JP2011216695A - Method for manufacturing rare-earth permanent magnet - Google Patents

Method for manufacturing rare-earth permanent magnet Download PDF

Info

Publication number
JP2011216695A
JP2011216695A JP2010083992A JP2010083992A JP2011216695A JP 2011216695 A JP2011216695 A JP 2011216695A JP 2010083992 A JP2010083992 A JP 2010083992A JP 2010083992 A JP2010083992 A JP 2010083992A JP 2011216695 A JP2011216695 A JP 2011216695A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
rare earth
organometallic compound
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010083992A
Other languages
Japanese (ja)
Other versions
JP5501829B2 (en
Inventor
Izumi Ozeki
出光 尾関
Katsuya Kume
克也 久米
Keisuke Hirano
敬祐 平野
Tomohiro Omure
智弘 大牟礼
Keisuke Futoshiro
啓介 太白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2010083992A priority Critical patent/JP5501829B2/en
Publication of JP2011216695A publication Critical patent/JP2011216695A/en
Application granted granted Critical
Publication of JP5501829B2 publication Critical patent/JP5501829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a rare-earth permanent magnet having superior stability, high corrosion resistance and high hydrogen barrier performance.SOLUTION: An organic metal compound solution doped with an organic metal compound represented by M-(OR)(wherein M contains at least one kind from among Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W and Nb, R is any one of 2-6C alkyl groups and may be a straight chain or a branched chain, and x is an arbitrary integer) is doped to a pulverized magnetic powder, and the organic metal compound is uniformly deposited to the surface of the magnetic particles. After that, the dried magnetic powder is maintained in a vacuum or inert gas atmosphere at 600°C or higher than and lower than 900°C for 0.01 min to less than one hour to execute heat treatment. Further, the heat-treated magnetic powder is molded, baked at 800-1,180°C, cut into a product shape (e.g. like a cube), and polished to finish the surface, and a sintered compact 72 is heat-treated, thereby a permanent magnet 1 is manufactured.

Description

本発明は、例えば、HFC又はHCFC冷媒及び潤滑油(エステル油又はエーテル油冷凍機油)に長時間晒される希土類永久磁石、特に高効率モータ用として有効な永久磁石の製造方法に関する。   The present invention relates to a method for producing a rare-earth permanent magnet that is exposed to, for example, an HFC or HCFC refrigerant and a lubricating oil (ester oil or ether oil refrigerating machine oil) for a long time, particularly a permanent magnet effective for a high-efficiency motor.

希土類永久磁石はその優れた磁気特性と経済性のために、電気・電子機器の多くの分野で利用されており、近年その生産量は急激に増大しつつある。これらのうち希土類系永久磁石は、希土類コバルト磁石に比べて主要元素であるNdがSmより豊富に存在すること、Coを多量に使用しないことから原材料費が安価であり、磁気特性も希土類コバルト磁石をはるかに凌ぐことから、これまで希土類コバルト磁石が使用されてきた小型磁気回路だけでなく、ハードフェライトあるいは電磁石が使われていた分野にも広く応用されている。エアコンや冷蔵庫などのコンプレッサー用モータにおいても、エネルギー効率を上げて電力消費量を少なくすることを目的に、従来の誘導電動機やフェライト磁石を使用した同期型回転機から希土類磁石を使用したDCブラシレスモーターへの転換が進みつつある。   Rare earth permanent magnets are used in many fields of electrical and electronic equipment because of their excellent magnetic properties and economy, and their production volume is increasing rapidly in recent years. Among these, rare earth-based permanent magnets have a lower raw material cost because Nd, which is the main element, is more abundant than Sm in comparison with rare earth cobalt magnets, and do not use a large amount of Co. Therefore, it is widely applied not only to small magnetic circuits in which rare earth cobalt magnets have been used, but also to fields where hard ferrites or electromagnets have been used. DC brushless motors that use rare earth magnets instead of conventional induction motors or synchronous rotating machines that use ferrite magnets to increase energy efficiency and reduce power consumption in compressor motors such as air conditioners and refrigerators The transition to is progressing.

R−Fe−B系永久磁石は、主成分として希土類元素及び鉄を含有するため、湿度をおびた空気中では短時間のうちに容易に酸化するという欠点を有している。磁気回路に組み込んだ場合には、これらの酸化腐食により磁気回路の出力を低下させたり、発生した錆等によって周辺機器を汚染するなどの問題があった。このため、一般に希土類磁石は表面処理を行って使用されている。希土類磁石における表面処理法には、電気メッキや無電解メッキ、更にはAlイオンプレーティング法や各種の塗装などを行って使用されている。   Since R-Fe-B permanent magnets contain rare earth elements and iron as main components, they have the drawback of being easily oxidized in a short period of time in humid air. When incorporated in a magnetic circuit, there have been problems such as a reduction in the output of the magnetic circuit due to these oxidative corrosions, and contamination of peripheral equipment due to the generated rust. For this reason, in general, rare earth magnets are used after surface treatment. As surface treatment methods for rare earth magnets, electroplating, electroless plating, Al ion plating, and various types of coating are used.

冷媒や潤滑油又はそれらの混合系内で使用されるエアコン用コンプレッサーモーターや産業用モータ内において使用される希土類永久磁石は、これら冷媒及び冷凍機油の混合系での高温・高圧力下での耐食性が求められる。   Rare earth permanent magnets used in air conditioner compressor motors and industrial motors used in refrigerants, lubricating oils, or mixed systems thereof are corrosion resistant under high temperature and high pressure in mixed systems of these refrigerants and refrigeration oils. Is required.

例えば、特開平11−150930号公報において、冷媒圧縮機内回転子の鉄心内の希土類磁石では表面処理を行わない磁石材を用いることが提案されている。   For example, in Japanese Patent Laid-Open No. 11-150930, it is proposed to use a magnet material that is not subjected to surface treatment with a rare earth magnet in the iron core of a rotor in a refrigerant compressor.

特開平11−150930号公報Japanese Patent Laid-Open No. 11-150930

しかし、HFC冷媒と冷凍機油であるエーテル系又はエステル系の組み合わせにより、高温長時間の運転によって、組み込まれた磁石の磁気特性が低下する可能性がある。   However, the combination of the HFC refrigerant and the ether-based or ester-based refrigerating machine oil may reduce the magnetic characteristics of the incorporated magnet due to high-temperature and long-time operation.

また、潤滑油中に浸されて運転される自動車用モータにおいても、潤滑油と磁石との腐食反応が進行し、磁気特性の劣化が起こっている。   Further, in an automobile motor that is operated by being immersed in lubricating oil, the corrosion reaction between the lubricating oil and the magnet proceeds, and the magnetic characteristics are deteriorated.

従って、これらの用途においては、上述の各種表面処理の適用が検討されるわけであるが、例えばAlイオンプレーティング法ではコストが高くて工業的には問題があり、塗装は溶媒や油と反応するために使えず、またメッキ法ではローターとシャフトの焼き嵌め温度でメッキ膜が剥がれたりするなど、高温での安定性に問題があるために使用できず、またこれらの表面処理は大型の磁石には工業化が難しく、メッキの不良品が多く発生してしまう。   Therefore, in these applications, application of the above-mentioned various surface treatments is considered. For example, the Al ion plating method is expensive and industrially problematic, and the coating reacts with a solvent or oil. In addition, the plating method cannot be used due to problems with stability at high temperatures, such as the plating film peeling off at the shrink fitting temperature of the rotor and shaft, and these surface treatments are large magnets Is difficult to industrialize, and many plating defects occur.

このように、高効率モータに使用される希土類永久磁石は、高温高圧の冷媒又は潤滑油あるいはその両方に長時間晒されることによって、それらと反応したり腐食したりして磁気特性が劣化する問題がある。   As described above, rare earth permanent magnets used in high-efficiency motors are exposed to high-temperature and high-pressure refrigerants and / or lubricating oils for a long period of time, so that they react with or corrode them, resulting in a deterioration in magnetic properties. There is.

本発明は、上記問題点を解決したもので、高温高圧の冷媒又は潤滑油あるいはその両方に長時間晒されるような過酷な使用条件下においても、優れた安定性と高耐食性及び水素バリアー性を有する希土類永久磁石の製造方法を提供するものである。   The present invention solves the above-mentioned problems, and has excellent stability, high corrosion resistance and hydrogen barrier properties even under severe use conditions such as being exposed to a high-temperature and high-pressure refrigerant and / or lubricating oil for a long time. A method for producing a rare earth permanent magnet is provided.

前記目的を達成するため本願の請求項1に係る希土類永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に以下の構造式M−(OR)(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、前記成形体を焼結する工程と、前記焼結された成形体を切断及び/又は研磨して表面を加工仕上げした後、酸素分圧が10-6〜10Torrであるアルゴン、窒素又は低圧真空雰囲気下において、200℃〜1100℃で10分〜10時間熱処理を行って磁石の表面に低級酸化物を形成させる工程と、を有することを特徴とする。 In order to achieve the above object, a method for producing a rare earth permanent magnet according to claim 1 of the present application includes a step of pulverizing a magnet raw material into magnet powder, and the pulverized magnet powder having the following structural formula M- (OR) x ( In the formula, M includes at least one of Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb, R is any one of alkyl groups having 2 to 6 carbon atoms, The organic metal compound may be attached to the particle surface of the magnet powder by adding an organometallic compound represented by the formula: x is an arbitrary integer), and the organometallic compound. Forming a molded body by molding the magnet powder adhered to the particle surface, sintering the molded body, and cutting and / or polishing the sintered molded body to form a surface. after finishing, the oxygen partial pressure 10 - Feature 6 10 Argon is 0 Torr, in nitrogen or low-pressure vacuum atmosphere, a step of forming a lower oxides on the surface of the magnet performed 10 minutes to 10 hours heat treatment at 200 ° C. C. to 1100 ° C., to have a And

また、請求項2に係る希土類永久磁石の製造方法は、前記焼結された成形体の酸素濃度が0.05重量%〜0.8重量%であり、炭素濃度が0.03重量%〜0.10重量%であることを特徴とする。   In the method for producing a rare earth permanent magnet according to claim 2, the sintered compact has an oxygen concentration of 0.05 wt% to 0.8 wt% and a carbon concentration of 0.03 wt% to 0 wt%. 10% by weight.

前記構成を有する請求項1に記載の希土類永久磁石の製造方法によれば、加工処理を施したR−Fe−B系永久磁石表面に熱処理による保護膜形成を行うことにより、冷媒及び潤滑油による高温高圧という雰囲気においても耐食性及び水素バリアー性を有する高耐油性焼結永久磁石を簡便かつ安価に提供することができ、産業上その利用価値は極めて高い。
また、M−(OR)(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を含む溶媒を添加し、湿式状態で磁石粉末に混合するので、Mを含む有機金属化合物を溶媒中で分散させ、磁石粒子の粒子表面にMを含む有機金属化合物を均一付着することが可能となり、Mを焼結後の希土類磁石の粒界に対して効率よく偏在させることができる。
According to the method for producing a rare earth permanent magnet according to claim 1 having the above-described configuration, a protective film is formed by heat treatment on the surface of the R-Fe-B permanent magnet that has been subjected to the processing, so that the refrigerant and the lubricating oil are used. A highly oil-resistant sintered permanent magnet having corrosion resistance and hydrogen barrier properties can be provided easily and inexpensively even in an atmosphere of high temperature and high pressure, and its utility value is extremely high in industry.
M- (OR) x (wherein M includes at least one of Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb. R has 2 to 6 carbon atoms) And a solvent containing an organometallic compound represented by the following formula is added and mixed with the magnet powder in a wet state. It is possible to disperse organometallic compounds containing Mn in a solvent so that the organometallic compounds containing M are uniformly deposited on the surface of the magnet particles, and the M is unevenly distributed with respect to the grain boundaries of the sintered rare earth magnet. Can be made.

また、請求項2に記載の希土類永久磁石の製造方法によれば、焼結された成形体の酸素濃度を0.05重量%〜0.8重量%であり、炭素濃度が0.03重量%〜0.10重量%とするので、磁気性能の高い希土類永久磁石を製造することが可能となる。   According to the method for producing a rare earth permanent magnet according to claim 2, the oxygen concentration of the sintered compact is 0.05 wt% to 0.8 wt%, and the carbon concentration is 0.03% wt%. It is possible to produce a rare earth permanent magnet with high magnetic performance because it is ˜0.10 wt%.

本発明に係る永久磁石を示した全体図である。1 is an overall view showing a permanent magnet according to the present invention. 本発明に係る永久磁石の粒界付近を拡大して示した模式図である。It is the schematic diagram which expanded and showed the vicinity of the grain boundary of the permanent magnet which concerns on this invention. 本発明に係る永久磁石の第1の製造方法における製造工程を示した説明図である。It is explanatory drawing which showed the manufacturing process in the 1st manufacturing method of the permanent magnet which concerns on this invention. 本発明に係る永久磁石の第2の製造方法における製造工程を示した説明図である。It is explanatory drawing which showed the manufacturing process in the 2nd manufacturing method of the permanent magnet which concerns on this invention.

以下、本発明に係る永久磁石及び永久磁石の製造方法について具体化した実施形態について以下に図面を参照しつつ詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of a permanent magnet and a method for producing a permanent magnet according to the present invention will be described in detail with reference to the drawings.

[永久磁石の構成]
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は直方体形状を備えるが、永久磁石1の形状は焼結体の切断や研磨の方法によって変化する。
[Configuration of permanent magnet]
First, the configuration of the permanent magnet 1 according to the present invention will be described. FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention. The permanent magnet 1 shown in FIG. 1 has a rectangular parallelepiped shape, but the shape of the permanent magnet 1 varies depending on the method of cutting and polishing the sintered body.

本発明に係る永久磁石1としてはR−T−B系磁石を用いる。尚、RはNd又はNdと他の希土類元素の1種又は2種以上との組み合わせ、TはFe、又はFe及びCoである。尚、各成分の含有量はR:25〜37wt%、T:60〜75wt%、B:1〜2wt%とする。また、磁気特性向上の為、Co、Cu、Al、Si等の他元素を少量含んでも良い。また、永久磁石1の表面には、製造工程において後述する熱処理を行うことによって低級酸化物(保護膜)が形成されている。そして、この永久磁石1の表面に形成された低級酸化物によって、耐食性を向上させている。   An R-T-B magnet is used as the permanent magnet 1 according to the present invention. R is Nd or a combination of Nd and one or more other rare earth elements, and T is Fe, or Fe and Co. In addition, content of each component shall be R: 25-37 wt%, T: 60-75 wt%, B: 1-2 wt%. Further, in order to improve the magnetic characteristics, a small amount of other elements such as Co, Cu, Al and Si may be included. Further, a lower oxide (protective film) is formed on the surface of the permanent magnet 1 by performing a heat treatment described later in the manufacturing process. And the corrosion resistance is improved by the lower oxide formed on the surface of the permanent magnet 1.

ここで、図2に示すように、永久磁石1は磁化作用に寄与する磁性相である主相11と、粒界相12とが共存する合金である。図2は永久磁石1を構成する磁石結晶粒子を拡大して示した図である。   Here, as shown in FIG. 2, the permanent magnet 1 is an alloy in which a main phase 11 that is a magnetic phase contributing to a magnetization action and a grain boundary phase 12 coexist. FIG. 2 is an enlarged view showing magnet crystal particles constituting the permanent magnet 1.

ここで、主相11は化学量論組成であるR14B金属間化合物相が高い体積割合を占めた状態となる。一方、粒界相12は化学量論組成であるR14BよりRの組成比率が多いRリッチ相(例えば、R2.0〜3.014B金属間化合物相)等が形成されている。 Here, the main phase 11 is in a state where the R 2 T 14 B intermetallic compound phase having a stoichiometric composition occupies a high volume ratio. On the other hand, the grain boundary phase 12 is formed of an R rich phase (for example, R 2.0 to 3.0 T 14 B intermetallic compound phase) having a higher R composition ratio than the stoichiometric composition R 2 T 14 B. Has been.

