes a signal evaluation device 11 that detects each phase and amplitude relating to a plurality of components from an original signal so as to extract information contained in the original signal, a reference signal source 14 for generating a reference discrete spectrum signal, and a phase and amplitude modulation portion 16 which adds phase modulation and amplitude modulation to each frequency component of the reference discrete spectrum generated by the reference signal source.

Description

本発明は、位相スペクトル・振幅スペクトルの情報が含まれてなる光信号を周波数軸上で位相変調・振幅変調する変調装置に関し、光信号記憶技術、光信号修復技術、光チャンネル変更技術、光信号制御技術等に応用が可能な変調装置に関する。   The present invention relates to a modulation device that performs phase modulation / amplitude modulation on an optical signal including phase spectrum / amplitude spectrum information on a frequency axis, and relates to an optical signal storage technique, an optical signal restoration technique, an optical channel change technique, and an optical signal. The present invention relates to a modulation device that can be applied to control technology and the like.

たとえば、従来、光信号を一時的に記憶するために光ループが用いられる。また、伝送過程で劣化した光信号を修復するために光信号バッファが用いられるし、光信号の伝送チャンネルを変更する要求がある場合には光チャンネル変更装置が用いられる。   For example, conventionally, an optical loop is used to temporarily store an optical signal. Further, an optical signal buffer is used to repair an optical signal deteriorated in the transmission process, and an optical channel changing device is used when there is a request to change the transmission channel of the optical signal.

特開平6−59383JP-A-6-59383 特開2001−227911JP 2001-227911 A

光信号を一時的に記憶するために光ループ回路を用いることがあるが(特許文献1)、光ループ回路は大きな占有空間が必要となる等の問題がある。
また、近年、光信号の通信速度の高速化が進んでいるが(特許文献1参照)、電気回路の処理速度の制約により、光信号バッファでの処理速度や、光チャンネル変更装置での処理速度が、受信する光データ速度に追いつかないという問題がある。
An optical loop circuit is sometimes used to temporarily store an optical signal (Patent Document 1). However, the optical loop circuit has a problem that a large occupied space is required.
In recent years, the communication speed of optical signals has been increased (see Patent Document 1). However, due to restrictions on the processing speed of the electric circuit, the processing speed of the optical signal buffer and the processing speed of the optical channel changing device are increased. However, there is a problem that it cannot keep up with the optical data rate received.

本発明の目的は、位相スペクトル・振幅スペクトルの情報が含まれてなる光信号を周波数軸上で位相変調・振幅変調する変調装置に関し、光信号記憶技術、光信号修復技術、光チャンネル変更技術、光信号制御技術等に応用が可能な変調装置を提供することである。   An object of the present invention relates to a modulation device that performs phase modulation / amplitude modulation on an optical signal including phase spectrum / amplitude spectrum information on a frequency axis, and relates to an optical signal storage technique, an optical signal restoration technique, an optical channel change technique, It is an object of the present invention to provide a modulation device that can be applied to an optical signal control technique or the like.

本発明は、(1)から(4)を要旨とする。
(1) 原信号から、複数の成分についての位相および振幅をそれぞれ検出する位相・振幅測定器と、
前記原信号に含まれる情報を抽出する信号評価器と、
基準離散スペクトル信号を生成する基準信号源と、
前記信号評価器により抽出した位相および振幅により、前記基準信号源が生成する基準離散スペクトル信号の各周波数成分に位相変調および振幅変調を加える位相・振幅変調部と、
を備えたことを特徴とする変調装置。
本発明は、光信号記憶装置、光信号修復装置、光チャンネル変更装置、光信号制御技術等に応用が可能である。
The gist of the present invention is (1) to (4).
(1) a phase / amplitude measuring device for detecting phases and amplitudes of a plurality of components from an original signal;
A signal evaluator for extracting information contained in the original signal;
A reference signal source for generating a reference discrete spectrum signal;
A phase / amplitude modulation unit that applies phase modulation and amplitude modulation to each frequency component of a reference discrete spectrum signal generated by the reference signal source based on the phase and amplitude extracted by the signal evaluator;
A modulation apparatus comprising:
The present invention can be applied to an optical signal storage device, an optical signal repair device, an optical channel change device, an optical signal control technique, and the like.

(2) 前記基準信号源として前記原信号が伝送される信号線を用いることを特徴とする(1)に記載の変調装置。 (2) The modulation device according to (1), wherein a signal line through which the original signal is transmitted is used as the reference signal source.

(3) 前記原信号が離散スペクトル光である(1)に記載の変調装置において、
前記基準信号源として前記位相・振幅測定器に内蔵された参照信号源を用いることを特徴とする(1)に記載の変調装置。
(3) In the modulation device according to (1), the original signal is discrete spectrum light.
The modulation apparatus according to (1), wherein a reference signal source built in the phase / amplitude measuring device is used as the reference signal source.

