JP2011216256A - Proximity switch - Google Patents

Proximity switch Download PDF

Info

Publication number
JP2011216256A
JP2011216256A JP2010081928A JP2010081928A JP2011216256A JP 2011216256 A JP2011216256 A JP 2011216256A JP 2010081928 A JP2010081928 A JP 2010081928A JP 2010081928 A JP2010081928 A JP 2010081928A JP 2011216256 A JP2011216256 A JP 2011216256A
Authority
JP
Japan
Prior art keywords
proximity switch
change
detection
detection distance
detection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081928A
Other languages
Japanese (ja)
Other versions
JP5419781B2 (en
Inventor
Takashi Honma
隆 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010081928A priority Critical patent/JP5419781B2/en
Publication of JP2011216256A publication Critical patent/JP2011216256A/en
Application granted granted Critical
Publication of JP5419781B2 publication Critical patent/JP5419781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable inexpensive and easy mass production of proximity switches having a constant detecting performance.SOLUTION: Detection distance stabilizing members 20 making a magnetic body ring-shaped, varying inductances L of a coil part 6 and enabled to be endowed with characteristics of offsetting changes of resistances R of the coil part 6 in accordance with changes of gaps A' are fixed on an inner wall 9 of a detection face, so that a detection distance is stabilized irrespective of displacement, if any, of the coil part 6.

Description

この発明は、金属等の被検出体の接近による磁界の損失を検出することによって被検出体の接近を判定する近接スイッチに関するものである。   The present invention relates to a proximity switch that determines the approach of a detected object by detecting loss of a magnetic field due to the approach of the detected object such as metal.

近接スイッチの耐衝撃性と耐摩耗性を向上させる目的で、コイルを収容する筐体にステンレス材料を用いたものがある(例えば、特許文献1参照)。図7は、従来の近接スイッチ1の構成を示す断面図であり、筐体全体が非磁性ステンレスで構成されている。図7において、コイル2がボビン3に巻回され、フェライトコア4の環状の溝に収納され、また、各種の電子部品が実装された基板5がフェライトコア4の裏面に接続されて、コイル部6を構成している。このコイル部6を有底円筒状のキャップ7に収容し、さらに、有底円筒状の筐体8にキャップ7ごとコイル部6を収容して、充填材10を充填する。また、筐体8の開口部にケーブルホルダ11を冠着し、ケーブルホルダ11の孔からケーブル12を引き出す。   For the purpose of improving the impact resistance and wear resistance of a proximity switch, there is a case in which a stainless material is used for a housing that houses a coil (see, for example, Patent Document 1). FIG. 7 is a cross-sectional view showing a configuration of a conventional proximity switch 1, and the entire housing is made of nonmagnetic stainless steel. In FIG. 7, the coil 2 is wound around the bobbin 3 and accommodated in the annular groove of the ferrite core 4, and the substrate 5 on which various electronic components are mounted is connected to the back surface of the ferrite core 4, 6 is constituted. The coil portion 6 is accommodated in a bottomed cylindrical cap 7, and the coil portion 6 is accommodated together with the cap 7 in a bottomed cylindrical casing 8 and filled with a filler 10. Further, the cable holder 11 is attached to the opening of the housing 8, and the cable 12 is pulled out from the hole of the cable holder 11.

このように構成された近接スイッチ1は、コイル部6の発振に伴い検出面の前方に磁界を形成する。この磁界に被検出体が進入すると当該被検出体に渦電流が発生するので、コイル部6の渦電流損失を検出して、被検出体の近接を判定することが可能となる。ただし、コイル部6からの交流磁束がステンレス製の検出面を透過するように、発振周波数は低く設定される。また、被検出体に渦電流が発生するのと同様に、検出面にも渦電流が発生する。   The proximity switch 1 configured as described above forms a magnetic field in front of the detection surface as the coil unit 6 oscillates. When the detected object enters the magnetic field, an eddy current is generated in the detected object. Therefore, it is possible to detect the eddy current loss of the coil unit 6 and determine the proximity of the detected object. However, the oscillation frequency is set low so that the AC magnetic flux from the coil unit 6 passes through the stainless steel detection surface. In addition, eddy currents are generated on the detection surface in the same manner as eddy currents are generated on the detection target.

例えばコイル部6を、インダクタンス(L)成分、静電容量(C)成分及び抵抗(R)成分を有する自励振のLCR共振回路として機能させ、このLCR共振回路の共振インピーダンスZoscの変化を検出して被検出体の近接を判定する。ここで、共振インピーダンスは下式(1)で表される。
Zosc=L/CR (1)
For example, the coil unit 6 is caused to function as a self-excited LCR resonance circuit having an inductance (L) component, a capacitance (C) component, and a resistance (R) component, and a change in the resonance impedance Zosc of the LCR resonance circuit is detected. To determine the proximity of the detected object. Here, the resonance impedance is expressed by the following equation (1).
Zosc = L / CR (1)

特開平9−320422号公報Japanese Patent Laid-Open No. 9-320422

従来の近接スイッチ1は、組立て時に、コイル部6を収容した絶縁用のキャップ7を筐体8内に仮固定して、エポキシ樹脂等の充填材10で封止する。そのため、充填材10の性質及び硬化時の条件によっては、硬化収縮又は応力による変形が生じ、仮固定したコイル部6がX軸方向にずれる場合がある。筐体8とコイル部6とのわずかな位置ずれであっても、検出面に生じる渦電流損失の影響を受けてコイル部6の抵抗Rが大きく変化してしまう。すると、上式(1)より共振インピーダンスZoscも変動してしまい、検出距離が大きく変動するという課題があった。例えば筐体8とコイル部6との隙間Aが小さくなる方向へずれると、抵抗Rが大きくなり、共振インピーダンスZoscが小さくなるので、実際の検出距離が設定上の検出距離より伸びてしまう。   When the conventional proximity switch 1 is assembled, an insulating cap 7 that houses the coil portion 6 is temporarily fixed in the housing 8 and sealed with a filler 10 such as an epoxy resin. Therefore, depending on the properties of the filler 10 and the conditions at the time of curing, deformation due to curing shrinkage or stress may occur, and the temporarily fixed coil portion 6 may shift in the X-axis direction. Even if the positional deviation between the casing 8 and the coil unit 6 is slight, the resistance R of the coil unit 6 greatly changes due to the influence of eddy current loss generated on the detection surface. Then, the resonance impedance Zosc also fluctuated from the above equation (1), and there was a problem that the detection distance fluctuated greatly. For example, when the gap A between the casing 8 and the coil portion 6 is shifted in the direction of decreasing, the resistance R increases and the resonance impedance Zosc decreases, so that the actual detection distance extends beyond the set detection distance.

また、組立て時に筐体8とコイル部6のわずかな位置ずれを防止することは難しいため、一定の検出性能を有する近接スイッチを低コストかつ簡易に量産することが困難になっていた。   Further, since it is difficult to prevent a slight misalignment between the housing 8 and the coil portion 6 during assembly, it has been difficult to easily mass-produce proximity switches having a certain detection performance at low cost.

この発明は、上記のような課題を解決するためになされたもので、一定の検出性能を有する近接スイッチを低コストかつ簡易に量産可能にすることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to enable mass production of a proximity switch having a certain detection performance at low cost and easily.

この発明の請求項1に係る近接スイッチは、金属の筐体と、筐体内に収容されて、被検出体の筐体検出面への近接を検出するコイル部と、筐体検出面の内壁側に設けた磁性部材であって、筐体の金属より比透磁率が高く、かつ、コイル部のインダクタンスを変化させて当該磁性部材とコイル部との隙間の変化に応じたコイル部の抵抗の変化を相殺する特性を有する磁性部材とを備えるものである。   According to a first aspect of the present invention, a proximity switch includes a metal casing, a coil unit that is housed in the casing and detects the proximity of the detected object to the casing detection surface, and the inner wall side of the casing detection surface. Change in resistance of the coil portion in response to a change in the gap between the magnetic member and the coil portion by changing the inductance of the coil portion. And a magnetic member having a characteristic of canceling out.

この発明の請求項2に係る近接スイッチは、筐体を、比透磁率が実質的に1、かつ、体積抵抗率が45×10−8[Ωm]以上の金属で構成したものである。 In a proximity switch according to a second aspect of the present invention, the casing is made of a metal having a relative permeability of substantially 1 and a volume resistivity of 45 × 10 −8 [Ωm] or more.

この発明の請求項3に係る近接スイッチは、磁性部材を、筐体検出面の内壁から突出した形状に形成したものである。   In the proximity switch according to claim 3 of the present invention, the magnetic member is formed in a shape protruding from the inner wall of the casing detection surface.

この発明の請求項4に係る近接スイッチは、磁性部材を、筐体検出面の内壁と面一に形成したものである。   In the proximity switch according to claim 4 of the present invention, the magnetic member is formed flush with the inner wall of the housing detection surface.

この発明の請求項5に係る近接スイッチは、筐体検出面の内壁に塗布又は印刷して形成したものである。   The proximity switch according to claim 5 of the present invention is formed by coating or printing on the inner wall of the casing detection surface.

この発明によれば、金属の筐体検出面の内壁側に磁性部材を設けてコイル部のインダクタンスを変化させ、当該磁性部材とコイル部との隙間の変化に応じたコイル部の抵抗の変化を相殺するようにしたので、一定の検出性能を有する近接スイッチを低コストかつ簡易に量産することができる。   According to this invention, the magnetic member is provided on the inner wall side of the metal casing detection surface to change the inductance of the coil portion, and the change in the resistance of the coil portion according to the change in the gap between the magnetic member and the coil portion is changed. Since the cancellation is made, it is possible to easily mass-produce proximity switches having a constant detection performance at low cost.

この発明の実施の形態1に係る近接スイッチの構成を示す断面図である。It is sectional drawing which shows the structure of the proximity switch which concerns on Embodiment 1 of this invention. 実施の形態1に係る近接スイッチと従来の近接スイッチの、隙間の変化量に対するコイル部の抵抗の変化率を示すグラフである。It is a graph which shows the change rate of the resistance of the coil part with respect to the variation | change_quantity of a clearance gap between the proximity switch which concerns on Embodiment 1, and the conventional proximity switch. 実施の形態1に係る近接スイッチと従来の近接スイッチの、隙間の変化量に対するコイル部のインダクタンスの変化率を示すグラフである。It is a graph which shows the change rate of the inductance of the coil part with respect to the variation | change_quantity of the clearance gap of the proximity switch which concerns on Embodiment 1, and the conventional proximity switch. 実施の形態1に係る近接スイッチと従来の近接スイッチの、隙間の変化量に対するコイル部の共振インピーダンスの変化率を示すグラフである。It is a graph which shows the change rate of the resonant impedance of a coil part with respect to the variation | change_quantity of the clearance gap of the proximity switch which concerns on Embodiment 1, and the conventional proximity switch. 実施の形態1に係る近接スイッチと従来の近接スイッチの、隙間の変化量に対する検出距離の変化率を示すグラフである。It is a graph which shows the change rate of the detection distance with respect to the variation | change_quantity of a clearance gap between the proximity switch which concerns on Embodiment 1, and the conventional proximity switch. 実施の形態1に係る近接スイッチと従来の近接スイッチの、隙間の変化量に対する検出感度の変化を示すグラフである。It is a graph which shows the change of the detection sensitivity with respect to the variation | change_quantity of a clearance gap of the proximity switch which concerns on Embodiment 1, and the conventional proximity switch. 従来の近接スイッチの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional proximity switch.

実施の形態1.
図1は、本実施の形態1に係る近接スイッチ1aの構成を示す断面図であり、先立って説明した図7と同一又は相当の部分については同一の符号を付し説明を省略する。この近接スイッチ1aは、コイル部6と非磁性ステンレス製の筐体8との位置ずれで生じる共振インピーダンスZoscの変化を最小限に抑えるために、検出距離安定化部材(磁性部材)20を検出面内壁9の所定位置に固定して備える。そこへコイル部6を収容したキャップ7を仮固定し、充填材10を注入して封止する。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the configuration of the proximity switch 1a according to the first embodiment. The same or corresponding parts as those in FIG. The proximity switch 1a has a detection distance stabilizing member (magnetic member) 20 as a detection surface in order to minimize the change in the resonance impedance Zosc caused by the positional deviation between the coil portion 6 and the nonmagnetic stainless steel casing 8. It is fixed at a predetermined position on the inner wall 9. A cap 7 accommodating the coil portion 6 is temporarily fixed therein, and a filler 10 is injected and sealed.

筐体8は非磁性ステンレスで構成する。非磁性ステンレスの特性としては、比透磁率(同一電界強度での物質の透磁率と真空の透磁率の比)が実質的に1であって、20℃のときの体積抵抗率が45×10−8[Ωm]以上であることが好ましい。
また、検出距離安定化部材20は、筐体8より比透磁率が高く、また、体積抵抗率も高い磁性体とする。ここでは、検出距離安定化部材20の比透磁率を50とし、コイル2と同形で厚み0.3mmのリング状にする。
The housing 8 is made of nonmagnetic stainless steel. The characteristic of nonmagnetic stainless steel is that the relative permeability (ratio of the permeability of the substance at the same electric field strength to the permeability of the vacuum) is substantially 1, and the volume resistivity at 20 ° C. is 45 × 10. It is preferably -8 [Ωm] or more.
Further, the detection distance stabilizing member 20 is a magnetic body having a relative permeability higher than that of the housing 8 and a higher volume resistivity. Here, the relative magnetic permeability of the detection distance stabilizing member 20 is 50, and it has the same shape as the coil 2 and a ring shape with a thickness of 0.3 mm.

以下、本実施の形態1に係る近接スイッチ1aの特性を、先立って説明した従来の近接スイッチ1(図7)の特性と比較しながら説明する。なお、従来の近接スイッチ1の隙間Aとは、図7に示すように検出面内壁9とコイル部6との間の隙間であり、他方、本実施の形態1に係る近接スイッチ1aの隙間A’とは、図1に示すように検出距離安定化部材20とコイル部6との間の隙間である。   Hereinafter, the characteristics of the proximity switch 1a according to the first embodiment will be described in comparison with the characteristics of the conventional proximity switch 1 (FIG. 7) described above. Note that the gap A of the conventional proximity switch 1 is a gap between the detection surface inner wall 9 and the coil portion 6 as shown in FIG. 7, and on the other hand, the gap A of the proximity switch 1a according to the first embodiment. 'Is a gap between the detection distance stabilizing member 20 and the coil portion 6 as shown in FIG.

図2は、隙間A,A’の変化量に対するコイル部6の抵抗Rの変化率ΔRを示すグラフであり、横軸に隙間A,A’の距離[mm]、縦軸に変化率ΔR[%]を示す。なお、隙間A,A’が0.57mmのときの抵抗Rを基準にして変化率ΔRを算出した。図2より、近接スイッチ1,1a共に隙間A,A’が縮まると抵抗Rが大きくなるが、検出距離安定化部材20の影響により、近接スイッチ1aの変化率ΔRは近接スイッチ1の変化率ΔRに比べて緩やかになる。なお、検出距離安定化部材20の厚みを変えると、コイル部6の抵抗Rが変化する。   FIG. 2 is a graph showing the rate of change ΔR of the resistance R of the coil section 6 with respect to the amount of change in the gaps A and A ′. The horizontal axis represents the distance [mm] between the gaps A and A ′, and the vertical axis represents the rate of change ΔR [ %]. The rate of change ΔR was calculated based on the resistance R when the gaps A and A ′ were 0.57 mm. From FIG. 2, the resistance R increases as the clearances A and A ′ of both the proximity switches 1 and 1 a are reduced. Compared to Note that when the thickness of the detection distance stabilizing member 20 is changed, the resistance R of the coil portion 6 changes.

図3は、隙間A,A’の変化量に対するコイル部6のインダクタンスLの変化率ΔLを示すグラフであり、横軸に隙間A,A’の距離[mm]、縦軸に変化率ΔL[%]を示す。図3より、近接スイッチ1aでは、磁束が検出距離安定化部材20を積極的に通過するようになると共に、検出距離安定化部材20は空気より磁気抵抗が小さいので検出距離安定化部材20を通過する分だけ磁気抵抗が減少するよりことにより、磁束が増え、インダクタンスLが大きくなる。   FIG. 3 is a graph showing the rate of change ΔL of the inductance L of the coil section 6 with respect to the amount of change in the gaps A and A ′. The horizontal axis indicates the distance [mm] between the gaps A and A ′, and the vertical axis indicates the rate of change ΔL [ %]. As shown in FIG. 3, in the proximity switch 1a, the magnetic flux actively passes through the detection distance stabilization member 20, and the detection distance stabilization member 20 passes through the detection distance stabilization member 20 because its magnetic resistance is smaller than that of air. As a result, the magnetic resistance decreases, and the magnetic flux increases and the inductance L increases.

従って、インダクタンスLと抵抗Rが同じ比率で変化するように検出距離安定化部材20の形状(厚み、直径等)及び比透磁率を決定すれば、図4に示すように、共振インピーダンスZoscが略一定となる。
図4は、隙間A,A’の変化量に対するコイル部6の共振インピーダンスZoscの変化率ΔZoscを示すグラフであり、横軸に隙間A,A’の距離[mm]、縦軸に変化率ΔZosc[%]を示す。従来の近接スイッチ1は既に説明したように、隙間Aが縮まると、略一定のインダクタンスLに対して抵抗Rが大きくなるので、図4に示すように共振インピーダンスZoscが小さくなる。これに対して本実施の形態1の近接スイッチ1aは、隙間A’が縮まると、インダクタンスLと抵抗Rが同じ比率で大きくなるので、共振インピーダンスZoscがほとんど変化しない。
Therefore, if the shape (thickness, diameter, etc.) and relative permeability of the detection distance stabilizing member 20 are determined so that the inductance L and the resistance R change at the same ratio, the resonance impedance Zosc is substantially as shown in FIG. It becomes constant.
FIG. 4 is a graph showing the rate of change ΔZosc of the resonance impedance Zosc of the coil section 6 with respect to the amount of change of the gaps A and A ′. The horizontal axis indicates the distance [mm] between the gaps A and A ′, and the vertical axis indicates the rate of change ΔZosc. [%] Is shown. As described above, in the conventional proximity switch 1, when the gap A is reduced, the resistance R is increased with respect to the substantially constant inductance L, so that the resonance impedance Zosc is reduced as shown in FIG. On the other hand, in the proximity switch 1a according to the first embodiment, when the gap A ′ is reduced, the inductance L and the resistance R increase at the same ratio, so that the resonance impedance Zosc hardly changes.

図5は、隙間A,A’の変化量に対する近接スイッチ1,1aの検出距離OPの変化率ΔOPを示すグラフであり、横軸に隙間A,A’の距離[mm]、縦軸に変化率ΔOP[%]を示す。図5より、検出距離安定化部材20を設けた場合の近接スイッチ1aの検出距離は、隙間A’の変化によらず略一定になる。この例では、隙間A,A’が0.55〜0.60mmへ0.05mm変化すると、近接スイッチ1の検出距離は46%変化するのに対して近接スイッチ1aの検出距離は4%の変化となる。
ただし、近接スイッチ1aの検出距離の変化量は、検出距離安定化部材20の形状及び比透磁率を調整することによりさらに抑制可能であり、理論上、隙間A’の変化によらず検出距離を一定にすることも可能である。
FIG. 5 is a graph showing the change rate ΔOP of the detection distance OP of the proximity switches 1 and 1a with respect to the amount of change in the gaps A and A ′. The rate ΔOP [%] is shown. From FIG. 5, the detection distance of the proximity switch 1a when the detection distance stabilizing member 20 is provided is substantially constant regardless of the change in the gap A ′. In this example, when the gaps A and A ′ are changed by 0.05 mm from 0.55 to 0.60 mm, the detection distance of the proximity switch 1 is changed by 46%, whereas the detection distance of the proximity switch 1a is changed by 4%. It becomes.
However, the amount of change in the detection distance of the proximity switch 1a can be further suppressed by adjusting the shape and relative permeability of the detection distance stabilizing member 20, and theoretically, the detection distance can be set regardless of the change in the gap A ′. It is also possible to make it constant.

図6は、隙間A,A’の変化量に対する近接スイッチ1,1aの検出感度を示すグラフであり、横軸に隙間A,A’の距離[mm]、縦軸に被検出体がある時とない時の共振インピーダンスZosc比[%]を示す。図6より、近接スイッチ1に比べて、近接スイッチ1aの方がZosc比が小さいことから、検出感度が向上していることが分かる。   FIG. 6 is a graph showing the detection sensitivity of the proximity switches 1 and 1a with respect to the amount of change in the gaps A and A ′. When the horizontal axis indicates the distance [mm] between the gaps A and A ′ and the vertical axis indicates the object to be detected. The resonance impedance Zosc ratio [%] when there is no. From FIG. 6, it can be seen that the proximity switch 1a has a lower Zosc ratio than the proximity switch 1, so that the detection sensitivity is improved.

検出距離安定化部材20が上述のような効果を奏するので、近接スイッチ1aの組付け時に筐体8とコイル部6とに位置ずれが生じても検出距離が変化せず、従って、近接スイッチ1aを量産した場合に検出性能を一定に保つことができる。また、検出距離安定化部材20を設けるだけでよいため、低コストかつ簡易である。   Since the detection distance stabilizing member 20 has the above-described effects, the detection distance does not change even if the casing 8 and the coil portion 6 are misaligned when the proximity switch 1a is assembled. Therefore, the proximity switch 1a The detection performance can be kept constant when mass-produced. Further, since it is only necessary to provide the detection distance stabilizing member 20, it is low cost and simple.

この検出距離安定化部材20を形成する材料としては、プラスチックに磁性粉を混練した成型品であるプラスチック・マグネット(以下、プラマグと称す)が好ましい。形状及び電磁気的性質の自由度が高いためである。プラマグの他に、パーマロイ及びアモルファスのテープ、並びにフェライト等の材料を用いて検出距離安定化部材20を形成してもよい。   As a material for forming the detection distance stabilizing member 20, a plastic magnet (hereinafter referred to as a plastic magnet) which is a molded product obtained by kneading magnetic powder in plastic is preferable. This is because the degree of freedom in shape and electromagnetic properties is high. The detection distance stabilizing member 20 may be formed using a material such as permalloy and amorphous tape and ferrite in addition to the plastic magnet.

これらの材料から形成した検出距離安定化部材20を検出面内壁9へ固定するが、位置ずれを起こしては上述の効果が激減するため、確実に固定することが望ましい。検出距離安定化部材20の位置ずれは、少なくともコイル部6の位置ずれよりも小さくする必要がある。   Although the detection distance stabilizing member 20 formed of these materials is fixed to the detection surface inner wall 9, it is desirable to fix the detection distance securely because the above-described effects are drastically reduced when a positional shift occurs. The positional deviation of the detection distance stabilizing member 20 needs to be at least smaller than the positional deviation of the coil portion 6.

検出距離安定化部材20の位置ずれ防止のため、封止用の充填材10の影響を受けないように検出距離安定化部材20の厚みを薄くし、予め検出面内壁9に接着剤で固着させる。または、検出距離安定化部材20を磁性塗料として検出面内壁9へ塗布又は印刷して密着させ、その上からコーティング剤を塗布する。あるいは、金属粉末射出成形法(MIM;Metal Injection Molding)により、筐体8と検出距離安定化部材20とを一体成形してもよい。   In order to prevent displacement of the detection distance stabilizing member 20, the thickness of the detection distance stabilizing member 20 is reduced so as not to be affected by the sealing filler 10, and is fixed to the inner wall 9 of the detection surface in advance with an adhesive. . Alternatively, the detection distance stabilizing member 20 is applied or printed as a magnetic paint on the inner surface 9 of the detection surface to be in close contact, and a coating agent is applied thereon. Alternatively, the housing 8 and the detection distance stabilizing member 20 may be integrally formed by a metal powder injection molding method (MIM).

なお、図1の例では、検出距離安定化部材20を検出面内壁9に突設したが、検出面に埋め込んで検出面内壁9と面一にしてもよい。また、検出距離安定化部材20は、コイル部6のインダクタンスLと抵抗Rを同じ比率で大きくするような形状であればよく、リング状の他、円盤、コア延長型であってもよい。また、検出距離安定化部材20の外径がコイル部6の外径より大きくてもよい。   In the example of FIG. 1, the detection distance stabilizing member 20 protrudes from the detection surface inner wall 9, but may be embedded in the detection surface to be flush with the detection surface inner wall 9. Moreover, the detection distance stabilization member 20 should just be a shape which makes the inductance L and resistance R of the coil part 6 large by the same ratio, and may be a disk and a core extension type other than a ring shape. Further, the outer diameter of the detection distance stabilizing member 20 may be larger than the outer diameter of the coil portion 6.

以上より、実施の形態1によれば、非磁性のステンレスで構成した筐体8と、筐体8内に収容されて、被検出体の検出面への近接を検出するコイル部6とを備える近接スイッチ1aにおいて、検出面内壁9に設けた磁性部材であって、筐体8の材質より比透磁率が高く、かつ、コイル部6のインダクタンスLを変化させて隙間A’の変化に応じたコイル部6の抵抗Rの変化を相殺する特性を有する検出距離安定化部材20を備える構成にした。このため、近接スイッチ1aの組立て時に検出面内壁9とキャップ7との隙間A’が位置ずれしたとしても、位置ずれによらず検出距離を安定化できるようになり、一定の検出性能を有する近接スイッチを低コストかつ簡易に量産することができる。   As described above, according to the first embodiment, the housing 8 made of nonmagnetic stainless steel and the coil unit 6 that is housed in the housing 8 and detects the proximity of the detection target to the detection surface are provided. In the proximity switch 1a, it is a magnetic member provided on the inner wall 9 of the detection surface, has a higher relative permeability than the material of the casing 8, and changes the inductance L of the coil portion 6 to respond to the change of the gap A ′. The detection distance stabilizing member 20 having the characteristic of canceling out the change in the resistance R of the coil unit 6 is provided. For this reason, even if the gap A ′ between the detection surface inner wall 9 and the cap 7 is displaced during assembly of the proximity switch 1a, the detection distance can be stabilized regardless of the displacement, and the proximity having a certain detection performance. Switches can be mass-produced easily at low cost.

なお、上記実施の形態1では、筐体8を非磁性ステンレスで構成したが、これに限定されるものではなく、ステンレスと同様に強度が高く、かつ、体積抵抗率が高いチタンで構成してもよい。あるいは、筐体8を磁性ステンレスで構成することも可能である。   In the first embodiment, the housing 8 is made of non-magnetic stainless steel, but is not limited to this, and is made of titanium having high strength and high volume resistivity, similar to stainless steel. Also good. Alternatively, the housing 8 can be made of magnetic stainless steel.

また、上記実施の形態1では、検出距離安定化部材20を検出面内壁9に固定したが、これに限定されるものではなく、筐体8の検出面内壁9側の側周に固定してもよい。   In the first embodiment, the detection distance stabilizing member 20 is fixed to the detection surface inner wall 9. However, the detection distance stabilization member 20 is not limited to this and is fixed to the side periphery of the housing 8 on the detection surface inner wall 9 side. Also good.

また、上記実施の形態1では、コイル部6をコイル2、ボビン3、フェライトコア4及び基板5から構成するようにしたが、コイル部6は少なくとも磁界を発生させるためのコイル2を備える構成であればよく、必要に応じてその他の部材を省略してもよい。
また、フェライトコア4はフェライト製であるが、これ以外の材質で構成したコアを用いてもよい。
さらに、コイル部6を絶縁用のキャップ7に収容したが、このキャップ7を省略してもよい。
In the first embodiment, the coil unit 6 is composed of the coil 2, the bobbin 3, the ferrite core 4 and the substrate 5. However, the coil unit 6 includes at least the coil 2 for generating a magnetic field. What is necessary is just to exist and you may abbreviate | omit another member as needed.
Moreover, although the ferrite core 4 is a product made from a ferrite, you may use the core comprised with materials other than this.
Furthermore, although the coil part 6 was accommodated in the insulating cap 7, this cap 7 may be omitted.

また、上記実施の形態1では、コイル部6に自励振のLCR共振回路を用いた近接スイッチ1aを例に説明したが、水晶振動子等を備えた他励振の共振回路を用いた近接スイッチ(オールメタル検出インピーダンス要素方式)に検出距離安定化部材20を適用することも可能であり、同様の効果がある。他励振の場合、共振インピーダンスはZosc=R+(ωL)/R (ω:角周波数)で示されるので、この式に従って、インダクタンスLの変化量が抵抗Rの変化量を相殺するように検出距離安定化部材20を設ければよい。 In the first embodiment, the proximity switch 1a using the self-excited LCR resonance circuit for the coil unit 6 has been described as an example. However, the proximity switch using the separately excited resonance circuit including a crystal resonator or the like ( It is also possible to apply the detection distance stabilizing member 20 to the all-metal detection impedance element method), which has the same effect. In the case of separate excitation, the resonance impedance is expressed as Zosc = R + (ωL) 2 / R (ω: angular frequency), and the detection distance so that the change amount of the inductance L cancels the change amount of the resistance R according to this equation. A stabilizing member 20 may be provided.

1,1a 近接スイッチ
2 コイル
3 ボビン
4 フェライトコア
5 基板
6 コイル部
7 キャップ
8 筐体
9 検出面内壁
10 充填材
11 ケーブルホルダ
12 ケーブル
20 検出距離安定化部材(磁性部材)
DESCRIPTION OF SYMBOLS 1,1a Proximity switch 2 Coil 3 Bobbin 4 Ferrite core 5 Board | substrate 6 Coil part 7 Cap 8 Case 9 Detection surface inner wall 10 Filler 11 Cable holder 12 Cable 20 Detection distance stabilization member (magnetic member)

Claims (5)

金属の筐体と、前記筐体内に収容されて、被検出体の前記筐体検出面への近接を検出するコイル部とを備える近接スイッチにおいて、
前記筐体検出面の内壁側に設けた磁性部材であって、前記筐体の金属より比透磁率が高く、かつ、前記コイル部のインダクタンスを変化させて当該磁性部材と前記コイル部の隙間の変化に応じた前記コイル部の抵抗の変化を相殺する特性を有する磁性部材を備えることを特徴とする近接スイッチ。
In a proximity switch including a metal casing and a coil unit that is housed in the casing and detects the proximity of the detection target to the casing detection surface.
A magnetic member provided on the inner wall side of the housing detection surface, having a relative permeability higher than that of the metal of the housing, and changing an inductance of the coil portion to change a gap between the magnetic member and the coil portion. A proximity switch comprising a magnetic member having a characteristic that cancels a change in resistance of the coil portion in accordance with a change.
筐体は、比透磁率が実質的に1、かつ、体積抵抗率が45×10−8[Ωm]以上の金属で構成されることを特徴とする請求項1記載の近接スイッチ。 2. The proximity switch according to claim 1, wherein the casing is made of a metal having a relative magnetic permeability of substantially 1 and a volume resistivity of 45 × 10 −8 [Ωm] or more. 磁性部材は、筐体検出面の内壁から突出した形状に形成することを特徴とする請求項1又は請求項2記載の近接スイッチ。   The proximity switch according to claim 1, wherein the magnetic member is formed in a shape protruding from the inner wall of the housing detection surface. 磁性部材は、筐体検出面の内壁と面一に形成することを特徴とする請求項1又は請求項2記載の近接スイッチ。   The proximity switch according to claim 1, wherein the magnetic member is formed flush with an inner wall of the housing detection surface. 磁性部材は、筐体検出面の内壁に塗布又は印刷して形成することを特徴とする請求項1又は請求項2記載の近接スイッチ。   The proximity switch according to claim 1, wherein the magnetic member is formed by applying or printing on an inner wall of the housing detection surface.
JP2010081928A 2010-03-31 2010-03-31 Proximity switch Expired - Fee Related JP5419781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081928A JP5419781B2 (en) 2010-03-31 2010-03-31 Proximity switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081928A JP5419781B2 (en) 2010-03-31 2010-03-31 Proximity switch

Publications (2)

Publication Number Publication Date
JP2011216256A true JP2011216256A (en) 2011-10-27
JP5419781B2 JP5419781B2 (en) 2014-02-19

Family

ID=44945804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081928A Expired - Fee Related JP5419781B2 (en) 2010-03-31 2010-03-31 Proximity switch

Country Status (1)

Country Link
JP (1) JP5419781B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156275A1 (en) * 2013-03-25 2014-10-02 アズビル株式会社 Proximity sensor system
WO2014156276A1 (en) * 2013-03-25 2014-10-02 アズビル株式会社 Proximity-sensor system
JP2020080222A (en) * 2018-11-12 2020-05-28 オムロン株式会社 Sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122877U (en) * 1974-03-23 1975-10-07
JPS6444548U (en) * 1987-09-14 1989-03-16
JP2007074519A (en) * 2005-09-08 2007-03-22 Yamatake Corp High frequency oscillating proximity sensor
JP2007141762A (en) * 2005-11-22 2007-06-07 Omron Corp Proximity sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122877U (en) * 1974-03-23 1975-10-07
JPS6444548U (en) * 1987-09-14 1989-03-16
JP2007074519A (en) * 2005-09-08 2007-03-22 Yamatake Corp High frequency oscillating proximity sensor
JP2007141762A (en) * 2005-11-22 2007-06-07 Omron Corp Proximity sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156275A1 (en) * 2013-03-25 2014-10-02 アズビル株式会社 Proximity sensor system
WO2014156276A1 (en) * 2013-03-25 2014-10-02 アズビル株式会社 Proximity-sensor system
JP2020080222A (en) * 2018-11-12 2020-05-28 オムロン株式会社 Sensor
KR20210062692A (en) * 2018-11-12 2021-05-31 오므론 가부시키가이샤 sensor
JP7253356B2 (en) 2018-11-12 2023-04-06 オムロン株式会社 sensor
KR102654817B1 (en) * 2018-11-12 2024-04-05 오므론 가부시키가이샤 sensor
US11959742B2 (en) 2018-11-12 2024-04-16 Omron Corporation Sensor

Also Published As

Publication number Publication date
JP5419781B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP2008180550A (en) Magnetic sensor device
US20140327432A1 (en) Micro inductive sensor
JP4448811B2 (en) speaker
JPH04227115A (en) Inductive proximity switch
KR20110009148A (en) Linear inductive position sensor
JP4596471B2 (en) High-frequency oscillation type proximity sensor
JP5419781B2 (en) Proximity switch
CN117203503A (en) Power generating element, encoder, and method for manufacturing magnetic member
EP2965409A2 (en) Tubular linear motor wtih magnetostrictive sensor
WO2014156276A1 (en) Proximity-sensor system
US8615872B2 (en) Method of manufacturing a flow measurement device
US6801113B2 (en) Proximity sensor with improved positioning accuracy for detection coil peripheral members
JP5914827B2 (en) Force sensor, force detection device using the same, and force detection method
US20090184707A1 (en) Electromagnetic barrier for use in association with inductive position sensors
JP5506503B2 (en) Proximity switch
KR101451871B1 (en) Linear motor
JP6203141B2 (en) Switch device and non-contact switch
JP2009264992A (en) Induction type proximity sensor
JP2008091147A (en) Proximity sensor and core for the sensor
KR20110060985A (en) Tension measuring assembly for electrical parking brake
JP2011216255A (en) Proximity switch
JP5028683B2 (en) Displacement sensor
JP4833424B2 (en) Rotation sensor
JP2582531Y2 (en) Inductance displacement sensor
JP3857938B2 (en) Rotation sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees