JP5506503B2 - Proximity switch - Google Patents

Proximity switch Download PDF

Info

Publication number
JP5506503B2
JP5506503B2 JP2010081949A JP2010081949A JP5506503B2 JP 5506503 B2 JP5506503 B2 JP 5506503B2 JP 2010081949 A JP2010081949 A JP 2010081949A JP 2010081949 A JP2010081949 A JP 2010081949A JP 5506503 B2 JP5506503 B2 JP 5506503B2
Authority
JP
Japan
Prior art keywords
housing
coil
temperature
proximity switch
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010081949A
Other languages
Japanese (ja)
Other versions
JP2011216258A (en
Inventor
巧 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010081949A priority Critical patent/JP5506503B2/en
Publication of JP2011216258A publication Critical patent/JP2011216258A/en
Application granted granted Critical
Publication of JP5506503B2 publication Critical patent/JP5506503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Description

この発明は、金属等の被検出体の近接によるコイルのインピーダンスの変化を検出することによって被検出体の接近を判定する近接スイッチに関するものである。   The present invention relates to a proximity switch that determines the approach of a detected object by detecting a change in impedance of a coil due to the proximity of the detected object such as metal.

近接スイッチは、筐体内の一端側にコイルを収容し、他端側から樹脂等の充填材を注入して封止してなる。従来は筐体の検出面をプラスチック、側面を黄銅で構成したが、近年、近接スイッチへの被検出体等の衝突による破壊及び劣化等を防止する目的で、筐体を非磁性ステンレスにより構成する場合がある(例えば、特許文献1参照)。このように構成された近接スイッチは、コイルの発振に伴い筐体検出面の前方に磁界を形成する。この磁界に被検出体が進入すると当該被検出体内にて渦電流損失が発生し、それに伴いコイルのインピーダンスが変化する。このインピーダンスの変化を付属の回路で検出して、被検出体の近接を判定することが可能となる。   The proximity switch is formed by housing a coil on one end side in the casing and injecting a filler such as resin from the other end side. Conventionally, the detection surface of the case is made of plastic and the side is made of brass. However, in recent years, the case is made of non-magnetic stainless steel for the purpose of preventing destruction and deterioration due to the collision of the detected object to the proximity switch. There are cases (see, for example, Patent Document 1). The proximity switch configured as described above forms a magnetic field in front of the casing detection surface as the coil oscillates. When the detected object enters this magnetic field, eddy current loss occurs in the detected object, and the impedance of the coil changes accordingly. This change in impedance can be detected by an attached circuit to determine the proximity of the detected object.

近接スイッチは、温度変化に応じてコイルのインピーダンスが変化することに起因して、被検出体ありと判定する当該被検出体から検出面までの距離(以下、検出距離と称す)も温度に依存した特性を示す。図5は、ステンレス筐体の近接スイッチの温度特性を示すグラフであり、縦軸にコイルの共振インピーダンスZosc[kΩ]、横軸に検出距離[mm]を示す。この共振インピーダンスは、Zosc=ω22/Rで近似的に表されるコイル固有の値である。ここでLはコイルのインダクタンス、Rはコイルの抵抗値、ωは発振周波数である。例えばコイルの共振インピーダンスZoscが6.3kΩを上回るか否かによって被検出体の検出/非検出を判定するものとすると、周囲温度25℃では検出距離が7mmになるが、−25℃になると6mmになり、70℃になると8mmになる。このため、これら温度条件の違いによらず、広い温度範囲で一定の検出距離を実現するためには、別途、温度補償回路が必要となる(例えば、特許文献2参照)。 In proximity switches, the distance from the detected object to the detection surface (hereinafter referred to as the detection distance) that is determined to be detected depends on the temperature because the impedance of the coil changes in response to temperature changes. Shows the characteristics. FIG. 5 is a graph showing the temperature characteristics of the proximity switch of the stainless steel casing, in which the vertical axis represents the resonance impedance Zosc [kΩ] of the coil and the horizontal axis represents the detection distance [mm]. This resonance impedance is a value unique to the coil that is approximately expressed by Zosc = ω 2 L 2 / R. Here, L is the inductance of the coil, R is the resistance value of the coil, and ω is the oscillation frequency. For example, assuming that the detection / non-detection of the detected object is determined based on whether or not the resonance impedance Zosc of the coil exceeds 6.3 kΩ, the detection distance is 7 mm at an ambient temperature of 25 ° C., but 6 mm at −25 ° C. When it reaches 70 ° C, it becomes 8 mm. For this reason, a separate temperature compensation circuit is required to realize a constant detection distance in a wide temperature range regardless of the difference in temperature conditions (see, for example, Patent Document 2).

図5では検出面とコイルとの間の隙間を固定した場合の温度特性を示したが、この隙間の変動によっても検出距離が変化する。図6は、ステンレス筐体の近接スイッチの隙間と検出距離の関係を示すグラフであり、縦軸に検出距離[mm]、横軸に隙間[mm]を示す。ステンレス製の筐体の場合、検出面とコイルとの間の隙間が小さくなるほど、検出距離が増大する傾向がある。   FIG. 5 shows the temperature characteristics when the gap between the detection surface and the coil is fixed, but the detection distance also changes due to the fluctuation of the gap. FIG. 6 is a graph showing the relationship between the gap of the proximity switch of the stainless steel case and the detection distance, where the vertical axis shows the detection distance [mm] and the horizontal axis shows the gap [mm]. In the case of a stainless steel housing, the detection distance tends to increase as the gap between the detection surface and the coil decreases.

特開2007−141762号公報JP 2007-141762 A 特開2003−298403号公報JP 2003-298403 A

従来の近接スイッチは上述のように構成されているので、コイルの温度特性を補償するために、特許文献2のような温度補償回路を用いる必要があり、コスト高につながっていた。   Since the conventional proximity switch is configured as described above, it is necessary to use a temperature compensation circuit as in Patent Document 2 in order to compensate for the temperature characteristics of the coil, leading to high costs.

また、ステンレス筐体の場合の検出距離の温度特性は、従来のプラスチック筐体の場合と逆の温度特性になるので、特許文献2の補償回路をそのまま流用することができず、高精度の温度補償が困難になるという課題があった。流用するためには、特許文献2の補償回路に含まれるNTCサーミスタ(負の温度係数を有する抵抗素子)をPTCサーミスタ(正の温度係数を有する)に置き換える必要がある。しかし、このPTCサーミスタは種類が少ないため高精度の温度補償が困難となる。   Further, since the temperature characteristic of the detection distance in the case of the stainless steel case is the reverse temperature characteristic as in the case of the conventional plastic case, the compensation circuit of Patent Document 2 cannot be used as it is, and a high-accuracy temperature is obtained. There was a problem that compensation would be difficult. In order to divert, it is necessary to replace the NTC thermistor (resistive element having a negative temperature coefficient) included in the compensation circuit of Patent Document 2 with a PTC thermistor (having a positive temperature coefficient). However, since there are few types of this PTC thermistor, highly accurate temperature compensation becomes difficult.

さらに、コイルを筐体内に封止する充填材が温度変化に応じて膨張収縮すると、コイルと筐体検出面との間の隙間が変動するので、温度変化による隙間の変動が検出距離の変動要因になるという課題もあった。   Furthermore, if the filler that seals the coil in the housing expands and contracts according to the temperature change, the gap between the coil and the housing detection surface changes. There was also a problem of becoming.

この発明は、上記のような課題を解決するためになされたもので、コイルの温度特性を補償する回路等を設けることなく温度補償を行う近接スイッチを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a proximity switch that performs temperature compensation without providing a circuit that compensates for the temperature characteristics of the coil.

この発明に係る近接スイッチは、非磁性金属の筐体と、筐体内に収容されて、被検出体の筐体検出面への近接を検出するコイル部と、コイル部を保持する保持部と、筐体内壁の所定位置で保持部を部分的に固定し、当該位置を基点にして保持部を膨張収縮可能にする固定部とを備え、コイル部が、温度変化に応じて被検出体の検出距離が変動する温度特性を有し、固定部は、温度変化に応じた筐体及び保持部の膨張収縮により変化する筐体検出面の内壁とコイル部との隙間の変化量がコイル部の温度特性を相殺する位置に設けられたものである。 Proximity switch according to this inventions comprises a housing of non-magnetic metal, it is accommodated in the housing, a coil unit for detecting an approach to the housing detection surface of the object to be detected, and a holding portion for holding the coil portion A holding portion that is partially fixed at a predetermined position on the inner wall of the housing, and the holding portion can be expanded and contracted with the position as a base point . The fixed part has a temperature characteristic in which the detection distance fluctuates, and the amount of change in the gap between the inner wall of the casing detection surface and the coil part that changes due to the expansion and contraction of the casing and the holding part according to the temperature change is It is provided at a position that cancels out the temperature characteristics.

この発明によれば、非磁性金属の筐体内壁に保持部を部分的に固定し、当該位置を基点にして保持部を膨張収縮可能にしたので、コイル部の温度特性を筐体検出面内壁とコイル部との隙間の変化量で相殺できるようになり、コイル部の温度特性を補償する回路等を設けることなく温度補償を行うことのできる近接スイッチを提供することができる。   According to the present invention, the holding portion is partially fixed to the inner wall of the nonmagnetic metal housing, and the holding portion can be expanded and contracted with the position as a base point. Therefore, it is possible to provide a proximity switch capable of performing temperature compensation without providing a circuit or the like for compensating the temperature characteristics of the coil portion.

この発明の実施の形態1に係る近接スイッチの構成を示す断面図である。It is sectional drawing which shows the structure of the proximity switch which concerns on Embodiment 1 of this invention. 図1に示す近接スイッチの検出距離の温度依存特性を示すグラフである。It is a graph which shows the temperature dependence characteristic of the detection distance of the proximity switch shown in FIG. 実施の形態1に係る近接スイッチの変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the proximity switch according to the first embodiment. 実施の形態1に係る近接スイッチの変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the proximity switch according to the first embodiment. ステンレス筐体の近接スイッチの、コイルの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the coil of the proximity switch of a stainless steel housing | casing. ステンレス筐体の近接スイッチの、検出面とコイルとの間の隙間と検出距離との関係を示すグラフである。It is a graph which shows the relationship between the clearance gap between a detection surface and a coil, and a detection distance of the proximity switch of a stainless steel housing | casing. 図1に示す近接スイッチの筐体の構成例を示す斜視図である。It is a perspective view which shows the structural example of the housing | casing of the proximity switch shown in FIG. 図1に示す近接スイッチの筐体の構成例を示す斜視図である。It is a perspective view which shows the structural example of the housing | casing of the proximity switch shown in FIG.

実施の形態1.
図1は、本実施の形態1に係る近接スイッチ1の構成を示す断面図である。図1において、コイル2がボビン3に巻回され、フェライトコア4の環状の溝に収納され、また、各種の電子部品が実装された基板5がフェライトコア4の裏面に接続されて、コイル部6を構成している。このコイル部6を有底円筒状のキャップ7に収容し、さらに、離型材8を塗布した有底円筒状の筐体9にキャップ7ごとコイル部6を収容して、充填材(保持部)10を充填する。また、筐体9の開口部にケーブルホルダ11を冠着し、ケーブルホルダ11の孔からケーブル12を引き出す。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the configuration of the proximity switch 1 according to the first embodiment. In FIG. 1, a coil 2 is wound around a bobbin 3 and housed in an annular groove of a ferrite core 4, and a substrate 5 on which various electronic components are mounted is connected to the back surface of the ferrite core 4 to form a coil portion. 6 is constituted. The coil part 6 is accommodated in a bottomed cylindrical cap 7, and the coil part 6 is accommodated together with the cap 7 in a bottomed cylindrical casing 9 to which a release material 8 is applied, and a filler (holding part). 10 is filled. A cable holder 11 is attached to the opening of the housing 9, and the cable 12 is pulled out from the hole of the cable holder 11.

図2は、近接スイッチ1の検出距離の温度依存特性を例示したグラフであり、縦軸に検出距離の変化率[%]、横軸に周囲温度[℃]を示す。図中、□プロットは隙間Aの変動がない場合のコイル部6の温度特性を、検出距離として表す。◇プロットは隙間Aの変動に応じた検出距離の特性を表す。筐体9をステンレス、充填材10を熱硬化性の樹脂とした場合、ステンレスと樹脂の線膨張率が異なるので、高温になるにつれ、筐体9の検出面内壁9aとキャップ7の底面との隙間Aが小さくなり、検出距離が大きくなる傾向がある(図2の◇プロット)。一方、コイル2の温度特性により、高温になるにつれ検出距離が小さくなる傾向がある(図2の□プロット)。このように、隙間Aの変動とコイル2の温度特性とが、検出距離の温度依存特性を互いに補償し合う傾向となっている。そこで、本実施の形態1では、筐体9と充填材10の膨張収縮による隙間Aの変動を利用してコイル2の温度特性を補償する構成にして、近接スイッチ1の検出距離変化率を温度によらず一定にする(図2の△プロット)。   FIG. 2 is a graph illustrating the temperature dependence characteristics of the detection distance of the proximity switch 1, where the vertical axis indicates the change rate [%] of the detection distance and the horizontal axis indicates the ambient temperature [° C.]. In the figure, the □ plot represents the temperature characteristics of the coil section 6 when the gap A does not vary as a detection distance. ◇ The plot represents the characteristic of the detection distance according to the variation of the gap A. When the housing 9 is made of stainless steel and the filler 10 is a thermosetting resin, the linear expansion coefficient of the stainless steel and the resin is different. Therefore, as the temperature rises, the detection surface inner wall 9a of the housing 9 and the bottom surface of the cap 7 The gap A tends to be small and the detection distance tends to be large (the ◇ plot in FIG. 2). On the other hand, due to the temperature characteristics of the coil 2, the detection distance tends to decrease as the temperature increases (□ plot in FIG. 2). Thus, the fluctuation of the gap A and the temperature characteristic of the coil 2 tend to compensate each other for the temperature dependence characteristic of the detection distance. Therefore, in the first embodiment, the temperature characteristic of the coil 2 is compensated by using the fluctuation of the gap A due to the expansion and contraction of the casing 9 and the filler 10, and the detection distance change rate of the proximity switch 1 is set to the temperature. Regardless of whether it is constant or not (Δ plot in FIG. 2).

より具体的には、隙間Aの変化量がコイル2の温度特性を相殺する位置に、固定部20を設けて、充填材10の一部を筐体9へ部分的に固定する。この固定部20の位置が、コイル部6及び充填材10等を含む内容物の膨張収縮の基点となる。この基点より検出面内壁9a側にある筐体9と充填材10がそれぞれ膨張収縮して隙間Aが変化しても(図2の◇プロット)、コイル2の温度特性が相殺を図るので(図2の□プロット)、検出距離の温度依存特性を補償することができる(図2の△プロット)。   More specifically, a fixing portion 20 is provided at a position where the amount of change in the gap A cancels the temperature characteristics of the coil 2, and a part of the filler 10 is partially fixed to the housing 9. The position of the fixing portion 20 is a base point for expansion and contraction of the contents including the coil portion 6 and the filler 10. Even if the casing 9 and the filler 10 on the detection surface inner wall 9a side from the base point expand and contract, and the gap A changes (the ◇ plot in FIG. 2), the temperature characteristics of the coil 2 cancel each other (see FIG. 2). 2 □ plot), the temperature dependence characteristics of the detection distance can be compensated (Δ plot in FIG. 2).

次に、基点の位置を決定する方法を説明する。
ここでは近接スイッチ1が図5及び図6のグラフに示す特性を有するものと仮定する。図5に示したグラフによると25℃から70℃への温度変化に対し、検出距離は約1mm増大している。さらに、図6に示したグラフによると検出距離の変動約1mmに対応する隙間Aの変動は約−0.05mmである。
Next, a method for determining the position of the base point will be described.
Here, it is assumed that the proximity switch 1 has the characteristics shown in the graphs of FIGS. According to the graph shown in FIG. 5, the detection distance increases by about 1 mm with respect to the temperature change from 25 ° C. to 70 ° C. Furthermore, according to the graph shown in FIG. 6, the fluctuation of the gap A corresponding to the fluctuation of the detection distance of about 1 mm is about −0.05 mm.

ここで、キャップ7の底面から基点までの距離をB[mm]とし、コイル部6とキャップ7とを封止する充填材10の線膨張率と筐体9の線膨張率の差を5×10-5mm/mm℃とすると、膨張収縮に伴う隙間Aの変動量C[mm]は、下式(1)となる。ただし、充填材10の線膨張率を6.8×10-5とし、また、筐体9をSUS(Stainless Used Steel)303と仮定してその線膨張率1.8×10-5を用いる。
C=5×10-5×(70−25)×B (1)
Here, the distance from the bottom surface of the cap 7 to the base point is B [mm], and the difference between the linear expansion coefficient of the filler 10 that seals the coil portion 6 and the cap 7 and the linear expansion coefficient of the housing 9 is 5 ×. Assuming 10 −5 mm / mm ° C., the fluctuation amount C [mm] of the gap A accompanying expansion and contraction is expressed by the following formula (1). However, assuming that the linear expansion coefficient of the filler 10 is 6.8 × 10 −5 and the casing 9 is SUS (Stainless Used Steel) 303, the linear expansion coefficient 1.8 × 10 −5 is used.
C = 5 × 10 −5 × (70−25) × B (1)

図5及び図6より隙間Aの変動量Cを−0.05mmとして上式(1)を解くとB=22.22mmとなり、キャップ7の底面から約22mmの位置を基点にして固定部20を設ける。   5 and 6, when the above equation (1) is solved with the variation amount C of the gap A being −0.05 mm, B = 22.22 mm, and the fixing portion 20 is fixed with the base point of about 22 mm from the bottom surface of the cap 7. Provide.

次に、固定部20の構成例を説明する。
図1に示す構成例では、筐体9の内周面の基点位置に溝21を形成し、この溝21に充填材10の凸部22を係合することによって固定部20とする。筐体9の内周面とコイル部6及び充填材10の外周面の間には離型材8の層が形成されているため、充填材10は、凸部22が固定端、コイル部6固着側が開放端となって、検出面内壁9aの方向へ膨張収縮し、コイル2の温度特性を補償する。
なお、充填材10に溝21を、筐体9に凸部22を形成してもよい。
Next, a configuration example of the fixing unit 20 will be described.
In the configuration example shown in FIG. 1, a groove 21 is formed at the base position on the inner peripheral surface of the housing 9, and the convex portion 22 of the filler 10 is engaged with the groove 21 to form the fixed portion 20. Since a layer of the release material 8 is formed between the inner peripheral surface of the housing 9 and the outer peripheral surfaces of the coil portion 6 and the filler 10, the convex portion 22 of the filler 10 is fixed to the coil portion 6. The side becomes an open end, expands and contracts in the direction of the detection surface inner wall 9a, and compensates for the temperature characteristics of the coil 2.
Note that the groove 21 may be formed in the filler 10 and the convex portion 22 may be formed in the housing 9.

また、固定部20を図3に示す構成にしてもよい。図3に示す近接スイッチ1aの構成例では、筐体9の内周面の基点位置に凹状段差23を形成し、この段差23に充填材10の凸状段差24を係合することによって固定部20aとする。離型材8は基点より検出面内壁9a側にのみ設けるようにして、凹状段差23と凸状段差24とを固着させる。
なお、充填材10に凹状段差23を、筐体9に凸状段差24を形成してもよい。また、凹状段差23と凸状段差24の対向面を螺刻して、互いにネジ止めして固定してもよい。
Further, the fixing unit 20 may be configured as shown in FIG. In the configuration example of the proximity switch 1 a shown in FIG. 3, a concave step 23 is formed at the base position on the inner peripheral surface of the housing 9, and the convex step 24 of the filler 10 is engaged with the step 23 to thereby fix the fixed portion. 20a. The mold release member 8 is provided only on the detection surface inner wall 9a side from the base point, and the concave step 23 and the convex step 24 are fixed.
The concave step 23 may be formed on the filler 10 and the convex step 24 may be formed on the housing 9. Further, the opposing surfaces of the concave step 23 and the convex step 24 may be screwed and fixed with screws.

また、固定部20を図4に示す構成にしてもよい。図4に示す近接スイッチ1bの構成例では、キャップ7の開口周縁にフランジ25を形成し、このフランジ25を筐体9の内周面の基点位置に形成した凹状段差23に係合することによって固定部20bとする。この構成の場合には、筐体9とキャップ7(保持部に相当する)の膨張収縮の差に応じて隙間Aが定まるため、キャップ7の素材に応じた線膨張率を用いて上式(1)より基点の距離Bを決定する。   Further, the fixing unit 20 may be configured as shown in FIG. In the configuration example of the proximity switch 1 b shown in FIG. 4, a flange 25 is formed on the opening periphery of the cap 7, and this flange 25 is engaged with a concave step 23 formed at the base point position of the inner peripheral surface of the housing 9. Let it be a fixed portion 20b. In the case of this configuration, since the gap A is determined according to the difference in expansion and contraction between the housing 9 and the cap 7 (corresponding to the holding portion), the above formula ( The distance B of the base point is determined from 1).

以上より、実施の形態1によれば、非磁性のステンレスで構成した筐体9と、筐体9内に収容されて、被検出体の検出面への近接を検出するコイル部6と、コイル部6を保持する充填材10とを備える近接スイッチ1において、温度変化に応じた筐体9及び充填材10の膨張収縮により変化する検出面内壁9aとコイル部6との隙間Aの変化量がコイル部6の温度特性を相殺する位置で、充填材10を筐体9内壁に部分的に固定して、この位置を基点にして充填材10を膨張収縮可能にする固定部20を備える構成にした。このため、温度変化に応じた隙間Aの変化により、コイル部6の検出距離の温度依存特性を補償できるようになり、従来のような温度補償回路等を設けることなく温度補償を行うことができる。   As described above, according to the first embodiment, the casing 9 made of nonmagnetic stainless steel, the coil unit 6 that is housed in the casing 9 and detects the proximity of the detection target to the detection surface, and the coil In the proximity switch 1 including the filler 10 that holds the part 6, the amount of change in the gap A between the detection surface inner wall 9 a and the coil part 6 that changes due to the expansion and contraction of the housing 9 and the filler 10 according to the temperature change. In a configuration in which the filler 10 is partially fixed to the inner wall of the housing 9 at a position where the temperature characteristics of the coil portion 6 are offset, and the fixing portion 20 is provided so that the filler 10 can be expanded and contracted from this position. did. For this reason, the temperature dependence characteristic of the detection distance of the coil unit 6 can be compensated by the change of the gap A according to the temperature change, and the temperature compensation can be performed without providing a conventional temperature compensation circuit or the like. .

なお、上記実施の形態1では、コイル部6をコイル2、ボビン3、フェライトコア4及び基板5から構成するようにしたが、コイル部6は少なくとも磁界を発生させるためのコイル2を備える構成であればよく、必要に応じてその他の部材を省略してもよい。
また、フェライトコア4はフェライト製であるが、これ以外の材質で構成したコアを用いてもよい。
さらに、コイル部6を絶縁用のキャップ7に収容したが、このキャップ7を省略してもよい。
In the first embodiment, the coil unit 6 is configured by the coil 2, the bobbin 3, the ferrite core 4, and the substrate 5. However, the coil unit 6 includes at least the coil 2 for generating a magnetic field. What is necessary is just to exist and you may abbreviate | omit another member as needed.
Moreover, although the ferrite core 4 is a product made from a ferrite, you may use the core comprised with materials other than this.
Furthermore, although the coil part 6 was accommodated in the insulating cap 7, this cap 7 may be omitted.

また、上記実施の形態1では、筐体9の素材として特にSUS303を例に用いたが、これに限定されるものではなく、非磁性のステンレスであればよい。あるいは、一般的な非磁性ステンレスの特性である、比透磁率(同一電界強度での物質の透磁率と真空の透磁率の比)が実質的に1であって、20℃のときの体積抵抗率が45×10-8[Ωm]以上の特性を有する、ステンレス以外の金属(チタン等)を用いてもよい。 In the first embodiment, SUS303 is particularly used as an example of the material of the housing 9, but the material is not limited to this, and any nonmagnetic stainless steel may be used. Or, the relative magnetic permeability (ratio of the magnetic permeability of the substance at the same electric field strength to the vacuum magnetic permeability), which is a characteristic of general nonmagnetic stainless steel, is substantially 1, and the volume resistance at 20 ° C. A metal other than stainless steel (such as titanium) having a rate of 45 × 10 −8 [Ωm] or more may be used.

また、固定部20,20a,20bは、筐体9内壁の全周に亘って設けるようにしてもよいし、内壁全周のうち所定の角度毎に複数設けることで形成されるものであってもよい。即ち、固定部20,20a,20bは、充填材10を適切に固定することができ、かつ、検出面内壁9aとそれに対向するキャップ7の底面とがなす角度(一般的には平行)が、温度変化に伴う充填材10の伸縮に係わらず、許容される程度の精度で一定に保たれる形状であればよい。   Moreover, you may make it provide the fixing | fixed part 20, 20a, 20b over the perimeter of the inner wall of the housing | casing 9, and it is formed by providing two or more for every predetermined angle among the perimeters of an inner wall, Also good. That is, the fixing portions 20, 20 a, and 20 b can appropriately fix the filler 10, and the angle (generally parallel) formed by the detection surface inner wall 9 a and the bottom surface of the cap 7 facing it is Any shape can be used as long as the shape can be kept constant with an acceptable degree of accuracy regardless of the expansion and contraction of the filler 10 accompanying the temperature change.

具体例を図7及び図8に示す。図7及び図8は、図1に示す筐体9の斜視図に相当し、この筐体9の内壁に設けた溝21に、不図示の充填材10の凸部22を係合することによって、不図示の固定部20となる。図7の例では、一点鎖線で示す基点位置に、筐体9内壁の全周に亘って溝21を設けるのに対し、図8の例では、同じく一点鎖線で示す基点位置に、60°毎に3箇所の溝21を設ける。   Specific examples are shown in FIGS. 7 and 8 correspond to the perspective view of the housing 9 shown in FIG. 1, and by engaging a convex portion 22 of the filler 10 (not shown) with a groove 21 provided on the inner wall of the housing 9. The fixing portion 20 is not shown. In the example of FIG. 7, the groove 21 is provided over the entire circumference of the inner wall of the housing 9 at the base point position indicated by the alternate long and short dash line, whereas in the example of FIG. Three grooves 21 are provided.

1,1a,1b 近接スイッチ
2 コイル
3 ボビン
4 フェライトコア
5 基板
6 コイル部
7 キャップ(保持部)
8 離型材
9 筐体
9a 検出面内壁
10 充填材(保持部)
11 ケーブルホルダ
12 ケーブル
20,20a,20b 固定部
21 溝
22 凸部
1, 1a, 1b Proximity switch 2 Coil 3 Bobbin 4 Ferrite core 5 Substrate 6 Coil part 7 Cap (holding part)
8 Release material 9 Housing 9a Detection surface inner wall 10 Filler (holding part)
11 Cable holder 12 Cable 20, 20a, 20b Fixed part 21 Groove 22 Convex part

Claims (1)

非磁性金属の筐体と、前記筐体内に収容されて、被検出体の前記筐体検出面への近接を検出するコイル部と、前記コイル部を保持する保持部とを備える近接スイッチにおいて、
前記筐体内壁の所定位置で前記保持部を部分的に固定して、当該位置を基点にして前記保持部を膨張収縮可能にする固定部を備え
前記コイル部は、温度変化に応じて前記被検出体の検出距離が変動する温度特性を有し、
前記固定部は、温度変化に応じた前記筐体及び前記保持部の膨張収縮により変化する前記筐体検出面の内壁と前記コイル部との隙間の変化量が前記コイル部の温度特性を相殺する位置に設けられることを特徴とする近接スイッチ。
In a proximity switch comprising a non-magnetic metal housing, a coil portion that is housed in the housing and detects the proximity of the detected object to the housing detection surface, and a holding portion that holds the coil portion,
The holding part is partially fixed at a predetermined position on the inner wall of the housing , and includes a fixing part that allows the holding part to expand and contract based on the position .
The coil section has a temperature characteristic in which a detection distance of the detection object varies according to a temperature change,
In the fixing portion, the amount of change in the gap between the inner wall of the housing detection surface and the coil portion that changes due to expansion and contraction of the housing and the holding portion according to temperature change cancels out the temperature characteristics of the coil portion. Proximity switch characterized by being provided at a position .
JP2010081949A 2010-03-31 2010-03-31 Proximity switch Active JP5506503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081949A JP5506503B2 (en) 2010-03-31 2010-03-31 Proximity switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081949A JP5506503B2 (en) 2010-03-31 2010-03-31 Proximity switch

Publications (2)

Publication Number Publication Date
JP2011216258A JP2011216258A (en) 2011-10-27
JP5506503B2 true JP5506503B2 (en) 2014-05-28

Family

ID=44945806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081949A Active JP5506503B2 (en) 2010-03-31 2010-03-31 Proximity switch

Country Status (1)

Country Link
JP (1) JP5506503B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725715B1 (en) * 2012-10-29 2018-12-12 Optosys SA Proximity sensor
JP2015129682A (en) * 2014-01-08 2015-07-16 パナソニックIpマネジメント株式会社 proximity sensor unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574711U (en) * 1980-06-06 1982-01-11
JPS58182510A (en) * 1982-04-21 1983-10-25 Hitachi Ltd Noncontact type detector
JPS6425138U (en) * 1987-08-05 1989-02-10
JP3320970B2 (en) * 1996-03-29 2002-09-03 トヨタ自動車株式会社 Electronic equipment sealed with filler
JP2007141762A (en) * 2005-11-22 2007-06-07 Omron Corp Proximity sensor

Also Published As

Publication number Publication date
JP2011216258A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
US20080290861A1 (en) Displacement sensor
JP5690209B2 (en) Current sensor
US20130021023A1 (en) Position sensor
JP2013501928A (en) Current sensor array
JP5506503B2 (en) Proximity switch
JP5587856B2 (en) Current detector
JP4398911B2 (en) Displacement sensor
US6801113B2 (en) Proximity sensor with improved positioning accuracy for detection coil peripheral members
JP5419781B2 (en) Proximity switch
JP2700929B2 (en) Acceleration sensor
US20190372435A1 (en) Temperature sensor bracket and motor comprising the same
JP2019095275A (en) Current sensor
JP7099288B2 (en) Manufacturing method of magnetostrictive torque sensor and magnetostrictive torque sensor
JP6624544B2 (en) Proximity sensor
EP2214029B1 (en) Servo accelerometer
JP4981698B2 (en) Position sensor
JP2018162983A (en) Current detection device
JP2008164518A (en) Displacement measuring method and device
US20030188578A1 (en) Accelerometer
JP7391591B2 (en) position detection device
JP2010223913A (en) Noncontact position sensor
KR102010150B1 (en) ribbon magnet bobbin structure for magnetic sensor
JP5525208B2 (en) Proximity sensor
JP2012052899A (en) Magnetic balance type current sensor
EP2919568A1 (en) Electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Effective date: 20131009

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Effective date: 20131210

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20140218

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20140318

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Country of ref document: JP

Ref document number: 5506503