JP2011216574A - Thin film transistor and method for manufacturing the same - Google Patents

Thin film transistor and method for manufacturing the same Download PDF

Info

Publication number
JP2011216574A
JP2011216574A JP2010081588A JP2010081588A JP2011216574A JP 2011216574 A JP2011216574 A JP 2011216574A JP 2010081588 A JP2010081588 A JP 2010081588A JP 2010081588 A JP2010081588 A JP 2010081588A JP 2011216574 A JP2011216574 A JP 2011216574A
Authority
JP
Japan
Prior art keywords
thin film
tft
igzo
channel layer
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081588A
Other languages
Japanese (ja)
Other versions
JP5168599B2 (en
Inventor
Kenji Nomura
研二 野村
Hideo Hosono
秀雄 細野
Toshio Kamiya
利夫 神谷
Masahiro Hirano
正浩 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2010081588A priority Critical patent/JP5168599B2/en
Publication of JP2011216574A publication Critical patent/JP2011216574A/en
Application granted granted Critical
Publication of JP5168599B2 publication Critical patent/JP5168599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that a threshold voltage is greatly shifted to a negative value due to heat treatment of an a-IGZO thin film, and to suppress the maximum temperature in a device production process lower than a softening point of a plastic substrate.SOLUTION: A thin film transistor includes a substrate, a gate electrode, a gate insulating film and a channel layer, wherein an In-Ga-Zn-O amorphous oxide semiconductor film is used as the channel layer. In the thin film transistor, a threshold voltage of the a-IGZO thin film and a field effect mobility after heat treatment in an oxidizing atmosphere containing ozone are within 0±5 V and not less than 5 cm/Vs, respectively. After forming the semiconductor film, the semiconductor film is heat-treated for 1-120 minutes in a temperature range from 100-200°C in a dry oxygen gas atmosphere containing 1.0 vol.% or less and 0.01 vol.% or more of ozone in dry oxygen.

Description

本発明は、In−Ga−Zn−O系アモルファス酸化物半導体膜をチャネル層とした薄膜
トランジスタ(TFT)とその製造方法に関する。
The present invention relates to a thin film transistor (TFT) using an In—Ga—Zn—O-based amorphous oxide semiconductor film as a channel layer and a manufacturing method thereof.

近年、水素化アモルファスシリコン(a−Si)及び多結晶シリコン(poly−Si)に代
わり、低温で高い電子移動度を有する薄膜が作製できる酸化物半導体をチャネル層とする
薄膜トランジスタ(TFT)の研究開発が活発に行われている[非特許文献1]。
In recent years, research and development of thin film transistors (TFTs) using oxide semiconductors as channel layers, which can produce thin films with high electron mobility at low temperatures, instead of hydrogenated amorphous silicon (a-Si) and polycrystalline silicon (poly-Si) Has been actively carried out [Non-Patent Document 1].

多くの酸化物半導体(例えば、酸化亜鉛など)は、高温・耐薬品性に優れていることに加
えて、光学バンドギャップが3.0eV以上を有することから、可視光領域の光を完全に
透過する。よって、透明酸化物半導体をTFTのチャネル層として用いることにより、可
視光に対して光応答性を示さない透明TFTが作製できる。したがって、液晶ディスプレ
イにおける駆動スイッチング用TFTとして応用することにより、液晶素子の開口率の向
上、光遮断マスクが不要になるなどの利点が期待されている。
Many oxide semiconductors (for example, zinc oxide) have high temperature and chemical resistance, and have an optical band gap of 3.0 eV or more, so they completely transmit light in the visible light region. To do. Therefore, by using a transparent oxide semiconductor as a TFT channel layer, a transparent TFT that does not exhibit photoresponsiveness to visible light can be manufactured. Therefore, by applying it as a driving switching TFT in a liquid crystal display, there are expected advantages such as an improvement in the aperture ratio of the liquid crystal element and elimination of a light blocking mask.

しかし、酸化亜鉛などの代表的な酸化物半導体では、残留電子キャリア濃度の低減が困難
である。また、電子キャリア濃度が小さく、高品質の酸化物薄膜を得るためには、高価な
単結晶基板の使用や高温製膜プロセスが必要である[非特許文献2]。 加えて、酸化亜鉛
は低温(室温)製膜でもアモルファス状態にならず、多くの結晶粒界を含んだ多結晶状態
である。多結晶酸化物からなるチャネル層を用いたTFTでは結晶粒界の欠陥によりTF
T特性は極めて悪くなる。
However, in a typical oxide semiconductor such as zinc oxide, it is difficult to reduce the residual electron carrier concentration. Further, in order to obtain a high-quality oxide thin film with a low electron carrier concentration, it is necessary to use an expensive single crystal substrate or a high-temperature film forming process [Non-patent Document 2]. In addition, zinc oxide is not in an amorphous state even at low temperature (room temperature) film formation, and is in a polycrystalline state including many crystal grain boundaries. In a TFT using a channel layer made of a polycrystalline oxide, TF is caused by a defect in a crystal grain boundary.
T characteristics are extremely poor.

多結晶酸化物をチャネル層としたTFTに共通的に発生する上記の課題を克服するため、
本発明者らは、2004年にアモルファス酸化物半導体材料を開発し、それをチャネル層
としたTFTを発表した[非特許文献3、特許文献1,2]。このTFTのチャネル層は結
晶状態における組成が、例えば、(In1-xx23(ZnO)m [mは、0又は6未満の数
又は自然数、Mは、B,Al,Ga,Y又はLu]で表される化合物のモルファス状態の
金属酸化物である。
In order to overcome the above-mentioned problems that commonly occur in TFTs having a polycrystalline oxide channel layer,
In 2004, the present inventors developed an amorphous oxide semiconductor material and announced a TFT using it as a channel layer [Non-patent Document 3, Patent Documents 1 and 2]. The channel layer of this TFT has a composition in a crystalline state, for example, (In 1-x M x ) 2 O 3 (ZnO) m [m is a number of 0 or less than 6 or a natural number, M is B, Al, Ga , Y or Lu] is a metal oxide in a morphous state of a compound represented by:

特に、アモルファスInGaO3(ZnO)m (以下、「a−IGZO」という)膜では、室
温堆積膜でも、ホール効果測定より求めた電子移動度が7cm2(Vs)-1以上の大きな値を
示し、電子キャリア濃度を再現性よく、安定に1015〜1020cm-3に制御することが可能
である[非特許文献4]。そのため、軟化点が300℃以下のプラスチック基板上へもTF
Tや電子回路を作製できる。
In particular, an amorphous InGaO 3 (ZnO) m (hereinafter referred to as “a-IGZO”) film shows a large value of an electron mobility of 7 cm 2 (Vs) −1 or more obtained from Hall effect measurement even in a room-temperature deposited film. The electron carrier concentration can be stably controlled to 10 15 to 10 20 cm −3 with good reproducibility [Non-Patent Document 4]. Therefore, TF is also applied to plastic substrates with a softening point of 300 ° C or lower.
T and electronic circuit can be produced.

a−IGZOをチャネル層としたTFT(以下、「a−IGZO-TFT」という)では、
チャネル中の伝導キャリアの動き易さを表す電界効果移動度が約10cm2(Vs)-1、閾値電
圧付近におけるゲート電圧の変動に対するドレイン電流の変化の度合いを示すサブスレシ
ョルド(subthreshold)値が約0.2V/decade、電流オン・オフ(On/Off)比が約108
上という優れたトランジスタ特性を示す[非特許文献5]。また、TFTのチャネル層が、
結晶粒界を一切含まないアモルファス状態であることから、トランジスタ特性に優れ、T
FT素子間のトランジスタ特性のばらつきが少ない [非特許文献6]。したがって、大面
積でも特性が均一なTFTが作製できるので、大面積平面ディスプレイ用の駆動スイッチ
ングTFTとしての応用を目指した開発が精力的に進められている。
In a TFT using a-IGZO as a channel layer (hereinafter referred to as “a-IGZO-TFT”),
The field-effect mobility representing the mobility of the conduction carriers in the channel is about 10 cm 2 (Vs) −1 , and the subthreshold value indicating the degree of change in the drain current with respect to the fluctuation of the gate voltage near the threshold voltage is about Excellent transistor characteristics of 0.2 V / decade and current on / off ratio of about 10 8 or more are shown [Non-Patent Document 5]. Moreover, the channel layer of TFT is
Since it is in an amorphous state that does not contain any crystal grain boundaries, it has excellent transistor characteristics, and T
Little variation in transistor characteristics between FT elements [Non-Patent Document 6]. Accordingly, since TFTs having uniform characteristics even in a large area can be manufactured, development aimed at application as a driving switching TFT for a large area flat display has been vigorously advanced.

現在までに、n型アモルファス酸化物半導体として、a−IGZO以外に2成分系In−
Zn−O、In−Ga−O、Zn−Sn−O、3成分系Sn−Ga−Zn−Oなどが報告
されている[非特許文献7]。これらの金属酸化物も室温堆積膜はアモルファス状態であり
、TFTのnチャネル層へ適用できる。これらの金属酸化物では、伝導帯を構成する電子
軌道は金属のns軌道であることから、軌道半径の大きな5s軌道を有するInやSnを
多く含んだ組成系で、高い飽和移動度が得られる[非特許文献8]。しかしながら、デバイ
ス特性の再現性・安定性の観点からは、In−Ga−Zn3成分系アモルファス酸化物の
方が、2成分系アモルファス酸化物よりも、優れた性能、特に閾値電圧、電界効果移動度
の長期安定性を示すことが知られている。
To date, as an n-type amorphous oxide semiconductor, in addition to a-IGZO, two-component In-
Zn—O, In—Ga—O, Zn—Sn—O, ternary Sn—Ga—Zn—O, and the like have been reported [Non-patent Document 7]. These metal oxides also have a room temperature deposited film in an amorphous state and can be applied to the n-channel layer of the TFT. In these metal oxides, the electron orbits constituting the conduction band are metal ns orbitals, and therefore high saturation mobility can be obtained with a composition system containing a large amount of In and Sn having a 5s orbital with a large orbital radius. [Non-Patent Document 8]. However, from the viewpoint of reproducibility and stability of device characteristics, In-Ga-Zn ternary amorphous oxides have superior performance, especially threshold voltage, field effect mobility, than binary amorphous oxides. It is known to exhibit long-term stability.

よって、アモルファス酸化物半導体の中でも、特に3成分系のa−IGZOが広く研究さ
れている。現在までに、a−IGZO-TFT を用いた発振回路(リングオシレータ)に
おいて410kHzで動作することなどが実証されている[非特許文献9]。また、画素と
駆動回路のスイッチング素子用TFTとしてa−IGZO-TFTを用いた19インチア
クティブマトリクス方式の有機ELディスプレイ(AMOLED)や37インチアクティ
ブマトリクス方式の液晶ディスプレイ(AMLCD)などが 実用試作ディスプレイとし
て開発されている[非特許文献10,11]。
Therefore, among the amorphous oxide semiconductors, ternary a-IGZO is particularly widely studied. To date, it has been demonstrated that an oscillation circuit (ring oscillator) using an a-IGZO-TFT operates at 410 kHz [Non-Patent Document 9]. In addition, 19-inch active matrix organic EL displays (AMOLED) and 37-inch active matrix liquid crystal displays (AMLCD) using a-IGZO-TFTs as switching element TFTs for pixels and drive circuits are practical prototype displays. It has been developed [Non-Patent Documents 10 and 11].

AMOLEDでは発光部位に自発光型エレクトロルミネセンス(EL)素子を用いること
から、高輝度・高解像度・高応答性に加えて低消費電力・省スペース化などの有利性から
次世代ディスプレイとして期待されている。AMOLEDにおける発光素子制御用TFT
としては主に二つの条件が要求される。第一の条件は、電流を注入することで得るエレク
トロルミネッセンスを取り出す電流注入型有機発光ディスプレイであることから、高輝度
・高応答性を実現するためには、高移動度・低サブスレッショルド値を示すTFTが望ま
しいことである。第二の条件は、大面積デバイス特性の均一性とデバイス特性、特に長時
間駆動に対する閾値電圧の安定性が必要なことである。
Since AMOLED uses a self-luminous electroluminescence (EL) element in the light emitting part, it is expected to be a next generation display due to advantages such as low power consumption and space saving in addition to high brightness, high resolution and high response. ing. Light emitting element control TFT in AMOLED
There are two main requirements. The first condition is a current injection type organic light emitting display that takes out electroluminescence obtained by injecting current. Therefore, in order to achieve high brightness and high responsiveness, high mobility and low subthreshold values are required. The TFT shown is desirable. The second condition is that uniformity of large area device characteristics and device characteristics, in particular, threshold voltage stability with respect to long-time driving is required.

現在まで、AMOLED用のTFTのチャネル材料として高移動度を示すpoly−Si
TFTが検討されているが、多結晶状態による素子間におけるTFT特性のばらつきが大
きく、大面積化が非常に困難である[非特許文献12]。よって、大面積ディスプレイ作製
においてはa−Siの方が有利であるが、トランジスタが流せる電流量の指標である移動
度が2cm2/Vs以下と小さいなどの問題がある[非特許文献13]。現在、この問題は
電極幅の大きいa−Si TFT構造を使うことなどで回避されているが、移動度の大きい
TFTを使えば開口率の増大や高速動作の面で大きな利点となる。
Up to now, poly-Si which shows high mobility as a channel material of TFT for AMOLED
Although TFTs have been studied, variation in TFT characteristics between elements due to the polycrystalline state is large, and it is very difficult to increase the area [Non-Patent Document 12]. Therefore, although a-Si is more advantageous in manufacturing a large area display, there is a problem that mobility, which is an index of the amount of current that can be passed through a transistor, is as small as 2 cm 2 / Vs or less [Non-patent Document 13]. At present, this problem is avoided by using an a-Si TFT structure having a large electrode width. However, using a TFT having a high mobility is a great advantage in terms of increase in aperture ratio and high speed operation.

a−IGZO−TFTでは、チャネル層がアモルファス状態であることから多結晶半導体
デバイスと異なりTFT素子間特性の均一性に優れている。また、a−IGZO-TFT
ではa−Si−TFTと比較して、10倍以上の電界効果移動度、低サブスレショルド値
を有する高性能TFTが作製できる。よって、AMOLED用のスイッチングTFTとし
てa−IGZO−TFTが特に有望である。
Since the channel layer is in an amorphous state, the a-IGZO-TFT has excellent uniformity of characteristics between TFT elements unlike a polycrystalline semiconductor device. Moreover, a-IGZO-TFT
Then, a high-performance TFT having a field effect mobility of 10 times or more and a low subthreshold value can be manufactured as compared with an a-Si-TFT. Therefore, an a-IGZO-TFT is particularly promising as a switching TFT for AMOLED.

現在までに、a−IGZO−TFTにおける電界効果移動度及びサブスレッショルド値な
どのデバイス特性改善・向上において、a−IGZO薄膜を300℃以上で熱処理するこ
とが非常に有効であることが知られている。容量−電圧(C-V)測定より、a−IGZO
薄膜中のサブギャップ準位は約1017cm-3程度であり、このサブギャップ準位は熱処理
により低減され、TFT特性は向上する[非特許文献14]。また、Nomura et al.,は、露
点温度30〜95℃の水蒸気を含んだ酸素(湿潤酸素)雰囲気中で300℃でa−IGZ
O薄膜の熱処理を行うことにより、a−IGZO−TFTの移動度、サブスレショルド値
を向上させ、安定性も改善できると報告している [非特許文献15]。
To date, it is known that it is very effective to heat-treat an a-IGZO thin film at 300 ° C. or higher in improving and improving device characteristics such as field effect mobility and subthreshold value in an a-IGZO-TFT. Yes. From the capacitance-voltage (CV) measurement, a-IGZO
The subgap level in the thin film is about 10 17 cm −3 , and this subgap level is reduced by heat treatment, and the TFT characteristics are improved [Non-Patent Document 14]. Nomura et al., A-IGZ at 300 ° C. in an oxygen (wet oxygen) atmosphere containing water vapor with a dew point temperature of 30-95 ° C.
It has been reported that by performing heat treatment of the O thin film, the mobility and subthreshold value of the a-IGZO-TFT can be improved and the stability can be improved [Non-patent Document 15].

現在まで、a−IGZO−TFTの特性改善を目的としたa−IGZO薄膜の熱処理にお
ける熱処理雰囲気は、大気中、酸素ラジカル、オゾン、水蒸気、窒素中、乾燥酸素中、又
は湿潤酸素中で実施されている(特許文献3〜5)。しかし、a−IGZOを含む多くの
酸化物半導体では、熱処理による材料特性及びTFT特性に及ぼす影響は非常に大きいと
考えられる。既に、乾燥酸素や湿潤酸素雰囲気中での熱処理によるTFT特性の改善に関
してはいくつかの報告はあるが、200℃以下での熱処理では大きな移動度の改善が得ら
れないこと、閾値電圧が大きく負にシフトすることなどが問題となっている[非特許文献
16,17]。
To date, the heat treatment atmosphere in the heat treatment of the a-IGZO thin film aimed at improving the characteristics of the a-IGZO-TFT has been carried out in the air, oxygen radical, ozone, water vapor, nitrogen, dry oxygen, or wet oxygen. (Patent Documents 3 to 5). However, in many oxide semiconductors including a-IGZO, it is considered that the influence of heat treatment on material characteristics and TFT characteristics is very large. Already, there are some reports regarding the improvement of TFT characteristics by heat treatment in dry oxygen or wet oxygen atmosphere, but heat treatment at 200 ° C. or lower cannot provide a significant improvement in mobility, and the threshold voltage is greatly negative. [Non-patent Documents 16 and 17].

R. L. Hoffman et al, Appl. Phys. Lett. 82, 733 (2003).R. L. Hoffman et al, Appl. Phys. Lett. 82, 733 (2003). K. Nomura et al, Science. 300, 1269 (2003).K. Nomura et al, Science. 300, 1269 (2003). K. Nomura et al, Nature (London) 432, 488 (2004).K. Nomura et al, Nature (London) 432, 488 (2004). A. Takagi et al, Thin Solid Films 486 38(2005).A. Takagi et al, Thin Solid Films 486 38 (2005). H. Yabuta et al, Appl. Phys. Lett. 89 112123 (2006).H. Yabuta et al, Appl. Phys. Lett. 89 112123 (2006). R. Hayashi et al, Journal of the SID 15/11 915 (2007).R. Hayashi et al, Journal of the SID 15/11 915 (2007). H. Q. Chiang et al, J. Vac. Sci. Technol. B 24, 2702 (2006).H. Q. Chiang et al, J. Vac. Sci. Technol. B 24, 2702 (2006). H. Kumomi et al, Thin Solid Films 516, 1516 (2008).H. Kumomi et al, Thin Solid Films 516, 1516 (2008). M. Ofuji et al, IEEE Elect. Device Lett. 28 273 (2007).M. Ofuji et al, IEEE Elect. Device Lett. 28 273 (2007). H.D. Kim et al., IMID2009 DIGEST, 3-1 (2009).H.D.Kim et al., IMID2009 DIGEST, 3-1 (2009). M.-C. Hung et al., Abstract of TAOS2010 (2010).M.-C.Hung et al., Abstract of TAOS2010 (2010). R.M.A. Dawson et al, SID 98 Digest. p. 11 (1998).R.M.A.Dawson et al, SID 98 Digest.p. 11 (1998). M. J. Powell et al, Phys. Rev. B 87, 4160 (1992).M. J. Powell et al, Phys. Rev. B 87, 4160 (1992). M. Kimura et al, Appl. Phys. Lett. 92, 133512 (2008).M. Kimura et al, Appl. Phys. Lett. 92, 133512 (2008). K. Nomura et al, Appl. Phys. Lett. 93, 192107 (2006).K. Nomura et al, Appl. Phys. Lett. 93, 192107 (2006). Y. Kikuchi et al., Abstract of TOEO6, 16p-P164 (2009).Y. Kikuchi et al., Abstract of TOEO6, 16p-P164 (2009). K. Nomura et al, Appl. Phys. Lett. 95, 013502 (2009).K. Nomura et al, Appl. Phys. Lett. 95, 013502 (2009).

特開2004-103957号公報JP 2004-103957 A WO2005/088726号公報WO2005 / 088726 Publication 特開2006-165531号公報JP 2006-165531 A 特開2007-311404号公報JP 2007-311404 特開2008-53356号公報JP 2008-53356 A

2004年に、本発明者らがIn−Ga−Zn−O系アモルファス酸化物をチャネル層と
する薄膜トランジスタを報告して以来、そのTFT特性・安定性の改善、向上に関する研
究が活発に研究されている。
Since 2004, when the present inventors reported a thin film transistor having an In—Ga—Zn—O-based amorphous oxide as a channel layer, research on improvement and improvement of TFT characteristics and stability has been actively conducted. Yes.

現在までに、電界効果移動度やサブスレッショルド値などのTFT特性及びその安定性の
向上に関して、300℃以上における空気中又は乾燥酸素雰囲気中でのa−IGZO薄膜
の熱処理が有効なことがよく知られている。また、湿潤酸素雰囲気中での300〜500
℃の範囲におけるa−IGZO薄膜の熱処理では、さらにTFT特性を改善できるが、2
00℃以下におけるa−IGZO薄膜の熱処理では移動度の改善は8cm2/Vs程度に
限られること、閾値電圧が−15V以下と大きく負の値にシフトしてしまう問題がある。
OLEDディスプレイや80インチ以上の画面サイズ・240Hz以上のフレームレート
・フルハイビジョン解像度の液晶ディスプレイには電界効果移動度が5cm2/Vs以上
が必要である。また、閾値電圧シフトを大幅に低減する必要がある。
To date, it is well known that heat treatment of an a-IGZO thin film in air or in a dry oxygen atmosphere at 300 ° C. or higher is effective for improving TFT characteristics such as field effect mobility and subthreshold value and stability thereof. It has been. Also, 300 to 500 in a wet oxygen atmosphere
The heat treatment of the a-IGZO thin film in the range of ° C. can further improve the TFT characteristics.
In the heat treatment of the a-IGZO thin film at 00 ° C. or lower, the improvement in mobility is limited to about 8 cm 2 / Vs, and there is a problem that the threshold voltage is greatly shifted to a negative value of −15 V or lower.
A field effect mobility of 5 cm 2 / Vs or more is required for an OLED display, a screen size of 80 inches or more, a frame rate of 240 Hz or more, and a liquid crystal display with full high-definition resolution. Moreover, it is necessary to significantly reduce the threshold voltage shift.

また、プラスチック基板上にディスプレイや電子回路を作製するためには、デバイス作製
プロセスの最高温度をプラスチック基板の軟化点よりも低く抑える必要があり、例えば、
ポリイミド基板の場合で300℃、ポリエチレンテレフタラート(PET)基板の場合で
150℃以下に抑える必要がある。
In addition, in order to produce a display or electronic circuit on a plastic substrate, it is necessary to keep the maximum temperature of the device production process lower than the softening point of the plastic substrate.
In the case of a polyimide substrate, it is necessary to suppress the temperature to 300 ° C. or 150 ° C. or less in the case of a polyethylene terephthalate (PET) substrate.

プラスチック基板上にアクティブマトリクス方式の液晶ディスプレイ及び有機ELディス
プレイを形成するためには、300℃以下の、より好ましくは、200℃以下のデバイス
作製プロセスとする必要がある。本発明者は、200℃以下の低温における熱処理によっ
て、処理後のa−IGZO薄膜の閾値電圧が0±5V以内、TFTの移動度が5cm2
Vs以上となる条件を見出した。
In order to form an active matrix liquid crystal display and an organic EL display on a plastic substrate, it is necessary to use a device manufacturing process of 300 ° C. or lower, more preferably 200 ° C. or lower. The present inventor conducted a heat treatment at a low temperature of 200 ° C. or lower, the threshold voltage of the a-IGZO thin film after the treatment was within 0 ± 5 V, and the mobility of the TFT was 5 cm 2 /
The condition which becomes Vs or more was found.

すなわち、本発明は、基板と、ゲート電極と、ゲート絶縁膜と、チャネル層とを含み、該
チャネル層としてIn−Ga−Zn−O系アモルファス酸化物半導体膜を用いた薄膜トラ
ンジスタにおいて、オゾンを含む乾燥酸素ガス雰囲気による熱処理後のa−IGZO薄膜
の閾値電圧が0±5V以内、電界効果移動度が5cm2/Vs以上であることを特徴とす
る薄膜トランジスタ、である。
That is, the present invention includes ozone in a thin film transistor including a substrate, a gate electrode, a gate insulating film, and a channel layer, and using the In—Ga—Zn—O amorphous oxide semiconductor film as the channel layer. The thin film transistor is characterized in that the a-IGZO thin film after heat treatment in a dry oxygen gas atmosphere has a threshold voltage of 0 ± 5 V or less and a field effect mobility of 5 cm 2 / Vs or more.

また、本発明は、基板と、ゲート電極と、ゲート絶縁膜と、チャネル層とを含み、該チャ
ネル層としてIn−Ga−Zn−O系アモルファス酸化物半導体膜を用いた薄膜トランジ
スタの製造方法において、該半導体膜を製膜した後、乾燥酸素中にオゾンを1.0容積%
以下0.01容積%以上含む乾燥酸素ガス雰囲気中で該半導体膜を100〜200℃の温
度範囲内で1〜120分間、熱処理することを特徴とする薄膜トランジスタの製造方法、
である。
Further, the present invention relates to a method of manufacturing a thin film transistor including a substrate, a gate electrode, a gate insulating film, and a channel layer, and using an In—Ga—Zn—O-based amorphous oxide semiconductor film as the channel layer. After depositing the semiconductor film, 1.0% by volume of ozone in dry oxygen
A method for producing a thin film transistor, wherein the semiconductor film is heat-treated in a temperature range of 100 to 200 ° C. for 1 to 120 minutes in a dry oxygen gas atmosphere containing 0.01% by volume or more;
It is.

本発明の製造方法によって、特に、アクティブマトリクス方式の液晶ディスプレイ及び有
機ELディスプレイのバックプレーンとして、実用可能なTFT特性を実現することがで
きる。
By the manufacturing method of the present invention, practical TFT characteristics can be realized particularly as a backplane of an active matrix liquid crystal display and an organic EL display.

本発明によれば、チャネル層としてa−IGZO薄膜を用いるTFTにおいて、製膜後に
酸化性雰囲気中で熱処理する場合の問題であった閾値電圧が大きく負にシフトしてしまう
問題とデバイス作製プロセスの最高温度をプラスチック基板の軟化点よりも低く抑えると
い問題を、従来の製造プロセスを変更することなく熱処理雰囲気の制御と加熱温度の低温
化により同時に解決することができる。
According to the present invention, in a TFT using an a-IGZO thin film as a channel layer, the threshold voltage, which has been a problem when heat-treating in an oxidizing atmosphere after film formation, greatly shifts to a negative value. The problem of keeping the maximum temperature lower than the softening point of the plastic substrate can be solved simultaneously by controlling the heat treatment atmosphere and lowering the heating temperature without changing the conventional manufacturing process.

実施例1のTFTの伝達特性のグラフである。4 is a graph of transfer characteristics of the TFT of Example 1. 比較例1のTFTの伝達特性のグラフである。10 is a graph of transfer characteristics of the TFT of Comparative Example 1. 比較例2のTFTの伝達特性のグラフである。10 is a graph of transfer characteristics of a TFT of Comparative Example 2. 本発明の製造方法を適用するa−IGZO薄膜をチャネル層とするTFTの構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of TFT which uses the a-IGZO thin film which applies the manufacturing method of this invention as a channel layer.

本発明者は、基板と、ゲート電極と、ゲート絶縁膜と、チャネル層とを含み、該チャネル
層としてIn−Ga−Zn−O系アモルファス酸化物半導体膜を用いた薄膜トランジスタ
において、オゾンを含む乾燥酸素ガス雰囲気による熱処理後のa−IGZO薄膜の閾値電
圧が0±5V以内、電界効果移動度が5cm2/Vs以上である薄膜トランジスタを実現
した。
The present inventor has disclosed that a thin film transistor including a substrate, a gate electrode, a gate insulating film, and a channel layer and using an In—Ga—Zn—O-based amorphous oxide semiconductor film as the channel layer is dried with ozone. A thin film transistor was realized in which the threshold voltage of the a-IGZO thin film after heat treatment in an oxygen gas atmosphere was within 0 ± 5 V and the field effect mobility was 5 cm 2 / Vs or more.

図4に、本発明のTFTの一例である基板1上に形成した熱酸化膜SiO2をゲート絶縁
層2とするボトムゲート構造のトランジスタの模式図を示しているが、本発明のTFTは
、ボトムゲート構造に限らない。ソース電極4、ドレイン電極5、ゲート電極6の形成は
通常採用されている材料、方法を用いればよい。
FIG. 4 shows a schematic diagram of a bottom-gate transistor in which the gate insulating layer 2 is a thermal oxide film SiO 2 formed on the substrate 1 which is an example of the TFT of the present invention. It is not limited to the bottom gate structure. The source electrode 4, drain electrode 5, and gate electrode 6 may be formed by using a commonly used material and method.

本発明のTFTのチャネル層3は、真空容器中で、例えば、InGaZnO4焼結体又は
In23−Ga23−ZnOを含む3成分酸化物焼結体をターゲットとして用いて、PL
D 法やスパッタ法などで堆積させる製膜工程により形成できる。例えば、RFマグネト
ロンスパッタリング(RFMS)法を用いる場合は、容量結合型プラズマを用いてInG
aZnO4焼結体のターゲットをスパッタリングし、加熱していない基板上に電源出力3
0〜70W、基板−ターゲット間距離40〜90mm、プラズマガスはArとO2の混合
ガス、全圧を0.1〜1Pa、酸素分圧を0.01〜0.1Paで行うことが好ましい。
基板は100〜200℃の温度範囲の熱処理に耐え得る材料であれば制限されない。製膜
工程は酸素分圧を制御できれば、PLD法やスパッタ法など制限されない。
The channel layer 3 of the TFT of the present invention is obtained by using PL in a vacuum vessel using, for example, an InGaZnO 4 sintered body or a ternary oxide sintered body containing In 2 O 3 —Ga 2 O 3 —ZnO as a target.
It can be formed by a film forming process that is deposited by a D method or a sputtering method. For example, when the RF magnetron sputtering (RFMS) method is used, a capacitively coupled plasma is used for InG.
Sputtering target of aZnO 4 sintered body, power output 3 on the unheated substrate
It is preferable to perform 0 to 70 W, a substrate-target distance of 40 to 90 mm, a plasma gas at a mixed gas of Ar and O 2 , a total pressure of 0.1 to 1 Pa, and an oxygen partial pressure of 0.01 to 0.1 Pa.
The substrate is not limited as long as it can withstand heat treatment in a temperature range of 100 to 200 ° C. As long as the oxygen partial pressure can be controlled, the film forming process is not limited to a PLD method or a sputtering method.

a−IGZO薄膜の製膜工程では、残留電子キャリア濃度を1015〜1020cm-3で制御
する目的で製膜室内雰囲気の酸素分圧を適正な範囲に設定する。なお、酸素分圧とは、流
量制御装置により製膜室内に意図的に導入された酸素ガスの分圧のことを意味する。酸素
分圧は、通常0.01〜1Pa程度とする。酸素分圧が小さいときは、酸素欠損を多く含
む伝導性薄膜が作製される。また、酸素分圧を大きくすることにより、半導体及び半絶縁
体薄膜に変化する。
In the film-forming process of the a-IGZO thin film, the oxygen partial pressure in the film-forming room atmosphere is set to an appropriate range for the purpose of controlling the residual electron carrier concentration at 10 15 to 10 20 cm −3 . The oxygen partial pressure means the partial pressure of oxygen gas intentionally introduced into the film forming chamber by the flow control device. The oxygen partial pressure is usually about 0.01 to 1 Pa. When the oxygen partial pressure is small, a conductive thin film containing many oxygen vacancies is produced. Moreover, it changes into a semiconductor and a semi-insulator thin film by making oxygen partial pressure large.

a−IGZO薄膜を製膜した後、加熱装置に移して酸化性雰囲気中で熱処理する。紫外線
(UV)ランプ及びプラズマオゾン発生器により発生させたオゾンを1.0容積%以下、
0.01容積%以上添加した乾燥酸素ガスとなるように両者の流量を調整して連通接続し
た供給管を通して加熱装置に導入する。熱処理雰囲気は大気圧下が好ましいが、必要に応
じて減圧下、又は加圧下でもよい。酸素雰囲気中に水分を含むとオゾンと反応してオゾン
含有の効果が減殺されるので乾燥酸素を用いる。オゾン含有量が0.01容積%未満の場
合はオゾン濃度が十分でなく、良好な結果が得られない。また、1.0容積%超では理由
は定かでないがTFT特性の改善効果が乏しい。より好ましくは0.05〜0.5容積%
とする。
After forming an a-IGZO thin film, it transfers to a heating apparatus and heat-processes in an oxidizing atmosphere. 1.0 vol% or less of ozone generated by an ultraviolet (UV) lamp and a plasma ozone generator;
The flow rate of both is adjusted so that it becomes dry oxygen gas added 0.01 volume% or more, and it introduce | transduces into a heating apparatus through the supply pipe | tube connected in communication. The heat treatment atmosphere is preferably under atmospheric pressure, but may be under reduced pressure or under pressure as necessary. If moisture is included in the oxygen atmosphere, dry oxygen is used because it reacts with ozone to reduce the effect of ozone. When the ozone content is less than 0.01% by volume, the ozone concentration is not sufficient, and good results cannot be obtained. On the other hand, if it exceeds 1.0% by volume, the reason is not clear, but the effect of improving TFT characteristics is poor. More preferably 0.05 to 0.5% by volume
And

乾燥酸素ガスは、工業用乾燥酸素ガスを用いる。乾燥酸素ガスは水蒸気分圧が10-3Pa
以下が好ましい。オゾン発生装置は、UVランプ単独、プラズマオゾン発生器単独、これ
らの組み合わせなど制限されない。加熱装置は、抵抗加熱炉、赤外線加熱炉など制限され
ない。炉内温度が熱処理温度になるように制御する。
Industrial dry oxygen gas is used as the dry oxygen gas. Dry oxygen gas has a water vapor partial pressure of 10 −3 Pa.
The following is preferred. The ozone generator is not limited to a UV lamp alone, a plasma ozone generator alone, or a combination thereof. The heating device is not limited, such as a resistance heating furnace or an infrared heating furnace. The furnace temperature is controlled to be the heat treatment temperature.

加熱温度が90℃以下ではTFT特性に変化は認められず、また、加熱温度が250℃以
上ではオゾンが自己分解して、オゾンを含有させる効果がなくなるとともに、300℃以
上ではチャネル層の抵抗が大きくなりすぎ、TFT動作しない。そのため、加熱温度は1
00℃〜200℃が好ましく、100℃〜150℃がより好ましい。加熱時間が1分以内
ではTFT特性に変化は認められず、また、120分以上では処理に要する時間(タクト
タイム)が長くなる。好ましくは10分〜60分とする。
When the heating temperature is 90 ° C. or lower, no change is observed in the TFT characteristics. When the heating temperature is 250 ° C. or higher, ozone self-decomposes and the effect of containing ozone is lost. It becomes too large and TFT operation does not work. Therefore, the heating temperature is 1
00 ° C to 200 ° C is preferable, and 100 ° C to 150 ° C is more preferable. When the heating time is within 1 minute, no change is observed in the TFT characteristics, and when the heating time is 120 minutes or longer, the time required for processing (tact time) becomes long. Preferably, it is 10 minutes to 60 minutes.

上記の熱処理により、a−IGZO薄膜のバンドギャップ内の欠陥準位密度が減り、TF
Tのサブスレッショルド値を減少させると共に、閾値電圧が大きな負の値にシフトするこ
とを防ぐことができる。よって、熱処理後のa−IGZO薄膜の閾値電圧が0±5V以内
、電界効果移動度が5cm2/Vs以上である薄膜トランジスタが得られる。
The above heat treatment reduces the density of defect states in the band gap of the a-IGZO thin film, and TF
The subthreshold value of T can be reduced and the threshold voltage can be prevented from shifting to a large negative value. Therefore, a thin film transistor in which the threshold voltage of the a-IGZO thin film after heat treatment is within 0 ± 5 V and the field effect mobility is 5 cm 2 / Vs or more can be obtained.

さらに詳しく、本発明を実施例に基いて説明する。 In more detail, this invention is demonstrated based on an Example.

a−IGZO薄膜をチャネル層として、図4に示す構造のボトムゲート型TFTを作製し
た。初めに、TFTのチャネル層として、n+-Si基板1上に製膜したSiO2熱酸化膜
2上に厚さ30nmのa−IGZO層3を製膜した。
Using the a-IGZO thin film as a channel layer, a bottom gate type TFT having the structure shown in FIG. 4 was produced. First, a SiO 2 thermal oxide film formed on an n + -Si substrate 1 as a TFT channel layer.
An a-IGZO layer 3 having a thickness of 30 nm was formed on 2.

a−IGZO薄膜層3はRFマグネトロンスパッタリング(RFMS)法により堆積した
。RFMS装置としては、CANON ANELVA社製RFMS製膜装置を用いた。平
行平板電極に13.56MHzのラジオ波電力を引加する容量結合型プラズマを用いてI
nGaZnO4焼結体のターゲットをスパッタリングし、加熱していないSiO2熱酸化膜
2上にa−IGZO薄膜を製膜した。RF電源出力は30〜70W、基板−ターゲット間
距離は40〜90mm、プラズマガスはArとO2の混合ガス、全圧を0.1〜1Pa、酸
素分圧を0.01〜0.1Paの範囲とした。
The a-IGZO thin film layer 3 was deposited by an RF magnetron sputtering (RFMS) method. As the RFMS apparatus, an RFMS film forming apparatus manufactured by CANON ANELVA was used. Using capacitively coupled plasma that applies 13.56 MHz radio wave power to parallel plate electrodes, I
An nGaZnO 4 sintered target was sputtered to form an a-IGZO thin film on the unheated SiO 2 thermal oxide film 2. The RF power output is 30 to 70 W, the substrate-target distance is 40 to 90 mm, the plasma gas is a mixed gas of Ar and O 2 , the total pressure is 0.1 to 1 Pa, and the oxygen partial pressure is 0.01 to 0.1 Pa. The range.

製膜後に試料をRFMS装置から取り出し、サムコ社製UVオゾンクリーナー(型式 U
V−1)に搬送した。次に、1気圧のオゾン含有乾燥酸素(オゾン含有量0.5容積%)
雰囲気中で100℃(実施例1−1)、130℃(実施例1−2)、150℃(実施例1
−3)、で各15分の熱処理を行った。乾燥酸素は工業用酸素を上記装置に供給し、UV
ランプ及びプラズマオゾン発生器を用いてオゾンを生成した。試料温度はヒーターによる
基板加熱機構により上記温度に設定した。
After film formation, the sample was taken out from the RFMS apparatus, and UV ozone cleaner (model U
V-1). Next, 1 atmosphere of ozone-containing dry oxygen (ozone content 0.5% by volume)
100 ° C. (Example 1-1), 130 ° C. (Example 1-2), 150 ° C. (Example 1) in the atmosphere
-3), heat treatment was performed for 15 minutes each. Dry oxygen supplies industrial oxygen to the above equipment, UV
Ozone was generated using a lamp and a plasma ozone generator. The sample temperature was set to the above temperature by a substrate heating mechanism using a heater.

その後、フォトリソグラフィーと電子線蒸着法によりAu(30nmt) /Ti(5nmt)
層からなるソース電極4及びドレイン電極5を作製した。また、基板1にAl層からなる
ゲート電極6を作製した。チャネル長(L)及びチャネル幅(W)はL/W=50/300μm
とした。
[比較例1、2]
Thereafter, Au by photolithography and electron beam deposition (30nm t) / Ti (5nm t)
A source electrode 4 and a drain electrode 5 made of layers were produced. A gate electrode 6 made of an Al layer was produced on the substrate 1. Channel length (L) and channel width (W) are L / W = 50/300 μm
It was.
[Comparative Examples 1 and 2]

実施例1と同じ方法でa−IGZO層を製膜した。次に、オゾンを含まない1気圧の乾燥
酸素中で100℃(比較例1−1)、150℃(比較例1−2)、200℃(比較例1−
3)の温度で熱処理を行った。また、1気圧、露点温度50℃の湿潤酸素中で100℃(
比較例2−1)、150℃(比較例2−2)、200℃(比較例2−3)の温度で熱処理
を行ってa−IGZO薄膜をチャネル層とするボトムゲート型TFTを作製した。なお、
加熱条件は加熱雰囲気を変更した以外は、実施例1と同じ条件である。
An a-IGZO layer was formed in the same manner as in Example 1. Next, 100 ° C. (Comparative Example 1-1), 150 ° C. (Comparative Example 1-2), and 200 ° C. (Comparative Example 1-) in 1 atmosphere of dry oxygen not containing ozone.
Heat treatment was performed at the temperature of 3). Also, 100 ° C. in wet oxygen with 1 atm and dew point temperature of 50 ° C.
Comparative Example 2-1), 150 ° C. (Comparative Example 2-2), and 200 ° C. (Comparative Example 2-3) were heat-treated to produce a bottom gate TFT having an a-IGZO thin film as a channel layer. In addition,
The heating conditions are the same as in Example 1 except that the heating atmosphere is changed.

作製したTFTは大気中、暗所にて、出力特性、伝達特性の解析を行った。図1に、実施
例1のTFTの伝達特性を示す。比較のために、150℃で0.5分の短時間熱処理した
結果の伝達特性を図1に示す。実施例1−1のTFTの移動度は6.7cm2/Vs、閾
値電圧は1.5Vであったが、サブスレッショルド値は0.78V/decadeであっ
た。実施例1−2のTFTの移動度は8.9cm2/Vs、閾値電圧は0.3Vであり、
サブスレッショルド値も0.4V/decadeへ改善した。実施例1−3のTFTの移
動度は10.3cm2/Vs、サブスレッショルド値は0.26V/decadeであり
、閾値電圧−2.0Vが得られた。実施例1では、閾値電圧は0±2Vの範囲にあること
が分かる。
The produced TFTs were analyzed for output characteristics and transfer characteristics in the air and in a dark place. FIG. 1 shows the transfer characteristics of the TFT of Example 1. For comparison, FIG. 1 shows transfer characteristics as a result of a short heat treatment at 150 ° C. for 0.5 minutes. The mobility of the TFT of Example 1-1 was 6.7 cm 2 / Vs and the threshold voltage was 1.5 V, but the subthreshold value was 0.78 V / decade. The mobility of the TFT of Example 1-2 is 8.9 cm 2 / Vs, the threshold voltage is 0.3 V,
The subthreshold value was also improved to 0.4 V / decade. The mobility of the TFT of Example 1-3 was 10.3 cm 2 / Vs, the subthreshold value was 0.26 V / decade, and a threshold voltage of −2.0 V was obtained. In Example 1, it can be seen that the threshold voltage is in the range of 0 ± 2V.

図2に、比較例1のa−IGZO薄膜をチャネル層としたTFTの伝達特性を示す。比較
例1−1のTFTの移動度は4.1cm2/Vs、サブスレッショルド値は0.53V/
decade、比較例1−2のTFTの移動度は8.9cm2/Vs、サブスレッショル
ド値は0.38V/decadeと、実施例1のTFTよりも悪い。また、閾値電圧は、
比較例1−1では8.8V、比較例2−1では−5Vとなり、大きく負の値にシフトした
。比較例1−3のTFTの移動度は11cm2/Vs、サブスレッショルド値は0.29
V/decadeであったが、閾値電圧は−10Vと、やはり大きく負の値にシフトした
FIG. 2 shows the transfer characteristics of a TFT using the a-IGZO thin film of Comparative Example 1 as a channel layer. The mobility of the TFT of Comparative Example 1-1 was 4.1 cm 2 / Vs, and the subthreshold value was 0.53 V /
The mobility of TFT of comparative example 1-2 is 8.9 cm 2 / Vs, and the subthreshold value is 0.38 V / decade, which is worse than the TFT of example 1. The threshold voltage is
In Comparative Example 1-1, the voltage was 8.8 V, and in Comparative Example 2-1, it was −5 V, which was greatly shifted to a negative value. The mobility of the TFT of Comparative Example 1-3 is 11 cm 2 / Vs, and the subthreshold value is 0.29.
Although it was V / decade, the threshold voltage was -10V, which was also greatly shifted to a negative value.

図3に、比較例2のa−IGZO薄膜をチャネル層としたTFTの伝達特性を示す。比較
例2−1のTFTの移動度は4.1cm2/Vs、サブスレッショルド値は0.53V/
decade、比較例2−2のTFTの移動度は8.9cm2/Vs、サブスレッショル
ド値は0.4V/decadeと、実施例1のTFTよりも悪い。また、閾値電圧は、比
較例2−1では−3.1V、比較例2−2では−40Vとなり、大きく負の値にシフトし
た。比較例2−3では閾値電圧は−50V以下となり、TFTの移動度もサブスレッショ
ルド値も測定不能であった。よって、TFT特性は、実施例1のTFTでは比較例1、2
よりも大幅に改善され、特に、閾値電圧を−2 〜 2Vの範囲で制御できたことが分かる
FIG. 3 shows the transfer characteristics of a TFT using the a-IGZO thin film of Comparative Example 2 as a channel layer. The mobility of the TFT of Comparative Example 2-1 is 4.1 cm 2 / Vs, and the subthreshold value is 0.53 V /
Decade, the mobility of the TFT of Comparative Example 2-2 is 8.9 cm 2 / Vs, and the subthreshold value is 0.4 V / decade, which is worse than the TFT of Example 1. Further, the threshold voltage was −3.1 V in Comparative Example 2-1, and −40 V in Comparative Example 2-2, and was greatly shifted to a negative value. In Comparative Example 2-3, the threshold voltage was −50 V or less, and neither the mobility of the TFT nor the subthreshold value could be measured. Therefore, the TFT characteristics of the TFT of Example 1 are Comparative Examples 1 and 2.
It can be seen that the threshold voltage can be controlled in the range of −2 to 2 V, in particular.

実施例及び比較例の結果を表1にまとめて示す。   The results of Examples and Comparative Examples are summarized in Table 1.

Figure 2011216574
Figure 2011216574

本発明によれば、熱処理の影響による閾値電圧シフトを低減して、In−Ga−Zn−O
系アモルファス酸化物半導体膜を用いた薄膜トランジスタにおいて、a−IGZO薄膜の
閾値電圧 が0±5V以内、電界効果移動度が5cm2/Vs以上であるTFTを提供でき
る。また、大面積有機LED(OLED)ディスプレイ及び液晶ディスプレイにおいて、
TFT作製プロセスの低温化は、廉価なガラス基板を使用できる、昇温・降温時間の低減
、熱コストの削減、熱膨張によるパターン合わせ精度の低下の抑制など、メリットが多い
。また、プラスチック基板上にこれらディスプレイや電子回路を作製する場合は、軟化点
の高いポリイミドを使っても300℃、軟化点の低いPETを使う場合は150℃以下に
することが必要である。本発明の方法は、a−IGZO薄膜を100〜200℃で熱処理
することによって、製作したTFTの閾値電圧を0V近辺で制御できることにより、単純
な回路を用い、TFTがオフ時の印加電圧を下げることが可能となる。
According to the present invention, the threshold voltage shift due to the influence of heat treatment is reduced, and In—Ga—Zn—O
In a thin film transistor using an amorphous oxide semiconductor film, a TFT in which a threshold voltage of an a-IGZO thin film is within 0 ± 5 V and field effect mobility is 5 cm 2 / Vs or more can be provided. In large area organic LED (OLED) displays and liquid crystal displays,
Lowering the temperature of the TFT fabrication process has many advantages such as the ability to use an inexpensive glass substrate, reduction in temperature rise / fall time, reduction in thermal cost, and suppression of deterioration in pattern alignment accuracy due to thermal expansion. Further, when these displays and electronic circuits are produced on a plastic substrate, it is necessary that the temperature be 300 ° C. even when polyimide having a high softening point is used, and 150 ° C. or lower when PET having a low softening point is used. The method of the present invention uses a simple circuit to lower the applied voltage when the TFT is turned off, because the threshold voltage of the fabricated TFT can be controlled around 0 V by heat-treating the a-IGZO thin film at 100 to 200 ° C. It becomes possible.

Claims (2)

基板と、ゲート電極と、ゲート絶縁膜と、チャネル層とを含み、該チャネル層としてIn
−Ga−Zn−O系アモルファス酸化物半導体膜を用いた薄膜トランジスタにおいて、オ
ゾンを含む乾燥酸素ガス雰囲気による熱処理後のa−IGZO薄膜の閾値電圧が0±5V
以内、電界効果移動度が5cm2/Vs以上であることを特徴とする薄膜トランジスタ。
The substrate includes a substrate, a gate electrode, a gate insulating film, and a channel layer.
In a thin film transistor using a —Ga—Zn—O-based amorphous oxide semiconductor film, the threshold voltage of the a-IGZO thin film after heat treatment in a dry oxygen gas atmosphere containing ozone is 0 ± 5 V
And a field effect mobility of 5 cm 2 / Vs or more.
基板と、ゲート電極と、ゲート絶縁膜と、チャネル層とを含み、該チャネル層としてIn
−Ga−Zn−O系アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法に
おいて、該半導体膜を製膜した後、乾燥酸素中にオゾンを1.0容積%以下0.01容積
%以上含む乾燥酸素ガス雰囲気中で該半導体膜を100〜200℃の温度範囲内で1〜1
20分間、熱処理することを特徴とする薄膜トランジスタの製造方法。
The substrate includes a substrate, a gate electrode, a gate insulating film, and a channel layer.
In the method for manufacturing a thin film transistor using a —Ga—Zn—O-based amorphous oxide semiconductor film, after the semiconductor film is formed, the dry oxygen containing 1.0% by volume or less and 0.01% by volume or more ozone in dry oxygen The semiconductor film is placed in a temperature range of 100 to 200 ° C. in an oxygen gas atmosphere.
A method of manufacturing a thin film transistor, characterized by performing a heat treatment for 20 minutes.
JP2010081588A 2010-03-31 2010-03-31 Thin film transistor manufacturing method Active JP5168599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081588A JP5168599B2 (en) 2010-03-31 2010-03-31 Thin film transistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081588A JP5168599B2 (en) 2010-03-31 2010-03-31 Thin film transistor manufacturing method

Publications (2)

Publication Number Publication Date
JP2011216574A true JP2011216574A (en) 2011-10-27
JP5168599B2 JP5168599B2 (en) 2013-03-21

Family

ID=44946038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081588A Active JP5168599B2 (en) 2010-03-31 2010-03-31 Thin film transistor manufacturing method

Country Status (1)

Country Link
JP (1) JP5168599B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075570A (en) * 2012-09-14 2014-04-24 Renesas Electronics Corp Semiconductor device and method of manufacturing semiconductor device
KR20180057678A (en) 2015-11-25 2018-05-30 가부시키가이샤 아루박 A thin film transistor, an oxide semiconductor film, and a sputtering target
KR20200066372A (en) 2017-11-20 2020-06-09 가부시키가이샤 아루박 Oxide semiconductor thin film
KR20210019545A (en) 2018-06-21 2021-02-22 가부시키가이샤 아루박 Oxide semiconductor thin film, thin film transistor and its manufacturing method, and sputtering target
KR20220009453A (en) 2019-06-28 2022-01-24 가부시키가이샤 아루박 Sputtering target and manufacturing method of sputtering target

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6120386B2 (en) 2013-05-09 2017-04-26 国立研究開発法人物質・材料研究機構 Thin film transistor and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053356A (en) * 2006-08-23 2008-03-06 Canon Inc Method for manufacturing thin film transistor using amorphous oxide semiconductor film
JP2009290113A (en) * 2008-05-30 2009-12-10 Fujifilm Corp Semiconductor device and manufacturing method thereof, sensor, and electro-optic device
JP2010016163A (en) * 2008-07-03 2010-01-21 Sony Corp Thin-film transistor and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053356A (en) * 2006-08-23 2008-03-06 Canon Inc Method for manufacturing thin film transistor using amorphous oxide semiconductor film
JP2009290113A (en) * 2008-05-30 2009-12-10 Fujifilm Corp Semiconductor device and manufacturing method thereof, sensor, and electro-optic device
JP2010016163A (en) * 2008-07-03 2010-01-21 Sony Corp Thin-film transistor and display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075570A (en) * 2012-09-14 2014-04-24 Renesas Electronics Corp Semiconductor device and method of manufacturing semiconductor device
KR20180057678A (en) 2015-11-25 2018-05-30 가부시키가이샤 아루박 A thin film transistor, an oxide semiconductor film, and a sputtering target
US11049976B2 (en) 2015-11-25 2021-06-29 Ulvac, Inc. Thin-film transistor, oxide semiconductor film, and sputtering target
KR20200066372A (en) 2017-11-20 2020-06-09 가부시키가이샤 아루박 Oxide semiconductor thin film
KR20210019545A (en) 2018-06-21 2021-02-22 가부시키가이샤 아루박 Oxide semiconductor thin film, thin film transistor and its manufacturing method, and sputtering target
US11335782B2 (en) 2018-06-21 2022-05-17 Ulvac, Inc. Oxide semiconductor thin film, thin film transistor, method producing the same, and sputtering target
KR20220009453A (en) 2019-06-28 2022-01-24 가부시키가이샤 아루박 Sputtering target and manufacturing method of sputtering target

Also Published As

Publication number Publication date
JP5168599B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US11677031B2 (en) Oxide semiconductor thin-film and thin-film transistor consisted thereof
JP5395994B2 (en) Semiconductor thin film, manufacturing method thereof, and thin film transistor
TWI453915B (en) Thin film transistor
US8492761B2 (en) Field-effect transistor and method for fabricating field-effect transistor
WO2011132418A1 (en) Deposition method
US20140264321A1 (en) Method of Fabricating IGZO by Sputtering in Oxidizing Gas
JP5168599B2 (en) Thin film transistor manufacturing method
JP2008300518A (en) Amorphous oxide, and field effect transistor
JP2010205798A (en) Method of manufacturing thin-film transistor
US20150279674A1 (en) CAAC IGZO Deposited at Room Temperature
US20170170029A1 (en) Thin film transistor
JP5735306B2 (en) Simultaneous bipolar field effect transistor and method of manufacturing the same
Park et al. Improved stability of aluminum co-sputtered indium zinc oxide thin-film transistor
JP2014229666A (en) Thin film transistor
Ding et al. Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator
JP2012028481A (en) Field-effect transistor and manufacturing method of the same
Ruan et al. The influence on electrical characteristics of amorphous indium tungsten oxide thin film transistors with multi-stacked active layer structure
Yap et al. Recent advances of In2O3-based thin-film transistors: a review
Lee et al. Effects of Ga composition ratio and annealing temperature on the electrical characteristics of solution-processed IGZO thin-film transistors
KR101417932B1 (en) Thin film transistor having double layered semiconductor channel and method of manufacturing the thin film transistor
JP2011258804A (en) Field effect transistor and manufacturing method therefor
CN112002762B (en) Gradient channel nitrogen-doped zinc oxide thin film transistor and preparation method thereof
JP5702447B2 (en) Semiconductor thin film, manufacturing method thereof, and thin film transistor
JP6252903B2 (en) Thin film transistor and manufacturing method thereof
Ruan et al. High mobility tungsten-doped thin-film transistor on polyimide substrate with low temperature process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Ref document number: 5168599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250