そして、永久磁石1において、Rリッチ相は、以下のような役割を担っている。
(1)融点が低く(約600℃)、焼結時に液相となり、磁石の高密度化、即ち磁化の向上に寄与する。(2)粒界の凹凸を無くし、逆磁区のニュークリエーションサイトを減少させ保磁力を高める。(3)主相を磁気的に絶縁し保磁力を増加する。
従って、焼結後の永久磁石1中におけるRリッチ相の分散状態が悪いと、局部的な焼結不良、磁性の低下をまねくため、焼結後の永久磁石1中にはRリッチ相が均一に分散していることが重要となる。
And in the permanent magnet 1, the R rich phase plays the following roles.
(1) The melting point is low (about 600 ° C.), it becomes a liquid phase during sintering, and contributes to increasing the density of the magnet, that is, improving the magnetization. (2) Eliminate grain boundary irregularities, reduce reverse domain nucleation sites and increase coercivity. (3) The main phase is magnetically insulated to increase the coercive force.
Therefore, if the dispersion state of the R-rich phase in the sintered permanent magnet 1 is poor, local sintering failure and a decrease in magnetism may occur. Therefore, the R-rich phase is uniform in the sintered permanent magnet 1. It is important that they are dispersed.

また、R−T−B系磁石の製造において生じる問題として、焼結された合金中にα−Feが生成することが挙げられる。原因としては、化学量論組成に基づく含有量からなる磁石原料合金を用いて永久磁石を製造した場合に、製造過程で希土類元素が酸素や炭素と結び付き、化学量論組成に対して希土類元素が不足する状態となることが挙げられる。ここで、α−Feは、変形能を有し、粉砕されずに粉砕機中に残存するため、合金を粉砕する際の粉砕効率を低下させるだけでなく、粉砕前後での組成変動、粒度分布にも影響を及ぼす。さらに、α−Feが、焼結後も磁石中に残存すれば、磁石の磁気特性の低下をもたらす。   Moreover, as a problem which arises in manufacture of a R-T-B type magnet, it is mentioned that (alpha) -Fe produces | generates in the sintered alloy. The cause is that when a permanent magnet is manufactured using a magnet raw material alloy having a content based on the stoichiometric composition, the rare earth element is combined with oxygen and carbon during the manufacturing process, and the rare earth element is compared with the stoichiometric composition. It is mentioned that it becomes insufficiency. Here, α-Fe has deformability and remains in the pulverizer without being pulverized, so that not only the pulverization efficiency when pulverizing the alloy is decreased, but also the composition fluctuation and particle size distribution before and after pulverization. It also affects. Furthermore, if α-Fe remains in the magnet after sintering, the magnetic properties of the magnet are lowered.

そして、上述した永久磁石1における希土類元素の含有量は、上記化学量論組成に基づく含有量(26.7wt%)よりも0.1wt%〜10.0wt%、より好ましくは0.1wt%〜5.0wt%多い範囲内であることが望ましい。永久磁石1中の希土類元素の含有量を上記範囲とすることによって、焼結後の永久磁石1中にRリッチ相を均一に分散することが可能となる。また、製造過程で希土類元素が酸素と結び付いたとしても、化学量論組成に対して希土類元素が不足することなく、焼結後の永久磁石1中にα−Feが生成されることを抑制することが可能となる。   The rare earth element content in the permanent magnet 1 is 0.1 wt% to 10.0 wt%, more preferably 0.1 wt% to the content based on the stoichiometric composition (26.7 wt%). It is desirable that the amount be within a range of 5.0 wt%. By setting the content of the rare earth element in the permanent magnet 1 within the above range, the R-rich phase can be uniformly dispersed in the sintered permanent magnet 1. Moreover, even if the rare earth element is combined with oxygen in the manufacturing process, the rare earth element is not insufficient with respect to the stoichiometric composition, and generation of α-Fe in the sintered permanent magnet 1 is suppressed. It becomes possible.

尚、永久磁石1中の希土類元素の含有量が上記範囲よりも少ない場合には、Rリッチ相が形成され難くなる。また、α−Feの生成を十分に抑制することができない。一方、永久磁石1中の希土類元素の組成が上記範囲より多い場合には、保磁力の増加が鈍化し、かつ残留磁束密度が低下してしまい、実用的ではない。   Note that when the content of the rare earth element in the permanent magnet 1 is less than the above range, the R-rich phase is hardly formed. Moreover, the production | generation of (alpha) -Fe cannot fully be suppressed. On the other hand, when the composition of the rare earth element in the permanent magnet 1 is larger than the above range, the increase in coercive force is slowed and the residual magnetic flux density is lowered, which is not practical.

また、本発明では、後述のように粉砕された磁石粉末を成形する前にM−(OR)(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされるMを含む有機金属化合物(例えば、ネオジウムエトキシド、ジスプロシウムプロポキシド、テルビウムプロポキシドなど)を含む溶媒を添加し、湿式状態で磁石粉末に混合する。 Further, in the present invention, M- (OR) x (wherein M is Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, Including at least one of W and Nb, wherein R is any alkyl group having 2 to 6 carbon atoms, which may be linear or branched, and x is an arbitrary integer. A solvent containing an organometallic compound (for example, neodymium ethoxide, dysprosium propoxide, terbium propoxide, etc.) is added and mixed with the magnet powder in a wet state.

その際に、特にMとしてNd、Pr、Dy、Tb等の希土類元素を含める場合には、粉砕開始時の磁石原料中における全希土類元素の含有量は、上記化学量論組成に基づく含有量(26.7wt%)とする。そして、後述のように粉砕された磁石粉末を成形する前に希土類元素であるMを含む有機金属化合物を含む溶媒を添加し、湿式状態で磁石粉末に混合する。その結果、有機金属化合物添加後の磁石粉末に含まれる希土類元素の含有量は、上記化学量論組成に基づく含有量(26.7wt%)よりも0.1wt%〜10.0wt%、より好ましくは0.1wt%〜5.0wt%多い範囲内となる。また、溶媒中に添加することによって、Mを含む有機金属化合物を溶媒中で分散させ、磁石粒子の粒子表面にMを含む有機金属化合物を均一付着することが可能となり、焼結後の永久磁石1においてRリッチ相を均一に分散することが可能となる。   At that time, in particular, when including rare earth elements such as Nd, Pr, Dy, and Tb as M, the content of all rare earth elements in the magnet raw material at the start of pulverization is the content based on the above stoichiometric composition ( 26.7 wt%). And before shape | molding the pulverized magnet powder as mentioned later, the solvent containing the organometallic compound containing M which is a rare earth element is added, and it mixes with a magnet powder in a wet state. As a result, the rare earth element content in the magnet powder after addition of the organometallic compound is more preferably 0.1 wt% to 10.0 wt%, more preferably the content based on the stoichiometric composition (26.7 wt%). Is within the range of 0.1 wt% to 5.0 wt%. Further, by adding it to the solvent, it becomes possible to disperse the organometallic compound containing M in the solvent and uniformly adhere the organometallic compound containing M to the particle surfaces of the magnet particles. 1, the R-rich phase can be uniformly dispersed.

この方法では、粉砕前に磁石原料に含まれる希土類元素の含有量を予め化学量論組成に基づく含有量よりも多くする方法と比較して、粉砕前後で磁石組成が大きく変動しない利点がある。従って、粉砕後に磁石組成を変更する必要がない利点がある。   This method has an advantage that the magnet composition does not vary greatly before and after pulverization, as compared with a method in which the content of rare earth elements contained in the magnet raw material before pulverization is made higher than the content based on the stoichiometric composition in advance. Therefore, there is an advantage that it is not necessary to change the magnet composition after pulverization.

更に、MとしてDy又はTbを含めれば、磁石粒子の粒界にDy又はTbを偏在化することが可能となる。そして、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。また、DyやTbの添加量が従来に比べて少なくすることができ、残留磁束密度の低下を抑制することができる。   Furthermore, if Dy or Tb is included as M, Dy or Tb can be unevenly distributed in the grain boundaries of the magnet particles. Then, Dy and Tb unevenly distributed at the grain boundaries suppress the generation of reverse magnetic domains at the grain boundaries, so that the coercive force can be improved. In addition, the amount of Dy or Tb added can be reduced as compared with the conventional case, and a decrease in residual magnetic flux density can be suppressed.

一方、特にMとしてV、Mo、Zr、Ta、Ti、W、Nb(以下、Nb等という)の高融点金属元素を含める場合には、Nb等を含む有機金属化合物を有機溶媒中で分散させ、Nd結晶粒子35の粒子表面にNb等を含む有機金属化合物を均一付着することが可能となる。その結果、磁石粉末を焼結する際に、湿式分散によりNd結晶粒子の粒子表面に均一付着された該有機金属化合物中のNb等が、Nd結晶粒子の結晶成長領域へと拡散侵入して置換が行われ、Nd結晶粒子の表面に高融点金属層を形成する。尚、高融点金属層は例えばNbFeB金属間化合物から構成される。   On the other hand, when M contains a refractory metal element such as V, Mo, Zr, Ta, Ti, W, or Nb (hereinafter referred to as Nb), an organometallic compound containing Nb or the like is dispersed in an organic solvent. It becomes possible to uniformly adhere an organometallic compound containing Nb or the like to the surface of the Nd crystal particles 35. As a result, when the magnet powder is sintered, Nb or the like in the organometallic compound uniformly attached to the surface of the Nd crystal particles by wet dispersion diffuses and penetrates into the crystal growth region of the Nd crystal particles. And a refractory metal layer is formed on the surface of the Nd crystal particles. The refractory metal layer is made of, for example, an NbFeB intermetallic compound.

そして、Nd結晶粒子の表面にコーティングされた高融点金属層は、永久磁石1の焼結時においてはNd結晶粒子の平均粒径が増加する所謂粒成長を抑制する手段として機能する。その結果、焼結時における結晶粒の粒成長を抑制することが可能となる。尚、MとしてNb等の高融点金属元素を含める場合には、粉砕開始時の磁石原料中における全希土類元素の含有量は、上記化学量論組成に基づく含有量(26.7wt%)とし、Rリッチ相を粒界相12に形成しないように構成することが望ましい。   The refractory metal layer coated on the surface of the Nd crystal particles functions as a means for suppressing so-called grain growth in which the average particle diameter of the Nd crystal particles increases when the permanent magnet 1 is sintered. As a result, it is possible to suppress grain growth of crystal grains during sintering. In addition, when including a refractory metal element such as Nb as M, the content of all rare earth elements in the magnet raw material at the start of pulverization is a content (26.7 wt%) based on the above stoichiometric composition, It is desirable that the R-rich phase is not formed in the grain boundary phase 12.

ここで、上記M−(OR)(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)の構造式を満たす有機金属化合物として金属アルコキシドがある。金属アルコキシドとは、一般式M(OR)(M:金属元素、R:有機基、n:金属又は半金属の価数)で表される。また、金属アルコキシドを形成する金属又は半金属としては、Nd、Pr、Dy、Tb、W、Mo、V、Nb、Ta、Ti、Zr、Ir、Fe、Co、Ni、Cu、Zn、Cd、Al、Ga、In、Ge、Sb、Y、lanthanideなどが挙げられる。但し、本発明では特に、Nd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbを用いる。 Here, M- (OR) x (wherein M includes at least one of Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb. R has 2 carbon atoms. A metal alkoxide as an organometallic compound satisfying the structural formula: any one of ˜6 alkyl groups, which may be linear or branched, and x is an arbitrary integer. The metal alkoxide is represented by a general formula M (OR) n (M: metal element, R: organic group, n: valence of metal or metalloid). Further, as the metal or semimetal forming the metal alkoxide, Nd, Pr, Dy, Tb, W, Mo, V, Nb, Ta, Ti, Zr, Ir, Fe, Co, Ni, Cu, Zn, Cd, Al, Ga, In, Ge, Sb, Y, lanthanide, etc. are mentioned. However, in the present invention, Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb are particularly used.

また、アルコキシドの種類は特に限定されることなく、例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシド、炭素数4以上のアルコキシド等が挙げられる。但し、本発明では後述のように低温分解で残炭を抑制する目的から、低分子量のものを用いる。また、炭素数1のメトキシドについては分解し易く、取扱いが困難であるので、特に炭素数が2〜6のアルコキシドであるエトキシド、メトキシド、イソプロポキシド、プロポキシド、ブトキシドなどを用いることが好ましい。   The type of alkoxide is not particularly limited, and examples thereof include methoxide, ethoxide, propoxide, isopropoxide, butoxide, alkoxide having 4 or more carbon atoms, and the like. However, in the present invention, those having a low molecular weight are used for the purpose of suppressing residual coal by low-temperature decomposition as described later. Further, since methoxide having 1 carbon is easily decomposed and difficult to handle, it is particularly preferable to use ethoxide, methoxide, isopropoxide, propoxide, butoxide, etc., which are alkoxides having 2 to 6 carbon atoms.

また、圧粉成形により成形された成形体を適切な焼成条件で焼成すれば、Mが主相11内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、Mを添加したとしてもMによる置換領域を外殻部分のみとすることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのR14B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。 Moreover, if the molded object shape | molded by compaction shaping | molding is baked on suitable baking conditions, it can prevent that M carries out a diffusion | penetration penetration (solid solution) in the main phase 11. FIG. Thereby, in the present invention, even if M is added, the substitution region by M can be made only the outer shell portion. As a result, as a whole crystal grain (that is, as a whole sintered magnet), the core R 2 T 14 B intermetallic compound phase occupies a high volume ratio. Thereby, the fall of the residual magnetic flux density (magnetic flux density when the intensity of an external magnetic field is set to 0) of the magnet can be suppressed.

また、主相11の結晶粒径は0.1μm〜5.0μmとすることが望ましい。尚、主相11と粒界相12の構成は、例えばSEMやTEMや3次元アトムプローブ法により確認することができる。   The crystal grain size of the main phase 11 is preferably 0.1 μm to 5.0 μm. The configurations of the main phase 11 and the grain boundary phase 12 can be confirmed by, for example, SEM, TEM, or a three-dimensional atom probe method.

尚、永久磁石1は、その酸素濃度が0.8重量%以下で、磁気特性がBrで12.0kG以上15.2kG以下、iHcが9kOe以上35kOe以下であることが望ましい。更には、酸素濃度が0.05〜0.8重量%で、かつ炭素濃度が0.03〜0.10重量%であることが、保磁力の向上と共に磁気特性の向上の点から好ましい。   The permanent magnet 1 preferably has an oxygen concentration of 0.8% by weight or less, a magnetic property of Br of 12.0 kG to 15.2 kG and iHc of 9 kOe to 35 kOe. Furthermore, an oxygen concentration of 0.05 to 0.8% by weight and a carbon concentration of 0.03 to 0.10% by weight are preferable from the viewpoint of improving coercive force and improving magnetic properties.

[永久磁石の製造方法1]
次に、本発明に係る永久磁石1の第1の製造方法について図3を用いて説明する。図3は本発明に係る永久磁石1の第1の製造方法における製造工程を示した説明図である。
[Permanent magnet manufacturing method 1]
Next, the 1st manufacturing method of the permanent magnet 1 which concerns on this invention is demonstrated using FIG. FIG. 3 is an explanatory view showing a manufacturing process in the first manufacturing method of the permanent magnet 1 according to the present invention.

先ず、所定分率のR−T−B(例えばNd:26.7wt%、Fe(電解鉄):72.3wt%、B:1.0wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。   First, an ingot made of R-T-B (for example, Nd: 26.7 wt%, Fe (electrolytic iron): 72.3 wt%, B: 1.0 wt%) in a predetermined fraction is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 μm by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing.

次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル41により微粉砕し、所定範囲の粒径(例えば0.1μm〜5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。   Subsequently, the coarsely pulverized magnet powder is either (a) in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas having substantially 0% oxygen content, or (b) having an oxygen content of 0.0001. An average particle having a predetermined range of particle sizes (for example, 0.1 μm to 5.0 μm) by pulverizing with a jet mill 41 in an atmosphere composed of inert gas such as nitrogen gas, Ar gas, and He gas of about 0.5% A fine powder having a diameter is used. The oxygen concentration of substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but may contain oxygen in such an amount that a very small amount of oxide film is formed on the surface of the fine powder. Means good.

一方で、ジェットミル41で微粉砕された微粉末に添加する有機金属化合物溶液(有機溶媒)を作製する。ここで、有機金属化合物溶液には予めMを含む有機金属化合物を添加し、溶解させる。尚、溶解させる有機金属化合物としては、M−(OR)(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物(例えば、ネオジウムエトキシド、ジスプロシウムプロポキシド、テルビウムプロポキシドなど)を用いる。また、溶解させるMを含む有機金属化合物の量は特に制限されないが、焼結後の磁石に対するMの含有量が0.001wt%〜10wt%、好ましくは0.01wt%〜5wt%となる量とするのが好ましい。 On the other hand, an organometallic compound solution (organic solvent) to be added to the fine powder finely pulverized by the jet mill 41 is prepared. Here, an organometallic compound containing M is added in advance to the organometallic compound solution and dissolved. As an organometallic compound to be dissolved, M- (OR) x (wherein M includes at least one of Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb). R is an alkyl group having 2 to 6 carbon atoms, which may be linear or branched, and x is an arbitrary integer.) (For example, neodymium ethoxide, dysprosium propoxide) Terbium propoxide, etc.). Further, the amount of the organometallic compound containing M to be dissolved is not particularly limited, but the amount of M with respect to the sintered magnet is 0.001 wt% to 10 wt%, preferably 0.01 wt% to 5 wt%. It is preferable to do this.

続いて、ジェットミル41にて分級された微粉末に対して上記有機金属化合物溶液を添加する。それによって、磁石原料の微粉末と有機金属化合物溶液とが混合されたスラリー42を生成する。尚、有機金属化合物溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。   Subsequently, the organometallic compound solution is added to the fine powder classified by the jet mill 41. Thereby, the slurry 42 in which the fine powder of the magnet raw material and the organometallic compound solution are mixed is generated. The addition of the organometallic compound solution is performed in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.

その後、生成したスラリー42を成形前に真空乾燥などで事前に乾燥させ、乾燥した磁石粉末43を取り出す。その後、乾燥した磁石粉末を成形装置50により所定形状に圧粉成形する。尚、圧粉成形には、上記の乾燥した微粉末をキャビティに充填する乾式法と、溶媒などでスラリー状にしてからキャビティに充填する湿式法があるが、本発明では乾式法を用いる場合を例示する。また、有機金属化合物溶液は成形後の焼成段階で揮発させることも可能である。   Thereafter, the produced slurry 42 is dried in advance by vacuum drying or the like before molding, and the dried magnet powder 43 is taken out. Thereafter, the dried magnet powder is compacted into a predetermined shape by the molding device 50. There are two types of compacting: a dry method in which the dried fine powder is filled into the cavity, and a wet method in which the powder is filled into the cavity after slurrying with a solvent or the like. In the present invention, the dry method is used. Illustrate. Further, the organometallic compound solution can be volatilized in the firing stage after molding.

図3に示すように、成形装置50は、円筒状のモールド51と、モールド51に対して上下方向に摺動する下パンチ52と、同じくモールド51に対して上下方向に摺動する上パンチ53とを有し、これらに囲まれた空間がキャビティ54を構成する。
また、成形装置50には一対の磁界発生コイル55、56がキャビティ54の上下位置に配置されており、磁力線をキャビティ54に充填された磁石粉末43に印加する。印加させる磁場は例えば1MA/mとする。
As shown in FIG. 3, the molding apparatus 50 includes a cylindrical mold 51, a lower punch 52 that slides up and down with respect to the mold 51, and an upper punch 53 that also slides up and down with respect to the mold 51. And a space surrounded by them constitutes the cavity 54.
The molding apparatus 50 has a pair of magnetic field generating coils 55 and 56 disposed above and below the cavity 54, and applies magnetic field lines to the magnet powder 43 filled in the cavity 54. The applied magnetic field is, for example, 1 MA / m.

そして、圧粉成形を行う際には、先ず乾燥した磁石粉末43をキャビティ54に充填する。その後、下パンチ52及び上パンチ53を駆動し、キャビティ54に充填された磁石粉末43に対して矢印61方向に圧力を加え、成形する。また、加圧と同時にキャビティ54に充填された磁石粉末43に対して、加圧方向と平行な矢印62方向に磁界発生コイル55、56によってパルス磁場を印加する。それによって、所望の方向に磁場を配向させる。尚、磁場を配向させる方向は、磁石粉末43から成形される永久磁石1に求められる磁場方向を考慮して決定する必要がある。
また、湿式法を用いる場合には、キャビティ54に磁場を印加しながらスラリーを注入し、注入途中又は注入終了後に、当初の磁場より強い磁場を印加して湿式成形しても良い。また、加圧方向に対して印加方向が垂直となるように磁界発生コイル55、56を配置しても良い。
And when compacting, first, the dried magnet powder 43 is filled into the cavity 54. Thereafter, the lower punch 52 and the upper punch 53 are driven, and pressure is applied in the direction of the arrow 61 to the magnetic powder 43 filled in the cavity 54 to perform molding. Simultaneously with the pressurization, a pulse magnetic field is applied to the magnetic powder 43 filled in the cavity 54 by the magnetic field generating coils 55 and 56 in the direction of the arrow 62 parallel to the pressurization direction. Thereby orienting the magnetic field in the desired direction. Note that the direction in which the magnetic field is oriented needs to be determined in consideration of the magnetic field direction required for the permanent magnet 1 formed from the magnet powder 43.
Further, when using the wet method, the slurry may be injected while applying a magnetic field to the cavity 54, and wet molding may be performed by applying a magnetic field stronger than the initial magnetic field during or after the injection. Further, the magnetic field generating coils 55 and 56 may be arranged so that the application direction is perpendicular to the pressing direction.

次に、圧粉成形により成形された成形体71を水素雰囲気において200℃〜900℃、より好ましくは400℃〜900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が1000ppm以下、より好ましくは500ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。   Next, the compact 71 formed by compacting is held in hydrogen by holding it in a hydrogen atmosphere at 200 ° C. to 900 ° C., more preferably 400 ° C. to 900 ° C. (eg 600 ° C.) for several hours (eg 5 hours). Perform calcination. The amount of hydrogen supplied during calcination is 5 L / min. In the calcination treatment in hydrogen, so-called decarbonization is performed in which the organometallic compound is thermally decomposed to reduce the amount of carbon in the calcined body. Further, the calcination treatment in hydrogen is performed under the condition that the carbon content in the calcined body is 1000 ppm or less, more preferably 500 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.

ここで、上述した水素中仮焼処理によって仮焼された成形体71には、NdHが存在し、酸素と結び付きやすくなる問題があるが、第1の製造方法では、成形体71は水素仮焼後に外気と触れさせることなく、後述の真空焼成に移るため脱水素工程は不要となる。焼成中に成形体中の水素は抜けることとなる。 Here, the molded body 71 calcined by the above-described calcining treatment in hydrogen has a problem that NdH 3 exists and is easily combined with oxygen. However, in the first manufacturing method, the molded body 71 is preliminarily hydrogenated. Since it moves to the below-mentioned vacuum baking without making it contact with external air after baking, a dehydrogenation process becomes unnecessary. During the firing, hydrogen in the molded body is released.

続いて、水素中仮焼処理によって仮焼された成形体71を焼結する焼結処理を行う。焼結処理では、所定の昇温速度で800℃〜1180℃程度まで昇温し、2時間程度保持する。この間は真空焼成となるが真空度としては10−4Torr以下とすることが好ましい。その後冷却し、再び600℃で2時間熱処理を行う。そして、成形体71を焼結した焼結体72を得る。 Then, the sintering process which sinters the molded object 71 calcined by the calcination process in hydrogen is performed. In the sintering process, the temperature is raised to about 800 ° C. to 1180 ° C. at a predetermined rate of temperature rise and held for about 2 hours. During this time, vacuum firing is performed, but the degree of vacuum is preferably 10 −4 Torr or less. Thereafter, it is cooled and heat-treated again at 600 ° C. for 2 hours. And the sintered compact 72 which sintered the molded object 71 is obtained.

その後、焼結体72を冷却した後、焼結体72を製品形状(例えば直方体形状)に切断する。また、研磨して表面の加工仕上げを行う。   Thereafter, after the sintered body 72 is cooled, the sintered body 72 is cut into a product shape (for example, a rectangular parallelepiped shape). Also, the surface is finished by polishing.

続いて、焼結体72に対して熱処理を行い、これによって耐食性を向上させる。この場合、熱処理温度は200〜1100℃が好ましく、より好ましくは300〜600℃、更に好ましくは450〜550℃である。熱処理温度が高すぎると磁気特性劣化が起こり、また低すぎると冷媒及び/又は潤滑油に対する耐久性が悪くなるおそれがある。また、熱処理の雰囲気は、酸素分圧が10-〜10Torr、より好ましくは10-5〜10-4Torrであるアルゴン、窒素又は低圧真空雰囲気下であり、熱処理時間は10分〜10時間、より好ましくは10分〜6時間、更に好ましくは30分〜3時間とする。なお、所望の雰囲気及び温度で熱処理された焼結体72は10〜2000℃/minの冷却速度で冷却してもよい。場合によっては多段にわたる熱処理を行うことも可能である。そして、焼結体72に対して熱処理を行った結果、永久磁石1が製造される。 Subsequently, the sintered body 72 is heat-treated, thereby improving the corrosion resistance. In this case, the heat treatment temperature is preferably 200 to 1100 ° C, more preferably 300 to 600 ° C, still more preferably 450 to 550 ° C. If the heat treatment temperature is too high, the magnetic properties deteriorate, and if it is too low, the durability against the refrigerant and / or lubricating oil may be deteriorated. The atmosphere of the heat treatment, the oxygen partial pressure is 10- 6 to 10 0 Torr, a argon, nitrogen or low-pressure vacuum atmosphere is more preferably 10 -5 to 10 -4 Torr, the heat treatment time is 10 minutes to 10 Time, more preferably 10 minutes to 6 hours, still more preferably 30 minutes to 3 hours. In addition, you may cool the sintered compact 72 heat-processed by desired atmosphere and temperature at the cooling rate of 10-2000 degreeC / min. In some cases, it is possible to perform heat treatment in multiple stages. And as a result of heat-processing with respect to the sintered compact 72, the permanent magnet 1 is manufactured.

上記のように熱処理することにより、磁石の表面に低級酸化物を形成させることができ、耐蝕性のよい高効率モータ用希土類永久磁石が得られる。なお、本発明で得られる磁石は、特にHFC系(例えば、R410A,R134a,R125等)やHCFC(R22,R32等)などの溶媒及び潤滑油(冷凍機油:鉱物油、エステル油、エーテル油等)に耐蝕性を示すことを特徴とするものである。
[永久磁石の製造方法2]
次に、本発明に係る永久磁石1の他の製造方法である第2の製造方法について図4を用いて説明する。図4は本発明に係る永久磁石1の第2の製造方法における製造工程を示した説明図である。
By performing heat treatment as described above, a lower oxide can be formed on the surface of the magnet, and a high-efficiency rare earth permanent magnet for motors with good corrosion resistance can be obtained. The magnets obtained by the present invention are particularly solvents such as HFC (for example, R410A, R134a, R125, etc.) and HCFC (R22, R32, etc.) and lubricating oil (refrigerator oil: mineral oil, ester oil, ether oil, etc.) ) Is resistant to corrosion.
[Permanent magnet manufacturing method 2]
Next, the 2nd manufacturing method which is another manufacturing method of the permanent magnet 1 which concerns on this invention is demonstrated using FIG. FIG. 4 is an explanatory view showing a manufacturing process in the second manufacturing method of the permanent magnet 1 according to the present invention.

尚、スラリー42を生成するまでの工程は、図3を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。   The process until the slurry 42 is generated is the same as the manufacturing process in the first manufacturing method already described with reference to FIG.

先ず、生成したスラリー42を成形前に真空乾燥などで事前に乾燥させ、乾燥した磁石粉末43を取り出す。その後、乾燥した磁石粉末43を水素雰囲気において200℃〜900℃、より好ましくは400℃〜900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が1000ppm以下、より好ましくは500ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。   First, the produced slurry 42 is dried in advance by vacuum drying or the like before molding, and the dried magnet powder 43 is taken out. Thereafter, the dried magnet powder 43 is calcined in hydrogen by holding it in a hydrogen atmosphere at 200 ° C. to 900 ° C., more preferably 400 ° C. to 900 ° C. (eg 600 ° C.) for several hours (eg 5 hours). The amount of hydrogen supplied during calcination is 5 L / min. In the calcination treatment in hydrogen, so-called decarbonization is performed in which the organometallic compound is thermally decomposed to reduce the amount of carbon in the calcined body. Further, the calcination treatment in hydrogen is performed under the condition that the carbon content in the calcined body is 1000 ppm or less, more preferably 500 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.

次に、水素中仮焼処理によって仮焼された粉末状の仮焼体82を真空雰囲気で200℃〜600℃、より好ましくは400℃〜600℃で1〜3時間保持することにより脱水素処理を行う。尚、真空度としては0.1Torr以下とすることが好ましい。   Next, dehydrogenation treatment is performed by holding the powder-like calcined body 82 calcined by calcination in hydrogen at 200 to 600 ° C., more preferably at 400 to 600 ° C. for 1 to 3 hours in a vacuum atmosphere. I do. The degree of vacuum is preferably 0.1 Torr or less.

ここで、上述した水素中仮焼処理によって仮焼された仮焼体82には、NdHが存在し、酸素と結び付きやすくなる問題がある。
そこで、上記脱水素処理では、水素中仮焼処理によって生成された仮焼体82中のNdH(活性度大)を、NdH(活性度大)→NdH(活性度小)へと段階的に変化させることによって、水素仮焼中処理により活性化された仮焼体82の活性度を低下させる。それによって、水素中仮焼処理によって仮焼された仮焼体82をその後に大気中へと移動させた場合であっても、Ndが酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
Here, the calcined body 82 calcined by the above-described calcining process in hydrogen has a problem that NdH 3 exists and is easily combined with oxygen.
Stage Therefore, the dehydrogenation process, NdH 3 calcined body of 82 produced by calcination process in hydrogen (activity Univ), NdH 3 (activity Univ) → NdH 2 to (activity small) Thus, the activity of the calcined body 82 activated by the treatment during the hydrogen calcination is lowered. Thereby, even when the calcined body 82 calcined by the calcining process in hydrogen is moved to the atmosphere after that, Nd is prevented from being combined with oxygen, and the residual magnetic flux density and coercive force are reduced. There is no reduction.

その後、脱水素処理が行われた粉末状の仮焼体82を成形装置50により所定形状に圧粉成形する。成形装置50の詳細については図3を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。   Thereafter, the powder-like calcined body 82 subjected to the dehydrogenation treatment is compacted into a predetermined shape by the molding apparatus 50. The details of the molding apparatus 50 are the same as the manufacturing steps in the first manufacturing method already described with reference to FIG.

その後、成形された仮焼体82を焼結する焼結処理を行う。焼結処理では、所定の昇温速度で800℃〜1180℃程度まで昇温し、2時間程度保持する。この間は真空焼成となるが真空度としては10−4Torr以下とすることが好ましい。その後冷却し、再び600℃で2時間熱処理を行う。そして、成形された仮焼体82を焼結した焼結体72を得る。 Thereafter, a sintering process for sintering the formed calcined body 82 is performed. In the sintering process, the temperature is raised to about 800 ° C. to 1180 ° C. at a predetermined rate of temperature rise and held for about 2 hours. During this time, vacuum firing is performed, but the degree of vacuum is preferably 10 −4 Torr or less. Thereafter, it is cooled and heat-treated again at 600 ° C. for 2 hours. Then, a sintered body 72 obtained by sintering the formed calcined body 82 is obtained.

その後は、図3を用いて既に説明した第1の製造方法における製造工程と同様に、焼結体72を製品形状(例えば直方体形状)に切断し、また、研磨して表面の加工仕上げを行った後に、焼結体72に対して熱処理を行い、永久磁石1が製造される。   Thereafter, similarly to the manufacturing process in the first manufacturing method already described with reference to FIG. 3, the sintered body 72 is cut into a product shape (for example, a rectangular parallelepiped shape) and polished to finish the surface. After that, the sintered body 72 is heat-treated, and the permanent magnet 1 is manufactured.

尚、上述した第2の製造方法では、粉末状の磁石粒子に対して水素中仮焼処理を行うので、成形後の磁石粒子に対して水素中仮焼処理を行う前記第1の製造方法と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる利点がある。即ち、前記第1の製造方法と比較して仮焼体中の炭素量をより確実に低減させることが可能となる。
一方、第1の製造方法では、成形体71は水素仮焼後に外気と触れさせることなく、後述の真空焼成に移るため脱水素工程は不要となる。従って、前記第2の製造方法と比較して製造工程を簡略化することが可能となる。但し、前記第2の製造方法においても、水素仮焼後に外気と触れさせることがなく焼成を行う場合には、脱水素工程は不要となる。
In the second manufacturing method described above, since the powdered magnet particles are calcined in hydrogen, the first manufacturing method in which the magnet particles after molding are calcined in hydrogen are used. In comparison, there is an advantage that the pyrolysis of the organometallic compound can be more easily performed on the entire magnet particle. That is, it becomes possible to more reliably reduce the amount of carbon in the calcined body as compared with the first manufacturing method.
On the other hand, in the first manufacturing method, the compact 71 does not come into contact with the outside air after hydrogen calcination, and moves to vacuum firing described later, so that a dehydrogenation step is unnecessary. Therefore, the manufacturing process can be simplified as compared with the second manufacturing method. However, also in the second manufacturing method, the dehydrogenation step is not necessary when the firing is performed without contact with the outside air after the hydrogen calcination.

以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、粉砕された磁石粉末に対してM−(OR)x(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末を真空中又は不活性化ガス雰囲気下において600℃以上900℃未満で0.01分以上1時間未満保持することにより加熱処理を行う。更に、加熱処理された磁石粉末を成形し、800℃〜1180℃で焼成を行い、製品形状(例えば直方体形状)に切断し、また、研磨して表面の加工仕上げを行った後に、焼結体72に対して熱処理を行うことによって永久磁石1を製造する。また、熱処理では、酸素分圧が10-6〜10Torrであるアルゴン、窒素又は低圧真空雰囲気下において、200℃〜1100℃で10分〜10時間熱処理を行って磁石の表面に低級酸化物を形成させるので、加工処理を施したR−Fe−B系永久磁石表面に熱処理による保護膜形成を行うことにより、冷媒及び潤滑油による高温高圧という雰囲気においても耐食性及び水素バリアー性を有する高耐油性焼結永久磁石を簡便かつ安価に提供することができ、産業上その利用価値は極めて高い。
焼結された成形体の酸素濃度を0.05重量%〜0.8重量%であり、炭素濃度が0.03重量%〜0.10重量%とするので、磁気性能の高い希土類永久磁石を製造することが可能となる。
また、M−(OR)(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を含む溶媒を添加し、湿式状態で磁石粉末に混合するので、Mを含む有機金属化合物を溶媒中で分散させ、磁石粒子の粒子表面にMを含む有機金属化合物を均一付着することが可能となり、Mを焼結後の希土類磁石の粒界に対して効率よく偏在させることができる。
また、有機金属化合物が添加された磁石を、焼結前に水素雰囲気で仮焼することにより、有機金属化合物を熱分解させて磁石粒子中に含有する炭素を予め焼失(炭素量を低減)させることができ、焼結工程でカーバイドがほとんど形成されることがない。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが析出することなく、磁石特性を大きく低下させることがない。
また、特に第2の製造方法では、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、残存する有機化合物の熱分解を磁石粒子全体に対してより容易に行うことができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。また、仮焼処理後に脱水素処理を行うことによって、仮焼処理により活性化された仮焼体の活性度を低下させることができる。それにより、その後に磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
As described above, in the permanent magnet 1 and the method for manufacturing the permanent magnet 1 according to the present embodiment, M- (OR) x (where M is Nd, Pr, Dy, Tb) with respect to the pulverized magnet powder. , V, Mo, Zr, Ta, Ti, W, Nb, at least one of them, R is any one of alkyl groups having 2 to 6 carbon atoms, and may be linear or branched. An organometallic compound solution to which an organometallic compound represented by (2) is added is added to uniformly adhere the organometallic compound to the surfaces of the magnet particles. Then, heat treatment is performed by holding the dried magnet powder in a vacuum or in an inert gas atmosphere at 600 ° C. or more and less than 900 ° C. for 0.01 minute or more and less than 1 hour. Further, the heat-treated magnet powder is molded, fired at 800 ° C. to 1180 ° C., cut into a product shape (for example, a rectangular parallelepiped shape), and polished to finish the surface, and then sintered. The permanent magnet 1 is manufactured by performing heat treatment on 72. In the heat treatment, the lower oxide is formed on the surface of the magnet by performing heat treatment at 200 ° C. to 1100 ° C. for 10 minutes to 10 hours in an argon, nitrogen or low pressure vacuum atmosphere having an oxygen partial pressure of 10 −6 to 10 0 Torr. By forming a protective film by heat treatment on the surface of the R-Fe-B permanent magnet that has been processed, high oil resistance that has corrosion resistance and hydrogen barrier properties even in an atmosphere of high temperature and high pressure due to refrigerant and lubricating oil The sintered sintered permanent magnet can be provided simply and inexpensively, and its utility value is extremely high in industry.
Since the sintered compact has an oxygen concentration of 0.05 wt% to 0.8 wt% and a carbon concentration of 0.03 wt% to 0.10 wt%, a rare earth permanent magnet with high magnetic performance can be obtained. It can be manufactured.
M- (OR) x (wherein M includes at least one of Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb. R has 2 to 6 carbon atoms) And a solvent containing an organometallic compound represented by the following formula is added and mixed with the magnet powder in a wet state. It is possible to disperse organometallic compounds containing Mn in a solvent so that the organometallic compounds containing M are uniformly deposited on the surface of the magnet particles, and the M is unevenly distributed with respect to the grain boundaries of the sintered rare earth magnet. Can be made.
In addition, a magnet to which an organometallic compound is added is calcined in a hydrogen atmosphere before sintering, so that the organometallic compound is thermally decomposed and carbon contained in the magnet particles is preliminarily burned out (the amount of carbon is reduced). The carbide is hardly formed in the sintering process. As a result, it is possible to sinter the entire magnet densely without generating voids between the main phase and the grain boundary phase of the sintered magnet, and to prevent the coercive force from being lowered. . Further, αFe is not precipitated in the main phase of the magnet after sintering, and the magnet characteristics are not greatly deteriorated.
In particular, in the second manufacturing method, since the powdered magnet particles are calcined, the remaining organic compound is thermally decomposed as compared with the case of calcining the molded magnet particles. This can be performed more easily on the entire magnet particle. That is, the amount of carbon in the calcined body can be reduced more reliably. Further, by performing the dehydrogenation treatment after the calcination treatment, the activity of the calcined body activated by the calcination treatment can be reduced. As a result, the magnet particles are prevented from being combined with oxygen thereafter, and the residual magnetic flux density and coercive force are not reduced.

尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
また、磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件、熱処理条件などは上記実施例に記載した条件に限られるものではない。
また、仮焼処理や脱水素工程については省略しても良い。
In addition, this invention is not limited to the said Example, Of course, various improvement and deformation | transformation are possible within the range which does not deviate from the summary of this invention.
Moreover, the pulverization conditions, kneading conditions, calcination conditions, sintering conditions, heat treatment conditions, etc. of the magnet powder are not limited to the conditions described in the above examples.
Moreover, you may abbreviate | omit about a calcination process and a dehydrogenation process.

また、上述した製造方法では、Nd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbについては、磁石粉末にM−(OR)(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を添加することによって、添加する構成としているが、一部については予めインゴットに含める構成としても良い。 In the manufacturing method described above, for Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb, M- (OR) x (where M is Nd, Pr) , Dy, Tb, V, Mo, Zr, Ta, Ti, W, Nb, and at least one of them, R is an alkyl group having 2 to 6 carbon atoms, and may be linear or branched. x is an arbitrary integer.) By adding the organometallic compound represented by (2), the composition is added. However, a part of the composition may be included in the ingot in advance.

1 永久磁石
11 主相
12 Rリッチ相
1 Permanent magnet 11 Main phase 12 R rich phase

Claims (2)

磁石原料を磁石粉末に粉砕する工程と、
前記粉砕された磁石粉末に以下の構造式
M−(OR)
(式中、MはNd、Pr、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)
で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、
前記成形体を焼結する工程と、
前記焼結された成形体を切断及び/又は研磨して表面を加工仕上げした後、酸素分圧が10-6〜10Torrであるアルゴン、窒素又は低圧真空雰囲気下において、200℃〜1100℃で10分〜10時間熱処理を行って磁石の表面に低級酸化物を形成させる工程と、
を有することを特徴とする希土類永久磁石の製造方法。
Crushing magnet raw material into magnet powder;
The pulverized magnet powder has the following structural formula M- (OR) x
(In the formula, M includes at least one of Nd, Pr, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb. R is any one of alkyl groups having 2 to 6 carbon atoms. It may be linear or branched, and x is an arbitrary integer.)
A step of attaching the organometallic compound to the particle surface of the magnet powder by adding an organometallic compound represented by:
Forming the molded body by molding the magnet powder having the organometallic compound attached to the particle surface;
Sintering the molded body;
After the sintered compact is cut and / or polished to finish the surface, it is 200 ° C. to 1100 ° C. in an argon, nitrogen or low pressure vacuum atmosphere having an oxygen partial pressure of 10 −6 to 10 0 Torr. Performing a heat treatment for 10 minutes to 10 hours to form a lower oxide on the surface of the magnet;
A method for producing a rare earth permanent magnet, comprising:
前記焼結された成形体の酸素濃度が0.05重量%〜0.8重量%であり、炭素濃度が0.03重量%〜0.10重量%であることを特徴とする請求項1に記載の希土類永久磁石の製造方法。   The oxygen concentration of the sintered compact is 0.05 wt% to 0.8 wt%, and the carbon concentration is 0.03 wt% to 0.10 wt%. The manufacturing method of the rare earth permanent magnet of description.
JP2010083992A 2010-03-31 2010-03-31 Rare earth permanent magnet manufacturing method Expired - Fee Related JP5501829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083992A JP5501829B2 (en) 2010-03-31 2010-03-31 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083992A JP5501829B2 (en) 2010-03-31 2010-03-31 Rare earth permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2011216695A true JP2011216695A (en) 2011-10-27
JP5501829B2 JP5501829B2 (en) 2014-05-28

Family

ID=44946135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083992A Expired - Fee Related JP5501829B2 (en) 2010-03-31 2010-03-31 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP5501829B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236195A (en) * 2013-06-05 2014-12-15 日亜化学工業株式会社 Method of producing magnetic particles
WO2016010348A1 (en) * 2014-07-14 2016-01-21 한양대학교 산학협력단 R-fe-b-based sintered magnet containing no heavy rare earth elements, and preparation method therefor
CN114420439A (en) * 2022-03-02 2022-04-29 浙江大学 Method for improving high-abundance rare earth permanent magnet corrosion resistance by high-temperature oxidation treatment
CN115872725A (en) * 2022-12-08 2023-03-31 中国科学院合肥物质科学研究院 Al-Y-Cr-Fe-Zr-Nb-Ti-Ta-O high-entropy composite oxide hydrogen-resistant coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102505534B1 (en) 2017-03-02 2023-03-02 하이드로카본 테크놀로지 앤 이노베이션, 엘엘씨 Upgraded ebullated bed reactor with less fouling sediment
CN106920617B (en) * 2017-03-21 2019-04-16 四川大学 High-performance Ne-Fe-B rare earth permanent-magnetic material and preparation method thereof
CA3057131C (en) 2018-10-17 2024-04-23 Hydrocarbon Technology And Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057052A (en) * 2000-05-31 2002-02-22 Shin Etsu Chem Co Ltd Method for manufacturing rare-earth permanent magnet
JP2005183781A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Rare earth magnet and its manufacturing method
WO2009128460A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Permanent magnet and process for producing permanent magnet
JP2009259956A (en) * 2008-04-15 2009-11-05 Nitto Denko Corp Permanent magnet and process for producing permanent magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057052A (en) * 2000-05-31 2002-02-22 Shin Etsu Chem Co Ltd Method for manufacturing rare-earth permanent magnet
JP2005183781A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Rare earth magnet and its manufacturing method
WO2009128460A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Permanent magnet and process for producing permanent magnet
JP2009259956A (en) * 2008-04-15 2009-11-05 Nitto Denko Corp Permanent magnet and process for producing permanent magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236195A (en) * 2013-06-05 2014-12-15 日亜化学工業株式会社 Method of producing magnetic particles
WO2016010348A1 (en) * 2014-07-14 2016-01-21 한양대학교 산학협력단 R-fe-b-based sintered magnet containing no heavy rare earth elements, and preparation method therefor
CN114420439A (en) * 2022-03-02 2022-04-29 浙江大学 Method for improving high-abundance rare earth permanent magnet corrosion resistance by high-temperature oxidation treatment
CN115872725A (en) * 2022-12-08 2023-03-31 中国科学院合肥物质科学研究院 Al-Y-Cr-Fe-Zr-Nb-Ti-Ta-O high-entropy composite oxide hydrogen-resistant coating
CN115872725B (en) * 2022-12-08 2023-07-25 中国科学院合肥物质科学研究院 High-entropy composite oxide hydrogen-resistant coating of Al-Y-Cr-Fe-Zr-Nb-Ti-Ta-O

Also Published As

Publication number Publication date
JP5501829B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP4840606B2 (en) Rare earth permanent magnet manufacturing method
JP5501829B2 (en) Rare earth permanent magnet manufacturing method
JP6204434B2 (en) Anisotropic composite sintered magnet containing MnBi with improved magnetic properties and method for producing the same
KR101585483B1 (en) Sintered Magnet Based on MnBi Having Improved Heat Stability and Method of Preparing the Same
JP4865920B2 (en) Permanent magnet and method for manufacturing permanent magnet
WO2007119553A1 (en) Process for producing rare-earth permanent magnet material
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
JPWO2006043348A1 (en) Rare earth permanent magnet material and manufacturing method thereof
JP5501828B2 (en) R-T-B rare earth permanent magnet
JP4865919B2 (en) Permanent magnet and method for manufacturing permanent magnet
CN102930975A (en) Manufacturing method of R-Fe-B series sintered magnets
JP4923147B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP4865097B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP4865099B2 (en) Permanent magnet and method for manufacturing permanent magnet
US9601979B2 (en) Alloy material for R-T-B system rare earth permanent magnet, method for producing R-T-B system rare earth permanent magnet, and motor
JP2011049440A (en) Method for manufacturing r-t-b based permanent magnet
CN113593882A (en) 2-17 type samarium-cobalt permanent magnet material and preparation method and application thereof
JP4923149B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5328369B2 (en) Permanent magnet and method for manufacturing permanent magnet
KR20200144853A (en) Manufacturing method of sintered magnet
JP4923150B2 (en) Permanent magnet and method for manufacturing permanent magnet
KR102399418B1 (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
KR20210041315A (en) Manufacturing method of sintered magnet
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5501829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees