JP2011216831A - Boil cooling device - Google Patents

Boil cooling device Download PDF

Info

Publication number
JP2011216831A
JP2011216831A JP2010092846A JP2010092846A JP2011216831A JP 2011216831 A JP2011216831 A JP 2011216831A JP 2010092846 A JP2010092846 A JP 2010092846A JP 2010092846 A JP2010092846 A JP 2010092846A JP 2011216831 A JP2011216831 A JP 2011216831A
Authority
JP
Japan
Prior art keywords
refrigerant
hollow
pipe
cooling device
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010092846A
Other languages
Japanese (ja)
Inventor
Wakana Nogami
若菜 野上
Yoshimasa Katsumi
佳正 勝見
Takuya Murayama
拓也 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010092846A priority Critical patent/JP2011216831A/en
Publication of JP2011216831A publication Critical patent/JP2011216831A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To secure sufficient natural convection wind to improve cooling capacity without using forced air cooling by a fan, in a boil cooling device for cooling a heating element by boil and condensation of a cooling medium.SOLUTION: This boil cooling device includes: a cooling tank 6 filled with a cooling medium 5 to be boiled and evaporated by absorbing heat of a control substrate 4 mounted in a communication instrument 1; and a radiator 7 for cooling and liquefying the cooling medium 5 boiled and evaporated in the cooling medium tank 6. Here, the radiator 7 is formed of a hollow cooling medium duct 8 having an annular passage cross section for running the cooling medium 5, and the cooling medium flowing through the hollow cooling medium duct 8 is cooled by rising air generated by chimney effect in an inner peripheral side space part 13 of the hollow cooling medium duct 8, whereby cooling capacity can be improved by securing sufficient natural convection wind.

Description

本発明は、冷媒の沸騰および凝縮により発熱体を冷却する沸騰冷却装置に関するものである。   The present invention relates to a boiling cooling device that cools a heating element by boiling and condensing refrigerant.

近年、電子機器の小型化高性能化を図る上で、半導体部品の高速処理に伴う発熱量の増加や制御基板への高密度実装化が進み、電子機器からの発熱量は飛躍的に増加している。また世界的な通信需要に対応するため、半導体部品などの高発熱部品を実装した通信機が市街地から離れた山林などの屋外に建てられた鉄塔の上部に設置されるケースが増えている。このような屋外設置型の通信機に搭載される冷却装置には、発熱量増加に対応するための冷却性能の向上とともに、メンテナンス作業を軽減するために耐久性を高めることが要求されている。このような要求に対し、沸騰気化した冷媒をファンによる強制空冷ではなく、自然対流によって冷却する沸騰冷却装置が知られている(例えば、特許文献1)。   In recent years, in order to reduce the size and performance of electronic devices, the amount of heat generated by high-speed processing of semiconductor components and the high-density mounting on control boards have progressed, and the amount of heat generated from electronic devices has increased dramatically. ing. In addition, in order to respond to global communication demands, communication devices equipped with high heat-generating parts such as semiconductor parts are increasingly installed on top of steel towers built outdoors such as forests away from urban areas. A cooling device mounted on such an outdoor-installed communication device is required to improve durability in order to reduce the maintenance work as well as to improve the cooling performance to cope with an increase in heat generation. In response to such a demand, a boiling cooling device is known that cools the vaporized refrigerant by natural convection instead of forced air cooling by a fan (for example, Patent Document 1).

以下、従来の沸騰冷却装置について、図15を参照しながら説明する。   Hereinafter, a conventional boiling cooling apparatus will be described with reference to FIG.

図15に示すように、沸騰冷却装置101は、電気回路などに用いられて駆動に伴い熱を発生する発熱体102と、発熱体102の熱を吸収して沸騰気化する冷媒が封入された冷媒槽103と、冷媒槽103の上方に植立された放熱器104を備えている。放熱器104は、断面扁平状の中空筒体からなる複数の放熱筒105を平行に所定の間隔で並べて構成されるもので、これら放熱筒105は、上端が閉じられ、下端が冷媒槽103に開口しているので、発熱体102の熱により沸騰気化した冷媒が上昇して放熱筒105内に導入される。放熱筒105は冷媒蒸気から熱を受け取り大気中に熱を放熱し、熱を奪われた冷媒は液化して放熱筒105内を滴下して冷媒槽103内に戻される。放熱筒105は扁平面が所定の間隔で平行に対向設定されるように垂直の状態で植立されているので、各放熱筒105の外周面から熱を受け取った空気が高温となって上昇し、効率の良い自然対流風による大気への放熱作用が行われる。   As shown in FIG. 15, the boiling cooling apparatus 101 includes a heating element 102 that is used in an electric circuit or the like and generates heat when driven, and a refrigerant that encloses the refrigerant that absorbs the heat of the heating element 102 and vaporizes it. A tank 103 and a radiator 104 planted above the refrigerant tank 103 are provided. The radiator 104 is configured by arranging a plurality of radiating cylinders 105 made of a hollow cylinder having a flat cross section at a predetermined interval in parallel, and these radiating cylinders 105 are closed at the upper end and are connected to the refrigerant tank 103 at the lower end. Since the openings are opened, the refrigerant that has been boiled and evaporated by the heat of the heating element 102 rises and is introduced into the heat radiating cylinder 105. The heat radiating cylinder 105 receives heat from the refrigerant vapor and dissipates the heat into the atmosphere. The refrigerant that has been deprived of heat is liquefied, dropped inside the heat radiating cylinder 105, and returned to the refrigerant tank 103. Since the radiating cylinder 105 is planted in a vertical state so that the flat surfaces are set to face each other in parallel at a predetermined interval, the air receiving heat from the outer peripheral surface of each radiating cylinder 105 rises at a high temperature. In addition, heat is released to the atmosphere by efficient natural convection.

特開平8−31996号公報JP-A-8-31996

このような従来の沸騰冷却装置においては、断面扁平状の放熱筒を平行に所定の間隔で対向するように配置し、放熱筒の間の空気に対して両側から放熱して空気を高温にして自然対流を促進するようにしているが、二方向からの放熱のみなので空気の昇温には限界があり、必要な自然対流風を得るための温度差の確保が難しく、また、放熱筒の下端に冷媒槽が設置されているため空気流通に対し抵抗となって自然対流が阻害されるため、発熱量の増加に対して十分な自然対流風を確保することができず冷却能力が不足するという課題があった。   In such a conventional boiling cooling device, a radiator tube having a flat cross section is arranged in parallel so as to face each other at a predetermined interval, and heat is radiated from both sides to the air between the radiator tubes to raise the temperature of the air. Although natural convection is promoted, there is a limit to the temperature rise of air because it only dissipates heat from two directions, and it is difficult to secure a temperature difference to obtain the necessary natural convection air. Since the refrigerant tank is installed in this area, it resists air flow and obstructs natural convection, so that sufficient natural convection air cannot be secured against an increase in the amount of heat generated, resulting in insufficient cooling capacity. There was a problem.

そこで本発明は、上記従来の課題を解決するものであり、ファンによる強制空冷を用いずに、十分な自然対流風を確保して冷却能力を向上することができる沸騰冷却装置を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and provides a boiling cooling device that can secure sufficient natural convection air and improve cooling capacity without using forced air cooling by a fan. Objective.

そして、この目的を達成するために、本発明は、駆動に伴い大量の熱を発生する発熱体を有する電子機器に取り付けられ、前記発熱体の熱を吸収して沸騰気化する冷媒が封入された冷媒槽と、前記冷媒槽において沸騰気化した冷媒を冷却して液化させる放熱器を備え、前記放熱器が、冷媒を流す環状流路断面を有する中空冷媒管路を備え、前記中空冷媒管路の内周側空間部に煙突効果によって生じる上昇気流によって、前記中空冷媒管路内を流れる冷媒を冷却するものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention is attached to an electronic device having a heating element that generates a large amount of heat when driven, and encloses a refrigerant that evaporates and absorbs the heat of the heating element. A refrigerant tank, and a radiator that cools and liquefies the refrigerant that has boiled and evaporated in the refrigerant tank, and the radiator includes a hollow refrigerant pipe having an annular channel cross section through which the refrigerant flows. The refrigerant flowing in the hollow refrigerant pipe is cooled by the rising airflow generated by the chimney effect in the inner circumferential space, thereby achieving the intended purpose.

本発明によれば、冷媒が流れる環状流路断面を有する中空冷媒管路の内周側空間部に煙突効果によって生じる上昇気流によって、中空冷媒管路内を流れる冷媒を冷却する構成としたことにより、ファンによる強制空冷を用いずに、煙突効果によって十分な自然対流風を確保して冷却能力を向上するという効果を得ることができる。   According to the present invention, the refrigerant flowing in the hollow refrigerant pipe is cooled by the ascending air flow generated by the chimney effect in the inner circumferential space of the hollow refrigerant pipe having an annular channel cross section through which the refrigerant flows. Without using forced air cooling by a fan, it is possible to obtain an effect of ensuring sufficient natural convection air by the chimney effect and improving the cooling capacity.

本発明の実施の形態1の通信機の設置状態を示す構成図The block diagram which shows the installation state of the communication apparatus of Embodiment 1 of this invention 同実施の形態1の通信機および沸騰冷却装置を示す斜視図The perspective view which shows the communication apparatus and boiling cooling device of Embodiment 1 同実施の形態1の通信機および沸騰冷却装置の概略断面を示す構成図The block diagram which shows the schematic cross section of the communication apparatus of the same Embodiment 1, and a boiling cooling device 同実施の形態1の中空冷媒管路の流路断面を示す構成図((a)流路断面形状が円環状の場合の流路断面を示す構成図、(b)流路断面形状が矩形環状の場合の流路断面を示す構成図)The block diagram which shows the flow-path cross section of the hollow refrigerant | coolant pipe line of Embodiment 1 ((a) The block diagram which shows the flow-path cross section in case the flow-path cross-sectional shape is annular | circular shape, (b) The flow-path cross-sectional shape is a rectangular ring shape Configuration diagram showing the cross section of the flow path in the case of 同実施の形態1の内周側空間部の相当直径寸法と内周側空間部に煙突効果によって生じる上昇気流の風速の関係を示すグラフThe graph which shows the relationship between the equivalent diameter dimension of the inner peripheral side space part of the Embodiment 1, and the wind speed of the updraft produced by the chimney effect in the inner peripheral side space part 同実施の形態1の中空冷媒管路の流路断面を示す構成図((a)冷媒流路内周面に細溝を設けた場合の流路断面を示す構成図、(b)冷媒流路外周面に細溝を設けた場合の流路断面を示す構成図、(c)内周側空間部側に放熱フィンを設けた場合の流路断面を示す構成図、(d)外周側に放熱フィンを設けた場合の流路断面を示す構成図)The block diagram which shows the flow-path cross section of the hollow refrigerant pipe of the Embodiment 1 ((a) The block diagram which shows the flow-path cross section at the time of providing a narrow groove in a refrigerant flow path internal peripheral surface, (b) Refrigerant flow path Configuration diagram showing a channel cross section when a narrow groove is provided on the outer peripheral surface, (c) Configuration diagram showing a channel cross section when a radiating fin is provided on the inner circumferential space side, (d) Heat radiation on the outer circumference side Configuration diagram showing the cross section of the flow path when fins are provided) 同実施の形態1の中空冷媒管路の断面を示す構成図((a)冷媒流路を冷媒の流れ方向において複数に分割した場合の流路断面を示す構成図、(b)分割流路の各々に冷媒が均一に流れるように整流板を形設した場合の縦断面を示す構成図)The block diagram which shows the cross section of the hollow refrigerant | coolant pipeline of Embodiment 1 ((a) The block diagram which shows the flow path cross section at the time of dividing | segmenting a refrigerant flow path into plurality in the flow direction of a refrigerant | coolant, (b) Configuration diagram showing a longitudinal section when a current plate is formed so that the refrigerant flows uniformly in each) 同実施の形態1の中空冷媒管路の部分正面概略図((a)中空冷媒管路内に螺旋状流路形成板を設けた場合の部分正面概略図、(b)中空冷媒管路内に階段状流路形成板を設けた場合の部分正面概略図)Partial front schematic view of the hollow refrigerant conduit of the first embodiment ((a) schematic partial front view when a spiral flow path forming plate is provided in the hollow refrigerant conduit, (b) in the hollow refrigerant conduit (Partial front schematic diagram when a stair-shaped channel forming plate is provided) 同実施の形態1の通信機および沸騰冷却装置を示す構成図The block diagram which shows the communication apparatus and boiling cooling device of Embodiment 1 本発明の実施の形態2の沸騰冷却装置の概略構成図((a)沸騰冷却装置の縦断面を示す構成図、(b)沸騰冷却装置の上面を示す構成図)Schematic configuration diagram of a boiling cooling device according to a second embodiment of the present invention ((a) Configuration diagram showing a longitudinal section of the boiling cooling device, (b) Configuration diagram showing an upper surface of the boiling cooling device) 本発明の実施の形態3の沸騰冷却装置の概略構成図((a)沸騰冷却装置の縦断面を示す構成図、(b)沸騰冷却装置の上面を示す構成図)The schematic block diagram of the boiling cooling device of Embodiment 3 of this invention ((a) The block diagram which shows the longitudinal cross-section of a boiling cooling device, (b) The block diagram which shows the upper surface of a boiling cooling device) 本発明の実施の形態4の中空冷媒管路を示す構成図((a)中空冷媒管路に円形状の孔を設けた場合の沸騰冷却装置を示す構成図、(b)中空冷媒管路に矩形状の孔を設けた場合の沸騰冷却装置を示す構成図)The block diagram which shows the hollow refrigerant pipe of Embodiment 4 of this invention ((a) The block diagram which shows the boiling cooling device at the time of providing a circular hole in a hollow refrigerant pipe, (b) In a hollow refrigerant pipe Configuration diagram showing a boil cooling device with a rectangular hole) 本発明の実施の形態5の通信機および沸騰冷却装置を示す構成図The block diagram which shows the communication apparatus and boiling cooling device of Embodiment 5 of this invention 本発明の実施の形態6の通信機および沸騰冷却装置を示す構成図The block diagram which shows the communication apparatus and boiling cooling device of Embodiment 6 of this invention 従来の沸騰冷却装置の概略構成図Schematic configuration diagram of a conventional boiling cooling device

本発明の請求項1記載の沸騰冷却装置は、駆動に伴い大量の熱を発生する発熱体を有する電子機器に取り付けられ、前記発熱体の熱を吸収して沸騰気化する冷媒が封入された冷媒槽と、前記冷媒槽において沸騰気化した冷媒を冷却して液化させる放熱器を備え、前記放熱器が、冷媒を流す環状流路断面を有する中空冷媒管路を備え、前記中空冷媒管路の内周側空間部に煙突効果によって生じる上昇気流によって、前記中空冷媒管路を流れる冷媒を冷却するという構成を有する。   The boiling cooling device according to claim 1 of the present invention is attached to an electronic device having a heating element that generates a large amount of heat when driven and encloses a refrigerant that absorbs the heat of the heating element and evaporates in a boiling state. A tank, and a radiator that cools and liquefies the refrigerant that has boiled and evaporated in the refrigerant tank, the radiator including a hollow refrigerant pipe having an annular channel cross section through which the refrigerant flows, and the inside of the hollow refrigerant pipe The refrigerant flowing through the hollow refrigerant pipe is cooled by an updraft generated by the chimney effect in the circumferential space.

これにより煙突効果、すなわち冷媒槽において発熱体の熱を吸収して沸騰気化した冷媒が中空冷媒管路の環状流路を流れ、環状流路の内周壁面を介して中空冷媒管路の内周側空間部に放熱することにより、内周側空間部内の空気温度が上昇して中空冷媒管路外部の空気との温度差が発生し、この温度差に伴う空気の密度差により内周側空間部内の高温空気が上昇して中空冷媒管路外部の低温空気と入れ替わること、により上昇気流が発生するので、十分な自然対流風が得られ冷却能力を向上することができる。   As a result, the chimney effect, that is, the refrigerant that has boiled and evaporated by absorbing the heat of the heating element in the refrigerant tank flows through the annular channel of the hollow refrigerant channel, and the inner periphery of the hollow refrigerant channel via the inner peripheral wall surface of the annular channel. By radiating heat to the side space, the air temperature in the inner space increases and a temperature difference with the air outside the hollow refrigerant pipe is generated. As the high-temperature air in the section rises and is replaced with the low-temperature air outside the hollow refrigerant pipe, an updraft is generated, so that sufficient natural convection air can be obtained and the cooling capacity can be improved.

また、中空冷媒管路の両端に冷媒が流入する冷媒流入口と冷媒が流出する冷媒流出口を各々設け、前記冷媒流入口が前記冷媒流出口よりも上方に位置するように前記中空冷媒管路を配設する構成とすれば、中空冷媒管路を流れて凝縮液化した冷媒が、気相冷媒との比重の差によって速やか下方に移動して冷媒流出口から流出するので、液冷媒の滞留による冷却性能の低下を抑制することができる。   The hollow refrigerant pipe is provided with a refrigerant inlet into which refrigerant flows in and a refrigerant outlet through which refrigerant flows out at both ends of the hollow refrigerant pipe, respectively, so that the refrigerant inlet is located above the refrigerant outlet. The refrigerant condensed and liquefied by flowing through the hollow refrigerant pipe quickly moves downward due to the difference in specific gravity with the gas-phase refrigerant and flows out from the refrigerant outlet. A decrease in cooling performance can be suppressed.

また、冷媒槽と冷媒流入口を連通する冷媒蒸気管と、冷媒槽と冷媒流出口を連通する冷媒液管を備え、前記冷媒蒸気管および前記冷媒液管を、中空冷媒管路の内周側空間部に生じる上昇気流を妨げないように、前記中空冷媒管路の外周側に配設する構成とすれば、空気抵抗の増加による自然対流量の減少に伴う冷却性能の低下を抑制することができる。   And a refrigerant vapor pipe communicating with the refrigerant tank and the refrigerant inlet, and a refrigerant liquid pipe communicating with the refrigerant tank and the refrigerant outlet, the refrigerant vapor pipe and the refrigerant liquid pipe being connected to the inner peripheral side of the hollow refrigerant pipe If it is configured to be arranged on the outer peripheral side of the hollow refrigerant pipe so as not to hinder the rising airflow generated in the space, it is possible to suppress a decrease in cooling performance due to a decrease in natural convection due to an increase in air resistance. it can.

また、冷媒蒸気管の流路断面積を冷媒液管の流路断面積よりも大きくする構成とすれば、比体積の大きい気相冷媒が流れる冷媒蒸気管の圧力損失と、比体積の小さい液相の冷媒が流れる冷媒液管の圧力損失の差を小さくでき、安定した冷媒循環を促して冷却能力を向上することができる。   Further, if the cross-sectional area of the refrigerant vapor pipe is made larger than the cross-sectional area of the refrigerant liquid pipe, the pressure loss of the refrigerant vapor pipe through which the gas phase refrigerant having a large specific volume flows and the liquid having a small specific volume are obtained. The difference in pressure loss of the refrigerant liquid pipe through which the phase refrigerant flows can be reduced, and stable refrigerant circulation can be promoted to improve the cooling capacity.

また、中空冷媒管路の断面形状を円環状に形成する構成とすれば、中空冷媒管路の内周側空間部の通風抵抗を小さくでき、自然対流風の減少に伴う冷却性能の低下を抑制することができる。   Moreover, if the cross-sectional shape of the hollow refrigerant pipe is formed in an annular shape, the ventilation resistance of the inner circumferential space of the hollow refrigerant pipe can be reduced, and the deterioration of the cooling performance due to the reduction of natural convection air is suppressed. can do.

また、中空冷媒管路の断面形状を矩形環状に形成する構成とすれば、所定の有効空間容積内の伝熱面積を大きく構成でき、中空冷媒管路内周側空間部への放熱量が増えるので、煙突効果による自然対流風が増加して冷却能力を向上することができる。   Further, if the cross-sectional shape of the hollow refrigerant pipe is formed in a rectangular ring shape, the heat transfer area within a predetermined effective space volume can be increased, and the amount of heat released to the inner space of the hollow refrigerant pipe is increased. Therefore, the natural convection wind due to the chimney effect increases and the cooling capacity can be improved.

また、中空冷媒管路内の冷媒流路を流通方向において分割する構成とすれば、分割された流路間相互の冷媒移動がなくなり冷媒流路断面方向における冷媒の偏流を抑制することができる。   Further, if the refrigerant flow path in the hollow refrigerant pipe is divided in the flow direction, there is no movement of refrigerant between the divided flow paths, and refrigerant drift in the refrigerant flow path cross-sectional direction can be suppressed.

そして、分割した冷媒流路の各々に冷媒が均一に流れるように整流板を形設する構成とすれば、冷媒からの均一な放熱が可能となり、煙突効果をより高めることができる。   And if it is set as the structure which forms a baffle plate so that a refrigerant | coolant may flow uniformly to each of the divided | segmented refrigerant | coolant flow path, the uniform heat dissipation from a refrigerant | coolant will be attained and the chimney effect can be improved more.

また、中空冷媒管路内の冷媒流路を螺旋状に形成する構成とすれば、この螺旋通路に沿って冷媒が流れるため、中空冷媒管路の流路断面方向における冷媒流量の不均一化による冷却能力の低下を抑制することができる。   In addition, if the refrigerant flow path in the hollow refrigerant pipe is formed in a spiral shape, the refrigerant flows along the spiral path, so that the refrigerant flow rate is not uniform in the cross-sectional direction of the hollow refrigerant pipe. A decrease in cooling capacity can be suppressed.

また、中空冷媒管路の冷媒流路を階段状に形成する構成とすれば、階段通路に沿って冷媒が流れるため、中空冷媒管路の流路断面方向における冷媒流量の不均一化による冷却能力の低下を抑制することができる。   In addition, if the refrigerant flow path of the hollow refrigerant pipe is formed in a staircase shape, the refrigerant flows along the stair path, so that the cooling capacity by non-uniform refrigerant flow rate in the cross-sectional direction of the flow path of the hollow refrigerant pipe Can be suppressed.

また、中空冷媒管路の冷媒流路の内周面に細溝を形成する構成とすれば、冷媒と中空冷媒管路内壁面との熱伝達を促進して冷却能力を向上することができる。   Moreover, if it is set as the structure which forms a thin groove | channel in the internal peripheral surface of the refrigerant flow path of a hollow refrigerant pipe line, heat transfer with a refrigerant | coolant and a hollow refrigerant pipe inner wall surface can be accelerated | stimulated, and cooling capacity can be improved.

また、中空冷媒管路の冷媒流路の外周面に細溝を形成する構成とすれば、冷媒と中空冷媒管路外壁面との熱伝達を促進して冷却能力を向上することができる。   Moreover, if it is set as the structure which forms a narrow groove in the outer peripheral surface of the refrigerant flow path of a hollow refrigerant pipe line, heat transfer with a refrigerant | coolant and a hollow refrigerant pipe outer wall surface can be accelerated | stimulated, and cooling capacity can be improved.

また、中空冷媒管路の内周側空間部に放熱フィンを形設する構成とすれば、内周側空間部に面する壁面と内周側空間部内の空気との熱伝達を促進して冷却能力を向上することができる。   In addition, if the structure is such that the radiating fins are formed in the inner circumferential space portion of the hollow refrigerant pipe, the heat transfer between the wall surface facing the inner circumferential space portion and the air in the inner circumferential space portion is promoted for cooling. Ability can be improved.

また、中空冷媒管路の外周側に放熱フィンを形設する構成とすれば、中空冷媒管路外周側壁面と中空冷媒管路周囲の空気との熱伝達を促進して冷却能力を向上することができる。   Further, if the configuration is such that the radiating fins are formed on the outer peripheral side of the hollow refrigerant pipe, the heat transfer between the hollow refrigerant pipe outer peripheral side wall surface and the air around the hollow refrigerant pipe is promoted to improve the cooling capacity. Can do.

また、中空冷媒管路の内周側空間部の相当直径を10ミリメートル以上とする構成とすれば、煙突効果により発生する上昇気流の風速を高めて放熱量を増加させ、冷却能力を向上することができる。   Also, if the equivalent diameter of the inner circumferential space of the hollow refrigerant pipe is set to 10 mm or more, the wind speed of the updraft generated by the chimney effect is increased to increase the heat radiation amount, thereby improving the cooling capacity. Can do.

さらに、中空冷媒管路の内周側空間部の相当直径を40ミリメートル未満とする構成とすれば、煙突効果により発生する上昇気流の風速を高めて放熱量を増加させ、冷却能力を向上することができる。   Furthermore, if the equivalent diameter of the inner circumferential space of the hollow refrigerant pipe is set to be less than 40 millimeters, the air flow generated by the chimney effect is increased to increase the heat dissipation and improve the cooling capacity. Can do.

また、中空冷媒管路の内周側空間部の気流流通方向が略鉛直方向となるように前記中空冷媒管路を配設する構成とすれば、煙突効果により発生する上昇気流が内周側空間部を通過する際の通風抵抗の増加を抑えて冷却性能の低下を抑制することができる。   Further, if the hollow refrigerant pipe is arranged so that the air flow direction in the inner circumferential space of the hollow refrigerant pipe is substantially vertical, the rising air flow generated by the chimney effect is generated in the inner circumferential space. It is possible to suppress an increase in ventilation resistance when passing through the section and suppress a decrease in cooling performance.

また、中空冷媒管路を複数設け、前記複数の中空冷媒管路の内周側空間部が相互に重ならないように前記複数の中空冷媒管路を並設する構成とすれば、各々の内周側空間部に発生する上昇気流を中空冷媒管路同士が互いに妨げることなく、これら中空冷媒管路を複数本設けることが可能となるので、相互干渉の影響なく効果的に冷却能力を増加させることができる。   Further, if a plurality of hollow refrigerant pipelines are provided, and the plurality of hollow refrigerant pipelines are arranged side by side so that inner space portions of the plurality of hollow refrigerant pipelines do not overlap each other, Since it is possible to provide a plurality of these hollow refrigerant pipes without disturbing each other the rising airflow generated in the side space, the cooling capacity can be effectively increased without the influence of mutual interference. Can do.

また、複数の中空冷媒管路を相互に間隔を設けて配設する構成とすれば、複数の中空冷媒管路の各々の外周面を放熱面として作用させて冷却能力を向上することができる。   Moreover, if it is set as the structure which arrange | positions a some hollow refrigerant | coolant pipe line at intervals, the outer peripheral surface of each of a some hollow refrigerant | coolant pipe | tube can be made to act as a thermal radiation surface, and a cooling capability can be improved.

また、複数の中空冷媒管路を直線状に配設する構成とすれば、沸騰冷却装置を薄型に構成することが可能となり設置性を向上することができる。   Moreover, if it is set as the structure which arrange | positions several hollow refrigerant pipes in linear form, it becomes possible to comprise a boiling cooling device thinly and can improve installation property.

また、複数の中空冷媒管路を環状に配設する構成とすれば、環状に配設された複数の中空冷媒管路の環状内部の空気が中空冷媒管路の環状内周側壁面からの放熱を受けて温度が上昇し、緩やかな煙突効果が発生するので、自然対流風が増加して冷却能力を向上することができる。   Further, if the plurality of hollow refrigerant pipes are arranged in a ring shape, the air inside the ring of the plurality of hollow refrigerant pipes arranged in the ring shape radiates heat from the annular inner peripheral side wall surface of the hollow refrigerant pipe line. As a result, the temperature rises and a gentle chimney effect is generated, so that the natural convection wind increases and the cooling capacity can be improved.

また、複数の中空冷媒管路の各々に冷媒が流入する冷媒流入口と冷媒が流出する冷媒流出口を設け、前記冷媒流入口の上下方向位置が各々同一となるように配設するとともに、前記冷媒流出口の上下方向位置も各々同一となるように配設する構成とすれば、複数の中空冷媒管路のヘッド差を同等にして複数の中空冷媒管路における冷媒流量のばらつきを低減し、冷媒流量不均一化による冷却能力の低下を抑制することができる。   In addition, a refrigerant inlet into which a refrigerant flows and a refrigerant outlet from which a refrigerant flows out are provided in each of the plurality of hollow refrigerant pipes, and the vertical positions of the refrigerant inlets are arranged to be the same, If the configuration in which the vertical positions of the refrigerant outlets are also arranged to be the same, the head difference of the plurality of hollow refrigerant pipes is made equal to reduce the variation in the refrigerant flow rate in the plurality of hollow refrigerant pipes, It is possible to suppress a decrease in cooling capacity due to the non-uniform refrigerant flow rate.

また、複数の中空冷媒管路の冷媒流入口と冷媒槽とを各々連通する複数の冷媒蒸気管を設け、前記複数の冷媒蒸気管の長さが同一となるように構成すれば、冷媒槽から複数の中空冷媒管路に至る気相冷媒経路の長さが同等となるので、複数の中空冷媒管路における冷媒流量のばらつきを低減して、冷媒流量不均一化による冷却能力の低下を抑制することができる。   In addition, if a plurality of refrigerant vapor pipes that respectively connect the refrigerant inlets and the refrigerant tanks of the plurality of hollow refrigerant pipes are provided and the lengths of the plurality of refrigerant vapor pipes are the same, Since the lengths of the gas-phase refrigerant paths leading to the plurality of hollow refrigerant pipes are equal, the variation in the refrigerant flow rate in the plurality of hollow refrigerant pipes is reduced, and the deterioration of the cooling capacity due to the uneven refrigerant flow rate is suppressed. be able to.

また、複数の中空冷媒管路の冷媒流出口と冷媒槽とを各々連通する複数の冷媒液管を設け、前記複数の冷媒液管の長さが同一となるように構成すれば、複数の中空冷媒管路から冷媒槽に至る液相の冷媒経路の長さが同等となるので、複数の中空冷媒管路における冷媒流量のばらつきを低減して、冷媒流量不均一化による冷却能力の低下を抑制することができる。   Further, if a plurality of refrigerant liquid pipes that respectively connect the refrigerant outlets and the refrigerant tanks of the plurality of hollow refrigerant pipe lines are provided and the lengths of the plurality of refrigerant liquid pipes are the same, a plurality of hollow liquid pipes are provided. Since the length of the liquid-phase refrigerant path from the refrigerant pipe to the refrigerant tank is the same, variation in refrigerant flow in multiple hollow refrigerant pipes is reduced, and the decline in cooling capacity due to uneven refrigerant flow is suppressed. can do.

また、複数の中空冷媒管路の冷媒流入口と冷媒槽とを各々連通する複数の冷媒蒸気管と、複数の中空冷媒管路の冷媒流出口と前記冷媒槽とを各々連通する複数の冷媒液管を設け、前記中空冷媒管路に接続されている前記冷媒蒸気管と前記冷媒液管の合計長さが各々同一となるように構成すれば、冷媒槽から複数の中空冷媒管路に至る気相冷媒経路と、複数の中空冷媒管路から冷媒槽に至る液相の冷媒経路との合計長さが同等となるので、複数の中空冷媒管路における冷媒流量のばらつきを低減して冷媒流量不均一化による冷却能力の低下を抑制することができる。   A plurality of refrigerant vapor pipes that respectively connect the refrigerant inlets of the plurality of hollow refrigerant pipes and the refrigerant tank; and a plurality of refrigerant liquids that respectively connect the refrigerant outlets of the plurality of hollow refrigerant pipes and the refrigerant tank. If the total length of the refrigerant vapor pipe and the refrigerant liquid pipe connected to the hollow refrigerant pipe is the same, the air from the refrigerant tank to the plurality of hollow refrigerant pipes is provided. The total length of the two-phase refrigerant path and the liquid-phase refrigerant path from the plurality of hollow refrigerant pipes to the refrigerant tank are equal to each other. A decrease in cooling capacity due to the homogenization can be suppressed.

また、複数の中空冷媒管路の冷媒流入口同士を連結する蒸気ヘッダと、前記複数の中空冷媒管路の冷媒流出口同士を連結する液ヘッダを設け、前記蒸気ヘッダと冷媒槽を冷媒蒸気管で連通するとともに、前記液ヘッダと前記冷媒槽を冷媒液管で連通する構成とすれば、蒸気ヘッダ内部および液ヘッダ内部において冷媒を均圧化して複数の中空冷媒管路における冷媒流量のばらつきを低減し、冷媒流量不均一化による冷却能力の低下を抑制することができる。   In addition, a vapor header that connects refrigerant inlets of the plurality of hollow refrigerant pipes and a liquid header that connects refrigerant outlets of the plurality of hollow refrigerant pipes are provided, and the vapor header and the refrigerant tank are connected to the refrigerant vapor pipe. If the liquid header and the refrigerant tank are communicated with each other by a refrigerant liquid pipe, the refrigerant is pressure-equalized in the vapor header and the liquid header, and the variation in the refrigerant flow rate in the plurality of hollow refrigerant pipes is achieved. It is possible to reduce the cooling capacity due to non-uniform refrigerant flow rate.

また、蒸気ヘッダと冷媒蒸気管との接続部分と、液ヘッダと冷媒液管との接続部分を、複数の中空冷媒管路の配列方向において対向位置となる構成とすれば、蒸気ヘッダに流入した後、各々の中空冷媒管路内を流れて液ヘッダから流出するまでの各々の冷媒経路の長さが同等となるので、各冷媒経路における冷媒流量のばらつきを低減して冷媒流量不均一化による冷却能力の低下を抑制することができる。   In addition, if the connection portion between the steam header and the refrigerant vapor pipe and the connection portion between the liquid header and the refrigerant liquid pipe are configured to face each other in the arrangement direction of the plurality of hollow refrigerant pipes, the vapor header flows into the vapor header. After that, the lengths of the respective refrigerant paths from the inside of each hollow refrigerant pipe to the outflow from the liquid header are equal, so that the variation in the refrigerant flow rate in each refrigerant path is reduced and the refrigerant flow is made non-uniform. A decrease in cooling capacity can be suppressed.

また、中空冷媒管路を複数の中空管により形成すれば、内周側空間部に面する壁面と内周側空間部内の空気との接触面積が増大し、中空冷媒管路の内壁と中空冷媒管路内を流れる冷媒との接触面積が増大し、かつ内周側空間部の途中から周囲の空気を取り入れることが可能となるので熱伝達を更に促進して冷却能力を向上することができる。   Further, if the hollow refrigerant pipe is formed by a plurality of hollow pipes, the contact area between the wall surface facing the inner circumferential space and the air in the inner circumferential space increases, and the inner wall of the hollow refrigerant pipe and the hollow The contact area with the refrigerant flowing in the refrigerant pipe increases, and ambient air can be taken in from the middle of the inner space, so heat transfer can be further promoted to improve the cooling capacity. .

また、中空冷媒管路に複数の円形状の孔を備える構成とすれば、内周側空間部に面する壁面と内周側空間部内の空気との接触面積が増大し、中空冷媒管路の内壁と中空冷媒管路内を流れる冷媒との接触面積が増大し、かつ内周側空間部の途中から周囲の空気を取り入れることが可能となるので熱伝達を更に促進して冷却能力を向上することができる。   Further, if the hollow refrigerant pipe has a plurality of circular holes, the contact area between the wall surface facing the inner circumferential space and the air in the inner circumferential space increases, and the hollow refrigerant pipe The contact area between the inner wall and the refrigerant flowing in the hollow refrigerant pipe is increased, and ambient air can be taken in from the middle of the inner space, so heat transfer is further promoted to improve the cooling capacity. be able to.

また、中空冷媒管路に複数の矩形状の孔を備える構成とすれば、内周側空間部に面する壁面と内周側空間部内の空気との接触面積が増大し、中空冷媒管路の内壁と中空冷媒管路内を流れる冷媒との接触面積が増大し、平易な構成で内周側空間部の途中から周囲の空気を取り入れることが可能となるので熱伝達を更に促進して冷却能力を向上することができる。   Further, if the hollow refrigerant pipe is provided with a plurality of rectangular holes, the contact area between the wall surface facing the inner circumferential space and the air in the inner circumferential space increases, and the hollow refrigerant pipe The contact area between the inner wall and the refrigerant flowing in the hollow refrigerant pipe is increased, and it is possible to take in the surrounding air from the middle of the inner space with a simple structure, further enhancing heat transfer and cooling capacity. Can be improved.

また、中空冷媒管路に周囲から空気を導入させる導入筒を備える構成とすれば、中空冷媒管路の内周側空間部に周囲からの空気が導入しやすくなり、十分な自然対流風が得られ冷却能力を向上することができる。   In addition, if the structure is provided with an introduction tube that introduces air from the surroundings into the hollow refrigerant pipe, air from the surroundings can be easily introduced into the inner circumferential space of the hollow refrigerant pipe, and sufficient natural convection wind is obtained. Cooling capacity can be improved.

また、中空冷媒管路に周囲から流入する空気を調整する空気量調整筒を備える構成とすれば、中空冷媒管路の内周側空間部に周囲からの空気が流入する空気量を調節することができ、通信機の温度が所定の温度以上に冷却されることを防ぎ、沸騰冷却装置の信頼性を向上することができる。   Moreover, if it is set as the structure provided with the air quantity adjustment cylinder which adjusts the air which flows in into a hollow refrigerant pipe from the circumference, the air quantity from which the air from the circumference flows into the inner peripheral side space part of a hollow refrigerant pipe will be adjusted. It is possible to prevent the temperature of the communication device from being cooled to a predetermined temperature or higher, and improve the reliability of the boiling cooling device.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、電子機器の代表の一つである携帯電話の通信機1は、郊外の僻地や山林の奥地に建てられた鉄塔2の上部にアンテナ3とともに設置されている。この通信機1は、アンテナ3を通じて端末である携帯電話との送受信を無線で行い、各端末間での通話や通信を中継する役割を担うことによって電話通信網を構築している。
(Embodiment 1)
As shown in FIG. 1, a cellular phone communication device 1, which is one of representative electronic devices, is installed together with an antenna 3 on an upper part of a steel tower 2 built in a suburb of remote areas or in a mountainous forest. The communication device 1 constructs a telephone communication network by performing transmission / reception with a mobile phone which is a terminal through an antenna 3 by radio and relaying a call and communication between the terminals.

また図2、図3に示すように、通信機1の内部には、発熱体として半導体部品や集積回路などの高発熱部品が高密度に実装された制御基板4が搭載されており、この制御基板4の背面側に冷媒5が封入された冷媒槽6が密着状態で取付けられている。この冷媒槽6の上方には、冷媒5の熱を外部に放熱させるための放熱器7が設けられており、この放熱器7は、冷媒5が流れる円環状の流路断面を有する煙突状の中空冷媒管路8から構成されている。この中空冷媒管路8は円環状の流路断面を流れる冷媒5の流通方向が鉛直方向となるように形成されている。   As shown in FIGS. 2 and 3, a control board 4 on which high heat-generating components such as semiconductor components and integrated circuits are mounted at high density is mounted as a heat generator inside the communication device 1. A refrigerant tank 6 in which a refrigerant 5 is sealed is attached to the back side of the substrate 4 in a close contact state. Above the refrigerant tank 6, a radiator 7 for radiating the heat of the refrigerant 5 to the outside is provided, and the radiator 7 has a chimney-like shape having a circular channel cross section through which the refrigerant 5 flows. It consists of a hollow refrigerant pipe 8. The hollow refrigerant pipe 8 is formed so that the flow direction of the refrigerant 5 flowing through the annular channel cross section is the vertical direction.

また、中空冷媒管路8の上端側面には冷媒5を流入させるための冷媒流入口9が開設されており、また、中空冷媒管路8の下端側面には冷媒5が流出する冷媒流出口10が開設されている。冷媒流入口9は冷媒蒸気管11を通じて冷媒槽6の上部と連通状態に接続されており、また、冷媒流出口10は冷媒液管12により冷媒槽6の下部と連通状態に接続されている。   In addition, a refrigerant inlet 9 for allowing the refrigerant 5 to flow in is opened on the upper side surface of the hollow refrigerant pipe 8, and a refrigerant outlet 10 through which the refrigerant 5 flows out on the lower side face of the hollow refrigerant pipe 8. Has been established. The refrigerant inlet 9 is connected to the upper part of the refrigerant tank 6 through the refrigerant vapor pipe 11, and the refrigerant outlet 10 is connected to the lower part of the refrigerant tank 6 through the refrigerant liquid pipe 12.

ここで通信機1が駆動すると、制御基板4に実装されている半導体部品や集積回路が発熱して大量の熱が発生する。発生した熱は、制御基板4の背面側から冷媒槽6内部に伝達して冷媒槽6内の冷媒5を加熱する。制御基板4で発生した熱を吸収した冷媒5は、沸騰気化してガス状態となり、冷媒槽6の上部に接続された冷媒蒸気管11を通じて冷媒流入口9から中空冷媒管路8に流入する。   Here, when the communication device 1 is driven, semiconductor components and integrated circuits mounted on the control board 4 generate heat and generate a large amount of heat. The generated heat is transmitted from the back side of the control board 4 to the inside of the refrigerant tank 6 to heat the refrigerant 5 in the refrigerant tank 6. The refrigerant 5 that has absorbed the heat generated in the control board 4 is boiled and vaporized into a gas state, and flows into the hollow refrigerant pipe 8 from the refrigerant inlet 9 through the refrigerant vapor pipe 11 connected to the upper part of the refrigerant tank 6.

中空冷媒管路8に流入した気相状態の冷媒5は、円環状断面の流路を流れて流路外部の空気に放熱する。特に中空冷媒管路8の円環状断面流路の内周側空間部13には、周囲全面から冷媒5の放熱を受けるため、内周側空間部13内の空気温度が中空冷媒管路8周辺の空気に比して上昇し密度差が発生する。この密度差により内周側空間部13内の空気が上昇し、いわゆる煙突効果による上昇気流14が発生する。   The gas-phase refrigerant 5 that has flowed into the hollow refrigerant pipe 8 flows through the channel having an annular cross section and radiates heat to the air outside the channel. In particular, since the refrigerant 5 is radiated from the entire surface in the inner circumferential side space 13 of the annular cross-section channel of the hollow refrigerant pipe 8, the air temperature in the inner circumferential side space 13 is around the hollow refrigerant pipe 8. As compared with the air, the density rises and a density difference occurs. Due to this density difference, the air in the inner circumferential side space portion 13 rises, and an updraft 14 due to the so-called chimney effect is generated.

中空冷媒管路8内を流れる冷媒5は、この上昇気流14によって冷却されて液化する。液化した冷媒5は、その自重によって中空冷媒管路8内を下方に移動して冷媒流出口10から冷媒液管12を通って冷媒槽6に戻る。冷媒槽6に戻った液相状態の冷媒5は、再び制御基板4で発生した熱を吸収して沸騰気化し、冷媒蒸気管11を通って冷媒流入口9から中空冷媒管路8に流入し外気で冷却されて液化する。このような冷媒5の気液状態変化が繰り返されることにより沸騰冷却装置15が動作し、制御基板4の発熱が外気に放熱されて処理されることになる。   The refrigerant 5 flowing in the hollow refrigerant pipe 8 is cooled and liquefied by the rising air flow 14. The liquefied refrigerant 5 moves downward in the hollow refrigerant pipe 8 due to its own weight, returns from the refrigerant outlet 10 to the refrigerant tank 6 through the refrigerant liquid pipe 12. The liquid-phase refrigerant 5 that has returned to the refrigerant tank 6 again absorbs heat generated in the control board 4 and evaporates, and flows into the hollow refrigerant pipe 8 from the refrigerant inlet 9 through the refrigerant vapor pipe 11. It is cooled by outside air and liquefied. By repeating such a change in the gas-liquid state of the refrigerant 5, the boiling cooling device 15 operates, and the heat generated by the control board 4 is dissipated to the outside air and processed.

ここで、冷媒流入口9は冷媒流出口10よりも上方に開口しているため、中空冷媒管路8内で凝縮液化した液相の冷媒が気相状態の冷媒との比重の差によって速やかに下方に移動し、冷媒液の滞留が抑制されて円滑な冷媒循環が行われる。また冷媒槽6においても冷媒蒸気管11の接続部が冷媒液管12との接続部よりも上方にあるため、制御基板4の熱により沸騰気化した気相冷媒が滞ることなく上部に移動して冷媒蒸気管11から流出し円滑な冷媒循環を行うことができる。   Here, since the refrigerant inlet 9 is opened above the refrigerant outlet 10, the liquid-phase refrigerant condensed and liquefied in the hollow refrigerant pipe 8 is promptly caused by the difference in specific gravity from the gas-phase refrigerant. The refrigerant moves downward, the refrigerant liquid is prevented from staying, and smooth refrigerant circulation is performed. Also, in the refrigerant tank 6, the connection part of the refrigerant vapor pipe 11 is located above the connection part with the refrigerant liquid pipe 12, so that the gas-phase refrigerant boiled and vaporized by the heat of the control board 4 moves upward without stagnation. The refrigerant flows out of the refrigerant vapor pipe 11 and can smoothly circulate the refrigerant.

また、冷媒蒸気管11と冷媒液管12は、いずれも中空冷媒管路8の外周側に設けられているので、内周側空間部13に発生する上昇気流14が妨げられることはなく、十分な自然対流風を確保することができる。さらに、比体積の大きい気相冷媒が流れる冷媒蒸気管11の流路断面積を、比体積が小さい液相の冷媒が流通する冷媒液管12の流路断面積よりも大きくしているので、冷媒蒸気管11と冷媒液管の圧力損失差が小さくなり、安定した冷媒循環が促される。   Moreover, since both the refrigerant | coolant vapor pipe | tube 11 and the refrigerant | coolant liquid pipe | tube 12 are provided in the outer peripheral side of the hollow refrigerant pipe line 8, the updraft 14 generate | occur | produced in the inner peripheral side space part 13 is not prevented, and is enough Natural convection winds can be secured. Furthermore, since the flow path cross-sectional area of the refrigerant vapor pipe 11 through which the gas phase refrigerant having a large specific volume flows is larger than the flow path cross-sectional area of the refrigerant liquid pipe 12 through which the liquid phase refrigerant having a small specific volume flows, The pressure loss difference between the refrigerant vapor pipe 11 and the refrigerant liquid pipe is reduced, and stable refrigerant circulation is promoted.

さらに、煙突状の中空冷媒管路8は、円環状の流路断面を流れる冷媒5の流通方向が鉛直方向になるように配設されているので内周側空間部13内の上昇気流14の流通方向も同様に鉛直方向に設定されるため、煙突効果により発生する上昇気流14が真っ直ぐに立ち上がり内周側空間部13における通風抵抗の増加を抑制することができる。   Further, the chimney-shaped hollow refrigerant pipe 8 is arranged so that the flow direction of the refrigerant 5 flowing through the annular channel cross section is a vertical direction, so that the ascending air flow 14 in the inner circumferential side space portion 13 is reduced. Similarly, since the flow direction is also set to the vertical direction, the rising air flow 14 generated by the chimney effect rises straight, and an increase in ventilation resistance in the inner circumferential space 13 can be suppressed.

また、中空冷媒管路8の流路断面形状としては、図4(a)に示すような円環状に限らず、図4(b)に示すように矩形環状に形成することも可能である。中空冷媒管路8の流路断面形状を円環状に形成した場合は、内周側空間部13を上昇気流14が通過する際の通風抵抗が小さくなり、十分な自然対流風を確保することができる。一方、中空冷媒管路8の流路断面形状を矩形環状に形成した場合は、内周側空間部13に面する伝熱面積を大きくすることが容易となり、内周側空間部13への放熱量を増やして、煙突効果による自然対流風を増加させることができる。   Further, the cross-sectional shape of the flow path of the hollow refrigerant pipe 8 is not limited to the annular shape as shown in FIG. 4A, but can be formed into a rectangular shape as shown in FIG. 4B. When the cross-sectional shape of the flow path of the hollow refrigerant pipe 8 is formed in an annular shape, the ventilation resistance when the ascending air flow 14 passes through the inner circumferential space 13 is reduced, and sufficient natural convection air can be secured. it can. On the other hand, when the cross-sectional shape of the hollow refrigerant pipe 8 is formed in a rectangular ring shape, it becomes easy to increase the heat transfer area facing the inner circumferential space 13 and release to the inner circumferential space 13. The amount of heat can be increased to increase the natural convection wind due to the chimney effect.

また図4(a)において矢符で示す内周側空間部13の内径寸法16は、10ミリメートル以上40ミリメートル未満の範囲で設定することが好ましい。この内周側空間部13の内径寸法16と内周側空間部13に煙突効果によって生じる上昇気流14の風速との関係を図5に示す。   Moreover, it is preferable to set the internal diameter dimension 16 of the inner peripheral side space part 13 shown with an arrow in Fig.4 (a) in the range of 10 millimeters or more and less than 40 millimeters. FIG. 5 shows a relationship between the inner diameter dimension 16 of the inner circumferential space 13 and the wind speed of the ascending air flow 14 generated by the chimney effect in the inner circumferential space 13.

図5のグラフからも明らかなように内径寸法16が10ミリメートル未満だと上昇気流14流通時の通風抵抗が大きくなり自然対流風の風速が低下し、逆に内径寸法16が40ミリメートル以上だと、内周側空間部13の中央部分にまで放熱が十分に行われず空気温度が上昇しないため自然対流風の風量が低下する傾向となる。このように内周側空間部13の内径寸法16は、小さすぎても大きすぎても煙突効果を十分に得ることはできず、10ミリメートル以上40ミリメートル未満に設定することが好ましい。   As apparent from the graph of FIG. 5, when the inner diameter dimension 16 is less than 10 millimeters, the draft resistance during circulation of the updraft 14 increases and the wind speed of the natural convection decreases, and conversely, when the inner diameter dimension 16 is 40 millimeters or more. Further, since heat is not sufficiently released to the central portion of the inner circumferential space 13 and the air temperature does not rise, the amount of natural convection air tends to decrease. As described above, the inner diameter dimension 16 of the inner circumferential side space portion 13 is preferably set to be not less than 10 millimeters and less than 40 millimeters because the chimney effect cannot be sufficiently obtained even if it is too small or too large.

なお、中空冷媒管路8の流路断面形状が矩形環状の場合には内周側空間部13も矩形状になるが、この場合は、内周側空間部13の矩形寸法から円相当径を算出し、その円相当径を内径寸法16として適用すればよい。   In addition, when the cross-sectional shape of the flow path of the hollow refrigerant pipe 8 is rectangular, the inner circumferential space 13 is also rectangular. In this case, the equivalent circle diameter is determined from the rectangular dimension of the inner circumferential space 13. The circle equivalent diameter may be calculated and applied as the inner diameter dimension 16.

また中空冷媒管路8を、図6(a)に示すように冷媒流路内周面に細溝17を設けたり、図6(b)に示すように冷媒流路外周面に細溝17を設けたり、図6(c)に示すように内周側空間部13側に放熱フィン18を設けたり、図6(d)に示すように外周側に放熱フィン18を設けた構成としてもよい。   Further, the hollow refrigerant pipe 8 is provided with a narrow groove 17 on the inner peripheral surface of the refrigerant channel as shown in FIG. 6A, or the narrow groove 17 is provided on the outer peripheral surface of the refrigerant channel as shown in FIG. It is good also as a structure which provided the radiation fin 18 in the inner peripheral side space part 13 side as shown in FIG.6 (c), or provided the radiation fin 18 in the outer peripheral side as shown in FIG.6 (d).

図6(a)に示すように中空冷媒管路8の冷媒流路内周面側に細溝17を形成した場合は、冷媒5と中空冷媒管路8の内壁面との熱伝達が促進されて放熱量が増加することになる。また、図6(b)に示すように中空冷媒管路8の冷媒流路の外周面側に細溝17を形成した場合には、冷媒5と中空冷媒管路8の外壁面との熱伝達が促進されて放熱量が増加することになる。   As shown in FIG. 6 (a), when the narrow groove 17 is formed on the inner peripheral surface side of the refrigerant flow path of the hollow refrigerant pipe 8, heat transfer between the refrigerant 5 and the inner wall surface of the hollow refrigerant pipe 8 is promoted. As a result, the heat dissipation increases. 6B, when the narrow groove 17 is formed on the outer peripheral surface side of the refrigerant flow path of the hollow refrigerant pipe 8, heat transfer between the refrigerant 5 and the outer wall surface of the hollow refrigerant pipe 8 is achieved. Will be promoted and the amount of heat release will increase.

さらに、図6(c)に示すように中空冷媒管路8の内周側空間部13側に放熱フィン18を形設した場合は、内周側空間部13に面する壁面と内周側空間部13内の空気との熱伝達が促進されて放熱量が増加することになる。また、図6(d)に示すように中空冷媒管路8の外周側に放熱フィン18を形設した場合には、中空冷媒管路8の外周側壁面と中空冷媒管路周囲の空気との熱伝達が促進されて放熱量が増加することになる。   Furthermore, as shown in FIG. 6C, when the radiation fin 18 is formed on the inner circumferential side space 13 side of the hollow refrigerant pipe 8, the wall surface and the inner circumferential side space facing the inner circumferential side space 13. Heat transfer with the air in the portion 13 is promoted, and the heat dissipation amount increases. In addition, when the radiating fins 18 are formed on the outer peripheral side of the hollow refrigerant pipe 8 as shown in FIG. 6D, the outer peripheral side wall surface of the hollow refrigerant pipe 8 and the air around the hollow refrigerant pipe Heat transfer is promoted and the amount of heat release increases.

内周側空間部13の煙突効果を活用して放熱する場合には、中空冷媒管路8の内壁面との熱伝達が促進される図6(a)、図6(c)が好ましい。   6 (a) and 6 (c) in which heat transfer with the inner wall surface of the hollow refrigerant pipe 8 is promoted when heat is radiated utilizing the chimney effect of the inner circumferential side space portion 13 is preferred.

また、図7(a)に示すように中空冷媒管路8内に流路分割板19を設けて、中空冷媒管路8を冷媒5の流れ方向において複数の流路に分割しても良い。このようにすれば流路分割板19によって分割された流路間相互の冷媒移動が無くなり、中空冷媒管路8の冷媒流路断面方向における冷媒5の偏流を抑制することができる。   Further, as shown in FIG. 7A, a flow path dividing plate 19 may be provided in the hollow refrigerant pipe 8 so that the hollow refrigerant pipe 8 is divided into a plurality of flow paths in the flow direction of the refrigerant 5. By doing so, there is no movement of the refrigerant between the flow paths divided by the flow path dividing plate 19, and it is possible to suppress the drift of the refrigerant 5 in the direction of the cross section of the refrigerant flow path of the hollow refrigerant pipe 8.

さらに図7(b)に示すように流路分割板19によって分割された流路各々に冷媒5が均一に流れるように中空冷媒管路8の冷媒流入口9近傍に整流板20を付設する構成としてもよい。このように整流板20を設けた場合には、冷媒5から内周側空間部13へのより均一な放熱が可能となるので煙突効果が高まり自然対流風を増加させることができる。   Further, as shown in FIG. 7B, a rectifying plate 20 is provided in the vicinity of the refrigerant inlet 9 of the hollow refrigerant pipe 8 so that the refrigerant 5 flows uniformly in each of the flow paths divided by the flow path dividing plate 19. It is good. When the rectifying plate 20 is provided in this manner, more uniform heat dissipation from the refrigerant 5 to the inner circumferential space 13 is possible, so that the chimney effect is enhanced and natural convection air can be increased.

また、中空冷媒管路8内の環状冷媒流路内に、図8(a)に示す螺旋状流路形成板21や、図8(b)に示す階段状流路形成板22を設けた構成としてもよい。図8(a)に示す螺旋状流路形成板21を設けた場合には、中空冷媒管路8内の冷媒流路が螺旋状に形成されるため、この螺旋状流路形成板21に沿って冷媒5が流れて中空冷媒管路8の冷媒流路断面方向における冷媒流量不均一化が抑制されるともに冷媒5の中空冷媒管路8内の滞在時間が長くなり内周側空間部13への放熱量が増加することになる。   Also, a configuration in which the spiral flow path forming plate 21 shown in FIG. 8A and the stepped flow path forming plate 22 shown in FIG. 8B are provided in the annular refrigerant flow path in the hollow refrigerant pipe 8. It is good. When the spiral flow path forming plate 21 shown in FIG. 8A is provided, the refrigerant flow path in the hollow refrigerant pipe 8 is formed in a spiral shape. As a result, the refrigerant 5 flows and the non-uniformity of the refrigerant flow rate in the cross-sectional direction of the refrigerant flow path of the hollow refrigerant pipe 8 is suppressed, and the residence time of the refrigerant 5 in the hollow refrigerant pipe 8 is lengthened. The amount of heat dissipation increases.

また、図8(b)に示す階段状流路形成板22を設けた場合には、中空冷媒管路8内の冷媒流路が階段状に形成されるため、この階段状流路形成板22に沿って冷媒5が流れて中空冷媒管路8の冷媒流路断面方向における冷媒流量不均一化が抑制されるともに冷媒5の中空冷媒管路8内の滞在時間が長くなり内周側空間部13への放熱量が増加することになる。   Further, when the stepped flow path forming plate 22 shown in FIG. 8B is provided, the refrigerant flow path in the hollow refrigerant pipe 8 is formed in a stepped shape. As the refrigerant 5 flows along the refrigerant flow path, the non-uniform refrigerant flow rate in the cross-sectional direction of the refrigerant flow path of the hollow refrigerant pipe 8 is suppressed, and the residence time of the refrigerant 5 in the hollow refrigerant pipe 8 is increased. The amount of heat released to 13 will increase.

また、図9に示すように、中空冷媒管路8を複数の中空管により形成してもよい。このようにすれば、中空冷媒管路8の内周側空間部13に面する壁面の表面積が増大し、内周側空間部13を流れる空気との接触面積が増大する。また中空冷媒管路8を形成する複数の中空管の中を冷媒5が流れるので、冷媒5と中空冷媒管路8の流路内壁との接触面積が増大する。ここで、熱交換量は、低温側流体と高温側流体の温度差および熱交換に寄与する面積に比例する。これにより、熱交換効率が向上し、冷却能力を向上することができる。   Further, as shown in FIG. 9, the hollow refrigerant pipe 8 may be formed by a plurality of hollow pipes. If it does in this way, the surface area of the wall surface which faces the inner peripheral side space part 13 of the hollow refrigerant pipe line 8 will increase, and a contact area with the air which flows through the inner peripheral side space part 13 will increase. In addition, since the refrigerant 5 flows through the plurality of hollow tubes forming the hollow refrigerant pipe 8, the contact area between the refrigerant 5 and the inner wall of the flow path of the hollow refrigerant pipe 8 is increased. Here, the heat exchange amount is proportional to the temperature difference between the low temperature side fluid and the high temperature side fluid and the area contributing to heat exchange. Thereby, the heat exchange efficiency can be improved and the cooling capacity can be improved.

また更に、複数の中空管の間隙より周囲の空気を内周側空間部13へ取り込むことができるので、周囲の空気の温度と冷媒5の温度との温度差を大きく保つことができ、熱伝達を更に促進して冷却能力を向上することができる。   Furthermore, since the surrounding air can be taken into the inner space 13 through the gaps of the plurality of hollow tubes, the temperature difference between the temperature of the surrounding air and the temperature of the refrigerant 5 can be kept large, Transmission can be further promoted to improve cooling capacity.

(実施の形態2)
次に本発明の実施の形態2について説明する。なお実施の形態1と同一部分については、同一番号を付し、詳細な説明は省略する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図10(a)、図10(b)に示すように、この沸騰冷却装置15は、同一長さの複数本の中空冷媒管路8が、上下方向から見て円環状に互いに間隔を設けて配列されている。また、この複数の中空冷媒管路8は、各々の内周側空間部13内に発生する上昇気流14の流通方向が鉛直方向になる向きで、上下方向の高さを揃えて配置されている。   As shown in FIGS. 10 (a) and 10 (b), the boiling cooling device 15 includes a plurality of hollow refrigerant pipes 8 having the same length and spaced apart from each other in an annular shape when viewed from above and below. It is arranged. In addition, the plurality of hollow refrigerant pipes 8 are arranged with the height in the vertical direction aligned such that the flow direction of the ascending air flow 14 generated in each inner circumferential space 13 is in the vertical direction. .

これら複数の中空冷媒管路8の上端側面には冷媒5が流入する冷媒流入口9が各々開設されており、また複数の中空冷媒管路8の下端側面には冷媒5が流出する冷媒流出口10が各々開設されている。冷媒流入口9の各々は、上下方向において同一高さに設けられており、また冷媒流出口10の各々も上下方向において同一高さの位置に設けられている。   Refrigerant inlets 9 into which the refrigerant 5 flows are respectively opened at the upper side surfaces of the plurality of hollow refrigerant pipes 8, and the refrigerant outlets from which the refrigerant 5 flows out at the lower side surfaces of the plurality of hollow refrigerant pipes 8. 10 are established each. Each of the refrigerant inlets 9 is provided at the same height in the vertical direction, and each of the refrigerant outlets 10 is also provided at the same height in the vertical direction.

上下方向から見て円環状に配列された中空冷媒管路8の内周側中央部分には、発熱体である制御基板4の背面側に取り付けられた冷媒槽6が設けられており、この冷媒槽6は、上下方向においては中空冷媒管路8の下方に位置するように設置されている。   A refrigerant tank 6 attached to the back side of the control substrate 4 that is a heating element is provided at a central portion on the inner peripheral side of the hollow refrigerant pipes 8 arranged in an annular shape when viewed from the vertical direction. The tank 6 is installed so as to be positioned below the hollow refrigerant pipe 8 in the vertical direction.

また、複数の中空冷媒管路8の冷媒流入口9の各々に、それぞれ冷媒蒸気管11が接続されていて、これら冷媒蒸気管11の逆端側は、おのおの冷媒槽6の上部に接続されている。同様に複数の中空冷媒管路8の冷媒流出口10の各々に、それぞれ冷媒液管12が接続されており、これら冷媒液管12の逆端側が、おのおの冷媒槽6の下部に接続された構成となっている。これら中空冷媒管路8の冷媒流入口9の各々と冷媒槽6の上部を連通している冷媒蒸気管11の各々は全て同じ流路長さとなっており、同様に中空冷媒管路8の冷媒流出口10の各々と冷媒槽6の下部を連通している冷媒液管12も全て同じ流路長さとなっている。   A refrigerant vapor pipe 11 is connected to each of the refrigerant inlets 9 of the plurality of hollow refrigerant pipes 8, and the opposite ends of the refrigerant vapor pipes 11 are connected to the upper part of the refrigerant tank 6. Yes. Similarly, a refrigerant liquid pipe 12 is connected to each of the refrigerant outlets 10 of the plurality of hollow refrigerant pipes 8, and the opposite end side of these refrigerant liquid pipes 12 is connected to the lower part of each refrigerant tank 6. It has become. Each of the refrigerant vapor pipes 11 communicating with each of the refrigerant inlet 9 of the hollow refrigerant pipe 8 and the upper part of the refrigerant tank 6 has the same flow path length. Similarly, the refrigerant of the hollow refrigerant pipe 8 The refrigerant liquid pipes 12 communicating with each of the outlets 10 and the lower part of the refrigerant tank 6 all have the same flow path length.

ここで通信機1が駆動すると、制御基板4に実装されている半導体部品や集積回路が発熱して大量の熱が発生する。発生した熱は、制御基板4の背面側から冷媒槽6内部に伝達して冷媒槽6内の冷媒5を加熱する。制御基板4で発生した熱を吸収した冷媒5は、沸騰気化してガス状態となり、冷媒槽6の上部に接続された複数の冷媒蒸気管11の各々を通って冷媒流入口9から複数の中空冷媒管路8に流入する。   Here, when the communication device 1 is driven, semiconductor components and integrated circuits mounted on the control board 4 generate heat and generate a large amount of heat. The generated heat is transmitted from the back side of the control board 4 to the inside of the refrigerant tank 6 to heat the refrigerant 5 in the refrigerant tank 6. The refrigerant 5 that has absorbed the heat generated in the control board 4 is boiled and vaporized into a gas state, passes through each of the plurality of refrigerant vapor pipes 11 connected to the upper part of the refrigerant tank 6, and passes through a plurality of hollows from the refrigerant inlet 9. It flows into the refrigerant pipe 8.

円環状に配列された複数の中空冷媒管路8の各々に流入した気相状態の冷媒5は、円環状断面の流路を各々流れて流路外部の空気に放熱する。実施の形態1と同様に各々の中空冷媒管路8の円環状断面流路の内周側空間部13には、周囲全面から冷媒5の放熱を受けるため、内周側空間部13内の空気温度が中空冷媒管路8周辺の空気に比して上昇して密度差が発生し、この密度差により内周側空間部13内の空気が上昇する、いわゆる煙突効果によって上昇気流14が発生する。   The gas-phase refrigerant 5 that has flowed into each of the plurality of hollow refrigerant pipes 8 arranged in an annular shape flows through each of the annular cross-section channels and radiates heat to the air outside the channels. As in the first embodiment, the inner circumferential space 13 of the annular cross-section flow path of each hollow refrigerant pipe 8 receives heat from the entire surface of the refrigerant 5, and therefore air in the inner circumferential space 13. The temperature rises compared to the air around the hollow refrigerant pipe 8 and a density difference is generated, and the air in the inner circumferential side space portion 13 rises due to this density difference, and a rising air flow 14 is generated by a so-called chimney effect. .

これら複数の中空冷媒管路8は、内周側空間部13が相互に重ならないように円環状に並設されており、また、内周側空間部13の気流流通方向が鉛直方向になるように配置されているので、煙突効果により発生する上昇気流14各々が真っ直ぐに立ち上がって、互いの気流に影響を及ぼさずに煙突効果が最大限発揮されることになる。   The plurality of hollow refrigerant pipes 8 are arranged side by side in an annular shape so that the inner circumferential space portions 13 do not overlap each other, and the air flow direction in the inner circumferential space portion 13 is vertical. Therefore, each of the ascending airflows 14 generated by the chimney effect rises straight, and the chimney effect is exhibited to the maximum without affecting each other's airflow.

そして、これら複数の中空冷媒管路8は、互いに間隔を空けて円環状に配設されているので、中空冷媒管路8の各々の外周面が全て放熱面として作用し、中空冷媒管路8の外周側の空気に対しても十分な放熱を行うことができる。さらに、中空冷媒管路8の環状内周側の空気は、複数の中空冷媒管路8の環状内周側の壁面からの放熱を全周方向から受けるため、中空冷媒管路8の環状外周側の空気に比して温度が上昇し緩やかな煙突効果が発生して自然対流風を増加させることができる。   Since the plurality of hollow refrigerant pipes 8 are annularly arranged with a space between each other, all the outer peripheral surfaces of the hollow refrigerant pipes 8 act as heat radiation surfaces, and the hollow refrigerant pipe 8 Sufficient heat dissipation can also be performed for the air on the outer peripheral side of the. Furthermore, since the air on the inner circumferential side of the hollow refrigerant pipe 8 receives heat from the wall surface on the inner circumferential side of the plurality of hollow refrigerant pipes 8 from the entire circumferential direction, the outer circumferential side of the hollow refrigerant pipe 8 The temperature rises as compared with the air and a gentle chimney effect is generated to increase the natural convection wind.

このようにして中空冷媒管路8内を流れる冷媒5は、上昇気流14や環状内周側の空気で冷却されて液化する。液化した冷媒5は、その自重によって中空冷媒管路8内を下方に移動して冷媒流出口10から各々冷媒液管12を通って冷媒槽6に戻る。   In this way, the refrigerant 5 flowing through the hollow refrigerant pipe 8 is cooled and liquefied by the ascending airflow 14 or the air on the annular inner peripheral side. The liquefied refrigerant 5 moves downward in the hollow refrigerant pipe 8 by its own weight and returns to the refrigerant tank 6 from the refrigerant outlet 10 through the refrigerant liquid pipe 12.

ここで、複数の中空冷媒管路8の冷媒流入口9は上下方向において全て同一の高さに開口されており、同様に複数の中空冷媒管路8の冷媒流出口10も上下方向において全て同一の高さに開口されているので、各々の中空冷媒管路8におけるヘッド差が同等となり、複数の中空冷媒管路8の各々を流れる冷媒流量のばらつきが低減されることになる。   Here, the refrigerant inlets 9 of the plurality of hollow refrigerant pipes 8 are all opened at the same height in the vertical direction, and similarly, the refrigerant outlets 10 of the plurality of hollow refrigerant pipes 8 are all the same in the vertical direction. Therefore, the head difference in each of the hollow refrigerant pipes 8 is equal, and the variation in the flow rate of the refrigerant flowing through each of the plurality of hollow refrigerant pipes 8 is reduced.

また、複数の中空冷媒管路8の冷媒流入口9と冷媒槽6とを各々連通している冷媒蒸気管11は、全て同一長さに構成されているので、各々の冷媒蒸気管11を流れる気相冷媒の圧力損失が均一化し気相冷媒経路の冷媒流量のばらつきが低減されることになる。同様に複数の中空冷媒管路8の冷媒流出口10と冷媒槽6とを各々連通する冷媒液管12も全て同一長さに構成されているので、各々の冷媒液管12を流れる液相の冷媒の圧力損失も均一化し、液相の冷媒経路の冷媒流量のばらつきも低減されることになる。   In addition, since the refrigerant vapor pipes 11 respectively connecting the refrigerant inlets 9 and the refrigerant tanks 6 of the plurality of hollow refrigerant pipes 8 have the same length, they flow through the refrigerant vapor pipes 11. The pressure loss of the gas-phase refrigerant becomes uniform, and the variation in the refrigerant flow rate in the gas-phase refrigerant path is reduced. Similarly, since the refrigerant liquid pipes 12 communicating with the refrigerant outlets 10 of the plurality of hollow refrigerant pipes 8 and the refrigerant tank 6 are all configured to have the same length, the liquid phase flowing through each refrigerant liquid pipe 12 The pressure loss of the refrigerant is also made uniform, and the variation in the refrigerant flow rate in the liquid phase refrigerant path is also reduced.

すなわち、冷媒槽6から冷媒蒸気管11を通って中空冷媒管路8を流れ冷媒液管12を通って冷媒槽6に戻る各々の経路の合計流路長さが同一となるので、これら複数の中空冷媒管路8を流れる冷媒流量のばらつきが低減されて冷媒流量不均一化による冷却能力の低下を抑制することができる。   That is, the total flow path length of each path from the refrigerant tank 6 through the refrigerant vapor pipe 11 through the hollow refrigerant pipe 8 and back to the refrigerant tank 6 through the refrigerant liquid pipe 12 is the same. Variations in the flow rate of the refrigerant flowing through the hollow refrigerant pipe 8 are reduced, and a decrease in cooling capacity due to non-uniform refrigerant flow rate can be suppressed.

そして冷媒槽6に戻った液相の冷媒5は、再び制御基板4で発生した熱を吸収して沸騰気化し、冷媒蒸気管11を各々通って複数の中空冷媒管路8に流入し再び外気で冷却されて液化する。このような冷媒5の気液状態変化が繰り返されることにより沸騰冷却装置15が動作し、制御基板4の発熱が外気に放熱されて処理されることになる。   The liquid-phase refrigerant 5 returned to the refrigerant tank 6 again absorbs heat generated in the control board 4 and evaporates, flows into the plurality of hollow refrigerant pipes 8 through the refrigerant vapor pipes 11, and again flows into the outside air. Cools and liquefies. By repeating such a change in the gas-liquid state of the refrigerant 5, the boiling cooling device 15 operates, and the heat generated by the control board 4 is dissipated to the outside air and processed.

(実施の形態3)
次に本発明の実施の形態3について説明する。なお実施の形態1および実施の形態2と同一部分については、同一番号を付し、詳細な説明は省略する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described. The same parts as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図11(a)、図11(b)に示すように、この沸騰冷却装置15は、同一長さの複数本の中空冷媒管路8が、上下方向から見て直線状に配列されており、この複数の中空冷媒管路8は、各々の内周側空間部13内に発生する上昇気流14の流通方向が鉛直方向となる向きで、上下方向における設置高さを揃えて配設されている。このように複数の中空冷媒管路8を直線状に配置することにより、沸騰冷却装置15を薄型に構成して設置性を向上させている。   As shown in FIG. 11 (a) and FIG. 11 (b), in this boiling cooling device 15, a plurality of hollow refrigerant conduits 8 having the same length are arranged in a straight line when viewed from above and below, The plurality of hollow refrigerant pipes 8 are arranged with the installation height in the vertical direction aligned such that the flow direction of the ascending air flow 14 generated in each inner peripheral space 13 is the vertical direction. . Thus, by arranging the plurality of hollow refrigerant pipes 8 in a straight line, the boiling cooling device 15 is configured to be thin to improve the installation property.

また、これら複数の中空冷媒管路8の上端側面には冷媒5が流入する冷媒流入口9が各々開設されており、この冷媒流入口9の各々を連結する筒状の蒸気ヘッダ23が配設されている。また複数の中空冷媒管路8の下端側面には冷媒5が流出する冷媒流出口10が各々開設されており、これら冷媒流出口10の各々を連結する筒状の液ヘッダ24が配設されている。   In addition, refrigerant inlets 9 into which the refrigerant 5 flows are respectively opened on the upper side surfaces of the plurality of hollow refrigerant pipes 8, and cylindrical vapor headers 23 connecting the refrigerant inlets 9 are arranged. Has been. Further, refrigerant outlets 10 through which the refrigerant 5 flows out are respectively opened on the lower side surfaces of the plurality of hollow refrigerant pipes 8, and a cylindrical liquid header 24 that connects each of the refrigerant outlets 10 is provided. Yes.

この蒸気ヘッダ23および液ヘッダ24により連結固定された複数の中空冷媒管路8の下方には、発熱体である制御基板4の背面側に取り付けられた冷媒槽6が配設されており、冷媒蒸気管11によって蒸気ヘッダ23が冷媒槽6の上部と連通状態に接続され、また、冷媒液管12によって液ヘッダ24と冷媒槽6の下部が連通状態に接続されている。   Below the plurality of hollow refrigerant pipes 8 connected and fixed by the vapor header 23 and the liquid header 24, a refrigerant tank 6 attached to the back side of the control board 4 as a heating element is disposed. The steam header 23 is connected to the upper part of the refrigerant tank 6 by the steam pipe 11, and the liquid header 24 and the lower part of the refrigerant tank 6 are connected to the upper part of the refrigerant tank 6 by the refrigerant liquid pipe 12.

また、冷媒蒸気管11と蒸気ヘッダ23の接続部である蒸気ヘッダ入口25と、冷媒液管12と液ヘッダ24の接続部である液ヘッダ出口26は、複数の中空冷媒管路8の配列方向において対向位置となるように配置されている。   In addition, a steam header inlet 25 which is a connection portion between the refrigerant vapor pipe 11 and the vapor header 23 and a liquid header outlet 26 which is a connection portion between the refrigerant liquid pipe 12 and the liquid header 24 are arranged in the arrangement direction of the plurality of hollow refrigerant pipes 8. Are arranged so as to face each other.

ここで通信機1が駆動すると、制御基板4に実装されている半導体部品や集積回路が発熱して大量の熱が発生する。発生した熱は、制御基板4の背面側から冷媒槽6内部に伝達して冷媒槽6内の冷媒5を加熱する。制御基板4で発生した熱を吸収した冷媒5は、沸騰気化してガス状態となり、冷媒槽6の上部に接続された冷媒蒸気管11を通って蒸気ヘッダ23に流入する。   Here, when the communication device 1 is driven, semiconductor components and integrated circuits mounted on the control board 4 generate heat and generate a large amount of heat. The generated heat is transmitted from the back side of the control board 4 to the inside of the refrigerant tank 6 to heat the refrigerant 5 in the refrigerant tank 6. The refrigerant 5 that has absorbed the heat generated in the control board 4 is boiled and vaporized into a gas state, and flows into the vapor header 23 through the refrigerant vapor pipe 11 connected to the upper part of the refrigerant tank 6.

蒸気ヘッダ23の内部空間において冷媒5は均圧化し、蒸気ヘッダ23に連結された複数の中空冷媒管路8の各々に冷媒流入口9を通じて流入することになるが、この蒸気ヘッダ23の均圧作用により、複数の中空冷媒管路8の冷媒流入側の冷媒圧力が等しくなるので、複数の中空冷媒管路8に対する冷媒流量の均一化が図られることになる。   In the internal space of the steam header 23, the refrigerant 5 is equalized and flows into each of the plurality of hollow refrigerant pipes 8 connected to the vapor header 23 through the refrigerant inlet 9. As a result, the refrigerant pressure on the refrigerant inflow side of the plurality of hollow refrigerant pipes 8 becomes equal, so that the refrigerant flow rate with respect to the plurality of hollow refrigerant pipes 8 is made uniform.

これら複数の中空冷媒管路8に流入した気相状態の冷媒5は、実施の形態1と同様に各々の中空冷媒管路8の円環状断面流路の内周側空間部13に煙突効果によって発生する上昇気流14によって効果的に冷却されて液化し、その自重で中空冷媒管路8内を下方に移動して冷媒流出口10から液ヘッダ24に流入する。   The refrigerant 5 in the gas phase state that has flowed into the plurality of hollow refrigerant pipes 8 is caused by the chimney effect in the inner circumferential side space 13 of the annular cross-section flow path of each hollow refrigerant pipe 8 as in the first embodiment. It is cooled and liquefied effectively by the generated ascending airflow 14, moves downward in the hollow refrigerant pipe 8 by its own weight, and flows into the liquid header 24 from the refrigerant outlet 10.

複数の中空冷媒管路8を流れてきた液相の冷媒5は液ヘッダ24において合流し均圧化して冷媒液管12に流れることになるが、この液ヘッダ24の均圧作用により、複数の中空冷媒管路8への冷媒流出側の冷媒圧力が等しくなるので、複数の中空冷媒管路8に対して冷媒流量の均一化が図られることになる。   The liquid-phase refrigerant 5 that has flowed through the plurality of hollow refrigerant pipes 8 merges in the liquid header 24 and is equalized and flows to the refrigerant liquid pipe 12. Since the refrigerant pressure on the refrigerant outflow side to the hollow refrigerant pipes 8 becomes equal, the refrigerant flow rate is made uniform for the plurality of hollow refrigerant pipes 8.

液ヘッダ24で合流した液相の冷媒5は、冷媒液管12を通って冷媒槽6に戻り、制御基板4で発生した熱により再び沸騰気化して冷媒蒸気管11を通り、蒸気ヘッダ23から複数の中空冷媒管路8に分配されて再び外気で冷却されて液化する。このような冷媒5の気液状態変化が繰り返されることにより沸騰冷却装置15が動作し、制御基板4の発熱が外気に放熱されて処理されることになる。   The liquid-phase refrigerant 5 merged in the liquid header 24 returns to the refrigerant tank 6 through the refrigerant liquid pipe 12, is boiled and evaporated again by the heat generated in the control board 4, passes through the refrigerant vapor pipe 11, and passes from the vapor header 23. The liquid is distributed to the plurality of hollow refrigerant pipes 8 and cooled again with the outside air to be liquefied. By repeating such a change in the gas-liquid state of the refrigerant 5, the boiling cooling device 15 operates, and the heat generated by the control board 4 is dissipated to the outside air and processed.

ここで、蒸気ヘッダ入口25と、液ヘッダ出口26は、複数の中空冷媒管路8の配列方向において対向位置となるように配置されているので、蒸気ヘッダ23に流入してから、複数の中空冷媒管路8の各々を通過し、液ヘッダ24で合流して冷媒液管12に流入するまでの、各々の冷媒経路の長さが同等となるので、これら複数の冷媒経路を流れる冷媒流量のばらつきが低減されて冷媒流量不均一化による冷却能力の低下を抑制することができる。   Here, since the steam header inlet 25 and the liquid header outlet 26 are arranged so as to be opposed to each other in the arrangement direction of the plurality of hollow refrigerant pipes 8, the plurality of hollow header inlets 25 and the liquid header outlets 26 flow into the steam header 23. Since the lengths of the respective refrigerant paths that pass through each of the refrigerant pipes 8, merge at the liquid header 24, and flow into the refrigerant liquid pipe 12 are equal, the flow rates of the refrigerant flowing through the plurality of refrigerant paths Variations can be reduced, and a decrease in cooling capacity due to non-uniform refrigerant flow can be suppressed.

(実施の形態4)
次に本発明の実施の形態4について説明する。なお実施の形態1乃至3と同一部分については、同一番号を付し、詳細な説明は省略する。
(Embodiment 4)
Next, a fourth embodiment of the present invention will be described. The same parts as those in the first to third embodiments are denoted by the same reference numerals and detailed description thereof is omitted.

図12(a)、図12(b)に示すように、この沸騰冷却装置15は、中空冷媒管路8の内周側と外周側を貫通させる複数の孔27を備え、この孔27により、中空冷媒管路8の内周側空間部13に面する壁面の表面積が増大し、内周側空間部13を流れる空気との接触面積が増大する。また複数の孔27により冷媒5と中空冷媒管路8の流路内壁との接触面積が増大する。これにより、熱交換効率が向上し、冷却能力を向上することができる。   As shown in FIGS. 12 (a) and 12 (b), the boiling cooling device 15 includes a plurality of holes 27 penetrating the inner peripheral side and the outer peripheral side of the hollow refrigerant pipe 8, and the holes 27 allow The surface area of the wall surface facing the inner circumferential space 13 of the hollow refrigerant pipe 8 is increased, and the contact area with the air flowing through the inner circumferential space 13 is increased. In addition, the contact area between the refrigerant 5 and the inner wall of the hollow refrigerant pipe 8 is increased by the plurality of holes 27. Thereby, the heat exchange efficiency can be improved and the cooling capacity can be improved.

また更に、複数の孔27より周囲の空気を内周側空間部13へ取り込むことができるので、周囲の空気の温度と冷媒5の温度との温度差を大きく保つことができ、熱伝達を更に促進して冷却能力を向上することができる。   Furthermore, since the surrounding air can be taken into the inner circumferential space 13 from the plurality of holes 27, the temperature difference between the temperature of the surrounding air and the temperature of the refrigerant 5 can be kept large, and the heat transfer can be further increased. It can be promoted to improve the cooling capacity.

また更に、中空冷媒管路8内を流れる冷媒流のばらつきが低減されて冷媒流量不均一化による冷却能力の低下を抑制することができる。   Furthermore, the variation of the refrigerant flow flowing in the hollow refrigerant pipe 8 is reduced, and the deterioration of the cooling capacity due to the uneven refrigerant flow rate can be suppressed.

ここで、この孔27が図12(a)に示すような円形状の孔27であれば、中空冷媒管路8内を冷媒5が円形状の輪郭に沿って流れるため、冷媒5の流れを大きく妨げることがないので、冷媒流量の不均一化による冷却能力の低下を抑制することができる。   Here, if the hole 27 is a circular hole 27 as shown in FIG. 12A, the refrigerant 5 flows along the circular outline in the hollow refrigerant pipe 8, so the flow of the refrigerant 5 is reduced. Since there is no significant hindrance, a decrease in cooling capacity due to non-uniform refrigerant flow can be suppressed.

また図12(b)に示すような矩形状の孔27であれば、中空冷媒管路8の製造が容易となり、矩形状の孔27を千鳥に配置することにより、冷媒5の流れを大きく妨げることがないので、冷媒流量の不均一化による冷却能力の低下を抑制することができる。   If the rectangular hole 27 as shown in FIG. 12B is used, the hollow refrigerant pipe 8 can be easily manufactured, and the rectangular holes 27 are arranged in a staggered manner to greatly hinder the flow of the refrigerant 5. Therefore, it is possible to suppress a decrease in the cooling capacity due to the non-uniform refrigerant flow rate.

(実施の形態5)
次に本発明の実施の形態5について説明する。なお実施の形態1乃至4と同一部分については、同一番号を付し、詳細な説明は省略する。
(Embodiment 5)
Next, a fifth embodiment of the present invention will be described. The same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図13に示すように、この沸騰冷却装置15は、周囲の空気を内周側空間部13内へと周囲の空気が流入しやすいように、中空冷媒管路8の鉛直下方に周囲の空気を導入させる導入筒28を備え、この導入筒28は、鉛直下方より鉛直上方へかけて段階的に外径が小さくなる断面が台形状の円柱形状である。導入筒28の材質は、例えば、樹脂、金属であり、耐候性に優れた材質であることが望ましい。   As shown in FIG. 13, the boiling cooling device 15 causes the ambient air to flow vertically below the hollow refrigerant pipe 8 so that the ambient air can easily flow into the inner space 13. An introduction cylinder 28 to be introduced is provided, and the introduction cylinder 28 has a trapezoidal columnar cross section in which the outer diameter gradually decreases from vertically downward to vertically upward. The material of the introduction tube 28 is, for example, resin or metal, and it is desirable that the material has excellent weather resistance.

これにより、内周側空間部13内で発生した上昇気流により、内周側空間部13の鉛直下方から流入する空気の流入抵抗が小さくなるので、周囲の空気が内周側空間部13へと流入しやすくなり、自然対流の風量が大きくなることで、冷却能力を向上することができる。   As a result, the rising airflow generated in the inner circumferential side space 13 reduces the inflow resistance of air flowing in from the vertically lower side of the inner circumferential side space 13, so that the surrounding air enters the inner circumferential side space 13. Cooling capacity can be improved by facilitating inflow and increasing the amount of natural convection.

(実施の形態6)
次に本発明の実施の形態6について説明する。なお実施の形態1乃至5と同一部分については、同一番号を付し、詳細な説明は省略する。
(Embodiment 6)
Next, a sixth embodiment of the present invention will be described. The same parts as those in the first to fifth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図14に示すように、この沸騰冷却装置15は、内周側空間部13へと流入する空気量を調整することができる空気量調整筒29を備え、この空気量調整筒29は、内部に流路断面積を可変できるように、断面積可変機構、例えば電磁弁や温度感応金属弁を備える。周囲の空気の温度と冷媒5の温度との温度差が所定の値を上回ると、この断面積可変機構が空気量調整筒29内の流路断面積を小さく絞ることで、内周側空間部13へと流入する空気の風量を小さくし、通信機1の温度が所定の温度以上に冷却されることを防ぎ、沸騰冷却装置の信頼性を向上することができる。空気量調整筒29の材質は、例えば、樹脂、金属であり、耐候性に優れた材質であることが望ましい。   As shown in FIG. 14, the boiling cooling device 15 includes an air amount adjusting cylinder 29 that can adjust the amount of air flowing into the inner circumferential side space portion 13, and the air amount adjusting cylinder 29 is provided inside. A variable cross-sectional area mechanism such as a solenoid valve or a temperature-sensitive metal valve is provided so that the cross-sectional area of the flow path can be changed. When the temperature difference between the temperature of the ambient air and the temperature of the refrigerant 5 exceeds a predetermined value, the variable cross-sectional area mechanism narrows the cross-sectional area of the flow path in the air amount adjustment cylinder 29 to reduce the inner peripheral space portion. It is possible to reduce the air volume of the air flowing into the air flow 13, prevent the temperature of the communication device 1 from being cooled to a predetermined temperature or higher, and improve the reliability of the boiling cooling device. The material of the air amount adjusting cylinder 29 is, for example, resin or metal, and is preferably a material having excellent weather resistance.

ここで、断面積可変機構は、望ましくは周囲の空気の温度が10℃を下回ると除々に空気量調整筒29の流路断面積を絞り始め、周囲の空気の温度が−40℃を下回ると空気量調整筒29の流路断面積を10%以下にするように駆動すると良い。断面積可変機構が電磁弁であれば、容易な構成で制御が可能である。断面積可変機構が温度感応金属弁であれば、外部動力を必要とすることなく、構成が簡易になり、空気量調整筒29の大型化を防ぐことができる。   Here, preferably, the cross-sectional area variable mechanism gradually starts to narrow the flow passage cross-sectional area of the air amount adjusting cylinder 29 when the ambient air temperature falls below 10 ° C., and when the ambient air temperature falls below −40 ° C. It is preferable to drive so that the flow passage cross-sectional area of the air amount adjusting cylinder 29 is 10% or less. If the variable cross-sectional area mechanism is a solenoid valve, it can be controlled with an easy configuration. If the cross-sectional area variable mechanism is a temperature-sensitive metal valve, the configuration is simplified and the size of the air amount adjusting cylinder 29 can be prevented without requiring external power.

本発明にかかる沸騰冷却装置は、ファンによる強制空冷を用いずに、煙突効果によって十分な自然対流風を確保して冷却能力を向上することができるものであるので、モータなどの駆動部やフィルターなどのメンテナンス部品などが不要で、鉄塔上部などの高所や市街地から離れた山林など、メンテ作業が困難な場所に設置された通信機器や電源装置などに搭載されている半導体部品などの高発熱部品を冷却する沸騰冷却装置として有用である。   The boiling cooling device according to the present invention can secure sufficient natural convection air by the chimney effect and improve the cooling capacity without using forced air cooling by a fan. Maintenance parts such as the above are unnecessary, and high heat generation such as semiconductor parts installed in communication equipment and power supply equipment installed in places where maintenance work is difficult, such as high places such as the top of steel towers and mountains far from urban areas It is useful as a boiling cooling device for cooling parts.

1 通信機
2 鉄塔
3 アンテナ
4 制御基板
5 冷媒
6 冷媒槽
7 放熱器
8 中空冷媒管路
9 冷媒流入口
10 冷媒流出口
11 冷媒蒸気管
12 冷媒液管
13 内周側空間部
14 上昇気流
15 沸騰冷却装置
16 内径寸法
17 細溝
18 放熱フィン
19 流路分割板
20 整流板
21 螺旋状流路形成板
22 階段状流路形成板
23 蒸気ヘッダ
24 液ヘッダ
25 蒸気ヘッダ入口
26 液ヘッダ出口
27 孔
28 導入筒
29 空気量調整筒
DESCRIPTION OF SYMBOLS 1 Communication apparatus 2 Steel tower 3 Antenna 4 Control board 5 Refrigerant 6 Refrigerant tank 7 Radiator 8 Hollow refrigerant pipe 9 Refrigerant inlet 10 Refrigerant outlet 11 Refrigerant vapor pipe 12 Refrigerant liquid pipe 13 Inner peripheral side space part 14 Upstream air flow 15 Boiling Cooling device 16 Inner diameter 17 Narrow groove 18 Radiation fin 19 Flow dividing plate 20 Rectifying plate 21 Spiral flow path forming plate 22 Staircase flow path forming plate 23 Steam header 24 Liquid header 25 Steam header inlet 26 Liquid header outlet 27 Hole 28 Introduction cylinder 29 Air quantity adjustment cylinder

Claims (32)

駆動に伴い大量の熱を発生する発熱体を有する電子機器に取り付けられ、前記発熱体の熱を吸収して沸騰気化する冷媒が封入された冷媒槽と、前記冷媒槽において沸騰気化した冷媒を冷却して液化させる放熱器を備え、前記放熱器が、冷媒を流す環状流路断面を有する中空冷媒管路を備え、前記中空冷媒管路の内周側空間部に煙突効果によって生じる上昇気流によって、前記中空冷媒管路内を流れる冷媒を冷却することを特徴とする沸騰冷却装置。 A refrigerant tank that is attached to an electronic device having a heating element that generates a large amount of heat as it is driven, encloses a refrigerant that absorbs the heat of the heating element and vaporizes, and cools the refrigerant that has boiled and evaporated in the refrigerant tank. A radiator to be liquefied, and the radiator includes a hollow refrigerant pipe having an annular channel cross-section through which a refrigerant flows, and by an ascending airflow generated by a chimney effect in an inner circumferential space portion of the hollow refrigerant pipe, A boiling cooling device for cooling a refrigerant flowing in the hollow refrigerant pipe. 中空冷媒管路の両端に冷媒が流入する冷媒流入口と冷媒が流出する冷媒流出口を各々設け、前記冷媒流入口が前記冷媒流出口よりも上方に位置するように前記中空冷媒管路を設けたことを特徴とする請求項1に記載の沸騰冷却装置。 A refrigerant inlet through which refrigerant flows in and a refrigerant outlet through which refrigerant flows out are provided at both ends of the hollow refrigerant pipe, respectively, and the hollow refrigerant pipe is provided so that the refrigerant inlet is located above the refrigerant outlet. The boiling cooling device according to claim 1, wherein: 冷媒槽と冷媒流入口を連通する冷媒蒸気管と、冷媒槽と冷媒流出口を連通する冷媒液管を備え、前記冷媒蒸気管および前記冷媒液管を、中空冷媒管路の内周側空間部に生じる上昇気流を妨げないように、前記中空冷媒管路の外周側に設けたことを特徴とする請求項2に記載の沸騰冷却装置。 A refrigerant vapor pipe communicating with the refrigerant tank and the refrigerant inlet; and a refrigerant liquid pipe communicating between the refrigerant tank and the refrigerant outlet; the refrigerant vapor pipe and the refrigerant liquid pipe being connected to the inner circumferential space of the hollow refrigerant pipe The boiling cooling device according to claim 2, wherein the boiling cooling device is provided on an outer peripheral side of the hollow refrigerant pipe so as not to disturb an updraft generated in the pipe. 冷媒蒸気管の流路断面積を冷媒液管の流路断面積よりも大きくしたことを特徴とする請求項3に記載の沸騰冷却装置。 4. The boiling cooling device according to claim 3, wherein the cross-sectional area of the refrigerant vapor pipe is larger than the cross-sectional area of the refrigerant liquid pipe. 中空冷媒管路の断面形状を円環状に形成したことを特徴とする請求項1から4のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 4, wherein the cross-sectional shape of the hollow refrigerant pipe is formed in an annular shape. 中空冷媒管路の断面形状を矩形環状に形成したことを特徴とする請求項1から4のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 4, wherein a cross-sectional shape of the hollow refrigerant pipe is formed in a rectangular ring shape. 中空冷媒管路内の冷媒流路を流通方向において分割したことを特徴とする請求項1から6のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 6, wherein the refrigerant flow path in the hollow refrigerant pipe is divided in the flow direction. 分割した冷媒流路の各々に冷媒が均一に流れるように整流板を設けたことを特徴とする請求項7に記載の沸騰冷却装置。 The boil cooling device according to claim 7, wherein a baffle plate is provided so that the refrigerant flows uniformly in each of the divided refrigerant flow paths. 中空冷媒管路内の冷媒流路を螺旋状に形成したことを特徴とする請求項1から6のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 6, wherein the refrigerant flow path in the hollow refrigerant pipe is formed in a spiral shape. 中空冷媒管路の冷媒流路を階段状に形成したことを特徴とする請求項1から6のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 6, wherein the refrigerant flow path of the hollow refrigerant pipe is formed in a step shape. 中空冷媒管路の冷媒流路の内周面に細溝を形成したことを特徴とする請求項1から10のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 10, wherein a narrow groove is formed on an inner peripheral surface of the refrigerant flow path of the hollow refrigerant pipe. 中空冷媒管路の冷媒流路の外周面に細溝を形成したことを特徴とする請求項1から11のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 11, wherein a narrow groove is formed on an outer peripheral surface of the refrigerant flow path of the hollow refrigerant pipe. 中空冷媒管路の内周側空間部に放熱フィンを設けたことを特徴とする請求項1から12のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 12, wherein a heat radiating fin is provided in an inner circumferential space portion of the hollow refrigerant pipe. 中空冷媒管路の外周側に放熱フィンを設けたことを特徴とする請求項1から13のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 13, wherein a radiation fin is provided on an outer peripheral side of the hollow refrigerant pipe. 中空冷媒管路の内周側空間部の相当直径を10ミリメートル以上としたことを特徴とする請求項1から14のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 14, wherein an equivalent diameter of the inner circumferential space portion of the hollow refrigerant pipe is 10 millimeters or more. 中空冷媒管路の内周側空間部の相当直径を40ミリメートル未満としたことを特徴とする請求項15に記載の沸騰冷却装置。 The boiling cooling device according to claim 15, wherein the equivalent diameter of the inner circumferential space portion of the hollow refrigerant pipe is less than 40 millimeters. 中空冷媒管路の内周側空間部の気流流通方向が略鉛直方向となるように前記中空冷媒管路を設けたことを特徴とする請求項1から16のいずれか一項に記載の沸騰冷却装置。 The boiling cooling according to any one of claims 1 to 16, wherein the hollow refrigerant pipe is provided so that an air flow direction in an inner circumferential space of the hollow refrigerant pipe is a substantially vertical direction. apparatus. 中空冷媒管路を複数設け、前記複数の中空冷媒管路の各々の内周側空間部が相互に重ならないように構成したことを特徴とする請求項1から17のいずれか一項に記載の沸騰冷却装置。 18. The structure according to claim 1, wherein a plurality of hollow refrigerant pipes are provided so that inner circumferential spaces of the plurality of hollow refrigerant pipes do not overlap each other. Boiling cooler. 複数の中空冷媒管路を相互に間隔を空けて設けたことを特徴とする請求項18に記載の沸騰冷却装置。 The boiling cooling apparatus according to claim 18, wherein a plurality of hollow refrigerant pipes are provided at intervals. 複数の中空冷媒管路を直線状に設けたことを特徴とする請求項18に記載の沸騰冷却装置。 The boiling cooling device according to claim 18, wherein a plurality of hollow refrigerant pipes are provided in a straight line. 複数の中空冷媒管路を環状に設けたことを特徴とする請求項18に記載の沸騰冷却装置。 The boiling cooling device according to claim 18, wherein a plurality of hollow refrigerant pipes are provided in an annular shape. 複数の中空冷媒管路の各々に冷媒が流入する冷媒流入口と冷媒が流出する冷媒流出口を設け、前記冷媒流入口の上下方向位置が各々同一となるように構成するとともに、前記冷媒流出口の上下方向位置も各々同一となるように構成したことを特徴とする請求項18に記載の沸騰冷却装置。 A refrigerant inflow port through which refrigerant flows in and a refrigerant outflow port through which refrigerant flows out are provided in each of the plurality of hollow refrigerant pipes, and the refrigerant inflow port is configured to have the same vertical position. The boiling cooling device according to claim 18, wherein the vertical position of each is also the same. 複数の中空冷媒管路の冷媒流入口と冷媒槽とを各々連通する複数の冷媒蒸気管を設け、前記複数の冷媒蒸気管の長さを同一としたことを特徴とする請求項22記載の沸騰冷却装置。 23. Boiling according to claim 22, wherein a plurality of refrigerant vapor pipes respectively connecting the refrigerant inlets and the refrigerant tanks of the plurality of hollow refrigerant pipe lines are provided, and the lengths of the plurality of refrigerant vapor pipes are the same. Cooling system. 複数の中空冷媒管路の冷媒流出口と冷媒槽とを各々連通する複数の冷媒液管を設け、前記複数の冷媒液管の長さを同一としたことを特徴とする請求項22記載の沸騰冷却装置。 23. Boiling according to claim 22, wherein a plurality of refrigerant liquid pipes respectively connecting the refrigerant outlets of the plurality of hollow refrigerant pipe lines and the refrigerant tank are provided, and the lengths of the plurality of refrigerant liquid pipes are the same. Cooling system. 複数の中空冷媒管路の冷媒流入口と冷媒槽とを各々連通する複数の冷媒蒸気管と、複数の中空冷媒管路の冷媒流出口と前記冷媒槽とを各々連通する複数の冷媒液管を設け、前記中空冷媒管路に接続されている前記冷媒蒸気管と前記冷媒液管の合計長さを各々同一としたことを特徴とする請求項22記載の沸騰冷却装置。 A plurality of refrigerant vapor pipes that respectively connect the refrigerant inlets of the plurality of hollow refrigerant pipes and the refrigerant tank; and a plurality of refrigerant liquid pipes that respectively connect the refrigerant outlets of the plurality of hollow refrigerant pipes and the refrigerant tank. 23. The boiling cooling apparatus according to claim 22, wherein the total length of the refrigerant vapor pipe and the refrigerant liquid pipe provided and connected to the hollow refrigerant pipe is the same. 複数の中空冷媒管路の冷媒流入口同士を連結する蒸気ヘッダと、前記複数の中空冷媒管路の冷媒流出口同士を連結する液ヘッダを設け、前記蒸気ヘッダと冷媒槽を冷媒蒸気管で連通するとともに、前記液ヘッダと前記冷媒槽を冷媒液管で連通したことを特徴とする請求項22に記載の沸騰冷却装置。 A vapor header that connects refrigerant inlets of the plurality of hollow refrigerant pipes and a liquid header that connects refrigerant outlets of the plurality of hollow refrigerant pipes are provided, and the vapor header and the refrigerant tank communicate with each other through the refrigerant vapor pipe. The boiling cooling apparatus according to claim 22, wherein the liquid header and the refrigerant tank are communicated with each other through a refrigerant liquid pipe. 蒸気ヘッダと冷媒蒸気管との接続部分と、液ヘッダと冷媒液管との接続部分を、複数の中空冷媒管路の配列方向において対向位置となるように構成したことを特徴とする請求項26に記載の沸騰冷却装置。 27. The connecting portion between the vapor header and the refrigerant vapor pipe and the connecting portion between the liquid header and the refrigerant liquid pipe are configured so as to face each other in the arrangement direction of the plurality of hollow refrigerant pipes. The boiling cooling apparatus according to 1. 中空冷媒管路を複数の中空管により形成したことを特徴とする請求項1から6のいずれか一項に記載の沸騰冷却装置。 The boiling cooling apparatus according to any one of claims 1 to 6, wherein the hollow refrigerant pipe is formed by a plurality of hollow pipes. 中空冷媒管路に複数の円形状の孔を備えることを特徴とする請求項1から6のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 6, wherein the hollow refrigerant pipe has a plurality of circular holes. 中空冷媒管路に複数の矩形状の孔を備えることを特徴とする請求項1から6のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 6, wherein the hollow refrigerant pipe is provided with a plurality of rectangular holes. 中空冷媒管路に周囲から空気を導入させる導入筒を備えることを特徴とする請求項1から27のいずれか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 27, further comprising an introduction tube that introduces air from the surroundings into the hollow refrigerant pipe. 中空冷媒管路に周囲から流入する空気量を調整する空気量調整筒を備えることを特徴とする請求項1から27のいずれか一項に記載の沸騰冷却装置。 28. The boiling cooling device according to any one of claims 1 to 27, further comprising an air amount adjusting cylinder that adjusts an air amount flowing from the surroundings into the hollow refrigerant pipe.
JP2010092846A 2010-03-16 2010-04-14 Boil cooling device Pending JP2011216831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092846A JP2011216831A (en) 2010-03-16 2010-04-14 Boil cooling device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010059070 2010-03-16
JP2010059070 2010-03-16
JP2010092846A JP2011216831A (en) 2010-03-16 2010-04-14 Boil cooling device

Publications (1)

Publication Number Publication Date
JP2011216831A true JP2011216831A (en) 2011-10-27

Family

ID=44946247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092846A Pending JP2011216831A (en) 2010-03-16 2010-04-14 Boil cooling device

Country Status (1)

Country Link
JP (1) JP2011216831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102974A1 (en) * 2012-01-04 2013-07-11 日本電気株式会社 Cooling system
JP2018088305A (en) * 2016-11-28 2018-06-07 昭和電工株式会社 Cooling system
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102974A1 (en) * 2012-01-04 2013-07-11 日本電気株式会社 Cooling system
JPWO2013102974A1 (en) * 2012-01-04 2015-05-11 日本電気株式会社 Cooling system
EP2801781A4 (en) * 2012-01-04 2015-11-25 Nec Corp Cooling system
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
JP2018088305A (en) * 2016-11-28 2018-06-07 昭和電工株式会社 Cooling system

Similar Documents

Publication Publication Date Title
WO2011122332A1 (en) Phase change cooler and electronic equipment provided with same
TWI778292B (en) Cooling device and cooling system using cooling device
WO2015087530A1 (en) Refrigerant distribution device and cooling device
JP6447149B2 (en) Heat exchanger, cooling unit, and electronic equipment
TWI704656B (en) heat sink
US10634434B2 (en) Arrangement for cooling a closed cabinet
CN103733746A (en) Thermal transfer device with reduced vertical profile
WO2017170153A1 (en) Phase change cooler and electronic equipment
CN102425968B (en) Compact type loop heat pipe device
JP2011216831A (en) Boil cooling device
JP5621225B2 (en) Boiling cooler
JP2005229102A (en) Heatsink
JP2011142298A (en) Boiling cooler
JPWO2017110740A1 (en) Heat dissipation device, phase change cooling device using the same, and heat dissipation method
JP6678235B2 (en) Heat exchanger
JP4697171B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
EP3043380B1 (en) Cooling apparatus
JP6825615B2 (en) Cooling system and cooler and cooling method
CN110362892B (en) Phase-change natural cooling radiator fin optimal size parameter determination method
JP2007081375A (en) Cooling device
US11280556B2 (en) Fast heat-sinking, current stabilization and pressure boosting device for condenser
WO2017082127A1 (en) Electronic equipment cooling device
US20140366572A1 (en) Cooling device
JP2017067329A (en) Refrigerant flow rate control mechanism, cooling system, and refrigerant flow rate control method
JP4930472B2 (en) Cooling system