(4) 前記位相・振幅変調部が前記原信号の信号源に設けられており、前記原信号の位相および振幅を検出し、検出結果に基づき前記信号源の位相および振幅をフィードバック変調することを特徴とする(1)に記載の変調装置。 (4) The phase / amplitude modulation unit is provided in the signal source of the original signal, detects the phase and amplitude of the original signal, and feedback-modulates the phase and amplitude of the signal source based on the detection result. The modulation device according to (1), which is characterized.

本発明では、複数の信号成分の位相および振幅に載せられて伝送される情報を処理する場合には、原信号の複雑な変動を逐次計測する必要がなくなる。   In the present invention, when processing information transmitted on the phases and amplitudes of a plurality of signal components, it is not necessary to sequentially measure complicated fluctuations of the original signal.

すなわち、原信号について、一定時間内の周波数軸上の位相スペクトルおよび振幅スペクトルを処理すればよいので、高速な光信号記憶処理、光信号記憶処理、光チャンネル変更処理、光信号修復処理、光信号制御処理ができる。   That is, since the phase spectrum and amplitude spectrum on the frequency axis within a certain time period may be processed for the original signal, high-speed optical signal storage processing, optical signal storage processing, optical channel change processing, optical signal repair processing, optical signal Control processing is possible.

本発明の変調装置を光信号記憶装置(光信号バッファ)に適用した実施形態の説明図である。It is explanatory drawing of embodiment which applied the modulation apparatus of this invention to the optical signal memory | storage device (optical signal buffer). (A)は図1の光信号記憶装置の位相測定部の詳細図、(B)は図1の光信号記憶装置の振幅測定部の詳細図である。FIG. 2A is a detailed view of a phase measurement unit of the optical signal storage device of FIG. 1, and FIG. 2B is a detailed view of an amplitude measurement unit of the optical signal storage device of FIG. 図1の光信号記憶装置の第1の設計変更例を示す図である。It is a figure which shows the 1st design change example of the optical signal storage device of FIG. 図1の光信号記憶装置の第2の設計変更例を示す図である。It is a figure which shows the 2nd design change example of the optical signal memory | storage device of FIG. 本発明の変調装置をチャンネル変更装置に適用した実施形態の説明図である。It is explanatory drawing of embodiment which applied the modulation apparatus of this invention to the channel change apparatus. 本発明の変調装置を光信号発生装置に適用した実施形態の説明図である。It is explanatory drawing of embodiment which applied the modulation apparatus of this invention to the optical signal generator. 図6の変調装置の設計変更例を示す説明図である。It is explanatory drawing which shows the example of a design change of the modulation apparatus of FIG.

図1は本発明の変調装置を光信号記憶装置(光信号バッファ)に適用した実施形態の説明図である。
図1において、変調装置(光信号バッファ)1は、位相・振幅測定器11と、信号評価器12と、位相・振幅スペクトルマトリクス生成器13と、基準信号源14と、基準信号周波数分光器15と、位相・振幅変調器16とを備えている。
FIG. 1 is an explanatory diagram of an embodiment in which the modulation device of the present invention is applied to an optical signal storage device (optical signal buffer).
In FIG. 1, a modulation device (optical signal buffer) 1 includes a phase / amplitude measuring device 11, a signal evaluator 12, a phase / amplitude spectrum matrix generator 13, a reference signal source 14, and a reference signal frequency spectrometer 15. And a phase / amplitude modulator 16.

信号線PPには原信号SAが伝送されており、変調装置1がこの信号を取り込んで変調処理を行う。
位相・振幅測定器11は、参照信号生成部111と位相測定部112と振幅測定部113と情報読出部114とからなる。
参照信号生成部111は、原信号SAの信号成分(周波数成分)SA1,SA2,・・・,SANの周波数φA1,φA2,・・・,φANに対して周波数がシフトした参照信号SB1,SB2,・・・,SBNを生成する。
The original signal S A is transmitted to the signal line PP, and the modulation device 1 takes in this signal and performs modulation processing.
The phase / amplitude measuring device 11 includes a reference signal generation unit 111, a phase measurement unit 112, an amplitude measurement unit 113, and an information reading unit 114.
Reference signal generator 111, the original signal S signal components A (frequency components) S A1, S A2, · · ·, frequency phi A1 of S AN, phi A2, · · ·, frequency for phi AN shift The reference signals S B1 , S B2 ,..., S BN are generated.

位相測定部112は、図2(A)に示すようにアレイ導波路回折格子(AWG)1121と、ビート信号生成・抽出部1122と、ビート信号選択部1123と、ビート信号乗算部1124と、相対位相検出部1125とからなる。   As shown in FIG. 2A, the phase measurement unit 112 includes an arrayed waveguide diffraction grating (AWG) 1121, a beat signal generation / extraction unit 1122, a beat signal selection unit 1123, a beat signal multiplication unit 1124, A phase detector 1125.

ビート信号生成・抽出部1122は、AWG1121のk番目の端子(k=1,2,・・・,N)から入力された原信号SAと参照信号SBkとの合波光をフォトダイオードPDkにより光電変換する。PDkの出力には、参照信号SBkと原信号SAとの種々のビート信号が含まれる。バンドパスフィルタBPFkはこのビート信号の中から、参照信号SBkと信号成分SAkとのビート信号Bk(B1,B2,B3,・・・)を取り出す。 The beat signal generation / extraction unit 1122 converts the combined light of the original signal S A and the reference signal S Bk input from the k-th terminal (k = 1, 2,..., N) of the AWG 1121 to the photodiode PD k. To perform photoelectric conversion. The output of PD k includes various beat signals of the reference signal S Bk and the original signal S A. The band pass filter BPF k extracts the beat signal B k (B 1 , B 2 , B 3 ,...) From the reference signal S Bk and the signal component S Ak from the beat signal.

ビート信号選択部1123は、B1,B2,B3,・・・の中から2つ(ビート信号ペアBm,Bn)を同時に選択し、ビート信号乗算部1124の各ミキサMXがこれらを乗算する。 The beat signal selection unit 1123 selects two (beat signal pair B m , B n ) simultaneously from B 1 , B 2 , B 3 ,..., And each mixer MX of the beat signal multiplication unit 1124 selects these. Multiply

相対位相検出部1125は、各検出器D1,D2,D3,・・・,DNがビート信号乗算部1124の各ミキサから乗算信号を入力し、乗算されたビート信号ペアの作成のもとになった原信号SAの信号成分の相対位相をそれぞれ求める。 Relative phase detection unit 1125, each detector D 1, D 2, D 3 , ···, D N inputs a multiplication signal from each mixer of the beat signal multiplication section 1124, the creation of the multiplication beat signal pairs The relative phases of the signal components of the original original signal S A are obtained.

たとえば、乗算されたビート信号ペアがBm,Bnである場合には、相対位相検出部1125は信号成分SAmとSAnとの相対位相φn−φmを求めることができる。なお、相対位相検出部1125は、振幅測定部113により測定した信号成分SAm,SAnの振幅AAm,AAnを取得して相対位相φn−φmの演算を行う。なお、ビート信号選択部1123は、あるビート信号ペアを構成する少なくとも一方のビート信号ペアが、他のいずれかのビート信号ペアを構成するように選択処理を行う。ビート信号選択部1123は、たとえば、B1とB2、B1とB3,B1とB3、・・・のようにビート信号ペアを選択することができるし、あるいはB1とB2、B2とB3,B3とB4、・・・のようにビート信号ペアを選択することができる。なお、ビート信号選択部1123は、あるビート信号Bxが不定である場合(たとえば、SAxの振幅がゼロないし微小である場合)には、Bxがビート信号ペアを構成しないように選択処理を行う。 For example, when the beat signal pair multiplied is B m and B n , the relative phase detector 1125 can obtain the relative phase φ n −φ m between the signal components S Am and S An . The relative phase detector 1125 obtains the amplitudes A Am and A An of the signal components S Am and S An measured by the amplitude measuring unit 113 and calculates the relative phase φ n −φ m . Note that the beat signal selection unit 1123 performs a selection process so that at least one beat signal pair constituting a certain beat signal pair constitutes any other beat signal pair. The beat signal selector 1123 can select beat signal pairs such as B 1 and B 2 , B 1 and B 3 , B 1 and B 3 ,..., Or B 1 and B 2. , B 2 and B 3 , B 3 and B 4 ,... Can be selected. The beat signal selection unit 1123 performs selection processing so that B x does not form a beat signal pair when a certain beat signal B x is indefinite (for example, when the amplitude of S Ax is zero or very small). I do.

振幅測定部113は、図2(B)に示すようにアレイ導波路回折格子(AWG)1131と、ビート信号生成・抽出部1132と、振幅検出部1133とからなる。
ビート信号生成・抽出部1132は、AWG1131のk番目の端子(k=1,2,・・・,N)から入力された原信号SAと参照信号SBkとの合波光をフォトダイオードPDkにより光電変換する。PDkの出力には、参照信号SBkと原信号SAとの種々のビート信号が含まれる。バンドパスフィルタBPFkはこのビート信号の中から、参照信号SBkと信号成分SAkとのビート信号Bk(B1,B2,B3,・・・)を取り出す。
As shown in FIG. 2B, the amplitude measurement unit 113 includes an arrayed waveguide diffraction grating (AWG) 1131, a beat signal generation / extraction unit 1132, and an amplitude detection unit 1133.
The beat signal generating / extracting unit 1132 outputs the combined light of the original signal S A and the reference signal S Bk input from the k-th terminal (k = 1, 2,..., N) of the AWG 1131 to the photodiode PD k. To perform photoelectric conversion. The output of PD k includes various beat signals of the reference signal S Bk and the original signal S A. The band pass filter BPF k extracts the beat signal B k (B 1 , B 2 , B 3 ,...) From the reference signal S Bk and the signal component S Ak from the beat signal.

振幅検出部1133の各検出器G1,G2,・・・,GNは、原信号と乗算されたビート信号ペアの作成のもとになった原信号SAの信号成分の振幅をそれぞれ求める。 Each detector G 1, G 2 of the amplitude detector 1133, · · ·, G N is the original signal and multiplied beat signal pair creation of the amplitude of the signal component of the original signal S A which was based respectively Ask.

信号成分SA1,SA2,・・・,SANの何れか1つの位相を基準にすればφn−φmを絶対位相として扱うことができる。したがって、情報読出部114は、相対位相検出部1125により求めた相対位相φn−φmから、原信号SAの位相スペクトルφSA(ω)を特定でき、また振幅検出部1133により求めた振幅AAnから、原信号SAの振幅スペクトルASA(ω)を特定できる。 It can be handled signal component S A1, S A2, ···, and phi n -.phi m if based on any one phase of the S AN as absolute phase. Therefore, the information reading unit 114 can specify the phase spectrum φ SA (ω) of the original signal S A from the relative phase φ n −φ m obtained by the relative phase detection unit 1125, and the amplitude obtained by the amplitude detection unit 1133. From A An , the amplitude spectrum A SA (ω) of the original signal S A can be specified.

本実施形態では、信号評価器12は、位相スペクトルφSA(ω)と振幅スペクトルASA(ω)とのパターン情報と原信号SAに含まれている情報(この情報たとえば二値データあってもよいし、二値データとは限らない)とを関連付けたテーブルを持っており、原信号SAに含まれている情報を知ることができる。 In the present embodiment, the signal evaluator 12 includes the pattern information of the phase spectrum φ SA (ω) and the amplitude spectrum A SA (ω) and the information included in the original signal S A (for example, this information includes binary data). may be, it has a table associating a limited not) and the binary data, it is possible to know the information contained in the original signal S a.

位相・振幅スペクトルマトリクス生成器13は、原信号SAに含まれていた情報と同じ、位相スペクトルφSA(ω)と振幅スペクトルASA(ω)とを生成し、位相・振幅変調器16は、基準信号周波数分光器15を流れる信号を変調する。
なお、基準信号源14は、本実施形態では、波長可変光源141と光コム発生装置142とを備えているが、光コム発生装置142のみであってもよい。波長可変光源141は搬送波を生成し、光コム発生装置142が生成したコム光は基準信号周波数分光器15に入力される。
The phase / amplitude spectrum matrix generator 13 generates the same phase spectrum φ SA (ω) and amplitude spectrum A SA (ω) as the information contained in the original signal S A , and the phase / amplitude modulator 16 The signal flowing through the reference signal frequency spectrometer 15 is modulated.
In this embodiment, the reference signal source 14 includes the wavelength tunable light source 141 and the optical comb generator 142. However, the reference signal source 14 may include only the optical comb generator 142. The variable wavelength light source 141 generates a carrier wave, and the comb light generated by the optical comb generator 142 is input to the reference signal frequency spectrometer 15.

基準信号周波数分光器15はAWG151とAWG152とからなり、AWG151は入射したコム光を原信号SAの信号成分SA1,SA2,・・・,SANの周波数と同じ周波数の信号成分(SC1,SC2,・・・,SCN)に分離する。位相・振幅変調器16は、位相変調器161と振幅変調器162とからなり、上記の分離された信号成分は、位相変調器161により位相変調され、振幅変調器162により振幅変調される。 Reference signal frequency spectrometer 15 consists AWG151 and AWG152 Prefecture, the signal component S A1 of the original signal S A comb light incident AWG151, S A2, ···, the signal component having the same frequency as the S AN (S C1 , SC2 ,..., SCN ). The phase / amplitude modulator 16 includes a phase modulator 161 and an amplitude modulator 162. The separated signal component is phase-modulated by the phase modulator 161 and amplitude-modulated by the amplitude modulator 162.

この位相・振幅変調により信号成分(SC1,SC2,・・・,SCN)は原信号SAの信号成分SA1,SA2,・・・,SANと同じ信号に変調される。 Signal components by the phase and amplitude modulation (S C1, S C2, ··· , S CN) is the signal component of the original signal S A S A1, S A2, ···, is modulated to the same signal as S AN.

AWG152は、これらの位相・振幅変調された各信号を合波して、新たな原信号SAとして送出する。
変調装置(光信号バッファ)1は、バッファリングを行うが、以上からわかるように、プロセッサによる計算量は極めて少ない。したがって、超高速のバッファリングを行うことができる。
AWG152 is multiplexes these signals whose phase and amplitude modulation, and sends as a new original signal S A.
The modulator (optical signal buffer) 1 performs buffering, but as can be seen from the above, the amount of calculation by the processor is extremely small. Therefore, ultrafast buffering can be performed.

図3は図1の変調装置1の第1の設計変更例を示す説明図であり、図1の変調装置1で使用した基準信号源14は設けておらず、基準信号として、信号線PPを伝播する原信号SAが基準信号周波数分光器15のAWG151に入力されている。これにより、変調装置1の構成が簡素化される。 FIG. 3 is an explanatory diagram showing a first design modification example of the modulation device 1 of FIG. 1. The reference signal source 14 used in the modulation device 1 of FIG. 1 is not provided, and the signal line PP is used as a reference signal. The propagating original signal S A is input to the AWG 151 of the reference signal frequency spectrometer 15. Thereby, the structure of the modulation apparatus 1 is simplified.

図4は図1の変調装置1の第2の設計変更例を示す説明図であり、図1の変調装置1で使用した基準信号源14は設けられておらず、基準信号として、位相・振幅測定器11の参照信号生成部111からの参照信号SB1,SB2,・・・,SBNが基準信号周波数分光器15のAWG151に入力されている。これにより、これにより、変調装置1の構成が簡素化される。 FIG. 4 is an explanatory diagram showing a second design modification example of the modulation device 1 of FIG. 1. The reference signal source 14 used in the modulation device 1 of FIG. 1 is not provided, and the phase / amplitude is used as the reference signal. meter reference signals from the reference signal generating unit 111 of the 11 S B1, S B2, ··· , S BN is input to AWG151 of the reference signal frequency spectrometer 15. Thereby, the structure of the modulation apparatus 1 is simplified by this.

なお、図3および図4の変調装置1では、信号線PPと基準信号周波数分光器15との間に周波数シフタを設けておけば、次に述べるチャンネル変更装置への適用と同様、基準信号周波数分光器15からもともとのチャンネルとことなるチャンネルを伝播する原信号SAを生成することができる。 3 and 4, if a frequency shifter is provided between the signal line PP and the reference signal frequency spectrometer 15, the reference signal frequency is similar to the application to the channel changing device described below. An original signal S A propagating through a channel different from the original channel can be generated from the spectroscope 15.

図5は本発明の変調装置をチャンネル変更装置に適用した実施形態の説明図である。
図5において、変調装置(チャンネル変更装置)2は、位相・振幅測定器21と、信号評価器22と、位相・振幅スペクトルマトリクス生成器23と、基準信号源24と、基準信号周波数分光器25と、位相・振幅変調器26と、波長選択器27と光電変換器28とを備えている。位相・振幅測定器21、信号評価器22、位相・振幅スペクトルマトリクス生成器23、基準信号源24、基準信号周波数分光器25、位相・振幅変調器26の動作は、図1の変調装置1の位相・振幅測定器11、信号評価器12、位相・振幅スペクトルマトリクス生成器13、基準信号源14、基準信号周波数分光器15、位相・振幅変調器16と同じである。また、位相・振幅測定器21を構成する参照信号生成部211、位相測定部212、振幅測定部213、情報読出部214は、位相・振幅測定器11の参照信号生成部111、位相測定部112、振幅測定部113、情報読出部114と同じである。また、位相・振幅変調器26を構成する位相変調器261,振幅変調器262は、位相・振幅変調器16を構成する位相変調器161と振幅変調器162と同じである。基準信号周波数分光器25を構成するAWG251、AWG252は、基準信号周波数分光器15を構成するAWG151、AWG152と同じである。
FIG. 5 is an explanatory diagram of an embodiment in which the modulation device of the present invention is applied to a channel changing device.
In FIG. 5, the modulation device (channel changing device) 2 includes a phase / amplitude measuring device 21, a signal evaluator 22, a phase / amplitude spectrum matrix generator 23, a reference signal source 24, and a reference signal frequency spectrometer 25. A phase / amplitude modulator 26, a wavelength selector 27, and a photoelectric converter 28. The operations of the phase / amplitude measuring device 21, the signal evaluator 22, the phase / amplitude spectrum matrix generator 23, the reference signal source 24, the reference signal frequency spectrometer 25, and the phase / amplitude modulator 26 are the same as those of the modulation device 1 shown in FIG. This is the same as the phase / amplitude measuring device 11, signal evaluator 12, phase / amplitude spectrum matrix generator 13, reference signal source 14, reference signal frequency spectrometer 15, and phase / amplitude modulator 16. In addition, the reference signal generation unit 211, the phase measurement unit 212, the amplitude measurement unit 213, and the information reading unit 214 constituting the phase / amplitude measurement device 21 are the reference signal generation unit 111 and the phase measurement unit 112 of the phase / amplitude measurement device 11, respectively. The same as the amplitude measuring unit 113 and the information reading unit 114. The phase modulator 261 and the amplitude modulator 262 constituting the phase / amplitude modulator 26 are the same as the phase modulator 161 and the amplitude modulator 162 constituting the phase / amplitude modulator 16. The AWG 251 and AWG 252 constituting the reference signal frequency spectrometer 25 are the same as the AWG 151 and AWG 152 constituting the reference signal frequency spectrometer 15.

基準信号源24を構成する波長可変光源241、光コム発生装置242も、基準信号源14を構成する波長可変光源141、光コム発生装置142と概略同じであるが、波長可変光源241は信号線PPを伝播する原信号SAのチャンネルとは異なるチャンネルの搬送波を生成することができる。 The variable wavelength light source 241 and the optical comb generator 242 that constitute the reference signal source 24 are also substantially the same as the variable wavelength light source 141 and the optical comb generator 142 that constitute the reference signal source 14, but the variable wavelength light source 241 is a signal line. It is possible to generate a carrier wave having a channel different from that of the original signal S A propagating through the PP.

図5では、波長選択器27が光電変換器28を介して、信号線PPを伝播する所定チャンネルからの信号周波数を光コム発生装置242の参照信号生成部211に与えている。これにより、位相・振幅測定器21は、他のチャンネルの位相や振幅を誤って測定することはなくなる。   In FIG. 5, the wavelength selector 27 gives the signal frequency from a predetermined channel propagating through the signal line PP to the reference signal generator 211 of the optical comb generator 242 via the photoelectric converter 28. Thereby, the phase / amplitude measuring device 21 does not erroneously measure the phase and amplitude of other channels.

また、図5では、波長選択器27が光電変換器28を介して、信号線PPを伝播する所定チャンネルからの信号周波数を基準信号源24の光コム発生装置242にも与えている。波長可変光源241は信号線PPを伝播する原信号SAのチャンネルとは異なるチャンネルの搬送波を生成しているので、基準信号周波数分光器25からはもともとのチャンネルとことなるチャンネルを伝播する原信号SAが生成される。 In FIG. 5, the wavelength selector 27 also supplies the signal frequency from a predetermined channel propagating through the signal line PP to the optical comb generator 242 of the reference signal source 24 via the photoelectric converter 28. The wavelength variable light source 241 is generating a carrier wave of channel different from the channel of the original signal S A propagating signal line PP, original signal propagating channels different from the original channel from the reference signal frequency spectrometer 25 S A is generated.

図6は本発明の変調装置を光信号発生装置に適用した実施形態の説明図である。
図6において、変調装置(光信号発生装置)3は、位相・振幅測定器31と、信号評価器32と、位相・振幅スペクトルマトリクス生成器33と、基準信号源34と、基準信号周波数分光器35と、位相・振幅変調器36とを備えている。位相・振幅測定器31、基準信号源34、基準信号周波数分光器35、位相・振幅変調器36の動作は、図1の変調装置1の位相・振幅測定器11、基準信号源14、基準信号周波数分光器15、位相・振幅変調器16と概略同じである。
FIG. 6 is an explanatory diagram of an embodiment in which the modulation device of the present invention is applied to an optical signal generator.
In FIG. 6, a modulation device (optical signal generator) 3 includes a phase / amplitude measuring device 31, a signal evaluator 32, a phase / amplitude spectrum matrix generator 33, a reference signal source 34, and a reference signal frequency spectrometer. 35 and a phase / amplitude modulator 36. The operations of the phase / amplitude measuring device 31, the reference signal source 34, the reference signal frequency spectrometer 35, and the phase / amplitude modulator 36 are the same as the phase / amplitude measuring device 11, the reference signal source 14, and the reference signal of the modulation device 1 shown in FIG. The frequency spectrometer 15 and the phase / amplitude modulator 16 are substantially the same.

信号評価器32は、本実施形態ではフィードバック制御装置としても機能し、所定の位相・振幅スペクトルを設定でき、これに応じて位相・振幅スペクトルマトリクス生成器33は、基準位相・振幅スペクトルマトリクスを生成できる。   In this embodiment, the signal evaluator 32 also functions as a feedback control device, and can set a predetermined phase / amplitude spectrum. The phase / amplitude spectrum matrix generator 33 generates a reference phase / amplitude spectrum matrix in response to this. it can.

また、位相・振幅測定器31を構成する位相測定部312、振幅測定部313、情報読出部314は、位相・振幅測定器11の位相測定部112、振幅測定部113、情報読出部114と同じである。位相・振幅変調器36を構成する位相変調器361,振幅変調器362は、位相・振幅変調器16を構成する位相変調器161と振幅変調器162と同じである。基準信号周波数分光器35を構成するAWG351、AWG352は、基準信号周波数分光器15を構成するAWG151、AWG152と同じである。   Further, the phase measuring unit 312, the amplitude measuring unit 313, and the information reading unit 314 constituting the phase / amplitude measuring device 31 are the same as the phase measuring unit 112, the amplitude measuring unit 113, and the information reading unit 114 of the phase / amplitude measuring device 11. It is. The phase modulator 361 and the amplitude modulator 362 constituting the phase / amplitude modulator 36 are the same as the phase modulator 161 and the amplitude modulator 162 constituting the phase / amplitude modulator 16. The AWG 351 and AWG 352 constituting the reference signal frequency spectrometer 35 are the same as the AWG 151 and AWG 152 constituting the reference signal frequency spectrometer 15.

基準信号源34は図1と異なり光コム発生装置342から構成される。この光コム発生装置342は、図1の基準信号源14を構成する光コム発生装置142と同じである。   Unlike FIG. 1, the reference signal source 34 includes an optical comb generator 342. This optical comb generator 342 is the same as the optical comb generator 142 constituting the reference signal source 14 of FIG.

図6の、変調装置(光信号発生装置)3では、上述したように信号評価器32がフィードバック制御装置として機能し、所定の位相・振幅スペクトルを設定でき、これに応じて位相・振幅スペクトルマトリクス生成器33は、基準位相・振幅スペクトルマトリクスを生成できる。したがって、基準信号源34や基準信号周波数分光器35の不安定な場合に、位相・振幅スペクトル制御を行うことができる。   In the modulation device (optical signal generation device) 3 of FIG. 6, as described above, the signal evaluator 32 functions as a feedback control device and can set a predetermined phase / amplitude spectrum, and a phase / amplitude spectrum matrix can be set accordingly. The generator 33 can generate a reference phase / amplitude spectrum matrix. Therefore, when the reference signal source 34 and the reference signal frequency spectrometer 35 are unstable, phase / amplitude spectrum control can be performed.

図7は図6の変調装置3の設計変更例を示す説明図であり、図7の参照信号生成部311に代えて周波数シフタ315が設けられている。この周波数シフタ315は、基準信号源34からの信号を周波数シフトして位相測定部312、振幅測定部313に与えている。
これにより、原信号を理想の波形に整形することができ、また雰囲気による外乱等に起因するゆらぎ等も抑制することができる。
FIG. 7 is an explanatory diagram showing a design change example of the modulation device 3 in FIG. 6, and a frequency shifter 315 is provided instead of the reference signal generation unit 311 in FIG. 7. The frequency shifter 315 shifts the frequency of the signal from the reference signal source 34 and supplies it to the phase measuring unit 312 and the amplitude measuring unit 313.
As a result, the original signal can be shaped into an ideal waveform, and fluctuations and the like caused by disturbance due to the atmosphere can be suppressed.

1,2,3 変調装置
11,21,31 位相・振幅測定器
12,22,32 信号評価器
13,23,33 位相・振幅スペクトルマトリクス生成器
14,24,34 基準信号源
15,25,35 基準信号周波数分光器
16,26,36 位相・振幅変調器
27 波長選択器
28 光電変換器
111,211,311 参照信号生成部
112,212,312 位相測定部
113,213,313 振幅測定部
114,214,314 情報読出部
141,241 波長可変光源
142,242 光コム発生装置
151,152,251,252,351,352,1121,1131 AWG
161,261,361 位相変調器
162,262,362 振幅変調器
315 周波数シフタ
342 光コム発生装置
1122,1132 ビート信号生成・抽出部
1123 ビート信号選択部
1124 ビート信号乗算部
1125 相対位相検出部
1133 振幅検出部
1, 2, 3 Modulator 11, 21, 31 Phase / amplitude measuring device 12, 22, 32 Signal evaluator 13, 23, 33 Phase / amplitude spectrum matrix generator 14, 24, 34 Reference signal source 15, 25, 35 Reference signal frequency spectrometer 16, 26, 36 Phase / amplitude modulator 27 Wavelength selector 28 Photoelectric converter 111, 211, 311 Reference signal generation unit 112, 212, 312 Phase measurement unit 113, 213, 313 Amplitude measurement unit 114, 214,314 Information reading unit 141,241 Wavelength variable light source 142,242 Optical comb generator 151,152,251,252,351,352,1121,1131 AWG
161,261,361 Phase modulator 162,262,362 Amplitude modulator 315 Frequency shifter 342 Optical comb generator 1122,1132 Beat signal generator / extractor 1123 Beat signal selector 1124 Beat signal multiplier 1125 Relative phase detector 1133 Amplitude Detection unit

Claims (4)

原信号から、複数の成分についての位相および振幅をそれぞれ検出する位相・振幅測定器と、
前記原信号に含まれる情報を抽出する信号評価器と、
基準離散スペクトル信号を生成する基準信号源と、
前記信号評価器により抽出した位相および振幅により、前記基準信号源が生成する基準離散スペクトル信号の各周波数成分に位相変調および振幅変調を加える位相・振幅変調部と、
を備えたことを特徴とする変調装置。
本発明は、光信号記憶装置、光信号修復装置、光チャンネル変更装置、光信号制御技術等に応用が可能である。
A phase / amplitude measuring device for detecting the phase and amplitude of a plurality of components from the original signal,
A signal evaluator for extracting information contained in the original signal;
A reference signal source for generating a reference discrete spectrum signal;
A phase / amplitude modulation unit that applies phase modulation and amplitude modulation to each frequency component of a reference discrete spectrum signal generated by the reference signal source based on the phase and amplitude extracted by the signal evaluator;
A modulation apparatus comprising:
The present invention can be applied to an optical signal storage device, an optical signal repair device, an optical channel change device, an optical signal control technique, and the like.
前記基準信号源として前記原信号が伝送される信号線を用いることを特徴とする請求項1に記載の変調装置。   2. The modulation apparatus according to claim 1, wherein a signal line through which the original signal is transmitted is used as the reference signal source. 前記原信号が離散スペクトル光である請求項1に記載の変調装置において、
前記基準信号源として前記位相・振幅測定器に内蔵された参照信号源を用いることを特徴とする変調装置。
The modulation apparatus according to claim 1, wherein the original signal is discrete spectrum light.
A modulation apparatus using a reference signal source built in the phase / amplitude measuring device as the reference signal source.
前記位相・振幅変調部が前記原信号の信号源に設けられており、前記原信号の位相および振幅を検出し、検出結果に基づき前記信号源の位相および振幅をフィードバック変調することを特徴とする請求項1に記載の変調装置。   The phase / amplitude modulation unit is provided in the signal source of the original signal, detects the phase and amplitude of the original signal, and feedback-modulates the phase and amplitude of the signal source based on the detection result. The modulation device according to claim 1.
JP2010085475A 2010-04-01 2010-04-01 Modulator Expired - Fee Related JP5760202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085475A JP5760202B2 (en) 2010-04-01 2010-04-01 Modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085475A JP5760202B2 (en) 2010-04-01 2010-04-01 Modulator

Publications (2)

Publication Number Publication Date
JP2011217282A true JP2011217282A (en) 2011-10-27
JP5760202B2 JP5760202B2 (en) 2015-08-05

Family

ID=44946533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085475A Expired - Fee Related JP5760202B2 (en) 2010-04-01 2010-04-01 Modulator

Country Status (1)

Country Link
JP (1) JP5760202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142921A (en) * 2021-12-09 2022-03-04 中山水木光华电子信息科技有限公司 All-optical storage system and method based on different central wavelength optical fiber codes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294537A (en) * 2002-03-28 2003-10-15 Agilent Technol Inc Light waveform measuring device and light waveform measuring method for reconfiguring waveform
JP2008244529A (en) * 2007-03-24 2008-10-09 Tokyo Univ Of Agriculture & Technology Wavelength multiplex transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294537A (en) * 2002-03-28 2003-10-15 Agilent Technol Inc Light waveform measuring device and light waveform measuring method for reconfiguring waveform
JP2008244529A (en) * 2007-03-24 2008-10-09 Tokyo Univ Of Agriculture & Technology Wavelength multiplex transmission system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014009365; Hiroyuki Tsuda 他: '「Analog and Digital Optical Pulse Synthesizers Using Arrayed-Waveguide Gratings for High-Speed Opti' JOURNAL OF LIGHTWAVE TECHNOLOGY Vol.26 No.6, 20080315, p.670 - 677 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142921A (en) * 2021-12-09 2022-03-04 中山水木光华电子信息科技有限公司 All-optical storage system and method based on different central wavelength optical fiber codes
CN114142921B (en) * 2021-12-09 2023-02-28 中山水木光华电子信息科技有限公司 All-optical storage system and method based on different central wavelength optical fiber codes

Also Published As

Publication number Publication date
JP5760202B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
US9705592B1 (en) In-service skew monitoring in a nested Mach-Zehnder modulator structure using pilot signals and balanced phase detection
KR102200221B1 (en) Multiple output quantum random number generator
CN109286124B (en) Laser linewidth compression method and system
US20230251378A1 (en) Use of frequency offsets in generation of lidar data
CN108242996A (en) A kind of quantum key delivering method and device
JP2009218837A (en) Optical receiving apparatus and optical receiving method
JP2011214921A (en) Interference type optical fiber sensor system and calculator
JP5760202B2 (en) Modulator
JP5042701B2 (en) Optical sampling apparatus and optical sampling method
JP4560440B2 (en) Demodulation circuit and demodulation method
JP5486965B2 (en) Optical phase modulation evaluation apparatus and optical phase modulation evaluation method
US20200408911A1 (en) Use of frequency offsets in generation of lidar data
JP6196879B2 (en) Signal analysis apparatus and signal analysis method
JP6703708B2 (en) Optical signal processing device and optical signal processing method
JP2010169504A (en) Jitter transfer characteristic measuring instrument
CN108462576A (en) local active phase compensation method and system
US11385353B2 (en) Use of frequency offsets in generation of lidar data
KR102022315B1 (en) Optical Interferometer and Method for Operating Thereof
JP6233820B2 (en) Sensing data transfer capability of phase generated carrier
JP2015108580A (en) Interference type optical fiber sensor
WO2018117149A1 (en) Light detection device, optical property analysis device, and light detection method
JP5617066B2 (en) Relative phase detector, relative phase detection method, and information reading apparatus
JP2014095633A (en) Interference type optical fiber sensor
JP5504419B2 (en) Light dispersion measuring device
JP4935596B2 (en) Semiconductor test equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150213

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5760202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees