JP2011216428A - Li DEPOSITION-RESISTANCE IMPROVEMENT METHOD, METHOD FOR MANUFACTURING LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY - Google Patents

Li DEPOSITION-RESISTANCE IMPROVEMENT METHOD, METHOD FOR MANUFACTURING LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY Download PDF

Info

Publication number
JP2011216428A
JP2011216428A JP2010085682A JP2010085682A JP2011216428A JP 2011216428 A JP2011216428 A JP 2011216428A JP 2010085682 A JP2010085682 A JP 2010085682A JP 2010085682 A JP2010085682 A JP 2010085682A JP 2011216428 A JP2011216428 A JP 2011216428A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
precipitation
negative electrode
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010085682A
Other languages
Japanese (ja)
Inventor
Hiroyuki Akita
宏之 秋田
Masanori Watanabe
正規 渡邊
Musashi Nakakane
武佐志 中兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010085682A priority Critical patent/JP2011216428A/en
Publication of JP2011216428A publication Critical patent/JP2011216428A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an Li deposition-resistance improvement method capable of improving resistance for Li-deposition concerning a lithium secondary battery having a negative electrode body containing a carbon-system anode active material.SOLUTION: In the Li deposition-resistance improvement method, for improving resistance concerning Li-deposition in the lithium secondary battery 100 having a negative electrode plate 131 containing the carbon-system anode active material, alternately makes both of a charging step of charging the lithium secondary battery 100 and a discharging step of discharging the lithium secondary battery 100 repeated 500 times or more under an environment of -15 to +65°C while at least the magnitude of either charging current or discharging current is set at 8C or more.

Description

本発明は、リチウム二次電池の負電極体にLi金属が析出するLi析出に関する耐性を向上させるLi析出耐性向上方法に関する。また、Li析出耐性向上方法を施すLi耐性向上工程を備えるリチウム二次電池の製造方法に関する。また、Li析出耐性向上方法を施したリチウム二次電池に関する。   The present invention relates to a Li deposition resistance improving method for improving resistance related to Li deposition in which Li metal is deposited on a negative electrode body of a lithium secondary battery. Moreover, it is related with the manufacturing method of a lithium secondary battery provided with the Li tolerance improvement process which performs the Li precipitation tolerance improvement method. Moreover, it is related with the lithium secondary battery which gave the Li precipitation tolerance improvement method.

従来より、リチウム二次電池では、負電極体にLi金属が析出するLi析出(デンドライト)が生じることが知られている。デンドライトが成長して正電極体まで達すると、負電極体と正電極体との間で短絡し、また、短絡まで至らなくても電池容量の低下を招く。従って、リチウム二次電池では、長期間にわたり安全に使用できるように、デンドライトの生成を抑制することが望まれる。   Conventionally, in lithium secondary batteries, it is known that Li deposition (dendrites) in which Li metal is deposited on the negative electrode body occurs. When the dendrite grows and reaches the positive electrode body, the negative electrode body and the positive electrode body are short-circuited, and even if the short-circuit is not reached, the battery capacity is reduced. Therefore, in the lithium secondary battery, it is desired to suppress the generation of dendrite so that it can be used safely for a long period of time.

デンドライトの生成を抑制するには、(1)デンドライトが生成し難い負電極体を開発する、(2)充電時にデンドライトが生じ難いように充電電流を制御するなどの方法が通常はとられる。しかしながら、負電極体をデンドライトが生成し難いものに改良すると、他方で別の劣化が促進し易くなるなど、技術的な困難を伴う。また、充電電流を制御することに関しては、例えばリチウム二次電池を搭載したハイブリッド自動車や電気自動車などの車両では、回生ブレーキによる充電を効率よく行うことが難しくなり、燃費向上の足枷となる。   In order to suppress the generation of dendrite, methods such as (1) developing a negative electrode body that hardly generates dendrite, and (2) controlling a charging current so that dendrite is hardly generated during charging are usually taken. However, when the negative electrode body is improved so that dendrite is difficult to be generated, on the other hand, another deterioration is easily promoted, and technical difficulties are involved. In addition, regarding the control of the charging current, for example, in a vehicle such as a hybrid vehicle or an electric vehicle equipped with a lithium secondary battery, it is difficult to efficiently perform charging by the regenerative brake, which is a factor in improving fuel consumption.

このような課題を解決する方法として、例えば特許文献1〜3に開示された方法が提案されている。即ち、特許文献1では、Li金属を負極活物質とするリチウム二次電池において、充電終了時または放電開始時に、5mA/cm2 以上の電流密度で30秒間の放電を行い、これにより、デンドライトの生成を抑制している。
また、特許文献2では、負電極体に生じたデンドライトの析出量を算出し、この析出量が所定値を超えた場合に、リチウム二次電池に逆電圧を印加する。これにより、デンドライトを溶解除去している。
また、特許文献3では、Li金属を負極活物質とするリチウム二次電池において、非水電解液の非水溶媒にエチレンカーボネートを用いている。そして、パルス充電を行うことにより、デンドライトの生成を抑制している。
As methods for solving such problems, for example, methods disclosed in Patent Documents 1 to 3 have been proposed. That is, in Patent Document 1, in a lithium secondary battery using Li metal as a negative electrode active material, discharge is performed for 30 seconds at a current density of 5 mA / cm 2 or more at the end of charge or at the start of discharge. Generation is suppressed.
In Patent Document 2, the amount of dendrite deposited on the negative electrode body is calculated, and when this amount exceeds a predetermined value, a reverse voltage is applied to the lithium secondary battery. Thereby, the dendrite is dissolved and removed.
Moreover, in patent document 3, in the lithium secondary battery which uses Li metal as a negative electrode active material, ethylene carbonate is used for the nonaqueous solvent of a nonaqueous electrolyte. And the production | generation of a dendrite is suppressed by performing pulse charge.

特開平7−65867号公報JP-A-7-65867 特開2009−199936号公報JP 2009-199936 A 特開平7−263031号公報Japanese Patent Laid-Open No. 7-263031

前述の特許文献1〜3の方法は、Li金属を負極活物質とするリチウム二次電池に対しては、デンドライトの生成を抑制する効果があると考えられる。しかしながら、炭素系の負極活物質を有するリチウム二次電池に対しては、これらの方法ではデンドライトの生成を抑制できない。   The methods of Patent Documents 1 to 3 described above are considered to have an effect of suppressing the formation of dendrites for lithium secondary batteries using Li metal as a negative electrode active material. However, these methods cannot suppress the formation of dendrites for lithium secondary batteries having a carbon-based negative electrode active material.

本発明は、かかる現状に鑑みてなされたものであって、炭素系の負極活物質を含む負電極体を有するリチウム二次電池について、負電極体にLi金属が析出するLi析出に関する耐性を向上させるLi析出耐性向上方法、また、このLi析出耐性向上方法を施すLi耐性向上工程を備えるリチウム二次電池の製造方法、及び、このLi析出耐性向上方法を施したリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the current situation, and for lithium secondary batteries having a negative electrode body containing a carbon-based negative electrode active material, improved resistance to Li deposition in which Li metal is deposited on the negative electrode body. To provide a method for improving Li precipitation resistance, a method for producing a lithium secondary battery including a Li resistance improvement step for applying this method for improving Li precipitation resistance, and a lithium secondary battery subjected to this method for improving Li precipitation resistance With the goal.

上記課題を解決するための本発明の一態様は、炭素系の負極活物質を含む負電極体を有するリチウム二次電池について、前記負電極体にLi金属が析出するLi析出に関する耐性を向上させるLi析出耐性向上方法であって、前記リチウム二次電池に充電する充電工程と、前記リチウム二次電池を放電させる放電工程とを、−15〜65℃の環境下で、充電電流及び放電電流の少なくとも一方の大きさを8C以上として、交互にそれぞれ500回以上行うLi析出耐性向上方法である。   One aspect of the present invention for solving the above-described problems is that a lithium secondary battery having a negative electrode body containing a carbon-based negative electrode active material is improved in resistance to Li deposition in which Li metal is deposited on the negative electrode body. A method for improving Li precipitation resistance, wherein a charging step for charging the lithium secondary battery and a discharging step for discharging the lithium secondary battery are performed under a charging current and a discharging current in an environment of -15 to 65 ° C. This is a Li precipitation resistance improving method in which at least one size is set to 8C or more and alternately 500 times or more.

このLi析出耐性向上方法では、上述のように、充放電を、−15〜65℃の環境下で、充電電流及び放電電流の少なくとも一方の大きさを8C以上として、交互にそれぞれ500回以上行う。このような充放電サイクルを行うことで、炭素系の負極活物質を含む負電極体を有するリチウム二次電池について、Li析出(デンドライト)に関する耐性を向上させることができる。
更にLi析出(デンドライト)に関する耐性を向上させるには、前記充電電流及び前記放電電流の少なくとも一方の大きさを、15C以上とするのが好ましい。また、前記充電工程及び前記放電工程を、それぞれ15000回以上行うが好ましい。
In this method for improving Li precipitation resistance, as described above, charging and discharging are alternately performed 500 times or more alternately in an environment of −15 to 65 ° C. with at least one of the charging current and the discharging current being 8 C or more. . By performing such a charge / discharge cycle, the resistance with respect to Li precipitation (dendrites) can be improved for a lithium secondary battery having a negative electrode body containing a carbon-based negative electrode active material.
Furthermore, in order to improve the tolerance regarding Li precipitation (dendrites), it is preferable that the magnitude of at least one of the charging current and the discharging current is 15 C or more. Moreover, it is preferable that the charging step and the discharging step are each performed 15000 times or more.

なお、このLi析出耐性向上方法は、リチウム二次電池の製造過程において行ってもよいし、或いは、リチウム二次電池を、ハイブリッド自動車、電気自動車等の車両やパーソナルコンピュータ、携帯電話等の電池使用機器に搭載した後に行ってもよい。更には、このLi析出耐性向上方法は、これらの車両や電池使用機器を最初に使用する前に行ってもよいし、車両や電池使用機器のメンテナンスの際などに行ってもよい。
また、「炭素系の負極活物質」としては、例えば、ソフトカーボンやハードカーボンといったアモルファス系炭素質材料や、人造黒鉛や天然黒鉛等の高黒鉛化炭素材料などが挙げられる。
This method for improving Li precipitation resistance may be performed in the course of manufacturing a lithium secondary battery, or the lithium secondary battery may be used in a vehicle such as a hybrid vehicle or an electric vehicle, a personal computer, or a mobile phone. It may be performed after being mounted on the device. Further, this Li precipitation resistance improving method may be performed before the first use of these vehicles or battery-powered devices, or may be performed during maintenance of the vehicle or battery-powered devices.
Examples of the “carbon-based negative electrode active material” include amorphous carbonaceous materials such as soft carbon and hard carbon, and highly graphitized carbon materials such as artificial graphite and natural graphite.

更に、上記のLi析出耐性向上方法であって、前記充電電流と前記放電電流とを互いに異なる大きさとするLi析出耐性向上方法とすると良い。このようすることで、充電電流と放電電流とを同じ大きさにする場合に比して、Li析出耐性を更に向上させることができる。   Furthermore, it is preferable to use the above Li deposition resistance improvement method, wherein the charge current and the discharge current are different from each other. By doing in this way, Li precipitation tolerance can further be improved compared with the case where charging current and discharge current are made the same magnitude.

更に、上記のLi析出耐性向上方法であって、前記充電電流と前記放電電流との差を 5C以上とするLi析出耐性向上方法とすると良い。このようすることで、Li析出耐性を更に向上させることができる。   Furthermore, it is preferable to use the above Li precipitation resistance improvement method, wherein the difference between the charging current and the discharge current is 5C or more. By doing in this way, Li precipitation tolerance can further be improved.

更に、上記のいずれかに記載のLi析出耐性向上方法であって、前記放電電流を前記充電電流よりも大きくするLi析出耐性向上方法とすると良い。このようすることで、Li析出耐性を更に向上させることができる。   Furthermore, it is good to set it as the Li precipitation tolerance improvement method in any one of said, Comprising: The Li precipitation tolerance improvement method which makes the said discharge current larger than the said charging current. By doing in this way, Li precipitation tolerance can further be improved.

更に、上記のいずれかに記載のLi析出耐性向上方法であって、前記放電工程における放電時間を、2〜50秒間とするLi析出耐性向上方法とすると良い。このようすることで、Li析出耐性を更に向上させることができる。   Furthermore, it is good to set it as the Li precipitation tolerance improvement method in any one of said, Comprising: The discharge time in the said discharge process is 2-50 second. By doing in this way, Li precipitation tolerance can further be improved.

更に、上記のいずれかに記載のLi析出耐性向上方法であって、前記充電工程及び前記放電工程を、45℃以下の環境下、更に好ましくは、25℃以下の環境下で行うLi析出耐性向上方法とすると良い。このようすることで、Li析出耐性を更に向上させることができる。   Furthermore, in the Li precipitation resistance improvement method according to any one of the above, the Li precipitation resistance improvement is performed in which the charging step and the discharging step are performed in an environment of 45 ° C. or less, more preferably in an environment of 25 ° C. or less. It would be better to do it. By doing in this way, Li precipitation tolerance can further be improved.

更に、上記のいずれかに記載のLi析出耐性向上方法であって、前記充電工程で前記リチウム二次電池に充電する充電電気量と、前記放電工程で前記リチウム二次電池を放電させる放電電気量とを等しくするLi析出耐性向上方法とすると良い。   Furthermore, it is the Li deposition resistance improving method according to any one of the above, wherein the amount of charge to charge the lithium secondary battery in the charging step and the amount of discharge to discharge the lithium secondary battery in the discharging step It is preferable to use a method for improving Li precipitation resistance so that the

このLi析出耐性向上方法では、充電工程でリチウム二次電池に充電する充電電気量と、放電工程でリチウム二次電池を放電させる放電電気量とを等しくしているので、充電工程及び放電工程を1回ずつ行えば、リチウム二次電池の充電状態を、これらの工程を行う前の元の状態に戻すことができる。従って、充電工程及び放電工程を前述のように繰り返し多数回行うことが容易である。   In this method for improving Li precipitation resistance, the charging electric quantity for charging the lithium secondary battery in the charging process is equal to the discharging electric quantity for discharging the lithium secondary battery in the discharging process. If performed once, the state of charge of the lithium secondary battery can be returned to the original state before performing these steps. Therefore, it is easy to repeat the charging process and the discharging process repeatedly as described above.

また、他の態様は、炭素系の負極活物質を含む負電極体を有するリチウム二次電池の製造方法であって、上記のいずれかに記載のLi析出耐性向上方法を施すLi耐性向上工程を備えるリチウム二次電池の製造方法である。   Moreover, another aspect is a method for producing a lithium secondary battery having a negative electrode body containing a carbon-based negative electrode active material, wherein the Li resistance improvement step for applying the Li precipitation resistance improvement method according to any one of the above is performed. It is a manufacturing method of the lithium secondary battery provided.

このリチウム二次電池の製造方法は、前述のLi析出耐性向上方法を施すLi耐性向上工程を備えるので、Li析出に関する耐性を向上させたリチウム二次電池を容易に製造できる。   Since this method for producing a lithium secondary battery includes the Li tolerance improving step for applying the aforementioned Li deposition tolerance improving method, a lithium secondary battery with improved tolerance for Li deposition can be easily produced.

また、他の態様は、炭素系の負極活物質を含む負電極体を有するリチウム二次電池であって、上記のいずれかに記載のLi析出耐性向上方法を施してなるリチウム二次電池である。   Another aspect is a lithium secondary battery having a negative electrode body containing a carbon-based negative electrode active material, wherein the lithium secondary battery is formed by performing the Li precipitation resistance improving method according to any one of the above. .

このリチウム二次電池は、前述のLi析出耐性向上方法を施したものであるので、Li析出に関する耐性が良好である。   Since this lithium secondary battery has been subjected to the above-described method for improving Li precipitation resistance, the lithium secondary battery has good resistance to Li precipitation.

実施形態に係るリチウム二次電池の縦断面図である。It is a longitudinal cross-sectional view of the lithium secondary battery which concerns on embodiment. 実施形態に係り、捲回型電極体を示す斜視図である。1 is a perspective view showing a wound electrode body according to an embodiment. 実施形態に係り、正電極板を示す平面図である。It is a top view which concerns on embodiment and shows a positive electrode plate. 実施形態に係り、負電極板を示す平面図である。It is a top view which concerns on embodiment and shows a negative electrode plate. 実施形態に係り、セパレータを示す平面図である。It is a top view which concerns on embodiment and shows a separator. 実施形態に係り、ケース蓋部材、正極電極端子部材及び負極電極端子部材等を示す分解斜視図である。It is an exploded perspective view showing a case lid member, a positive electrode terminal member, a negative electrode terminal member, etc. concerning an embodiment. 実施例1〜5及び比較例1,2について、Li耐性向上工程の実施日数とリチウム二次電池の容量低下率Atとの関係を示すグラフである。It is a graph which shows the relationship between the implementation days of Li tolerance improvement process, and the capacity | capacitance reduction rate At of a lithium secondary battery about Examples 1-5 and Comparative Examples 1 and 2. FIG. 実施例6〜11について、1回の放電工程における放電時間とリチウム二次電池の容量低下率Atとの関係を示すグラフである。It is a graph which shows the relationship between the discharge time in one discharge process, and the capacity | capacitance fall rate At of a lithium secondary battery about Examples 6-11. 実施例12〜15について、Li耐性向上工程の実施日数とリチウム二次電池の容量低下率Atとの関係を示すグラフである。It is a graph which shows the relationship between the implementation days of a Li tolerance improvement process, and the capacity | capacitance reduction rate At of a lithium secondary battery about Examples 12-15. 実施例16〜18について、Li耐性向上工程を行った後の保存日数とリチウム二次電池の容量低下率Atとの関係を示すグラフである。It is a graph which shows the relationship between the storage days after performing a Li tolerance improvement process, and the capacity | capacitance reduction rate At of a lithium secondary battery about Examples 16-18.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態に係るリチウム二次電池100を示す。また、図2に、このリチウム二次電池100を構成する捲回型電極体120を示す。更に、捲回型電極体120を構成する正電極板121を図3に示し、負電極板131を図4に示し、セパレータ141を図5に示す。また、図6に、ケース蓋部材113、正極電極端子部材150及び負極電極端子部材160等の詳細を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a lithium secondary battery 100 according to this embodiment. FIG. 2 shows a wound electrode body 120 constituting the lithium secondary battery 100. Furthermore, the positive electrode plate 121 constituting the wound electrode body 120 is shown in FIG. 3, the negative electrode plate 131 is shown in FIG. 4, and the separator 141 is shown in FIG. FIG. 6 shows details of the case lid member 113, the positive electrode terminal member 150, the negative electrode terminal member 160, and the like.

このリチウム二次電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。電池容量は5Ahである。このリチウム二次電池100は、角型の電池ケース110、この電池ケース110内に収容された捲回型電極体120、電池ケース110に支持された正極電極端子部材150及び負極電極端子部材160等から構成されている(図1参照)。また、電池ケース110内には、図示しない電解液が注入されている。   The lithium secondary battery 100 is a prismatic battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or on a battery using device such as a hammer drill. The battery capacity is 5 Ah. The lithium secondary battery 100 includes a rectangular battery case 110, a wound electrode body 120 accommodated in the battery case 110, a positive electrode terminal member 150 and a negative electrode terminal member 160 supported by the battery case 110, and the like. (See FIG. 1). In addition, an electrolyte solution (not shown) is injected into the battery case 110.

このうち、電池ケース110は、金属からなり、直方体状に形成されている。この電池ケース110は、上側のみが開口した箱状をなし、後述する捲回型電極体120を収容するケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接された矩形板状のケース蓋部材113とから構成されている。   Among these, the battery case 110 is made of metal and formed in a rectangular parallelepiped shape. The battery case 110 has a box shape in which only the upper side is opened, and a rectangular shape welded in a form that closes an opening 111h of the case body member 111 and a case body member 111 that accommodates a wound electrode body 120 described later. It is comprised from the plate-shaped case cover member 113. FIG.

ケース蓋部材113の所定位置には、正極電極端子部材150と負極電極端子部材160とが、それぞれ3つの絶縁部材181,183,185を介して固設されている(図1及び図6参照)。これら正極電極端子部材150及び負極電極端子部材160は、それぞれ3つの端子金具151,153,155により構成されている。電池ケース110内において、正極電極端子部材150は、捲回型電極体120の正電極板121(正極集電部121m)に接続され、負極電極端子部材160は、捲回型電極体120の負電極板131(負極集電部131m)に接続されている。
また、ケース蓋部材113の長手方向中央には、電池ケース110の内圧が所定圧力に達した際に破断する安全弁部113jが設けられている。また、ケース蓋部材113の長手方向中央よりも負極電極端子部材160側の所定位置には、電解液を電池ケース110内に注入する為の電解液注入口113dが設けられている。
A positive electrode terminal member 150 and a negative electrode terminal member 160 are fixed at predetermined positions of the case lid member 113 via three insulating members 181, 183, and 185, respectively (see FIGS. 1 and 6). . The positive electrode terminal member 150 and the negative electrode terminal member 160 are constituted by three terminal fittings 151, 153, and 155, respectively. In the battery case 110, the positive electrode terminal member 150 is connected to the positive electrode plate 121 (the positive electrode current collector 121 m) of the wound electrode body 120, and the negative electrode terminal member 160 is the negative electrode of the wound electrode body 120. It is connected to the electrode plate 131 (negative electrode current collector 131m).
In addition, a safety valve portion 113j that breaks when the internal pressure of the battery case 110 reaches a predetermined pressure is provided at the center in the longitudinal direction of the case lid member 113. In addition, an electrolytic solution injection port 113 d for injecting the electrolytic solution into the battery case 110 is provided at a predetermined position on the negative electrode terminal member 160 side from the longitudinal center of the case lid member 113.

次に、捲回型電極体120について説明する。この捲回型電極体120は、絶縁フィルムを上側のみが開口した袋状に形成した絶縁フィルム包囲体170内に収容され、横倒しにした状態で、電池ケース110内に収容されている(図1参照)。
この捲回型電極体120は、長尺状の正電極板(正電極体)121(図3参照)と長尺状の負電極板(負電極体)131(図4参照)とを、通気性を有する長尺状のセパレータ141(図5参照)を介して互いに重ねて軸線AX周りに捲回し、扁平状に圧縮したものである(図2参照)。
Next, the wound electrode body 120 will be described. The wound electrode body 120 is housed in an insulating film enclosure 170 formed in a bag shape with only the upper opening of the insulating film, and is housed in the battery case 110 in a laid state (FIG. 1). reference).
This wound electrode body 120 allows a long positive electrode plate (positive electrode body) 121 (see FIG. 3) and a long negative electrode plate (negative electrode body) 131 (see FIG. 4) to ventilate. These are overlapped with each other through a long separator 141 (see FIG. 5) and wound around an axis AX and compressed into a flat shape (see FIG. 2).

捲回型電極体120の軸線AX方向一方側(図1中、左側、図2中、上方)には、正電極板121のうち、後述する正極集電部121mが渦巻き状をなして、セパレータ141から突出している。一方、捲回型電極体120の軸線AX方向他方側(図1中、右側、図2中、下方)には、負電極板131のうち、後述する負極集電部131mが渦巻き状をなして、セパレータ141から突出している。   On one side of the wound electrode body 120 in the axis AX direction (left side in FIG. 1, left side in FIG. 2), a positive electrode current collector 121m, which will be described later, of the positive electrode plate 121 forms a spiral. 141 protrudes. On the other hand, on the other side of the wound electrode body 120 in the axis AX direction (right side in FIG. 1, right side in FIG. 2), a negative electrode current collector 131m described later of the negative electrode plate 131 has a spiral shape. , Protruding from the separator 141.

このうち、正電極板121は、図3に示すように、芯材として、長尺状のアルミニウム箔からなる正極集電箔122を有する。この正極集電箔122の両面には、それぞれ、正極活物質、導電剤及び結着剤を含む正極活物質層123が、長手方向(図3中、左右方向)に帯状に設けられている。正電極板121のうち、この正極活物質層123が形成された部位が、正極部121wである。なお、本実施形態では、正極活物質としてLiNoCoO2 、導電剤としてアセチレンブラック、結着剤としてCMCを用いている。 Among these, the positive electrode plate 121 has a positive electrode current collector foil 122 made of a long aluminum foil as a core material, as shown in FIG. A positive electrode active material layer 123 including a positive electrode active material, a conductive agent, and a binder is provided on both surfaces of the positive electrode current collector foil 122 in a strip shape in the longitudinal direction (left and right direction in FIG. 3). A portion of the positive electrode plate 121 where the positive electrode active material layer 123 is formed is a positive electrode portion 121w. In this embodiment, LiNoCoO 2 is used as the positive electrode active material, acetylene black is used as the conductive agent, and CMC is used as the binder.

また、正電極板121に正極部121wを形成したことに伴い、正極集電箔122のうち、幅方向の一端(図3中、上方)は、自身の厚み方向に正極活物質層123が存在しないで、長手方向(図3中、左右方向)に帯状に延びる正極集電部121mとなっている。この正極集電部121mは、前述のように、捲回型電極体120を形成した状態において、セパレータ141から軸線AX方向一方側に突出している(図1及び図2参照)。   Further, with the formation of the positive electrode part 121w on the positive electrode plate 121, one end in the width direction (upward in FIG. 3) of the positive electrode current collector foil 122 has the positive electrode active material layer 123 in its thickness direction. However, the positive electrode current collector 121m extends in a strip shape in the longitudinal direction (left and right direction in FIG. 3). As described above, the positive electrode current collector 121m protrudes from the separator 141 to one side in the axis AX direction in a state where the wound electrode body 120 is formed (see FIGS. 1 and 2).

負電極板131は、図4に示すように、芯材として、長尺状の銅箔からなる負極集電箔132を有する。この負極集電箔132の両面には、それぞれ、炭素系の負極活物質、結着剤及び増粘剤を含む負極活物質層133が、長手方向(図4中、左右方向)に帯状に設けられている。負電極板131のうち、この負極活物質層133が形成された部位が、負極部131wである。本実施形態では、炭素系の負極活物質としてグラファイト、結着剤としてSBR、増粘剤としてCMCを用いている。   As shown in FIG. 4, the negative electrode plate 131 has a negative electrode current collector foil 132 made of a long copper foil as a core material. A negative electrode active material layer 133 containing a carbon-based negative electrode active material, a binder, and a thickener is provided on both surfaces of the negative electrode current collector foil 132 in a strip shape in the longitudinal direction (left and right direction in FIG. 4). It has been. A portion of the negative electrode plate 131 where the negative electrode active material layer 133 is formed is a negative electrode portion 131w. In this embodiment, graphite is used as the carbon-based negative electrode active material, SBR is used as the binder, and CMC is used as the thickener.

また、負電極板131に負極部131wを形成したことに伴い、負極集電箔132のうち、幅方向の他端(図4中、下方)は、自身の厚み方向に負極活物質層133が存在しないで、長手方向(図4中、左右方向)に帯状に延びる負極集電部131mとなっている。この負極集電部131mは、前述のように、捲回型電極体120を形成した状態において、セパレータ141から軸線AX方向他方側に突出している(図1及び図2参照)。
また、セパレータ141は、PP/PE/PPからなり、図5に示すように、長尺状をなす。
In addition, as the negative electrode portion 131w is formed on the negative electrode plate 131, the other end (downward in FIG. 4) in the width direction of the negative electrode current collector foil 132 has the negative electrode active material layer 133 in its thickness direction. The negative electrode current collector 131m does not exist and extends in a strip shape in the longitudinal direction (left and right direction in FIG. 4). As described above, the negative electrode current collector 131m protrudes from the separator 141 to the other side in the axis AX direction in a state where the wound electrode body 120 is formed (see FIGS. 1 and 2).
The separator 141 is made of PP / PE / PP, and has a long shape as shown in FIG.

本実施形態のリチウム二次電池100は、その製造過程において、後述するLi耐性向上工程(Li析出耐性向上方法)を施したものである。このため、負電極板131の負極活物質層133が炭素系の負極活物質を含むにも拘わらず、Li析出(デンドライト)に関する耐性が大幅に向上している。   The lithium secondary battery 100 of the present embodiment is obtained by performing a Li resistance improving step (Li precipitation resistance improving method) described later in the manufacturing process. For this reason, although the negative electrode active material layer 133 of the negative electrode plate 131 contains a carbon-type negative electrode active material, the tolerance regarding Li precipitation (dendrites) is greatly improved.

次いで、上記リチウム二次電池100の製造方法について説明する。
まず、長尺状のアルミニウム箔からなる正極集電箔122を用意し、その両面の所定位置に、正極活物質、導電材及び結着剤を含む正極活物質ペーストを塗布する。その後、熱風を吹きかけて、塗布された正極活物質ペーストを乾燥させ、正極活物質層123を形成する。更に、加圧ロールにより正極活物質層123を圧縮して、図3に示した正電極板121を形成する。
Next, a method for manufacturing the lithium secondary battery 100 will be described.
First, a positive electrode current collector foil 122 made of a long aluminum foil is prepared, and a positive electrode active material paste containing a positive electrode active material, a conductive material, and a binder is applied to predetermined positions on both surfaces thereof. Thereafter, hot air is blown to dry the applied positive electrode active material paste to form the positive electrode active material layer 123. Further, the positive electrode active material layer 123 is compressed by a pressure roll to form the positive electrode plate 121 shown in FIG.

また、長尺状の銅箔からなる負極集電箔132を用意し、その両面の所定位置に、炭素系の負極活物質、結着剤及び増粘剤を含む負極活物質ペーストを塗布する。その後、熱風を吹きかけて、塗布された負極活物質ペーストを乾燥させ、負極活物質層133を形成する。更に、加圧ロールにより負極活物質層133を圧縮して、図4に示した負電極板131を形成する。   Moreover, the negative electrode current collection foil 132 which consists of elongate copper foil is prepared, and the negative electrode active material paste containing a carbon-type negative electrode active material, a binder, and a thickener is apply | coated to the predetermined position of both surfaces. Thereafter, hot air is blown to dry the applied negative electrode active material paste to form the negative electrode active material layer 133. Further, the negative electrode active material layer 133 is compressed by a pressure roll to form the negative electrode plate 131 shown in FIG.

次に、長尺状のセパレータ本体141を用意し、正電極板121と負電極板131とをセパレータ141を介して互いに重ね、軸線AX周りに捲回して、前述の捲回型電極体120を形成する(図2参照)。
次に、ケース本体部材111やケース蓋部材113、端子金具151,153,155、絶縁フィルム包囲体170、絶縁部材181,183,185を用意して、電池を組み立てる。その後、電解液注入口113dから電池ケース110内に電解液を注入し、この電解液注液口113dを封止する。
次に、このリチウム二次電池100に初期充放電を行い、電池として動作させる。
Next, a long separator body 141 is prepared, and the positive electrode plate 121 and the negative electrode plate 131 are overlapped with each other via the separator 141 and wound around the axis line AX. Form (see FIG. 2).
Next, the case body member 111, the case lid member 113, the terminal fittings 151, 153, 155, the insulating film enclosure 170, and the insulating members 181, 183, 185 are prepared, and the battery is assembled. Thereafter, an electrolytic solution is injected into the battery case 110 from the electrolytic solution injection port 113d, and the electrolytic solution injection port 113d is sealed.
Next, the lithium secondary battery 100 is initially charged and discharged to operate as a battery.

次に、この充電したリチウム二次電池100について、負電極板131にLi金属が析出するLi析出(デンドライト)に関する耐性を向上させるLi析出耐性向上方法を施す。即ち、Li耐性向上工程において、リチウム二次電池100に充電する充電工程と、リチウム二次電池100を放電させる放電工程とを、25℃の環境下で、充電電流を4C(5Ah×4=20A)、放電電流を20C(5Ah×20=100A)として、交互にそれぞれ43200回行う。   Next, a Li deposition resistance improving method for improving resistance related to Li deposition (dendrites) in which Li metal is deposited on the negative electrode plate 131 is applied to the charged lithium secondary battery 100. That is, in the Li resistance improvement step, the charging step for charging the lithium secondary battery 100 and the discharging step for discharging the lithium secondary battery 100 are performed under the environment of 25 ° C. with a charging current of 4C (5 Ah × 4 = 20 A). ), And the discharge current is set to 20C (5 Ah × 20 = 100 A), and alternately performed 43200 times.

詳細には、放電工程を20C(100A)で10秒間行った後、10秒間休止する。その後、充電工程を4C(20A)で50秒間行い、50秒間休止する。その後は、これらを1サイクルとして、43200回行う。本実施形態では、1回の充電工程でリチウム二次電池100に充電する充電電気量と、1回の放電工程でリチウム二次電池100を放電させる放電電気量とは、同じ(0.28(Ah)=100×10/3600=20×50/3600)である。また、1サイクル行うのに120秒間掛かるので、このLi耐性向上工程は60日間掛かる。
かくして、本実施形態のリチウム二次電池100が完成する。
Specifically, the discharge process is performed at 20 C (100 A) for 10 seconds, and then paused for 10 seconds. Then, a charge process is performed for 50 seconds at 4C (20A), and it rests for 50 seconds. Thereafter, 43200 times are performed as one cycle. In the present embodiment, the amount of charge to charge the lithium secondary battery 100 in one charging step is the same as the amount of discharge to discharge the lithium secondary battery 100 in one discharge step (0.28 ( Ah) = 100 × 10/3600 = 20 × 50/3600). Moreover, since it takes 120 seconds to perform one cycle, this Li tolerance improvement process takes 60 days.
Thus, the lithium secondary battery 100 of this embodiment is completed.

以上で説明したように、本実施形態のLi析出耐性向上方法では、充電工程及び放電工程を、−15〜65℃の環境下で、充電電流及び放電電流の少なくとも一方の大きさを 8C以上として、交互にそれぞれ500回以上行っている。このような充放電サイクルを行うことで、炭素系の負極活物質を含む負電極板131を有するリチウム二次電池100においても、Li析出(デンドライト)に関する耐性を向上させることができる。   As described above, in the Li precipitation resistance improving method of the present embodiment, the charging process and the discharging process are performed in an environment of −15 to 65 ° C., and the magnitude of at least one of the charging current and the discharging current is set to 8C or more. , Alternately 500 times or more. By performing such a charge / discharge cycle, even in the lithium secondary battery 100 having the negative electrode plate 131 containing the carbon-based negative electrode active material, it is possible to improve the resistance regarding Li deposition (dendrites).

更には、本実施形態では、充電電流と放電電流とを互いに異なる大きさとし、更に、充電電流と放電電流との差を5C以上としているので、Li析出耐性を更に向上させることができる。また、放電電流を充電電流よりも大きくしているので、Li析出耐性を更に向上させることができる。また、放電工程における放電時間を、2〜50秒間としているので、Li析出耐性を更に向上させることができる。また、充電工程及び放電工程を、45℃以下の環境下で行っているので、Li析出耐性を更に向上させることができる。   Furthermore, in the present embodiment, the charging current and the discharging current are different from each other, and the difference between the charging current and the discharging current is 5 C or more, so that the Li precipitation resistance can be further improved. Moreover, since the discharge current is made larger than the charging current, the Li precipitation resistance can be further improved. Moreover, since the discharge time in the discharge step is 2 to 50 seconds, the Li precipitation resistance can be further improved. Moreover, since the charge process and the discharge process are performed in an environment of 45 ° C. or lower, the Li precipitation resistance can be further improved.

また、本実施形態では、充電工程でリチウム二次電池100に充電する充電電気量と、放電工程でリチウム二次電池100を放電させる放電電気量とを等しくしているので、充電工程及び放電工程を1回ずつ行えば、リチウム二次電池100の充電状態を、これらの工程を行う前の元の状態に戻すことができる。従って、充電工程及び放電工程を繰り返し多数回行うことが容易である。   In the present embodiment, since the amount of charge to charge the lithium secondary battery 100 in the charging step is equal to the amount of discharge to discharge the lithium secondary battery 100 in the discharging step, the charging step and the discharging step Is performed once, the state of charge of the lithium secondary battery 100 can be returned to the original state before performing these steps. Therefore, it is easy to repeat the charging process and the discharging process many times.

(実施例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。
本発明の実施例1〜5のリチウム二次電池として、前述のLi耐性向上工程において、放電電流及び充電電流の大きさや放電工程及び充電工程の通電時間を変更して、リチウム二次電池100等を製造した(表1参照)。また、比較例1,2のリチウム二次電池として、後述する2種類のリチウム二次電池を製造した。
(Example)
Subsequently, the result of the test conducted in order to verify the effect of this invention is demonstrated.
As the lithium secondary batteries of Examples 1 to 5 of the present invention, the lithium secondary battery 100 and the like are changed by changing the magnitude of the discharge current and the charge current and the energizing time of the discharge process and the charge process in the above-described Li resistance improvement process. (See Table 1). In addition, as lithium secondary batteries of Comparative Examples 1 and 2, two types of lithium secondary batteries described later were manufactured.

Figure 2011216428
Figure 2011216428

具体的には、実施例4では、上記実施形態で述べたように、リチウム二次電池100について、放電工程を20C(100A)で10秒間行った後、10秒間休止し、充電工程を4C(20A)で50秒間行い、50秒間休止する充放電サイクル(1サイクルで120秒間)を、25℃の環境下で60日間(43200回)行った。   Specifically, in Example 4, as described in the above embodiment, for the lithium secondary battery 100, the discharging process was performed at 20C (100A) for 10 seconds, then paused for 10 seconds, and the charging process was performed at 4C ( 20A) was performed for 50 seconds, and a charge / discharge cycle (one cycle for 120 seconds) was performed for 60 seconds in an environment of 25 ° C. for 60 days (43200 times).

また、実施例1では、放電工程を12C(60A)で10秒間行った後、10秒間休止し、充電工程を12C(60A)で10秒間行い、90秒間休止する充放電サイクル(1サイクルで120秒間)でLi耐性向上工程を行った。
また、実施例2では、放電工程を20C(100A)で10秒間行った後、10秒間休止し、充電工程を20C(100A)で10秒間行い、90秒間休止する充放電サイクル(1サイクルで120秒間)でLi耐性向上工程を行った。
Moreover, in Example 1, the discharge process was performed at 12C (60A) for 10 seconds, then paused for 10 seconds, the charge process was performed at 12C (60A) for 10 seconds, and paused for 90 seconds (120 per cycle). Second), the Li resistance improvement process was performed.
Moreover, in Example 2, the discharge process was performed at 20C (100A) for 10 seconds, then paused for 10 seconds, and the charge process was performed at 20C (100A) for 10 seconds and paused for 90 seconds (120 per cycle). Second), the Li resistance improvement process was performed.

また、実施例3では、放電工程を12C(60A)で10秒間行った後、10秒間休止し、充電工程を4C(20A)で30秒間行い、70秒間休止する充放電サイクル(1サイクルで120秒間)でLi耐性向上工程を行った。
また、実施例5では、放電工程を4C(20A)で50秒間行った後、10秒間休止し、充電工程を20C(100A)で10秒間行い、50秒間休止する充放電サイクル(1サイクルで120秒間)でLi耐性向上工程を行った。
Moreover, in Example 3, the discharge process was performed at 12C (60A) for 10 seconds, then paused for 10 seconds, the charge process was performed at 4C (20A) for 30 seconds, and paused for 70 seconds (120 per cycle). Second), the Li resistance improvement process was performed.
In Example 5, the discharging process was performed at 4C (20A) for 50 seconds, then paused for 10 seconds, and the charging process was performed at 20C (100A) for 10 seconds, and rested for 50 seconds (120 per cycle). Second), the Li resistance improvement process was performed.

一方、比較例1では、Li耐性向上工程を行わずに、それ以外は、上記実施形態と同様にして、リチウム二次電池を製造した。
また、比較例2では、Li耐性向上工程において、放電工程を4C(20A)で10秒間行った後、10秒間休止し、充電工程を4C(20A)で10秒間行い、90秒間休止する充放電サイクル(1サイクルで120秒間)を、60日間(43200回)行った。
On the other hand, in Comparative Example 1, a lithium secondary battery was manufactured in the same manner as in the above embodiment, except that the Li tolerance improving step was not performed.
Moreover, in the comparative example 2, in the Li tolerance improvement process, after performing the discharge process for 10 seconds at 4C (20A), it is paused for 10 seconds, the charge process is performed for 10 seconds at 4C (20A), and is charged and discharged for 90 seconds. The cycle (one cycle for 120 seconds) was performed for 60 days (43200 times).

そして、これら実施例1〜5及び比較例1,2のリチウム二次電池100等について、Li析出(デンドライト)を強制的に生じさせる低温大電流サイクル処理を行った。即ち、−15℃の環境下において、150A(約30C)で0.1〜0.5秒間の充電を行った後、1.5A(約0.3C)で10〜50秒間の放電を行い、その後、29.5〜29.9秒間、休止する。これを1サイクルとして、10000サイクル繰り返す。   And about the lithium secondary battery 100 etc. of these Examples 1-5 and Comparative Examples 1 and 2, the low temperature large current cycle process which produces Li precipitation (dendrites) compulsorily was performed. That is, in an environment of −15 ° C., after charging at 150 A (about 30 C) for 0.1 to 0.5 seconds, discharging at 1.5 A (about 0.3 C) for 10 to 50 seconds, Then, rest for 29.5 to 29.9 seconds. This is one cycle and is repeated 10,000 cycles.

上記の低温大電流サイクル処理を行った後、各々のリチウム二次電池100等について、電池容量Q2を求めた。即ち、リチウム二次電池100等を25℃の環境下に置いて、1C(5A)でSOC100%まで充電を行った後、10分間休止する。その後、0.2C(1A)でSOC0%まで放電し、このときの通電電荷量を、低温大電流サイクル処理後の電池容量Q2とする。また、リチウム二次電池100等を組み立てた後、前述のLi耐性向上工程を行う前の段階でも、同様にして電池容量(初期電池容量)Q1を求めておく。そして、次式により容量低下率At(%)を求める。
容量低下率At={1−(電池容量Q2/電池容量Q1)}×100
After performing the above-described low-temperature, high-current cycle treatment, the battery capacity Q2 was determined for each lithium secondary battery 100 and the like. That is, the lithium secondary battery 100 or the like is placed in an environment of 25 ° C., charged to SOC 100% with 1C (5A), and then suspended for 10 minutes. Thereafter, the battery is discharged at 0.2 C (1 A) to SOC 0%, and the energized charge amount at this time is defined as the battery capacity Q2 after the low temperature large current cycle process. In addition, after assembling the lithium secondary battery 100 and the like, the battery capacity (initial battery capacity) Q1 is obtained in the same manner at the stage before performing the above-described Li resistance improvement process. Then, the capacity reduction rate At (%) is obtained by the following equation.
Capacity reduction rate At = {1− (battery capacity Q2 / battery capacity Q1)} × 100

なお、前述の低温大電流サイクル処理及び電池容量Q2の測定は、各実施例1〜5及び各比較例1,2について、Li耐性向上工程を行うサンプルをぞれぞれ複数用意しておき、60日間、Li耐性向上工程を行った後に上述のように電池容量Q2を測定した他、3日間、7日間、14日間及び30日間、Li耐性向上工程を行った各サンプルについても、低温大電流サイクル処理を行って電池容量Q2を測定した。これらの結果を図7のグラフに示す。   In addition, the above-mentioned low temperature large current cycle process and the measurement of the battery capacity Q2 are prepared for each of the samples for performing the Li resistance improvement step for each of Examples 1 to 5 and Comparative Examples 1 and 2, respectively. In addition to measuring the battery capacity Q2 as described above after performing the Li tolerance improving process for 60 days, the low temperature high current was also obtained for each sample that was subjected to the Li tolerance improving process for 3, 7, 14, and 30 days. The battery capacity Q2 was measured by performing cycle treatment. These results are shown in the graph of FIG.

図7のグラフより、Li耐性向上工程を行わなかった比較例1のリチウム二次電池では、60日経過(放置)しても、容量低下率Atに変化が見られなかった。また、比較例2のリチウム二次電池では、Li耐性向上工程を60日間実施しても、容量低下率Atに変化が見られなかった。つまり、この比較例で行った程度のLi耐性向上工程では、60日間実施しても、Li析出に関する耐性は向上しないことが判る。   From the graph of FIG. 7, in the lithium secondary battery of Comparative Example 1 in which the Li tolerance improving process was not performed, no change was observed in the capacity decrease rate At even after 60 days had passed (left). Moreover, in the lithium secondary battery of Comparative Example 2, no change was observed in the capacity decrease rate At even when the Li resistance improvement step was performed for 60 days. That is, it can be seen that in the Li resistance improvement process to the extent performed in this comparative example, the resistance related to Li precipitation is not improved even if it is carried out for 60 days.

これらに対し、実施例1〜5のリチウム二次電池では、Li耐性向上工程を行うと、リチウム二次電池の容量低下率Atが実施時間と共に低下した。つまり、Li耐性向上工程を行うことで、Li析出に関する耐性が向上した。
具体的には、Li耐性向上工程を60日間実施したとき、実施例4のリチウム二次電池が最も大幅に容量低下率Atが低下し、Li析出耐性が最も向上した。しかも、この実施例4のリチウム二次電池では、他の実施例1〜3,5のリチウム二次電池に比して、Li析出耐性工程の早い段階で容量低下率Atを低くできていることが判る。具体的には、この実施例4のLi析出耐性工程を30日(サイクル数:21600回)程度行えば、この実施例4で向上させ得る容量低下率At=4%付近まで、到達できることが判る。
On the other hand, in the lithium secondary batteries of Examples 1 to 5, when the Li tolerance improving process was performed, the capacity reduction rate At of the lithium secondary battery was reduced with the implementation time. That is, the tolerance regarding Li precipitation was improved by performing the Li tolerance improving step.
Specifically, when the Li resistance improvement process was carried out for 60 days, the capacity reduction rate At of the lithium secondary battery of Example 4 was greatly reduced, and the Li precipitation resistance was most improved. Moreover, in the lithium secondary battery of Example 4, the capacity reduction rate At can be lowered at an early stage of the Li precipitation resistance process as compared with the lithium secondary batteries of other Examples 1 to 3 and 5. I understand. Specifically, it can be seen that if the Li precipitation resistance step of Example 4 is performed for about 30 days (number of cycles: 21600 times), the capacity reduction rate At = 4% that can be improved in Example 4 can be reached. .

また、この実施例4のリチウム二次電池に次いで容量低下率Atが低下し、Li析出耐性が向上したのは、実施例2のリチウム二次電池であった。また、この実施例2のリチウム二次電池に次いで容量低下率Atが低下し、Li析出耐性が向上したのは、実施例5のリチウム二次電池であった。また、実施例3のリチウム二次電池も、実施例5のリチウム二次電池とほぼ同等に容量低下率Atが低下し、Li析出耐性が向上した。また、実施例1〜5のリチウム二次電池の中で、容量低下率Atの低下が最も小さかったのは、実施例1のリチウム二次電池であった。   In addition, it was the lithium secondary battery of Example 2 in which the capacity reduction rate At decreased after the lithium secondary battery of Example 4 and the Li precipitation resistance improved. In addition, it was the lithium secondary battery of Example 5 in which the capacity reduction rate At decreased after the lithium secondary battery of Example 2 and the Li precipitation resistance improved. In addition, the capacity reduction rate At of the lithium secondary battery of Example 3 was reduced substantially the same as that of the lithium secondary battery of Example 5, and the Li precipitation resistance was improved. Further, among the lithium secondary batteries of Examples 1 to 5, it was the lithium secondary battery of Example 1 that had the smallest decrease in the capacity reduction rate At.

充電電流(4C)も放電電流(4C)も小さい比較例2の結果と、実施例1〜5の結果との比較から、また、後述する実施例11(放電電流が10C)の結果(図8参照)も考慮すると、充電電流及び放電電流の少なくとも一方の大きさを8C以上とする充放電を行うことで、Li析出耐性が向上することが判る。更に、充電電流及び放電電流の少なくとも一方の大きさを15C以上とする充放電を行うことで、Li析出耐性を更に向上させ得ることが判る。   From the comparison between the result of Comparative Example 2 in which the charging current (4C) and the discharge current (4C) are small and the results of Examples 1 to 5, the result of Example 11 (discharge current is 10C) described later (FIG. 8). In view of (see also), it can be understood that the Li precipitation resistance is improved by charging / discharging at least one of the charging current and the discharging current to 8 C or more. Furthermore, it turns out that Li precipitation tolerance can further be improved by performing the charging / discharging which makes the magnitude | size of at least one of a charging current and a discharge current 15 C or more.

また、充電電流と放電電流とを同じ大きさにした実施例1,2の結果と、充電電流と放電電流とを互いに異なる大きさにした実施例3〜5の結果との比較から、充電電流と放電電流とを互いに異なる大きさとすると、充電電流と放電電流とを同じ大きさにするよりも、Li析出耐性を更に向上させ得ることが判る。また、充電電流と放電電流との差を5C以上とすることで、Li析出耐性を更に向上させ得ることが判る。
また、充電電流(20C)を放電電流(4C)よりも大きくした実施例5の結果と、放電電流(20C)を充電電流(4C)よりも大きくした実施例4の結果との比較から、放電電流を充電電流よりも大きくすると、Li析出耐性を更に向上させ得ることが判る。
Further, from the comparison between the results of Examples 1 and 2 in which the charging current and the discharging current are the same magnitude and the results of Examples 3 to 5 in which the charging current and the discharging current are different from each other, When the discharge current and the discharge current are different from each other, it is understood that the Li precipitation resistance can be further improved as compared with the case where the charge current and the discharge current are made the same. Moreover, it turns out that Li precipitation tolerance can further be improved by making the difference of a charging current and a discharge current into 5 C or more.
Further, from the comparison between the result of Example 5 in which the charging current (20C) is larger than the discharging current (4C) and the result of Example 4 in which the discharging current (20C) is larger than the charging current (4C), It can be seen that when the current is made larger than the charging current, the Li precipitation resistance can be further improved.

また、時間と共に容量低下率Atが低下する実施例1〜5の結果(図7参照)と、後述する実施例11(サイクル数:930回)の結果(図8参照)を考慮すると、充電工程と放電工程とを交互にそれぞれ500回以上行うと、Li析出耐性を十分に向上させ得ることが判る。更に、後述する実施例12の結果(図9参照)によれば、実施日数を20日間程度(サイクル数:14400回)としても、容量低下率Atを4%付近まで低下させることができると推察されることから、充電工程と放電工程とを交互にそれぞれ15000回以上行うことで、特にLi析出耐性を向上させ得ることが判る。   Further, in consideration of the results of Examples 1 to 5 in which the capacity decrease rate At decreases with time (see FIG. 7) and the results of Example 11 (number of cycles: 930 times) described later (see FIG. 8), the charging step It can be seen that the Li precipitation resistance can be sufficiently improved by alternately performing the discharge process and the discharge process 500 times or more. Furthermore, according to the result of Example 12 described later (see FIG. 9), it is inferred that the capacity reduction rate At can be reduced to around 4% even if the number of implementation days is about 20 days (cycle number: 14400 times). Therefore, it can be seen that the Li precipitation resistance can be particularly improved by alternately performing the charging step and the discharging step 15000 times or more.

次いで、実施例6〜11のリチウム二次電池として、前述のLi耐性向上工程において、放電工程の放電時間を変更したリチウム二次電池を製造した(表1参照)。
具体的には、実施例6では、放電工程を1秒間行った後、続いて充電工程を5秒間行い、その後、34秒間休止する充放電サイクル(1サイクルで40秒間)を、14日間(30240回)行った。実施例6〜10では、放電電流を20C(100A)、充電電流を4C(20A)、環境温度を25℃とした。
また、実施例7では、放電工程を5秒間行った後、続いて充電工程を25秒間行い、その後、45秒間休止する充放電サイクル(1サイクルで75秒間)を、14日間(16128回)行った。
Next, as the lithium secondary batteries of Examples 6 to 11, lithium secondary batteries in which the discharge time of the discharge process was changed in the above-described Li resistance improvement process were manufactured (see Table 1).
Specifically, in Example 6, after the discharge process was performed for 1 second, the charge process was performed for 5 seconds, and then the charge / discharge cycle (40 seconds in one cycle) was stopped for 14 days (30240). Times). In Examples 6 to 10, the discharge current was 20C (100A), the charge current was 4C (20A), and the environmental temperature was 25 ° C.
Further, in Example 7, after performing the discharging process for 5 seconds, the charging process is performed for 25 seconds, and then the charging / discharging cycle (75 seconds for one cycle) is performed for 14 days (16128 times). It was.

また、実施例8では、放電工程を10秒間行った後、続いて充電工程を50秒間行い、その後、15秒間休止する充放電サイクル(1サイクルで75秒間)を、14日間(16128回)行った。
また、実施例9では、放電工程を20秒間行った後、続いて充電工程を100秒間行い、その後、60秒間休止する充放電サイクル(1サイクルで180秒間)を、14日間(6720回)行った。
また、実施例10では、放電工程を100秒間行った後、続いて充電工程を500秒間行い、その後、600秒間休止する充放電サイクル(1サイクルで1200秒間)を、14日間(1008回)行った。
Further, in Example 8, after performing the discharging process for 10 seconds, the charging process is subsequently performed for 50 seconds, and then the charging / discharging cycle (75 seconds in one cycle) is performed for 14 days (16128 times). It was.
Further, in Example 9, after performing the discharging process for 20 seconds, the charging process is performed for 100 seconds, and then the charging / discharging cycle (180 seconds for one cycle) is performed for 14 days (6720 times). It was.
In Example 10, after performing the discharging process for 100 seconds, the charging process is subsequently performed for 500 seconds, and then the charging / discharging cycle (1200 seconds for one cycle) is performed for 14 days (1008 times). It was.

また、実施例11では、放電工程を200秒間行った後、続いて充電工程を500秒間行い、その後、600秒間休止する充放電サイクル(1サイクルで1300秒間)を、14日間(924回)行った。なお、この実施例11のみ、放電電流を10C(50A)、充電電流を4C(20A)とした。
そして、各実施例6〜11のリチウム二次電池の各々について、Li耐性向上工程を行った後に、前述の低温大電流サイクル処理及び電池容量Q2の測定を行い、リチウム二次電池の容量低下率Atを求めた。これらの結果を図8のグラフに示す。
Further, in Example 11, after performing the discharging process for 200 seconds, the charging process is performed for 500 seconds, and then the charging / discharging cycle (1300 seconds in one cycle) is performed for 14 days (924 times). It was. In Example 11 only, the discharge current was 10 C (50 A) and the charge current was 4 C (20 A).
And about each of the lithium secondary battery of each Example 6-11, after performing a Li tolerance improvement process, the above-mentioned low temperature large current cycle process and measurement of battery capacity Q2 are performed, and the capacity | capacitance reduction rate of a lithium secondary battery At was determined. These results are shown in the graph of FIG.

図8のグラフより、放電工程の放電時間を10秒間とした実施例8のリチウム二次電池が、最も容量低下率Atが低く、Li析出耐性が最も良好であった。また、放電工程の放電時間を5秒間とした実施例7のリチウム二次電池と、放電工程の放電時間を20秒間とした実施例9のリチウム二次電池も、十分に容量低下率Atが低く、Li析出耐性が良好であった。これらに比べ、放電工程の放電時間を1秒間とした実施例6のリチウム二次電池や、放電工程の放電時間を100秒間,200秒間とした実施例10,11のリチウム二次電池では、容量低下率Atがやや高かった。これらのことから、放電工程における放電時間を2〜50秒間とすると、Li析出耐性をより一層向上させ得ることが判る。   From the graph of FIG. 8, the lithium secondary battery of Example 8 in which the discharge time of the discharge process was 10 seconds had the lowest capacity reduction rate At and the best Li precipitation resistance. In addition, the lithium secondary battery of Example 7 in which the discharge time of the discharge process is 5 seconds and the lithium secondary battery of Example 9 in which the discharge time of the discharge process is 20 seconds are also sufficiently low in the capacity reduction rate At. , Li precipitation resistance was good. In comparison with these, in the lithium secondary battery of Example 6 in which the discharge time of the discharge process was 1 second, and the lithium secondary battery of Examples 10 and 11 in which the discharge time of the discharge process was 100 seconds and 200 seconds, The decrease rate At was slightly high. From these facts, it can be seen that when the discharge time in the discharge step is 2 to 50 seconds, the Li precipitation resistance can be further improved.

次いで、実施例12〜15のリチウム二次電池として、前述のLi耐性向上工程を行う環境温度を変更したリチウム二次電池を製造した(表1参照)。
具体的には、実施例12は0℃の環境下で、実施例13は25℃の環境下で、実施例14は45℃の環境下で、実施例15は60℃の環境下で、それぞれLi耐性向上工程を行った。なお、これらの実施例12〜15では、環境温度と実施日数(30日間)以外は、前述の実施例4と同様にして、Li耐性向上工程を30日間行った。
更に、各実施例12〜15に用いたのと同様のリチウム二次電池を用意し、Li耐性向上工程を7日間だけ実施した後に、それぞれ前述の低温大電流サイクル処理及び電池容量Q2の測定を行い、リチウム二次電池の容量低下率Atを求めた。これらの結果を図9のグラフに示す。
Subsequently, the lithium secondary battery which changed the environmental temperature which performs the above-mentioned Li tolerance improvement process was manufactured as a lithium secondary battery of Examples 12-15 (refer Table 1).
Specifically, Example 12 is in an environment of 0 ° C, Example 13 is in an environment of 25 ° C, Example 14 is in an environment of 45 ° C, and Example 15 is in an environment of 60 ° C. The Li tolerance improvement process was performed. In Examples 12 to 15, the Li resistance improving step was performed for 30 days in the same manner as in Example 4 except for the environmental temperature and the number of days (30 days).
Furthermore, after preparing the same lithium secondary battery as used in Examples 12 to 15 and carrying out the Li resistance improvement process for only 7 days, the above-described low-temperature high-current cycle treatment and measurement of the battery capacity Q2 were performed, respectively. The capacity reduction rate At of the lithium secondary battery was determined. These results are shown in the graph of FIG.

図9のグラフより、Li耐性向上工程を30日間実施した場合では、環境温度を0℃とした実施例12のリチウム二次電池と環境温度を25℃とした実施例13のリチウム二次電池が、共に容量低下率Atが低く、Li析出耐性が良好であった。特に、実施例12のリチウム二次電池は、実施例13のリチウム二次電池に比して、Li耐性向上工程の早い段階(7日間)で、容量低下率Atが大きく低下し、Li析出耐性が向上した。これらに比べ、環境温度を45℃とした実施例14は、容量低下率Atがやや高く、環境温度を60℃とした実施例15は、容量低下率Atが更に高かった。これらの結果から、Li耐性向上工程を行う環境温度を−15〜45℃、更には、−15〜25℃とすると、Li析出耐性をより一層向上させ得ることが判る。   From the graph of FIG. 9, when the Li resistance improvement step was performed for 30 days, the lithium secondary battery of Example 12 in which the environmental temperature was 0 ° C. and the lithium secondary battery of Example 13 in which the environmental temperature was 25 ° C. In both cases, the capacity decrease rate At was low and the Li precipitation resistance was good. In particular, in the lithium secondary battery of Example 12, the capacity decrease rate At is greatly reduced at the early stage (7 days) of the Li resistance improvement process as compared with the lithium secondary battery of Example 13, and Li precipitation resistance is increased. Improved. Compared to these, Example 14 in which the environmental temperature was 45 ° C. had a slightly higher capacity reduction rate At, and Example 15 in which the environmental temperature was 60 ° C. had a higher capacity reduction rate At. From these results, it is understood that the Li precipitation resistance can be further improved when the environmental temperature for performing the Li resistance improvement step is −15 to 45 ° C., and further −15 to 25 ° C.

次いで、実施例16〜18として、前述の実施例3〜5において、60日間(サイクル数:43200回)であったLi耐性向上工程の実施日数を、30日間(サイクル数:21600回)にそれぞれ変更して、リチウム二次電池を製造した(表1参照)。
そして、各実施例16〜18に係るリチウム二次電池を、Li耐性向上工程を終えてから、7日間、14日間或いは30日間保存(放置)した時点で、それぞれ前述の低温大電流サイクル処理及び電池容量Q2の測定を行い、リチウム二次電池の容量低下率Atを求めた。これらの結果を図10のグラフに示す。
Next, as Examples 16 to 18, in Examples 3 to 5 described above, the number of days of implementation of the Li resistance improving process that was 60 days (number of cycles: 43200) was changed to 30 days (number of cycles: 21600), respectively. It changed and manufactured the lithium secondary battery (refer Table 1).
When the lithium secondary batteries according to Examples 16 to 18 were stored (leaved) for 7 days, 14 days, or 30 days after finishing the Li resistance improvement step, the above-described low-temperature high-current cycle treatment and The battery capacity Q2 was measured to determine the capacity reduction rate At of the lithium secondary battery. These results are shown in the graph of FIG.

図10のグラフより、実施例16〜18のいずれのリチウム二次電池においても、Li耐性向上工程後、容量低下率Atの変化は殆ど生じないことが判る。具体的には、Li耐性向上工程終了後から30日経過した後でも、容量低下率Atは、0.2%程度上昇するのみである。これらから、リチウム二次電池に前述のLi耐性向上工程を施すことで、その後、長期間にわたり、Li析出耐性を良好に維持できることが判る。特に、実施例17のリチウム二次電池では、容量低下率Atが低い状態(例えば5%以下)を長期間にわたり安定して維持できることが判る。   From the graph of FIG. 10, it can be seen that in any of the lithium secondary batteries of Examples 16 to 18, the capacity decrease rate At hardly changes after the Li resistance improvement step. Specifically, even after 30 days have elapsed from the end of the Li tolerance improving process, the capacity decrease rate At only increases by about 0.2%. From these, it can be seen that the Li deposition resistance can be satisfactorily maintained over a long period of time by subjecting the lithium secondary battery to the aforementioned Li resistance improvement step. In particular, in the lithium secondary battery of Example 17, it can be seen that a state in which the capacity decrease rate At is low (for example, 5% or less) can be stably maintained over a long period of time.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.

100 リチウム二次電池
120 捲回型電極体
121 正電極板(正電極体)
122 正極集電箔
123 正極活物質層
131 負電極板(負電極体)
132 負極集電箔
133 負極活物質層
100 lithium secondary battery 120 wound electrode body 121 positive electrode plate (positive electrode body)
122 positive electrode current collector foil 123 positive electrode active material layer 131 negative electrode plate (negative electrode body)
132 Negative Electrode Current Foil 133 Negative Electrode Active Material Layer

Claims (9)

炭素系の負極活物質を含む負電極体を有するリチウム二次電池について、前記負電極体にLi金属が析出するLi析出に関する耐性を向上させるLi析出耐性向上方法であって、
前記リチウム二次電池に充電する充電工程と、前記リチウム二次電池を放電させる放電工程とを、−15〜65℃の環境下で、充電電流及び放電電流の少なくとも一方の大きさを8C以上として、交互にそれぞれ500回以上行う
Li析出耐性向上方法。
About a lithium secondary battery having a negative electrode body containing a carbon-based negative electrode active material, a Li precipitation resistance improving method for improving resistance related to Li precipitation in which Li metal is deposited on the negative electrode body,
The charging step for charging the lithium secondary battery and the discharging step for discharging the lithium secondary battery are performed under an environment of −15 to 65 ° C., and at least one of the charging current and the discharging current is set to 8C or more. A method for improving Li precipitation resistance, which is alternately performed 500 times or more alternately.
請求項1に記載のLi析出耐性向上方法であって、
前記充電電流と前記放電電流とを互いに異なる大きさとする
Li析出耐性向上方法。
The Li precipitation resistance improving method according to claim 1,
A method for improving Li precipitation resistance, wherein the charging current and the discharging current are different from each other.
請求項2に記載のLi析出耐性向上方法であって、
前記充電電流と前記放電電流との差を5C以上とする
Li析出耐性向上方法。
The Li precipitation resistance improving method according to claim 2,
A method for improving Li precipitation resistance, wherein a difference between the charging current and the discharging current is 5 C or more.
請求項2または請求項3に記載のLi析出耐性向上方法であって、
前記放電電流を前記充電電流よりも大きくする
Li析出耐性向上方法。
The Li precipitation resistance improving method according to claim 2 or 3,
A method for improving Li deposition resistance, wherein the discharge current is larger than the charging current.
請求項1〜請求項4のいずれか一項に記載のLi析出耐性向上方法であって、
前記放電工程における放電時間を、2〜50秒間とする
Li析出耐性向上方法。
A method for improving Li precipitation resistance according to any one of claims 1 to 4,
The Li precipitation tolerance improvement method which makes discharge time in the said discharge process 2-50 second.
請求項1〜請求項5のいずれか一項に記載のLi析出耐性向上方法であって、
前記充電工程及び前記放電工程を、45℃以下の環境下で行う
Li析出耐性向上方法。
It is a Li precipitation tolerance improvement method according to any one of claims 1 to 5,
A method for improving Li precipitation resistance, wherein the charging step and the discharging step are performed in an environment of 45 ° C. or lower.
請求項1〜請求項6のいずれか一項に記載のLi析出耐性向上方法であって、
前記充電工程で前記リチウム二次電池に充電する充電電気量と、前記放電工程で前記リチウム二次電池を放電させる放電電気量とを等しくする
Li析出耐性向上方法。
It is Li precipitation tolerance improvement method as described in any one of Claims 1-6, Comprising:
A Li deposition resistance improving method for equalizing a charge electricity amount charged in the lithium secondary battery in the charging step and a discharge electricity amount discharging the lithium secondary battery in the discharge step.
炭素系の負極活物質を含む負電極体を有するリチウム二次電池の製造方法であって、
請求項1〜請求項7のいずれか一項に記載のLi析出耐性向上方法を施すLi耐性向上工程を備えるリチウム二次電池の製造方法。
A method for producing a lithium secondary battery having a negative electrode body containing a carbon-based negative electrode active material,
The manufacturing method of a lithium secondary battery provided with the Li tolerance improvement process which performs the Li precipitation tolerance improvement method as described in any one of Claims 1-7.
炭素系の負極活物質を含む負電極体を有するリチウム二次電池であって、
請求項1〜請求項7のいずれか一項に記載のLi析出耐性向上方法を施してなる
リチウム二次電池。
A lithium secondary battery having a negative electrode body containing a carbon-based negative electrode active material,
The lithium secondary battery formed by giving the Li precipitation tolerance improvement method as described in any one of Claims 1-7.
JP2010085682A 2010-04-02 2010-04-02 Li DEPOSITION-RESISTANCE IMPROVEMENT METHOD, METHOD FOR MANUFACTURING LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY Withdrawn JP2011216428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085682A JP2011216428A (en) 2010-04-02 2010-04-02 Li DEPOSITION-RESISTANCE IMPROVEMENT METHOD, METHOD FOR MANUFACTURING LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085682A JP2011216428A (en) 2010-04-02 2010-04-02 Li DEPOSITION-RESISTANCE IMPROVEMENT METHOD, METHOD FOR MANUFACTURING LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY

Publications (1)

Publication Number Publication Date
JP2011216428A true JP2011216428A (en) 2011-10-27

Family

ID=44945945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085682A Withdrawn JP2011216428A (en) 2010-04-02 2010-04-02 Li DEPOSITION-RESISTANCE IMPROVEMENT METHOD, METHOD FOR MANUFACTURING LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY

Country Status (1)

Country Link
JP (1) JP2011216428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194925A (en) * 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Electrochemical device
JP2019009137A (en) * 2013-03-28 2019-01-17 株式会社半導体エネルギー研究所 Electrochemical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194925A (en) * 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Electrochemical device
JP2019009137A (en) * 2013-03-28 2019-01-17 株式会社半導体エネルギー研究所 Electrochemical device

Similar Documents

Publication Publication Date Title
CN110660965B (en) Negative plate and preparation method thereof, lithium ion battery and preparation method and application thereof
CN102971893B (en) Lithium ion secondary cell
JP7096973B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and manufacturing system
JP5783433B2 (en) Lithium ion secondary battery
JP4453049B2 (en) Manufacturing method of secondary battery
JP5783432B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2015096272A1 (en) Lithium battery and preparation method therefor
JPWO2011108056A1 (en) Lead acid battery
JP5673690B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
US20100192362A1 (en) Split Charge Forming Process for Battery
JP7071697B2 (en) Non-aqueous electrolyte secondary battery
JPWO2013145290A1 (en) Lithium ion secondary battery
US20120115002A1 (en) Molten salt battery
KR20140147029A (en) Electric storage device and electric storage module
JP2007335360A (en) Lithium secondary cell
JP2018163833A (en) Nonaqueous electrolyte secondary battery and manufacturing method
JP2019067543A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2014024525A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and method for manufacturing nonaqueous electrolyte secondary battery
JP2015191768A (en) secondary battery
WO2013018181A1 (en) Lithium ion secondary battery
US9190661B2 (en) Secondary battery and method for producing secondary battery
JP2000113909A (en) Storing method for lithium secondary battery
JP2021128917A (en) Method for manufacturing lithium ion secondary battery, and negative electrode material
JP2011216428A (en) Li DEPOSITION-RESISTANCE IMPROVEMENT METHOD, METHOD FOR MANUFACTURING LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY
JP2009283276A (en) Lithium secondary battery manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604