JP2009283276A - Lithium secondary battery manufacturing method - Google Patents

Lithium secondary battery manufacturing method Download PDF

Info

Publication number
JP2009283276A
JP2009283276A JP2008133918A JP2008133918A JP2009283276A JP 2009283276 A JP2009283276 A JP 2009283276A JP 2008133918 A JP2008133918 A JP 2008133918A JP 2008133918 A JP2008133918 A JP 2008133918A JP 2009283276 A JP2009283276 A JP 2009283276A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
battery
temperature range
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008133918A
Other languages
Japanese (ja)
Inventor
Ryuta Morishima
龍太 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008133918A priority Critical patent/JP2009283276A/en
Publication of JP2009283276A publication Critical patent/JP2009283276A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery manufacturing method preventing a reduction in battery capacity due to deposition of lithium to increase a service life and to stably ensure a high output. <P>SOLUTION: The lithium secondary battery manufacturing method includes the steps of preparing a lithium secondary battery in which an electrode body having a positive electrode active substance containing positive electrode and a negative electrode active substance containing negative electrode and a lithium ion containing electrolyte are contained in a battery case, performing a charging process on the prepared lithium secondary battery at a temperature within a room temperature range until a predetermined voltage value is obtained, retaining the lithium secondary battery for 12 to 80 hours at a temperature within the room temperature range or within a temperature range lower than the room temperature after the charging process and retaining the lithium secondary battery at least for 6 hours at a high temperature ranging from 40°C to 65°C after the retaining process performed at the temperature within the room temperature range or within the temperature range lower than the room temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム二次電池の製造方法、特に車両搭載用として好適なリチウム二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a lithium secondary battery, and more particularly to a method for manufacturing a lithium secondary battery suitable for mounting on a vehicle.

近年、リチウム二次電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、あるいはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく利用できるものとして期待されている。   In recent years, lithium secondary batteries, nickel metal hydride batteries, and other secondary batteries have become increasingly important as power sources for mounting on vehicles or as power sources for personal computers and portable terminals. In particular, a lithium ion battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.

リチウムイオン電池は、一般的には、リチウム含有酸化物(典型的にはリチウム含有遷移金属酸化物、例えばニッケル酸リチウム(LiNiO))を正極活物質として含む正極と、グラファイト等の炭素系材料を負極活物質として含む負極を備える電極体と、リチウムイオンを含む非水系液体電解質とを電池ケースに収容することにより構築される。 Generally, a lithium ion battery includes a positive electrode containing a lithium-containing oxide (typically a lithium-containing transition metal oxide such as lithium nickelate (LiNiO 2 )) as a positive electrode active material, and a carbon-based material such as graphite. It is constructed | assembled by accommodating the electrode body provided with the negative electrode which contains as a negative electrode active material, and the non-aqueous liquid electrolyte containing lithium ion in a battery case.

かかる電池の構築後、典型的には、該電池を実際に使用可能な状態に調整するために所定条件での最初の充放電処理(コンディショニング処理)が施される。また、自己放電量に相当し得る初期の電池容量低下(初期劣化)が大きい電池の選別や出力特性等の電池性能の安定化等を目的として、上記コンディショニング処理の実施前に所定条件の環境下で上記リチウムイオン電池を保持(放置)するエージング処理が施される。かかるエージング処理として、例えば特許文献1では、構築されたリチウムイオン電池の負極電位の経時変化をモニタリングしながら、所定温度下で該電池を保持している。また、特許文献2では、構築されたリチウムイオン電池に対して初期充電を行った後に1週間〜1か月間保持している。
特開2002−298925号公報 特開2006−79857号公報
After the construction of such a battery, typically, an initial charge / discharge process (conditioning process) under a predetermined condition is performed in order to adjust the battery to a state where it can actually be used. In addition, for the purpose of, for example, selecting a battery with a large initial battery capacity drop (initial deterioration) that can correspond to the amount of self-discharge and stabilizing battery performance such as output characteristics, the environment is not subjected to the above-described conditioning process. Then, an aging treatment for holding (leaving) the lithium ion battery is performed. As such an aging treatment, for example, in Patent Document 1, the battery is held at a predetermined temperature while monitoring the change with time of the negative electrode potential of the constructed lithium ion battery. Moreover, in patent document 2, after performing initial charge with respect to the constructed lithium ion battery, it hold | maintains for one week-one month.
JP 2002-298925 A JP 2006-79857 A

ところで、リチウム二次電池(典型的にはリチウムイオン電池)を高出力電源として自動車等の車両に搭載した場合、該リチウム二次電池の充放電は、例えば数十アンペア(A)以上の大電流(ハイレート)で急速に実施されることが望ましい。しかし、従来のリチウム二次電池では、ハイレートな充電により負極電位が低下してリチウム析出電位(酸化還元電位)を下回り、正負極間で授受されるリチウムイオンの一部が、例えば炭素系材料等からなる負極表面で還元されてリチウムとして析出することにより、電池容量(充電容量)が低下する虞がある。上記特許文献1,2に係るエージング処理が施されたリチウム二次電池においても、ハイレート充放電を実施した場合には負極にリチウムが析出する虞がある。なお、上記負極にリチウムが析出し得る原因として、例えば、上記負極の表面に生じて該表面を不活性化・安定化させリチウムイオンの負極材料(炭素系材料)への挿入および脱離を容易にかつ円滑にさせ得るSEI(Solid Electrolyte Interface)の形成が不十分であるか、該SEIが均質に形成されていないこと等が挙げられる。   By the way, when a lithium secondary battery (typically a lithium ion battery) is mounted on a vehicle such as an automobile as a high output power source, the lithium secondary battery is charged and discharged with a large current of, for example, several tens of amperes (A) or more. It is desirable to be implemented rapidly at (high rate). However, in the conventional lithium secondary battery, the negative electrode potential decreases due to high-rate charging and falls below the lithium deposition potential (oxidation-reduction potential), and some of the lithium ions transferred between the positive and negative electrodes are, for example, carbon-based materials, etc. There is a possibility that the battery capacity (charge capacity) may be reduced by being reduced and deposited as lithium on the negative electrode surface. Even in the lithium secondary battery subjected to the aging treatment according to Patent Documents 1 and 2, lithium may be deposited on the negative electrode when high-rate charge / discharge is performed. In addition, as a cause that lithium can be deposited on the negative electrode, for example, it is generated on the surface of the negative electrode to inactivate and stabilize the surface, and lithium ions can be easily inserted into and removed from the negative electrode material (carbon-based material). The formation of SEI (Solid Electrolyte Interface) that can be made smooth and smooth is insufficient, or the SEI is not formed homogeneously.

そこで本発明は、ハイレート充放電をし得る上記リチウム二次電池の問題点に鑑みてなされたものであり、その主な目的は、リチウム二次電池の製造方法であって、リチウムの析出による電池容量の低下が防止されて高寿命化を実現でき、かつ高い出力を安定的に確保し得るリチウム二次電池の製造方法を提供することである。   Accordingly, the present invention has been made in view of the problems of the above-described lithium secondary battery capable of high-rate charging / discharging, and its main object is a method for producing a lithium secondary battery, which is a battery formed by lithium deposition. It is an object of the present invention to provide a method for manufacturing a lithium secondary battery that can prevent a decrease in capacity, realize a long life, and can stably ensure a high output.

上記目的を実現するべく本発明によって提供されるリチウム二次電池の製造方法は、以下の工程を包含する。すなわち、かかる方法は、正極活物質を含む正極と負極活物質を含む負極とを備える電極体と、リチウムイオンを含む電解質とを電池ケースに収容したリチウム二次電池を用意すること、前記用意したリチウム二次電池に対して室温域の下で所定の電圧値まで充電処理を行うこと、前記充電処理の後、前記リチウム二次電池を、室温域またはそれ以下の温度域の下で12時間〜80時間保持すること、および前記室温域またはそれ以下の温度域下での保持処理の後、前記リチウム二次電池を、40℃〜65℃の高温域の下で少なくとも6時間保持すること、を包含する。   A method for manufacturing a lithium secondary battery provided by the present invention to achieve the above object includes the following steps. That is, this method is prepared by preparing a lithium secondary battery in which an electrode body including a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material and an electrolyte including lithium ions are accommodated in a battery case. The lithium secondary battery is charged to a predetermined voltage value under a room temperature range, and after the charging process, the lithium secondary battery is placed in a room temperature range or lower temperature range for 12 hours to Holding for 80 hours, and holding the lithium secondary battery for at least 6 hours under a high temperature range of 40 ° C. to 65 ° C. after the holding treatment under the room temperature range or lower temperature range, Include.

すなわち、かかる製造方法は、リチウム二次電池を用意する「用意工程」と、該電池を室温域の下で行う「充電処理工程」と、該リチウム二次電池を室温域またはそれ以下の温度域下で保持する「室温保持処理工程」、および上記リチウム二次電池を上記高温域下で保持する「高温保持処理工程」を包含している。   That is, the manufacturing method includes a “preparation step” for preparing a lithium secondary battery, a “charging process step” for performing the battery in a room temperature range, and a temperature range for the lithium secondary battery in a room temperature range or lower. A “room temperature holding treatment step” that is held under, and a “high temperature holding treatment step” that holds the lithium secondary battery in the high temperature range.

かかる製造方法によれば、用意(典型的には構築)されたリチウム二次電池に対して、室温域下の上記充電処理と、40℃〜65℃の高温域下で保持する上記高温保持処理との間に、室温域またはそれ以下の温度域の下で、(典型的には上記充電処理終了時の電圧値を維持した状態で)12時間〜80時間保持する「室温保持処理」を導入する。このことにより、当該室温保持処理の過程で上記リチウム二次電池の負極上にSEIが均質に形成され得る。このため、かかるリチウム二次電池では、サイクル試験実施後も負極へのリチウムの析出が抑制されて電池容量の低下が防止され、良好なサイクル特性を備え得る。例えば、上記高温保持処理の後、−15℃の温度条件で165Aの電流値で0.1秒間の充放電処理を900サイクル実施した後の電池容量は、該充放電処理の実施前の約90%以上に維持され得る。   According to such a manufacturing method, for the prepared (typically constructed) lithium secondary battery, the charging process under a room temperature range and the high temperature holding process for holding under a high temperature range of 40 ° C. to 65 ° C. Introduced “room temperature holding treatment” for holding for 12 to 80 hours under the temperature range of room temperature or lower (typically with the voltage value at the end of the charging process maintained) To do. Accordingly, SEI can be uniformly formed on the negative electrode of the lithium secondary battery during the room temperature holding process. For this reason, in such a lithium secondary battery, even after the cycle test is performed, lithium deposition on the negative electrode is suppressed, battery capacity reduction is prevented, and good cycle characteristics can be provided. For example, after the above high-temperature holding treatment, the battery capacity after 900 cycles of charge / discharge treatment for 0.1 seconds at a current value of 165 A under a temperature condition of −15 ° C. is about 90 before the charge / discharge treatment. % Or more can be maintained.

また、上記充電処理および室温保持処理の過程において、電池ケースに収容された電解質等が(典型的には還元反応により)分解されて分解物が生成し、該分解物が正負極間でのリチウムイオンの授受(挿入および脱離)を阻む抵抗物質として正極表面に吸着および堆積し得る。しかし、上記高温保持処理の実施により、上記抵抗物質は正極から除去され得る。したがって、かかる方法により製造されるリチウム二次電池では、リチウム析出の抑制により電池容量の低下が防止されて良好なサイクル特性を備え得るとともに、正負極間のリチウムイオンの挿入・脱離が効率良く行われ、高い出力(放電出力)を確保できる高出力特性を備え得る。   Further, in the course of the charging process and the room temperature holding process, the electrolyte or the like housed in the battery case is decomposed (typically by a reduction reaction) to generate a decomposition product, and the decomposition product is lithium between the positive and negative electrodes. It can be adsorbed and deposited on the surface of the positive electrode as a resistance substance that prevents the transfer (insertion and desorption) of ions. However, the resistance substance can be removed from the positive electrode by performing the high temperature holding treatment. Therefore, in the lithium secondary battery manufactured by such a method, the reduction of the battery capacity can be prevented by suppressing lithium precipitation, and good cycle characteristics can be provided, and the insertion / extraction of lithium ions between the positive and negative electrodes can be performed efficiently. It is possible to provide high output characteristics that can ensure high output (discharge output).

なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンに伴う電荷の移動(リチウムイオンの授受)により充放電が実現される二次電池をいう。一般にリチウムイオン電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。   In this specification, the term “lithium secondary battery” refers to a secondary in which charge and discharge are realized by using lithium ions as electrolyte ions and transferring charges (transfer of lithium ions) associated with lithium ions between the positive and negative electrodes. A battery. A secondary battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification.

また、本明細書において「室温域」とは、典型的には常温とされる温度領域をいい、該常温とは、JIS Z 8703−1983に規定する温度15級に準拠し、20℃±15℃(例えば10℃〜30℃、好ましくは20℃〜30℃)を指すものとする。   Further, in this specification, the “room temperature region” refers to a temperature region that is typically room temperature, and the room temperature conforms to the temperature class 15 defined in JIS Z 8703-1983, and is 20 ° C. ± 15 It shall refer to ° C. (for example, 10 ° C. to 30 ° C., preferably 20 ° C. to 30 ° C.).

ここで開示される製造方法は、他の側面として、前記用意(典型的には構築)されたリチウム二次電池の調整方法として提供できるものである。すなわち、かかる調整方法は、正極活物質を含む正極と負極活物質を含む負極とを備える電極体と、リチウムイオンを含む電解質とを電池ケースに収容したリチウム二次電池を用意すること、前記用意したリチウム二次電池を室温域の下で所定の電圧値まで充電処理を行うこと、前記充電処理の後、前記リチウム二次電池を、室温域またはそれ以下の温度域の下で12時間〜80時間保持すること、および前記室温またはそれ以下の温度域下での保持処理の後、前記リチウム二次電池を40℃〜65℃の高温域の下で少なくとも6時間保持すること、を包含する。   As another aspect, the manufacturing method disclosed herein can be provided as a method for adjusting the prepared (typically constructed) lithium secondary battery. That is, the adjustment method includes preparing a lithium secondary battery in which an electrode body including a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material and an electrolyte including lithium ions are accommodated in a battery case, The lithium secondary battery is charged to a predetermined voltage value under a room temperature range, and after the charging process, the lithium secondary battery is charged at a room temperature range or lower temperature range for 12 hours to 80 hours. Holding for a period of time, and holding the lithium secondary battery under a high temperature range of 40 ° C. to 65 ° C. for at least 6 hours after the holding treatment under the temperature range of room temperature or lower.

ここで開示される製造方法の好ましい一態様として、前記室温域またはそれ以下の温度域下での保持処理は、40時間〜60時間行う。かかる方法によれば、該方法により得られるリチウム二次電池では、より高い次元で電池容量の低下が防止されるとともに、高く安定な出力を得ることができる。例えば、上記高温保持処理後に−15℃の温度条件で165Aの電流値で0.1秒間の充放電処理を900サイクル実施した後の電池容量は、上記充放電処理の実施前の約92%以上に維持され得る。また、かかる態様のリチウム二次電池を30℃の温度条件下でSOC(充電状態;State of Charge)が満充電時(あるいは該電池の定格容量)の60%になるまで充電し、このときの電圧値(例えば3.73V)から3.0Vまで10秒間のうちに放電させると、その出力は約585W以上の高出力となり得る。   As a preferred embodiment of the production method disclosed herein, the holding treatment under the room temperature range or lower temperature range is performed for 40 hours to 60 hours. According to such a method, in the lithium secondary battery obtained by the method, it is possible to prevent a decrease in battery capacity at a higher level and to obtain a high and stable output. For example, the battery capacity after performing 900 cycles of charge / discharge treatment for 0.1 seconds at a current value of 165A under the temperature condition of −15 ° C. after the high temperature holding treatment is about 92% or more before the charge / discharge treatment is performed. Can be maintained. In addition, the lithium secondary battery of this aspect is charged under a temperature condition of 30 ° C. until the SOC (state of charge) reaches 60% of full charge (or the rated capacity of the battery). When discharging from a voltage value (eg, 3.73 V) to 3.0 V within 10 seconds, the output can be as high as about 585 W or more.

また、ここで開示される製造方法の他の好ましい一態様として、前記充電処理は、前記リチウム二次電池の電圧値が3.3V〜4.2Vの範囲内に至った時点で終了する。より好ましくは3.9V〜4.1Vの範囲内である。かかる態様によれば、処理対象のリチウム二次電池に対して初期劣化を適切に進行させ得るとともに、電池性能を効果的に安定化させ得る。すなわち、かかる電圧範囲で充電処理を行うことにより、いわゆるエージング処理としての効果を最大限に実現することができる。また、当該充電処理の終了時における電圧値、すなわち該電圧値が上記範囲内に保たれた状態(あるいは自己放電等によって該電圧値よりもわずかに低下した状態で)その後の室温保持処理に移行することにより、該室温保持処理の効果がより一層高まり、より均質なSEIが負極上に形成され得る。   Moreover, as another preferable aspect of the manufacturing method disclosed herein, the charging process ends when the voltage value of the lithium secondary battery reaches within a range of 3.3V to 4.2V. More preferably, it exists in the range of 3.9V-4.1V. According to this aspect, initial deterioration can be appropriately advanced with respect to the lithium secondary battery to be processed, and battery performance can be effectively stabilized. That is, by performing the charging process in such a voltage range, the effect as a so-called aging process can be realized to the maximum. Further, the voltage value at the end of the charging process, that is, the state where the voltage value is kept within the above range (or in a state where the voltage value is slightly lower than the voltage value due to self-discharge etc.) shifts to the subsequent room temperature holding process. By doing so, the effect of the room temperature holding treatment is further enhanced, and a more uniform SEI can be formed on the negative electrode.

また、ここで開示される製造方法の他の好ましい一態様として、前記高温域下での保持処理は、6時間〜24時間行う。かかる態様によれば、40℃〜65℃の高温域にリチウム二次電池を上記時間範囲内で保持することにより、正極に吸着(堆積)し得る抵抗物質を除去する効果が高まるとともに、上記のいわゆるエージング処理としての効果もより一層高まる。また、上記高温域下で保持することにより、室温域またはそれ以下の温度域下で保持するよりも上記効果(特にエージング処理効果)が早期に奏され得る。   As another preferred embodiment of the production method disclosed herein, the holding treatment under the high temperature range is performed for 6 hours to 24 hours. According to this aspect, by holding the lithium secondary battery in the high temperature range of 40 ° C. to 65 ° C. within the above time range, the effect of removing the resistance substance that can be adsorbed (deposited) on the positive electrode is enhanced, and The effect as a so-called aging process is further enhanced. Moreover, the above-mentioned effect (especially the aging treatment effect) can be achieved at an early stage by maintaining the temperature under the high temperature range as compared with maintaining at a room temperature range or lower temperature range.

ここで開示される製造方法の他の好ましい一態様として、前記電解質は、非水電解質である。非水電解質とは、典型的には非水系液体電解質であって、非水溶媒にリチウム塩を支持塩として溶解させた非水溶媒系電解液である。かかる態様によれば、水溶液系電解質のように溶媒が一部分解されても、その程度は水溶液系電解質に比べて小さく、また、非水溶媒が一部(典型的には還元反応によって)分解されることにより、リチウムイオンの挿入および脱離を容易にかつ円滑にさせ得る好適なSEIが負極上に形成され得る。また、このことにより、好ましい非水溶媒は上記SEIが形成し易くなるような負極材料と電解質との組み合わせにより適宜選択され得る。このような非水溶媒としては、例えばエチレンカーボネート(EC)や、ECとジエチルカーボネート(DEC)あるいはECとジメチルカーボネート(DMC)の混合溶媒等、が挙げられる。   As another preferable aspect of the production method disclosed herein, the electrolyte is a non-aqueous electrolyte. The non-aqueous electrolyte is typically a non-aqueous liquid electrolyte, which is a non-aqueous solvent electrolyte in which a lithium salt is dissolved as a supporting salt in a non-aqueous solvent. According to this aspect, even if the solvent is partially decomposed as in the aqueous electrolyte, the degree is smaller than that in the aqueous electrolyte, and the non-aqueous solvent is partially decomposed (typically by a reduction reaction). Thus, a suitable SEI that can easily and smoothly insert and desorb lithium ions can be formed on the negative electrode. In addition, a preferable non-aqueous solvent can be appropriately selected depending on the combination of the negative electrode material and the electrolyte that facilitate the formation of the SEI. Examples of such a non-aqueous solvent include ethylene carbonate (EC), EC and diethyl carbonate (DEC), or a mixed solvent of EC and dimethyl carbonate (DMC).

さらに、本発明は、ここで開示される製造方法を採用することにより得られるリチウム二次電池を提供する。すなわち、かかるリチウム二次電池は、ここで開示される何れかの製造方法により得られるリチウム二次電池である。かかる電池では、上記高温保持処理後に−15℃の温度条件で165Aの電流値で0.1秒間の充放電処理を900サイクル実施した後の電池容量は、上記充放電処理実施前の約90%以上に維持され、良好なサイクル特性を備えて高耐久性(高寿命化)を実現し得る。これに加えて、かかる電池は、良好な出力特性を備えて高い出力を安定的に供給し得る。   Furthermore, this invention provides the lithium secondary battery obtained by employ | adopting the manufacturing method disclosed here. That is, this lithium secondary battery is a lithium secondary battery obtained by any of the manufacturing methods disclosed herein. In such a battery, the battery capacity after performing 900 cycles of charge / discharge treatment for 0.1 seconds at a current value of 165 A under the temperature condition of −15 ° C. after the high temperature holding treatment is about 90% before the charge / discharge treatment is carried out. It is maintained as described above, and high durability (long life) can be realized with good cycle characteristics. In addition, such a battery can stably supply a high output with good output characteristics.

また、本発明によると、ここで開示されるリチウム二次電池、またはここで開示されるいずれかの製造方法により製造されたリチウム二次電池は、ハイレート充放電を行ってもリチウムの析出が抑制されて電池容量の低下を防止し、高寿命化を実現し得るとともに、良好な(高い)出力特性も備え得ることから、車両に搭載されるモーター(電動機)用電源として好適に利用され得る。したがって、本発明によれば、かかるリチウム二次電池を備える車両(例えば自動車)が提供される。   Further, according to the present invention, the lithium secondary battery disclosed herein or the lithium secondary battery manufactured by any of the manufacturing methods disclosed herein suppresses lithium deposition even when high-rate charge / discharge is performed. Thus, the battery capacity can be prevented from being reduced, the life can be extended, and good (high) output characteristics can be provided. Therefore, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle. Therefore, according to the present invention, a vehicle (for example, an automobile) provided with such a lithium secondary battery is provided.

以下、本発明の好ましい実施の形態を説明する。本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、リチウム二次電池の構成や構築手順、電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, the configuration and construction procedure of the lithium secondary battery, the general technology relating to the construction of the battery, etc.) It can be understood as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここに開示されるリチウム二次電池の製造方法は、リチウム二次電池を構築あるいは用意し、この用意したリチウム二次電池を室温域の下で所定電圧値に至るまで充電処理を行い、次いで室温域の下で上記リチウム二次電池を所定時間保持(例えば放置)し、該時間経過後にはさらに高温域の下で所定時間保持する方法である。ここに開示される方法および技術は、正極活物質を含む正極および負極活物質を含む負極を備える電極体とリチウムイオンを含む電解質とを電池ケースに収容した構成のリチウム二次電池に好ましく適用され得るものである。また、かかるリチウム二次電池は、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンに伴う電荷の移動により充放電が実現されるものであればよく、電池ケース、電極体、または電解質の種類は特に限定されない。例えば電池ケースは直方体状、扁平形状、円筒形状等の形状であり得る。   A method for manufacturing a lithium secondary battery disclosed herein includes constructing or preparing a lithium secondary battery, charging the prepared lithium secondary battery to a predetermined voltage value under a room temperature range, and then room temperature. This is a method in which the lithium secondary battery is held (for example, left) for a predetermined time under a region, and further maintained for a predetermined time under a high temperature region after the time has elapsed. The method and technique disclosed herein are preferably applied to a lithium secondary battery having a configuration in which an electrode body including a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material and an electrolyte including lithium ions are accommodated in a battery case. To get. In addition, such a lithium secondary battery may be any battery as long as it uses lithium ions as electrolyte ions and can be charged / discharged by the movement of charges accompanying the lithium ions between the positive and negative electrodes. The type of is not particularly limited. For example, the battery case may have a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like.

上記正極活物質としては、リチウムイオンを挿入および脱離(吸蔵および放出)可能な材料が用いられ、従来からリチウム二次電池に用いられる物質(例えば層状構造の酸化物やスピネル構造の酸化物)の一種または二種以上を特に限定することなく使用することができる。好適例として、リチウムニッケル系複合酸化物(リチウムとニッケルとを構成金属元素として含む酸化物であって、ニッケルサイトの一部がコバルトやアルミニウム等の他の金属元素で置換されたものを含む。典型的にはLiNiO)、リチウムコバルト系複合酸化物(典型的にはLiCoO)、リチウムマンガン系複合酸化物(典型的にはLiMn)等のリチウム含有遷移金属酸化物(リチウム含有複合酸化物)が挙げられる。また、一般式がLiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素;例えばLiFePO、LiMnPO)で表記されるオリビン型リン酸リチウムを上記正極活物質として用いてもよい。 As the positive electrode active material, a material capable of inserting and desorbing (inserting and desorbing) lithium ions is used, and a material conventionally used for a lithium secondary battery (for example, an oxide having a layered structure or an oxide having a spinel structure). One or more of these can be used without particular limitation. Preferable examples include lithium-nickel based composite oxides (oxides containing lithium and nickel as constituent metal elements, in which a part of nickel sites is replaced with other metal elements such as cobalt and aluminum). Lithium-containing transition metal oxides (lithium-containing, typically LiNiO 2 ), lithium-cobalt complex oxides (typically LiCoO 2 ), lithium-manganese complex oxides (typically LiMn 2 O 4 ) Composite oxide). Further, an olivine type lithium phosphate represented by the general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, and Fe; for example, LiFePO 4 , LiMnPO 4 ) is used as the positive electrode active material. Also good.

ここに開示される技術は、かかる正極活物質を含む正極と後述の負極活物質を含む負極とを用いて構築されるリチウム二次電池であって、両極間の電圧(端子間電圧)が凡そ3V〜4.2Vの範囲で使用されるリチウム二次電池(典型的にはリチウムイオン電池)に対して好ましく適用され得る。   The technology disclosed herein is a lithium secondary battery constructed using a positive electrode including such a positive electrode active material and a negative electrode including a negative electrode active material described later, and a voltage between both electrodes (inter-terminal voltage) is approximately. It can be preferably applied to a lithium secondary battery (typically a lithium ion battery) used in the range of 3V to 4.2V.

上記正極は、典型的には上記のような正極活物質を主成分とする層(正極活物質層)が正極集電体に保持(付与)された構成である。該正極集電体として、良好な導電性を有する金属製の導電性部材が好ましく用いられる。特に、アルミニウム(Al)またはアルミニウムを主成分とする合金(アルミニウム合金)製の正極集電体の使用が好ましく、例えば、厚さ5μm〜30μm(好ましくは10μm〜30μm)程度のアルミニウム箔を正極集電体として好ましく用いることができる。正極集電体の形状は、得られた正極を用いて構築されるリチウム二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。なお、種々の形状の集電体自体の作製は、リチウム二次電池の分野において従来公知の方法であればよく、本発明を特徴付けるものではない。ここに開示される技術は、例えばシート状もしくは箔状の集電体に正極活物質層が保持された形態の正極を備えるリチウム二次電池に好ましく適用され得る。かかるリチウム二次電池の好ましい一態様として、捲回型の電極体を備えるリチウム二次電池が挙げられる。   The positive electrode typically has a configuration in which a layer containing a positive electrode active material as a main component (positive electrode active material layer) is held (applied) to a positive electrode current collector. As the positive electrode current collector, a metal conductive member having good conductivity is preferably used. In particular, it is preferable to use a positive electrode current collector made of aluminum (Al) or an alloy containing aluminum as a main component (aluminum alloy). For example, an aluminum foil having a thickness of about 5 μm to 30 μm (preferably 10 μm to 30 μm) is used as the positive electrode collector. It can be preferably used as an electric body. Since the shape of the positive electrode current collector can vary depending on the shape of the lithium secondary battery constructed using the obtained positive electrode, there is no particular limitation, rod shape, plate shape, sheet shape, foil shape, mesh shape And various other forms. The current collectors of various shapes may be produced by any conventionally known method in the field of lithium secondary batteries, and do not characterize the present invention. The technology disclosed herein can be preferably applied to a lithium secondary battery including a positive electrode in a form in which a positive electrode active material layer is held on, for example, a sheet-shaped or foil-shaped current collector. As a preferable embodiment of such a lithium secondary battery, a lithium secondary battery including a wound electrode body can be given.

上記正極活物質層は、例えば、正極活物質を適当な溶媒に分散させたペーストまたはスラリー状の組成物(正極活物質組成物)を正極集電体に付与し、該組成物を乾燥させることにより好ましく作製することができる。かかる組成物を正極集電体(好ましくは箔状もしくはシート状)に付与するにあたっては、従来公知の方法と同様の技法を適宜採用することができる。例えば、適当な塗布装置を使用して、集電体の表面(片面または両面)に所定量の上記組成物を層状に塗布すればよい。また、上記溶媒(分散媒)としては水、有機溶媒およびこれらの混合溶媒のいずれも使用することができる。   In the positive electrode active material layer, for example, a paste or slurry composition (positive electrode active material composition) in which the positive electrode active material is dispersed in a suitable solvent is applied to the positive electrode current collector, and the composition is dried. Can be preferably produced. In applying such a composition to a positive electrode current collector (preferably in a foil shape or a sheet shape), a technique similar to a conventionally known method can be appropriately employed. For example, a predetermined amount of the composition may be applied in a layered manner on the surface (one side or both sides) of the current collector using an appropriate application device. Further, as the solvent (dispersion medium), any of water, organic solvents, and mixed solvents thereof can be used.

上記正極活物質組成物は、正極活物質および上記溶媒のほかに、一般的なリチウム二次電池において正極活物質層の形成に用いられる組成物に配合され得る一種または二種以上の材料を必要に応じて含有し得る。かかる材料の例として、種々のカーボンブラック、ニッケル等の導電材、および/または、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエン共重合体(SBR)、カルボキシメチルセルロース(CMC)等のポリマー材料からなるバインダおよび粘度調整材(典型的には増粘材)が挙げられる。また、かかる正極活物質組成物の構成成分の配合比については、従来のリチウム二次電池における正極活物質層の形成に用いられる組成物と同様の配合比であればよく、特に限定されない。   In addition to the positive electrode active material and the solvent, the positive electrode active material composition requires one or more materials that can be blended in a composition used for forming a positive electrode active material layer in a general lithium secondary battery. Depending on the content. Examples of such materials include various carbon blacks, conductive materials such as nickel, and / or polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene copolymer (SBR), carboxymethyl cellulose (CMC). And a binder made of a polymer material such as a viscosity adjusting material (typically a thickening material). Moreover, about the compounding ratio of the component of this positive electrode active material composition, what is necessary is just the same compounding ratio as the composition used for formation of the positive electrode active material layer in the conventional lithium secondary battery, and it does not specifically limit.

一方、上記負極活物質としては、リチウムイオンを挿入および脱離可能な材料(好ましくは粒子状)が用いられ、従来からリチウム二次電池に用いられる種々の物質を特に限定することなく使用することができる。ここに開示される技術において好適な負極活物質としては、天然黒鉛、高配向性グラファイト(HOPG)等のグラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム含有遷移金属酸化物や遷移金属窒化物等を使用できる。電池の高電圧(高出力)化を実現するべく、グラファイト(黒鉛)等の炭素系材料(カーボン粒子)が好ましい。また、上記負極活物質(例えばグラファイトのカーボン粒子)としては、例えば平均粒径が凡そ5〜50μm(好ましくは凡そ5〜15μm)のカーボン粒子の使用が好ましい。このように比較的小粒径のカーボン粒子は、単位体積当たりの表面積が大きいことから、より急速充放電(例えば高出力放電)に適した負極活物質となり得る。したがって、かかる負極活物質を有するリチウム二次電池は、例えば車両搭載用のリチウム二次電池として好適に利用され得る。   On the other hand, as the negative electrode active material, materials capable of inserting and removing lithium ions (preferably in the form of particles) are used, and various materials conventionally used in lithium secondary batteries are used without particular limitation. Can do. Suitable negative electrode active materials in the technology disclosed herein include graphite carbon such as natural graphite and highly oriented graphite (HOPG), carbon-based materials such as amorphous carbon, lithium-containing transition metal oxides and transition metal nitrides, etc. Can be used. In order to realize a high voltage (high output) of the battery, a carbon-based material (carbon particles) such as graphite is preferable. Further, as the negative electrode active material (for example, carbon particles of graphite), for example, carbon particles having an average particle diameter of about 5 to 50 μm (preferably about 5 to 15 μm) are preferably used. Thus, carbon particles having a relatively small particle size have a large surface area per unit volume, and thus can be a negative electrode active material suitable for more rapid charge / discharge (for example, high power discharge). Therefore, the lithium secondary battery having such a negative electrode active material can be suitably used, for example, as a lithium secondary battery for vehicle mounting.

ここに開示される技術における負極は、典型的には、このような負極活物質を主成分とする層(負極活物質層)が負極集電体に保持(付与)された構成である。該負極集電体としては、良好な導電性を有する金属製の導電性部材が好ましく用いられる。特に、銅(Cu)または銅を主成分とする合金(銅合金)製の負極集電体の使用が好ましく、例えば、厚さ5μm〜30μm(好ましくは10μm〜30μm)程度の銅箔を負極集電体として好ましく用いることができる。負極集電体の形状は、上述した正極集電体と同様に、得られた負極を用いて構築されるリチウム二次電池の形状等に応じて異なり得るため、特に制限されない。ここに開示される技術は、例えばシート状もしくは箔状の集電体に負極活物質層が保持された形態の負極を備えるリチウム二次電池(例えば捲回型の電極体を備えるリチウム二次電池)に好ましく適用され得る。   The negative electrode in the technique disclosed herein typically has a configuration in which a layer (negative electrode active material layer) containing such a negative electrode active material as a main component is held (applied) to a negative electrode current collector. As the negative electrode current collector, a metal conductive member having good conductivity is preferably used. In particular, it is preferable to use a negative electrode current collector made of copper (Cu) or an alloy mainly composed of copper (copper alloy). For example, a copper foil having a thickness of about 5 μm to 30 μm (preferably 10 μm to 30 μm) is used as the negative electrode current collector. It can be preferably used as an electric body. The shape of the negative electrode current collector is not particularly limited because it can vary depending on the shape of the lithium secondary battery constructed using the obtained negative electrode, as in the above-described positive electrode current collector. The technology disclosed herein is, for example, a lithium secondary battery including a negative electrode in a form in which a negative electrode active material layer is held on a sheet-shaped or foil-shaped current collector (for example, a lithium secondary battery including a wound electrode body) ) Can be preferably applied.

上記負極活物質層は、例えば、負極活物質を適当な溶媒に分散させたペーストまたはスラリー状の組成物(負極活物質組成物)を負極集電体に付与(典型的には塗布)し、該組成物を乾燥させることにより好ましく作製することができる。かかる組成物を負極集電体(好ましくは箔状もしくはシート状)に付与するにあたっては、正極活物質組成物を正極集電体に付与する場合と同様に、従来公知の方法と同様の技法を適宜採用することができる。上記溶媒(負極活物質の分散媒)としては水、有機溶媒およびこれらの混合溶媒のいずれも使用可能である。例えば、上記溶媒が水系溶媒(水または水を主体とする混合溶媒)である負極活物質組成物を好ましく採用することができる。   The negative electrode active material layer is, for example, applied (typically applied) a negative electrode current collector with a paste or slurry composition (negative electrode active material composition) in which the negative electrode active material is dispersed in an appropriate solvent, It can preferably be prepared by drying the composition. In applying such a composition to the negative electrode current collector (preferably in the form of a foil or sheet), a technique similar to a conventionally known method is used, as in the case of applying the positive electrode active material composition to the positive electrode current collector. It can be adopted as appropriate. As the solvent (dispersion medium for the negative electrode active material), any of water, organic solvents, and mixed solvents thereof can be used. For example, a negative electrode active material composition in which the solvent is an aqueous solvent (water or a mixed solvent mainly containing water) can be preferably employed.

上記負極活物質組成物は、負極活物質および上記溶媒のほかに、一般的なリチウム二次電池用負極において負極活物質層の形成に用いられる組成物に配合され得る一種または二種以上の材料を必要に応じて含有し得る。かかる材料の例としてバインダおよび粘度調整材(増粘材)が挙げられ、例えば、正極活物質組成物に含有され得る材料として例示したポリマー材料と同様のものを好適に使用することができる。また、かかる負極活物質組成物の構成成分の配合比については、従来のリチウム二次電池における負極活物質層の形成に用いられる組成物と同様の配合比であればよく、特に限定されない。   In addition to the negative electrode active material and the solvent, the negative electrode active material composition is one or more materials that can be blended in a composition used for forming a negative electrode active material layer in a general negative electrode for a lithium secondary battery. May be contained as necessary. Examples of such materials include binders and viscosity modifiers (thickeners). For example, the same polymer materials as those exemplified as materials that can be contained in the positive electrode active material composition can be suitably used. Moreover, about the compounding ratio of the component of this negative electrode active material composition, what is necessary is just the same compounding ratio as the composition used for formation of the negative electrode active material layer in the conventional lithium secondary battery, and it does not specifically limit.

ここで開示される技術における電解質は、リチウムイオンを含む非水電解質(典型的には非水系液体電解質)であって、非水溶媒(有機溶媒)にリチウム塩を支持塩として溶解させた非水溶媒系電解液であり、例えば一般的なリチウム二次電池に用いられる電解質を用いることができる。かかる電解質としてより好ましくは、電解質中のリチウムイオンの正負極間の移動速度(伝導度)が大きく、該リチウムイオンの正負極での挿入および脱離を容易にかつ円滑にし得るものである。また、リチウムイオンの負極(負極活物質)への円滑な挿入および脱離を可能にし得るSEIは、リチウム二次電池の充放電時において負極側に生じ得る電解質の分解生成物から形成され得る。このため、かかる電解質は負極活物質(例えばグラファイト等の炭素系材料)表面において好適なSEIを形成し得るものであることが好ましい。このような電解質を構成する非水溶媒としては、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、プロピレンカーボネート等の一種または二種以上(例えばECとDECとの混合系あるいはECとDMCとの混合系)を好ましく使用することができる。また、支持塩であるリチウム塩としては、例えば、LiPF、LiClO、LiAsF、Li(CFSON、LiBF、LiCFSO等の一種または二種以上を使用することができる。例えば、ECとDMCとを1:1の質量比で含む混合溶媒に支持塩としての六フッ化リン酸リチウム(LiPF)を約1Mの濃度で含有させた電解液等を好ましく用いることができる。 The electrolyte in the technology disclosed herein is a non-aqueous electrolyte containing lithium ions (typically a non-aqueous liquid electrolyte), which is a non-aqueous solution in which a lithium salt is dissolved as a supporting salt in a non-aqueous solvent (organic solvent). For example, an electrolyte used in a general lithium secondary battery can be used. More preferably, the electrolyte has a high migration rate (conductivity) between the positive and negative electrodes of lithium ions in the electrolyte, and can easily and smoothly insert and desorb lithium ions at the positive and negative electrodes. In addition, SEI that can enable smooth insertion and removal of lithium ions from the negative electrode (negative electrode active material) can be formed from a decomposition product of an electrolyte that can be generated on the negative electrode side during charging and discharging of the lithium secondary battery. For this reason, it is preferable that this electrolyte can form suitable SEI on the surface of the negative electrode active material (for example, carbon-based material such as graphite). As the non-aqueous solvent constituting such an electrolyte, for example, one or more of ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate, etc. (for example, a mixture of EC and DEC) Or a mixed system of EC and DMC) can be preferably used. Moreover, as a lithium salt which is a supporting salt, for example, one or more of LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiBF 3 , LiCF 3 SO 3 and the like are used. Can do. For example, an electrolytic solution in which lithium hexafluorophosphate (LiPF 6 ) as a supporting salt is contained in a mixed solvent containing EC and DMC at a mass ratio of 1: 1 at a concentration of about 1 M can be preferably used. .

以下、図面を参照しつつ、本発明に係るリチウム二次電池の製造方法の一実施形態、および当該方法により製造されるリチウム二次電池の一実施形態について、角型形状のリチウムイオン電池10を例として説明する。図1は、本実施形態に係るリチウム二次電池(リチウムイオン電池10)の模式的な全体斜視図である。図2は、図1のII−II線断面図である。図3は、後述の実施例の例5および例6における900サイクル試験の評価結果および出力特性の評価結果を示したグラフである。図4は、本実施形態に係る電池を備えた車両を模式的に示す側面図である。なお、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Hereinafter, with reference to the drawings, an embodiment of a method for manufacturing a lithium secondary battery according to the present invention and an embodiment of a lithium secondary battery manufactured by the method will be described as a prismatic lithium ion battery 10. This will be described as an example. FIG. 1 is a schematic overall perspective view of a lithium secondary battery (lithium ion battery 10) according to the present embodiment. 2 is a cross-sectional view taken along line II-II in FIG. FIG. 3 is a graph showing the 900 cycle test evaluation results and output characteristic evaluation results in Examples 5 and 6 of Examples described later. FIG. 4 is a side view schematically showing a vehicle including the battery according to the present embodiment. It should be noted that the present invention is not intended to be limited to that described in the embodiment. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

ここで開示される製造方法は、上記したように、リチウム二次電池を用意する「用意工程」と、該電池を室温域下で所定電圧値まで充電する「充電処理工程」と、室温域またはそれ以下の温度域の下で所定時間保持する「室温保持処理工程」、および高温域下で所定時間保持する「高温保持処理工程」を包含している。   As described above, the manufacturing method disclosed herein includes a “preparation step” of preparing a lithium secondary battery, a “charging process step” of charging the battery to a predetermined voltage value in a room temperature range, and a room temperature range or It includes a “room temperature holding treatment step” for holding for a predetermined time under a temperature range below that, and a “high temperature holding treatment step” for holding for a predetermined time under a high temperature range.

上記用意工程では、正極活物質を含む正極と負極活物質を含む負極とを備える電極体と、リチウムイオンを含む電解質とを電池ケースに収容したリチウム二次電池を用意(典型的には構築)する。本実施形態に係るリチウム二次電池、すなわち角型形状のリチウムイオン電池10であって、ここで開示される技術を適用し得る対象であるリチウムイオン電池10は、図1および図2に示されるように、正極および負極を備えた扁平な形状の電極体30が、図示しない電解質とともに、該電極体30の形状に対応した扁平な箱状の電池ケース11に収容された構成を有する。かかるリチウムイオン電池10を構築する際は、例えば以下のようにして行うことができる。   In the preparation step, a lithium secondary battery is prepared (typically constructed) in which an electrode body including a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material and an electrolyte including lithium ions are accommodated in a battery case. To do. FIG. 1 and FIG. 2 show a lithium secondary battery according to the present embodiment, that is, a square-shaped lithium ion battery 10 to which the technology disclosed herein can be applied. As described above, a flat electrode body 30 including a positive electrode and a negative electrode is housed in a flat box-shaped battery case 11 corresponding to the shape of the electrode body 30 together with an electrolyte (not shown). For example, the lithium ion battery 10 can be constructed as follows.

電池ケース11は、一端に開口部を有する扁平な有底四角筒状の筐体12と、その開口部に取り付けられて該開口部を塞ぐ蓋体13とを備える。電池ケース11を構成する材質としては、アルミニウム、スチール等の金属材料が好ましく用いられる。あるいは、PPS(ポリフェニレンサルファイド)、ポリイミド樹脂等の樹脂材料製であってもよい。例えば、筐体12および蓋体13がいずれもアルミニウム製である電池ケース11を好ましく使用することができる。   The battery case 11 includes a flat bottomed rectangular cylindrical casing 12 having an opening at one end, and a lid 13 attached to the opening to close the opening. As a material constituting the battery case 11, a metal material such as aluminum or steel is preferably used. Alternatively, it may be made of a resin material such as PPS (polyphenylene sulfide) or polyimide resin. For example, the battery case 11 in which the housing 12 and the lid 13 are both made of aluminum can be preferably used.

本実施形態に係る扁平形状の電極体30は捲回型の電極体(捲回電極体)であり、長尺シート状の正極シートと負極シートとを典型的には二枚の長尺シート状のセパレータ(セパレータシート)とともに積層して長手方向に捲回(典型的には略円形に捲回)し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製し得る。このようにシートの積層物を捲回した後に扁平に押しつぶす態様に代えて、例えば上記積層物を当初から扁平な形状(略長円形、楕円形等)になるように捲回してもよい。   The flat electrode body 30 according to the present embodiment is a wound electrode body (wound electrode body), and a long sheet-like positive electrode sheet and a negative electrode sheet are typically formed into two long sheets. And a separator (separator sheet), and wound in the longitudinal direction (typically wound in a substantially circular shape), and then the obtained wound body is crushed from the side surface direction and crushed. Thus, instead of a mode in which the laminate of sheets is rolled and then flattened, the laminate may be wound so as to have a flat shape (substantially oval, elliptical, etc.) from the beginning.

正極シートおよび負極シートは、それぞれ、長尺シート状の集電体上に活物質層が形成された構成を有する。該活物質層を、集電体の幅方向の一端(長手方向に沿う一方の端部)を除いた帯状の領域に形成し、上記幅方向の一端は上記活物質層を形成させずに上記集電体を露出させ、活物質層非形成部分とする。正負の各電極シートとセパレータシートとを、両電極シートの活物質層が重なり合うように、かつ正極シートの活物質層非形成部分と負極シートの活物質層非形成部分とがセパレータの幅方向の一端および他端からそれぞれはみ出すように、正負の電極シートが幅方向に位置をややずらして積層してこれら積層体を捲回する。その結果として、捲回電極体30の捲回軸方向の一端には、正極シートの活物質層非形成部分が積層状態で捲回コア部分(すなわち両電極シートの活物質層とセパレータとが密に捲回された部分)から外方にはみ出し、上記捲回電極体30の他端には、負極シートの活物質層非形成部分が捲回コア部分から外方にはみ出している。各はみ出し部分に外部接続用の正極端子14および負極端子16の一端を接続する。電極端子14,16の他端を容器11(蓋体13)の外部に引き出す。   Each of the positive electrode sheet and the negative electrode sheet has a configuration in which an active material layer is formed on a long sheet-like current collector. The active material layer is formed in a band-like region excluding one end in the width direction of the current collector (one end portion along the longitudinal direction), and the one end in the width direction is formed without forming the active material layer. The current collector is exposed to form a portion where no active material layer is formed. Each positive and negative electrode sheet and separator sheet are arranged so that the active material layers of both electrode sheets overlap, and the active material layer non-formation part of the positive electrode sheet and the active material layer non-formation part of the negative electrode sheet are arranged in the width direction of the separator. The positive and negative electrode sheets are laminated with their positions slightly shifted in the width direction so as to protrude from the one end and the other end, and these laminates are wound. As a result, at one end of the wound electrode body 30 in the winding axis direction, the active material layer non-formed portion of the positive electrode sheet is laminated and the wound core portion (that is, the active material layer and the separator of both electrode sheets are densely packed). The portion of the wound electrode body 30 that protrudes from the wound core portion protrudes outward from the wound core portion at the other end of the wound electrode body 30. One end of a positive terminal 14 and a negative terminal 16 for external connection is connected to each protruding portion. The other ends of the electrode terminals 14 and 16 are pulled out of the container 11 (lid 13).

捲回電極体30を構成する材料および部材自体については、上記したように従来のリチウムイオン電池に備えられる電極体と同様のものを用いることができる。   About the material and member itself which comprise the winding electrode body 30, the thing similar to the electrode body with which the conventional lithium ion battery is equipped as mentioned above can be used.

セパレータとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質樹脂シート(フィルム)を好適に使用し得る。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の複層構造(例えば、PP層の両面にPE層が積層された三層構造)であってもよい。例えば、厚さ5μm〜30μm程度の合成樹脂製(例えばポリエチレン等のポリオレフィン製)の多孔質セパレータシートを好ましく使用し得る。なお、電解質として固体電解質もしくはゲル状電解質を使用する場合には、一般的に用いられている上記のような樹脂製(例えばポリプロピレン製)のセパレータが不要な場合(すなわちこの場合には電解質自体がセパレータとして働く。)があり得る。   As the separator, for example, a porous resin sheet (film) made of a polyolefin resin such as polyethylene (PE) or polypropylene (PP) can be suitably used. Such a porous resin sheet may have a single-layer structure or a multilayer structure of two or more layers (for example, a three-layer structure in which PE layers are laminated on both sides of a PP layer). For example, a porous separator sheet made of synthetic resin (for example, made of polyolefin such as polyethylene) having a thickness of about 5 μm to 30 μm can be preferably used. When a solid electrolyte or a gel electrolyte is used as the electrolyte, a generally used resin separator (for example, polypropylene) is not necessary (that is, in this case, the electrolyte itself is Can act as a separator).

上記のようにして得られた電極体30を電池ケース11の筐体12の開口部を介して筐体12に収容する。次いで、例えば電池ケース11(筐体12)に形成された図示しない注液口から適当な電解質を注入する。そして蓋体13により筐体12を封止することによってリチウムイオン電池10を構築する。   The electrode body 30 obtained as described above is accommodated in the casing 12 through the opening of the casing 12 of the battery case 11. Next, for example, an appropriate electrolyte is injected from a liquid injection port (not shown) formed in the battery case 11 (housing 12). Then, the lithium ion battery 10 is constructed by sealing the housing 12 with the lid 13.

次いで上記充電処理工程では、上記のようにして用意(構築)したリチウムイオン電池10(リチウム二次電池)に対して、該電池の正極(正極端子14)と負極(負極端子16)の間に外部電源を接続し、室温域の下で所定の電圧値まで充電処理を行う。   Next, in the charging process, the lithium ion battery 10 (lithium secondary battery) prepared (constructed) as described above is interposed between the positive electrode (positive electrode terminal 14) and the negative electrode (negative electrode terminal 16) of the battery. An external power supply is connected, and charging is performed up to a predetermined voltage value at room temperature.

ここで「室温域」とは、上記したように典型的には常温とされる温度領域をいい、20℃±15℃を指すものとする。ここで、かかる充電処理においては、リチウムイオン電池10が曝される温度として、例えば5℃〜35℃の温度域から選択することができ、好ましくは10℃〜30℃、より好ましくは20℃〜30℃が挙げられる。また本実施形態にかかる充電処理は、20℃〜30℃の温度域の下で行なわれるが、かかる充電処理における温度は、実際に使用され得る環境に合わせて適宜変更することが可能であり、上記室温域の低限とされる5℃未満の温度下、すなわち室温域以下の温度の下で行ってもよい。   Here, the “room temperature region” refers to a temperature region that is typically normal temperature as described above, and refers to 20 ° C. ± 15 ° C. Here, in this charging process, the temperature to which the lithium ion battery 10 is exposed can be selected from, for example, a temperature range of 5 ° C. to 35 ° C., preferably 10 ° C. to 30 ° C., more preferably 20 ° C. to 30 degreeC is mentioned. In addition, the charging process according to the present embodiment is performed in a temperature range of 20 ° C. to 30 ° C., but the temperature in the charging process can be appropriately changed according to the environment that can actually be used. You may carry out under the temperature below 5 degreeC made into the low limit of the said room temperature area, ie, the temperature below a room temperature area.

上記所定の電圧値とは、3.3V〜4.2Vの範囲内にある値であることが好ましく、特に3.9V〜4.1Vの範囲内にあることが好ましい。かかる電圧範囲は、上記リチウムイオン電池10のSOCが満充電時(あるいは該電池の定格容量)の凡そ5%〜95%(好ましくは70%〜90%)の範囲にあるときに示し得る電圧値の範囲である。SOC5%未満で充電処理を行うと、リチウムイオン電池10への充電量が十分でなく、処理対象のリチウムイオン電池10の初期劣化が適切に進行しない。また、SOC95%を超えて充電処理を行うと、満充電に近くなると該電池の電圧値は急上昇し得るため、該電池を劣化させる虞がある。また、かかる充電終了時の電圧値は、該充電処理後の室温保持処理時に上記リチウムイオン電池10を保持させておく際のSOCの値により適宜設定され得る。上記充電処理の充電レートについては、従来のリチウム二次電池(リチウムイオン電池)を初期充電(またはコンディショニング処理における最初の充電)するときに一般的に採用され得る従来公知の充電レートと同様でよい。例えば、充電開始から少なくともSOC20%に至るまでの間は、1/3C以下(典型的には、1/20C〜1/3C)の充電レート(電流値)で行うことが好ましい。より好ましくは1/5C以下(典型的には、1/20C〜1/5C)である。かかる充電レートで上記範囲内の電圧値に至るまで充電を行えばよい。なお、充電レートに関して「C」とは、電池の全容量を充電する際の速さ、すなわち充電率をいう。例えば充電レートに関して1Cとは電池を1時間で満充電状態(SOC100%)とする電流値で表すことができる。   The predetermined voltage value is preferably a value within a range of 3.3V to 4.2V, and particularly preferably within a range of 3.9V to 4.1V. This voltage range can be indicated when the SOC of the lithium ion battery 10 is in the range of about 5% to 95% (preferably 70% to 90%) of the fully charged (or rated capacity of the battery). Range. When the charging process is performed with less than 5% SOC, the amount of charge to the lithium ion battery 10 is not sufficient, and the initial deterioration of the lithium ion battery 10 to be processed does not proceed appropriately. Further, if the charging process exceeds SOC 95%, the voltage value of the battery may rapidly increase when the battery is nearly fully charged, and the battery may be deteriorated. Further, the voltage value at the end of the charging can be appropriately set depending on the SOC value when the lithium ion battery 10 is held during the room temperature holding process after the charging process. About the charge rate of the said charge process, it may be the same as the conventionally well-known charge rate generally employable when carrying out the initial charge (or the first charge in a conditioning process) of the conventional lithium secondary battery (lithium ion battery). . For example, it is preferable to carry out at a charge rate (current value) of 1 / 3C or less (typically 1 / 20C to 1 / 3C) from the start of charge to at least SOC 20%. More preferably, it is 1 / 5C or less (typically 1 / 20C to 1 / 5C). Charging may be performed at such a charging rate until a voltage value within the above range is reached. Note that “C” with respect to the charging rate refers to the speed at which the entire capacity of the battery is charged, that is, the charging rate. For example, with respect to the charge rate, 1 C can be expressed as a current value at which the battery is fully charged (SOC 100%) in one hour.

なお、上記充電処理は、例えば上記リチウムイオン電池10における正極端子14と負極端子16との間に電圧計を接続し、この電圧計により測定電圧値をモニタリングし、予め設定された所定の電圧値に到達した時点で終了すればよい。   In the charging process, for example, a voltmeter is connected between the positive electrode terminal 14 and the negative electrode terminal 16 in the lithium ion battery 10, and the measured voltage value is monitored by the voltmeter, and a predetermined voltage value set in advance is measured. It suffices to end when it reaches.

次いで、上記室温保持処理工程では、上記充電処理により所定の電圧値まで(すなわち所定のSOC(例えばSOC80%)まで)充電されたリチウムイオン電池10を、室温域またはそれ以下の温度域の下で保持(例えば放置)する。   Next, in the room temperature holding treatment step, the lithium ion battery 10 charged to a predetermined voltage value (that is, up to a predetermined SOC (for example, SOC 80%)) by the charging process is placed under a room temperature range or lower temperature range. Hold (eg, leave).

室温域またはそれ以下の温度域とは、上記したように例えば20℃±15℃またはそれ以下の温度域であって、上記充電処理と同様の室温域でよく、またはそれよりも低温域(例えば−30℃〜5℃)であってもよい。   As described above, the room temperature range or lower temperature range is, for example, a temperature range of 20 ° C. ± 15 ° C. or lower, and may be a room temperature range similar to the above charging process, or a lower temperature range (for example, −30 ° C. to 5 ° C.).

かかる室温保持処理工程において、処理対象のリチウムイオン電池10の保持時間(処理時間)は、12時間〜80時間が好ましく、より好ましくは20時間〜80時間であり、さらに好ましくは40時間〜60時間である。かかる保持時間が12時間未満では、保持時間が短すぎるためにリチウムイオン電池10の負極での均質なSEIの形成が不十分となり得る。また、かかる保持時間が80時間を超えると、電解質の分解が進み、特に正極側に吸着(堆積)し得る該電解質の分解物(抵抗物質)によって上記電池の内部抵抗が大きくなり過ぎ、上記電池の出力が低下し、また出力状態も不安定となり得る。   In the room temperature holding treatment step, the holding time (treatment time) of the lithium ion battery 10 to be treated is preferably 12 hours to 80 hours, more preferably 20 hours to 80 hours, and even more preferably 40 hours to 60 hours. It is. If the holding time is less than 12 hours, the holding time is too short, so that formation of homogeneous SEI at the negative electrode of the lithium ion battery 10 may be insufficient. In addition, when the holding time exceeds 80 hours, the decomposition of the electrolyte proceeds. In particular, the internal resistance of the battery becomes too large due to the decomposition product (resistive substance) of the electrolyte that can be adsorbed (deposited) on the positive electrode side. Output may be reduced and the output state may be unstable.

上記リチウムイオン電池10を上記温度域(すなわち室温域)に保持するには、該電池を処理する室内あるいは処理容器内の温度、すなわち上記電池の周囲の環境温度を上記温度域に調整しておけばよく、また温度調整方法は特に限定されない。   In order to maintain the lithium ion battery 10 in the temperature range (that is, the room temperature range), the temperature in the room or the processing container in which the battery is processed, that is, the environmental temperature around the battery, should be adjusted to the temperature range. The temperature adjustment method is not particularly limited.

なお、室温保持処理工程の過程では、リチウムイオン電池10のSOCは、先の充電処理終了時の状態または自己放電等によりそれよりわずかに低下した状態となり得る。   In the course of the room temperature holding process, the SOC of the lithium ion battery 10 may be slightly lower than that at the end of the previous charging process or due to self-discharge or the like.

次いで上記高温保持処理工程では、上記室温保持処理後のリチウムイオン電池10を、40℃〜65℃の高温域の下で保持する。   Next, in the high temperature holding treatment step, the lithium ion battery 10 after the room temperature holding treatment is held under a high temperature range of 40 ° C to 65 ° C.

かかる高温保持処理工程において、上記リチウムイオン電池10の保持温度は40℃〜65℃であることが好ましい。かかる保持温度が40℃未満であると、電解質の分解物が正極に吸着(堆積)することにより生成する抵抗物質を除去する効果が低い。また、初期劣化の適切に進行させる効果および出力特性を安定化させる効果(いわゆるエージング効果)も低い。一方、上記保持温度が65℃を超えると、上記抵抗物質の除去効果あるいはエージング効果を得るために要する時間(即ち処理時間)は短縮され得るが、電解質の更なる分解を促進する虞がある。   In the high temperature holding treatment step, the holding temperature of the lithium ion battery 10 is preferably 40 ° C to 65 ° C. When the holding temperature is lower than 40 ° C., the effect of removing the resistance substance produced by the electrolyte decomposition product adsorbed (deposited) on the positive electrode is low. In addition, the effect of appropriately progressing the initial deterioration and the effect of stabilizing the output characteristics (so-called aging effect) are also low. On the other hand, when the holding temperature exceeds 65 ° C., the time required for obtaining the resistance substance removing effect or the aging effect (that is, the processing time) can be shortened, but there is a possibility of promoting further decomposition of the electrolyte.

また、かかる高温保持処理工程において、上記リチウムイオン電池10の保持時間は、少なくとも6時間が好ましく、好適には6時間〜24時間である。かかる保持時間が6時間未満であると、上記抵抗物質の除去に要する時間が短くなるため、該物質を十分に除去しきれない。また上記リチウムイオン電池10は40℃〜65℃の高温域の下で保持されるため、上記範囲の時間で保持すれば、上記抵抗物質の除去効果あるいは上記のいわゆるエージング効果は十分奏されるため、24時間を超えて保持しなくてもよい。また、上記保持時間は、保持温度が高いほど短縮され、保持温度が低いと長期化され得るので、両者をバランスさせて上記保持処理を行えばよく、例えば、保持温度が45℃で保持時間が10時間の高温保持処理は、好ましい処理条件(保持条件)の一つである。   In the high temperature holding treatment step, the holding time of the lithium ion battery 10 is preferably at least 6 hours, and preferably 6 hours to 24 hours. When the holding time is less than 6 hours, the time required for removing the resistance substance is shortened, and thus the substance cannot be sufficiently removed. Further, since the lithium ion battery 10 is held under a high temperature range of 40 ° C. to 65 ° C., if it is held for a time within the above range, the effect of removing the resistance substance or the so-called aging effect is sufficiently achieved. , It may not be held for more than 24 hours. Further, the holding time is shortened as the holding temperature is high, and can be prolonged when the holding temperature is low. Therefore, the holding process may be performed by balancing the two. For example, the holding time is 45 ° C. The high temperature holding treatment for 10 hours is one of preferable processing conditions (holding conditions).

なお、上記保持処理は一回の処理時に連続して行ってもよく、または2回以上の複数回に分けて断続的に行ってもよい。複数回に分けて行う場合には、保持時間の合計が上記範囲(すなわち6時間〜24時間)になるように各回の保持時間を設定すればよい。   In addition, the said holding | maintenance process may be performed continuously at the time of one process, or may be intermittently performed in two or more times. In the case of performing multiple times, the holding time for each time may be set so that the total holding time is within the above range (ie, 6 hours to 24 hours).

上記保持処理対象のリチウムイオン電池10を上記の高温域下で保持する方法としては、従来公知の加熱手段を好ましく用いることができる。例えば、赤外線ヒーター等の熱源(加熱装置)を上記電池10に直接接触させて該電池10を上記高温域まで加熱してもよい。また、上記電池10を恒温装置等の加熱容器に収容し、該容器内を上記範囲内の所定温度に維持する(制御する)ことにより上記電池10を保持してもよい。   As a method for holding the lithium ion battery 10 to be held in the above high temperature range, a conventionally known heating means can be preferably used. For example, a heat source (heating device) such as an infrared heater may be directly brought into contact with the battery 10 to heat the battery 10 to the high temperature range. Further, the battery 10 may be held by storing the battery 10 in a heating container such as a thermostatic device and maintaining (controlling) the inside of the container at a predetermined temperature within the above range.

かかる高温保持処理の終了後は、上記充電処理と同じレートで放電処理を実施してもよく、次いでさらに上記充電処理と同じレートで充放電サイクルを数回繰り返してもよい。あるいは、該充放電サイクルの充放電レートとは異なるレートでコンディショニング処理を行ってもよい。   After completion of the high temperature holding process, the discharging process may be performed at the same rate as the charging process, and then the charging / discharging cycle may be repeated several times at the same rate as the charging process. Alternatively, the conditioning process may be performed at a rate different from the charge / discharge rate of the charge / discharge cycle.

なお、上記室温保持処理工程および上記高温保持処理工程における雰囲気は特に限定されない。例えば、大気雰囲気、または窒素ガスやアルゴン等の不活性ガス雰囲気等を好ましく採用することができる。   The atmosphere in the room temperature holding treatment step and the high temperature holding treatment step is not particularly limited. For example, an air atmosphere or an inert gas atmosphere such as nitrogen gas or argon can be preferably employed.

また、高温保持処理工程の過程においても、室温保持処理工程と同様にリチウムイオン電池10のSOCは先の充電処理終了時の状態または自己放電等によりそれよりもわずかに低下した状態となり得る。   Also in the process of the high temperature holding process, the SOC of the lithium ion battery 10 can be slightly lowered due to the state at the end of the previous charging process or due to self-discharge, as in the room temperature holding process.

以下の実施例によって、本発明を更に詳しく説明するが、本発明の構成をかかる実施例として挙げたものに限定することを意図したものではない。   The following examples further illustrate the invention, but are not intended to limit the construction of the invention to those listed as such examples.

構築したリチウムイオン電池に対して、上記室温保持処理工程の保持時間の長さによって、充放電サイクル実施後の電池容量(サイクル特性)や出力特性に相違があるか否かを評価した。その具体的方法を以下に示す。
<例1;リチウムイオン電池の用意>
評価対象であるリチウム二次電池としてリチウムイオン電池を用意(構築)した。すなわち、正極活物質としてのLiNiOと、増粘材としてのポリテトラフルオロエチレン(PTFE)とカルボキシメチルセルロース(CMC)とを、これらの質量比が94:5:1となるように分散溶媒としてのイオン交換水に添加し、よく混合することによりペースト状の正極活物質層組成物を調製した。得られた正極活物質層組成物を、長さ2m、幅10cm、厚さ10μmのアルミニウム箔上に塗布し、ロールプレスによる処理を行って、該アルミニウム箔上に正極活物質層を形成してなる正極シートを作製した。
Whether the battery capacity (cycle characteristics) and output characteristics after the charge / discharge cycle were different or not was evaluated for the constructed lithium ion battery depending on the length of the holding time in the room temperature holding treatment step. The specific method is shown below.
<Example 1: Preparation of lithium ion battery>
A lithium ion battery was prepared (constructed) as a lithium secondary battery to be evaluated. That is, LiNiO 2 as a positive electrode active material and polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) as a thickener are used as a dispersion solvent so that the mass ratio thereof becomes 94: 5: 1. A paste-like positive electrode active material layer composition was prepared by adding to ion-exchanged water and mixing well. The obtained positive electrode active material layer composition was applied onto an aluminum foil having a length of 2 m, a width of 10 cm, and a thickness of 10 μm, and a roll press treatment was performed to form a positive electrode active material layer on the aluminum foil. A positive electrode sheet was produced.

一方、負極活物質としての天然黒鉛と、増粘材としてのスチレン−ブタジエン共重合体(SBR)とカルボキシメチルセルロース(CMC)を、これらの質量比が98:1:1となるように分散溶媒としてのイオン交換水に添加し、よく混合することによりペースト状の負極活物質組成物を調製した。得られた負極活物質組成物を、長さ2m、幅10cm、厚さ10μmの銅箔上に塗布し、ロールプレスによる処理を行って、該銅箔上に負極活物質層を形成してなる負極シートを作製した。   On the other hand, natural graphite as a negative electrode active material, styrene-butadiene copolymer (SBR) and carboxymethyl cellulose (CMC) as a thickener are used as dispersion solvents so that the mass ratio thereof becomes 98: 1: 1. Was added to ion-exchanged water and mixed well to prepare a paste-like negative electrode active material composition. The obtained negative electrode active material composition is applied onto a copper foil having a length of 2 m, a width of 10 cm, and a thickness of 10 μm, and a roll press treatment is performed to form a negative electrode active material layer on the copper foil. A negative electrode sheet was produced.

こうして得られた正極シートおよび負極シートを、長さ2m、幅11cm、厚さ30μmのポリプロピレン製の多孔質膜であるセパレータシート(2枚)とともに捲回し、次いで押し潰すことによってリチウムイオン電池用の扁平形状捲回電極体を作製した。   The positive electrode sheet and the negative electrode sheet thus obtained are wound together with a separator sheet (two sheets) that is a porous film made of polypropylene having a length of 2 m, a width of 11 cm, and a thickness of 30 μm, and then crushed to be used for a lithium ion battery. A flat-shaped wound electrode body was produced.

作製した捲回電極体に正負極それぞれのリード端子を溶接し、捲回電極体に対応する形状のアルミニウム製の扁平な箱形状の電池ケース(内容積:約100mL)に収容した。該ケースに適当量の電解液(質量比1:1であるエチレンカーボネート(EC)およびジメチルカーボネート(DMC)の混合溶媒にリチウム塩として濃度1MとなるLiPFを溶解した非水電解液)を50mL注入し、封止した。このようにして同一のリチウムイオン電池を5個構築した。
<例2;充電処理の実施>
次いで、上記のようにして得られた5個のリチウムイオン電池に対して、25℃(室温)の温度条件の下で、1/5Cの充電レートで、電圧値(正負極端子間の電圧値)が0Vから4.0Vになるまで充電した。
<例3;室温保持処理の実施>
次いで、25℃(室温)の温度条件の下で、上記5個のリチウムイオン電池のそれぞれに対して、以下の保持時間で室温保持処理を行った。このようにして得られたリチウムイオン電池を、電池(1)〜(5)とした。
The lead terminals of the positive and negative electrodes were welded to the wound electrode body thus produced and accommodated in a flat aluminum battery case (internal volume: about 100 mL) having a shape corresponding to the wound electrode body. In this case, 50 mL of an appropriate amount of electrolyte (nonaqueous electrolyte in which LiPF 6 having a concentration of 1 M as a lithium salt was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) having a mass ratio of 1: 1). Poured and sealed. In this way, five identical lithium ion batteries were constructed.
<Example 2: Implementation of charging process>
Next, with respect to the five lithium ion batteries obtained as described above, a voltage value (voltage value between positive and negative terminals) at a charge rate of 1/5 C under a temperature condition of 25 ° C. (room temperature). ) Was charged from 0V to 4.0V.
<Example 3: Implementation of a room temperature holding treatment>
Next, under the temperature condition of 25 ° C. (room temperature), room temperature holding treatment was performed for each of the five lithium ion batteries with the following holding time. The lithium ion batteries thus obtained were designated as batteries (1) to (5).

電池(1)および(2);室温保持時間を1.5時間とした。   Batteries (1) and (2); room temperature holding time was 1.5 hours.

電池(3);室温保持時間を24時間とした。   Battery (3): The room temperature holding time was 24 hours.

電池(4);室温保持時間を80時間とした。   Battery (4): The room temperature retention time was 80 hours.

電池(5);室温保持時間を96時間とした。
<例4;高温保持処理の実施>
上記のようにして得られた電池(1)〜(5)のそれぞれに対して、45℃の高温条件の下で10時間の保持時間で高温保持処理を行った。
<例5;サイクル特性評価>
上記電池(1)〜(5)のそれぞれに対して以下の手順でサイクル試験を実施し、サイクル特性を評価した。
I.電池容量測定
まず、25℃の温度条件の下で、上記例2の充電レートと同じ放電レートで、上記電池(1)〜(5)を3.0Vになるまで放電した。
Battery (5): The room temperature retention time was 96 hours.
<Example 4: Implementation of high temperature holding treatment>
Each of the batteries (1) to (5) obtained as described above was subjected to a high-temperature holding treatment under a high-temperature condition of 45 ° C. and a holding time of 10 hours.
<Example 5: Evaluation of cycle characteristics>
A cycle test was performed on each of the batteries (1) to (5) according to the following procedure to evaluate the cycle characteristics.
I. Battery Capacity Measurement First, the batteries (1) to (5) were discharged to 3.0 V at the same discharge rate as in Example 2 under a temperature condition of 25 ° C.

次に、該電池(1)〜(5)のそれぞれのサイクル試験実施前の電池容量を評価するため、電流5.0A、電圧4.1Vの定電流定電圧充電(CC/CV充電)を25℃の下で2時間実施した(電圧値が4.1Vに到達後は、該電圧値を維持して電流を減衰させた)。次いで30分間休止した後に、終止電圧が3.0Vになるまで、1Aの電流値で定電流放電を実施した。終止電圧が3.0Vになるまでに要した放電時間をその電池の「サイクル試験実施前の電池容量[Ah]」とした。
II.500サイクル試験
次に、上記電池(1)〜(5)のそれぞれに対して、−15℃、165Aの電流値で0.1秒間の充電を行い、その後−15℃、165Aの電流値で0.1秒間の放電を行った。この充放電を1サイクル(cycle)として、500サイクルの充放電処理(500サイクル試験)を実施した。
Next, in order to evaluate the battery capacity of each of the batteries (1) to (5) before the cycle test, 25 constant current / constant voltage charging (CC / CV charging) at a current of 5.0 A and a voltage of 4.1 V was performed. This was carried out for 2 hours at 0 ° C. (After the voltage value reached 4.1 V, the voltage value was maintained and the current was attenuated). Next, after resting for 30 minutes, constant current discharge was performed at a current value of 1 A until the final voltage reached 3.0V. The discharge time required for the end voltage to reach 3.0 V was defined as “battery capacity [Ah] before the cycle test” of the battery.
II. 500 Cycle Test Next, each of the batteries (1) to (5) was charged for 0.1 second at a current value of −15 ° C. and 165 A, and then 0 at a current value of −15 ° C. and 165 A. . Discharge for 1 second was performed. This charging / discharging was made into 1 cycle (cycle), and 500-cycle charging / discharging process (500 cycle test) was implemented.

次に、サイクル試験実施後の電池(1)〜(5)のそれぞれに対して、上記Iと同様の測定手順で電池容量を求めた。このようにして得られた電池容量を「500サイクル試験実施後の電池容量[Ah]」とした。
III.900サイクル試験
さらに、上記電池(1)〜(5)のそれぞれに対して、上記と同一条件の充放電サイクルを400サイクル追加し、合計で900サイクルの充放電処理(900サイクル試験)を実施した。
Next, the battery capacity was calculated | required with the measurement procedure similar to said I with respect to each of battery (1)-(5) after a cycle test implementation. The battery capacity thus obtained was defined as “battery capacity [Ah] after 500 cycle tests”.
III. 900 cycle test Further, 400 cycles of charge / discharge cycles under the same conditions as above were added to each of the batteries (1) to (5), and a total of 900 cycles of charge / discharge treatment (900 cycle test) was performed. .

再び、サイクル試験実施後の電池(1)〜(5)のそれぞれに対して、上記Iと同様の測定手順で電池容量を求めた。このようにして得られた電池容量を「900サイクル試験実施後の電池容量[Ah]」とした。   Again, for each of the batteries (1) to (5) after the cycle test, the battery capacity was determined by the same measurement procedure as in I above. The battery capacity thus obtained was defined as “battery capacity [Ah] after 900 cycle test”.

なお、上記サイクル試験は2回ずつ実施した。すなわち上記例1〜例5の一連の操作を2回ずつ繰り返してサイクル特性評価を行った。この結果を表1に示す。   The cycle test was performed twice. That is, cycle characteristics were evaluated by repeating the series of operations of Examples 1 to 5 twice. The results are shown in Table 1.

Figure 2009283276
Figure 2009283276

また、上記電池(1)〜(5)のそれぞれに対して、「サイクル試験実施前の電池容量」と「500サイクル試験実施後の電池容量」とから、500サイクル試験実施後の電池容量の維持率(容量維持率)[%]を算出した。また、「サイクル試験実施前の電池容量」と「900サイクル試験実施後の電池容量」とから、900サイクル試験実施後の電池容量の維持率(容量維持率)[%]を算出した。500サイクル試験後および900サイクル試験後の各電池容量維持率の結果を1回目と2回目のサイクル試験ごとに表2に示す。また2回目に実施した900サイクル試験後の電池容量維持率の結果を図3に示す。なお、図3における縦軸は2回目の900サイクル試験実施後の容量維持率[%]を示し、横軸は室温保持処理時間(保持時間)[時間]を示す。   Further, for each of the batteries (1) to (5), from the “battery capacity before the cycle test” and the “battery capacity after the 500 cycle test”, the battery capacity after the 500 cycle test is maintained. The rate (capacity maintenance rate) [%] was calculated. Further, from the “battery capacity before the cycle test” and the “battery capacity after the 900 cycle test”, the battery capacity maintenance rate (capacity maintenance rate) [%] after the 900 cycle test was calculated. The results of the battery capacity retention rates after the 500 cycle test and after the 900 cycle test are shown in Table 2 for each of the first and second cycle tests. Moreover, the result of the battery capacity maintenance rate after the 900 cycle test implemented 2nd time is shown in FIG. In addition, the vertical axis | shaft in FIG. 3 shows the capacity maintenance rate [%] after 2nd 900 cycle test implementation, and a horizontal axis | shaft shows room temperature retention processing time (retention time) [time].

Figure 2009283276
Figure 2009283276

<例6;出力特性評価>
上記例1〜4と同様の手順で、新たに出力特性評価用の電池(1)〜(5)を構築した。次いで、各電池(1)〜(5)の出力特性を評価するための試験として、以下に示す試験を実施した。かかる試験は、所定の充電レートでSOC60%の電圧値まで充電後、10秒間で3.0Vまで放電したときに出力される電力[W]を求めるものである。かかる試験について、具体的には以下に示すようにして実施した。
<Example 6: Evaluation of output characteristics>
Output characteristics evaluation batteries (1) to (5) were newly constructed in the same procedure as in Examples 1 to 4 above. Subsequently, the test shown below was implemented as a test for evaluating the output characteristic of each battery (1)-(5). This test is to obtain the electric power [W] output when the battery is discharged to 3.0 V in 10 seconds after being charged to a voltage value of SOC 60% at a predetermined charging rate. Specifically, such a test was performed as follows.

まず、例4の高温保持処理が終了した上記電池(1)〜(5)のそれぞれに対して、25℃の温度条件の下で上記例2の充電レートと同じ放電レートで、上記電池(1)〜(5)を3.0Vになるまで放電した。   First, for each of the batteries (1) to (5) for which the high-temperature holding treatment in Example 4 was completed, the battery (1) was discharged at the same discharge rate as that in Example 2 under a temperature condition of 25 ° C. ) To (5) were discharged to 3.0V.

次に、上記電池(1)〜(5)のそれぞれに対して、30℃の温度条件の下で、2Cの充電率で定電流−定電圧充電を行い、SOC60%(約3.73V)になるまで充電した。次に、30℃の温度条件の下で、これらの電池(1)〜(5)のそれぞれに対して350W、550Wおよび650Wの3通りの電力値で3.0Vになるまで放電し、各電力値で3.0Vまで放電するのに要した時間(所要時間)を測定した。このようにして得られた上記所要時間と上記電力値との相関をプロットし、該プロットにより10秒間(の所要時間)における電力値を各電池に対して求めた。   Next, each of the batteries (1) to (5) is subjected to constant current-constant voltage charging at a charging rate of 2C under a temperature condition of 30 ° C., so that the SOC reaches 60% (about 3.73 V). Charged until Next, under a temperature condition of 30 ° C., each of these batteries (1) to (5) was discharged to 3.0 V at three power values of 350 W, 550 W and 650 W, and each power The time (required time) required to discharge to 3.0 V was measured. The correlation between the required time thus obtained and the power value was plotted, and the power value for 10 seconds (required time) was obtained for each battery by the plot.

上記のようにして得られた各電池(1)〜(5)のそれぞれの電力値(放電出力値[W])を表3および図3に示した。   The respective power values (discharge output values [W]) of the batteries (1) to (5) obtained as described above are shown in Table 3 and FIG.

Figure 2009283276
Figure 2009283276

表1〜表3および図3に示されるように、室温保持処理時間(保持時間)が短い(例えば1.5時間)場合には、約585[W]以上の高い電力値(放電出力)を示して良好な出力特性が得られたが、逆に900サイクル試験実施後の電池の容量維持率は約82%と90%を下回った。一方、20時間以上の室温保持処理時間の場合には、上記容量維持率は約90%を上回り、かつ出力特性についても良好であった。一方、室温保持処理時間が80時間を越えると、得られる電池は、上記容量維持率が約92%を上回り良好なサイクル特性を有するが、出力特性については急激に悪化し、例えば96時間の室温保持処理時間では580[W]未満の出力(電力値)しか得られないことがわかった。また、図3に示されるように室温保持処理時間が40時間〜60時間である場合には、上記容量維持率(サイクル特性)および出力特性のいずれもが良好となり得ることがわかった。   As shown in Tables 1 to 3 and FIG. 3, when the room temperature holding treatment time (holding time) is short (for example, 1.5 hours), a high power value (discharge output) of about 585 [W] or more is obtained. As shown, good output characteristics were obtained, but on the contrary, the capacity retention rate of the battery after the 900 cycle test was about 82%, which was lower than 90%. On the other hand, in the case of room temperature holding treatment time of 20 hours or more, the capacity retention rate exceeded about 90%, and the output characteristics were good. On the other hand, when the room temperature holding treatment time exceeds 80 hours, the obtained battery has a good cycle characteristic in which the capacity retention rate exceeds about 92%, but the output characteristic deteriorates rapidly, for example, a room temperature of 96 hours. It was found that only an output (power value) of less than 580 [W] can be obtained in the holding processing time. Further, as shown in FIG. 3, it was found that when the room temperature holding treatment time is 40 hours to 60 hours, both the capacity retention ratio (cycle characteristics) and the output characteristics can be improved.

上記実施例からも明らかなように、本発明によると、用意(構築)したリチウム二次電池を所定電圧値まで充電した後、高温域下で保持する前に室温域またはそれ以下の温度域下で所定時間保持することにより、サイクル試験実施後の電池容量の低下が防止されて良好なサイクル特性を有するとともに、高い出力を確保できて良好な出力特性をも有する好ましいリチウム二次電池を製造することができる。上記室温域下での保持時間が例えば20時間〜80時間であれば、例えば−15℃〜10℃のリチウムが析出し易い環境下で5C以上のハイレート充放電を行ってもリチウムの析出が抑制された好ましいリチウム二次電池を得ることができ得る。したがって、本発明によると、上記リチウム析出の抑制に伴う良好なサイクル特性と良好な出力特性とを高い次元で両立し得るリチウム二次電池を提供することができる。   As is clear from the above examples, according to the present invention, the prepared (constructed) lithium secondary battery is charged to a predetermined voltage value, and then is kept at a room temperature range or lower before being held at a high temperature range. Is maintained for a predetermined period of time, thereby preventing a decrease in battery capacity after the cycle test is performed and having favorable cycle characteristics, as well as producing a preferable lithium secondary battery that can ensure high output and also have favorable output characteristics. be able to. If the holding time under the room temperature range is, for example, 20 hours to 80 hours, for example, lithium deposition is suppressed even if high-rate charge / discharge of 5C or more is performed in an environment where lithium at −15 ° C. to 10 ° C. is likely to precipitate. It is possible to obtain a preferable lithium secondary battery. Therefore, according to the present invention, it is possible to provide a lithium secondary battery capable of achieving both good cycle characteristics and good output characteristics associated with the suppression of lithium deposition on a high level.

したがって、本発明のリチウム二次電池または本発明の方法により製造されたリチウム二次電池は、特に自動車等の車両に搭載される車両搭載用電源として好適である。例えば、図4に示すように、本発明によって上記のように説明した構成のリチウム二次電池10を電源として備える車両1(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供することができる。なお、本発明の製造方法は、他の側面として、用意したリチウム二次電池を上記のような良好な特性を備えた好ましい電池に調整し得る調整方法として提供され得るものである。   Therefore, the lithium secondary battery of the present invention or the lithium secondary battery produced by the method of the present invention is particularly suitable as a vehicle-mounted power source mounted on a vehicle such as an automobile. For example, as shown in FIG. 4, a vehicle 1 including a lithium secondary battery 10 having the above-described configuration according to the present invention as a power source (typically an automobile, particularly a hybrid automobile, an electric automobile, a fuel cell automobile, etc. A motor vehicle equipped with a simple electric motor). In addition, the manufacturing method of this invention can be provided as an adjustment method which can adjust the prepared lithium secondary battery to the preferable battery provided with the above favorable characteristics as another side surface.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

本実施形態に係るリチウム二次電池の模式的な全体斜視図である。It is a typical whole perspective view of the lithium secondary battery which concerns on this embodiment. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 実施例の例5および例6における900サイクル試験の評価結果および出力特性の評価結果を示したグラフである。It is the graph which showed the evaluation result of the 900 cycle test in Example 5 and Example 6 of an Example, and the evaluation result of output characteristics. 本実施形態に係るリチウム二次電池を備えた車両(自動車)を模式的に示す側面図である。It is a side view which shows typically the vehicle (automobile) provided with the lithium secondary battery which concerns on this embodiment.

符号の説明Explanation of symbols

1 車両
10 リチウムイオン電池(リチウム二次電池)
11 電池ケース
12 筐体
13 蓋体
14 正極端子
16 負極端子
30 電極体
1 Vehicle 10 Lithium ion battery (lithium secondary battery)
DESCRIPTION OF SYMBOLS 11 Battery case 12 Case 13 Lid body 14 Positive electrode terminal 16 Negative electrode terminal 30 Electrode body

Claims (7)

リチウム二次電池の製造方法であって、
正極活物質を含む正極と負極活物質を含む負極とを備える電極体と、リチウムイオンを含む電解質とを電池ケースに収容したリチウム二次電池を用意すること、
前記用意したリチウム二次電池に対して室温域の下で所定の電圧値まで充電処理を行うこと、
前記充電処理の後、前記リチウム二次電池を、室温域またはそれ以下の温度域の下で12時間〜80時間保持すること、および
前記室温域またはそれ以下の温度域下での保持処理の後、前記リチウム二次電池を、40℃〜65℃の高温域の下で少なくとも6時間保持すること、
を包含する、リチウム二次電池の製造方法。
A method for manufacturing a lithium secondary battery, comprising:
Preparing a lithium secondary battery in which an electrode body including a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material, and an electrolyte including lithium ions are accommodated in a battery case;
Charging the prepared lithium secondary battery to a predetermined voltage value under a room temperature range,
After the charging process, the lithium secondary battery is held for 12 hours to 80 hours under a room temperature range or lower temperature range, and after the holding process under the room temperature range or lower temperature range Holding the lithium secondary battery in a high temperature range of 40 ° C. to 65 ° C. for at least 6 hours,
A method for manufacturing a lithium secondary battery.
前記室温域またはそれ以下の温度域下での保持処理は、40時間〜60時間行う、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the holding treatment in the room temperature range or lower temperature range is performed for 40 hours to 60 hours. 前記充電処理は、前記リチウム二次電池の電圧値が3.3V〜4.2Vの範囲内に至った時点で終了する、請求項1または2に記載の製造方法。   3. The manufacturing method according to claim 1, wherein the charging process is terminated when a voltage value of the lithium secondary battery reaches a range of 3.3 V to 4.2 V. 4. 前記高温域下での保持処理は、6時間〜24時間行う、請求項1〜3のいずれか一項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the holding treatment under the high temperature region is performed for 6 hours to 24 hours. 前記電解質は、非水電解質である、請求項1〜4のいずれか一項に記載の製造方法。   The said electrolyte is a nonaqueous electrolyte, The manufacturing method as described in any one of Claims 1-4. 請求項1〜5のいずれか一項に記載の製造方法により得られたリチウム二次電池であって、
前記高温域下での保持処理後に−15℃の温度条件で165Aの電流値で0.1秒間の充放電処理を900サイクル実施した後の電池容量は、該充放電処理の実施前の約90%以上に維持される、リチウム二次電池。
A lithium secondary battery obtained by the production method according to any one of claims 1 to 5,
The battery capacity after 900 cycles of charge / discharge treatment for 0.1 seconds at a current value of 165A under a temperature condition of −15 ° C. after the holding treatment under the high temperature range is about 90 before the charge / discharge treatment is performed. A lithium secondary battery that is maintained at a level of at least%.
請求項1〜5のいずれか一項に記載の製造方法により製造されたリチウム二次電池または請求項6に記載のリチウム二次電池を備える車両。
A vehicle provided with the lithium secondary battery manufactured by the manufacturing method as described in any one of Claims 1-5, or the lithium secondary battery of Claim 6.
JP2008133918A 2008-05-22 2008-05-22 Lithium secondary battery manufacturing method Withdrawn JP2009283276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133918A JP2009283276A (en) 2008-05-22 2008-05-22 Lithium secondary battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133918A JP2009283276A (en) 2008-05-22 2008-05-22 Lithium secondary battery manufacturing method

Publications (1)

Publication Number Publication Date
JP2009283276A true JP2009283276A (en) 2009-12-03

Family

ID=41453528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133918A Withdrawn JP2009283276A (en) 2008-05-22 2008-05-22 Lithium secondary battery manufacturing method

Country Status (1)

Country Link
JP (1) JP2009283276A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061999A1 (en) * 2009-11-19 2011-05-26 Necエナジーデバイス株式会社 Method for manufacturing lithium ion secondary battery
WO2011125202A1 (en) * 2010-04-08 2011-10-13 トヨタ自動車株式会社 Lithium secondary battery
JP2017022067A (en) * 2015-07-15 2017-01-26 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2022536811A (en) * 2019-09-27 2022-08-18 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY AND BATTERY MODULE, BATTERY PACK, DEVICE INCLUDING SAME

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061999A1 (en) * 2009-11-19 2011-05-26 Necエナジーデバイス株式会社 Method for manufacturing lithium ion secondary battery
JP5403711B2 (en) * 2009-11-19 2014-01-29 Necエナジーデバイス株式会社 Method for producing lithium ion secondary battery
US8814955B2 (en) 2009-11-19 2014-08-26 Nec Energy Devices, Ltd. Method for manufacturing lithium ion secondary battery, and packaging thereof containing pre-charged lithium ion secondary battery
WO2011125202A1 (en) * 2010-04-08 2011-10-13 トヨタ自動車株式会社 Lithium secondary battery
JP2017022067A (en) * 2015-07-15 2017-01-26 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2022536811A (en) * 2019-09-27 2022-08-18 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY AND BATTERY MODULE, BATTERY PACK, DEVICE INCLUDING SAME
JP7216869B2 (en) 2019-09-27 2023-02-01 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY AND BATTERY MODULE, BATTERY PACK, DEVICE INCLUDING SAME
US11658294B2 (en) 2019-09-27 2023-05-23 Contemporary Amperex Technology Co., Limited Secondary battery and battery module, battery pack and apparatus comprising the secondary battery

Similar Documents

Publication Publication Date Title
AU2005213420B2 (en) Lithium secondary cell with high charge and discharge rate capability
CN102971893B (en) Lithium ion secondary cell
CN103348510B (en) Secondary cell
WO2013076847A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2013051155A1 (en) Lithium-ion secondary battery
WO2013080379A1 (en) Lithium secondary battery and method for manufacturing same
KR20130086077A (en) Negative electrode active material for lithium ion secondary battery
JP5696904B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5517007B2 (en) Lithium ion secondary battery
JP5783029B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2013089346A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP5585834B2 (en) Lithium ion secondary battery
JP5397715B2 (en) Lithium secondary battery
KR101980422B1 (en) Nonaqueous electrolyte secondary cell
JP2017091886A (en) Nonaqueous electrolyte secondary battery
WO2012025963A1 (en) Nonaqueous-electrolyte battery
JP2012238461A (en) Secondary battery, and method for manufacturing the same
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2009283276A (en) Lithium secondary battery manufacturing method
JP2010153337A (en) Manufacturing method of lithium secondary battery
JP5904368B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6493766B2 (en) Lithium ion secondary battery
JP2014229554A (en) Secondary battery and method for manufacturing the same
JP2013118104A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802