JP2011214807A - Fluidized-bed dryer and fluid-bed drying facility - Google Patents

Fluidized-bed dryer and fluid-bed drying facility Download PDF

Info

Publication number
JP2011214807A
JP2011214807A JP2010086019A JP2010086019A JP2011214807A JP 2011214807 A JP2011214807 A JP 2011214807A JP 2010086019 A JP2010086019 A JP 2010086019A JP 2010086019 A JP2010086019 A JP 2010086019A JP 2011214807 A JP2011214807 A JP 2011214807A
Authority
JP
Japan
Prior art keywords
fluidized bed
temperature
steam
gas
generated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010086019A
Other languages
Japanese (ja)
Other versions
JP5535731B2 (en
Inventor
Koji Oura
康二 大浦
Isao Torii
鳥居  功
Tadahachi Goshima
忠八 五島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010086019A priority Critical patent/JP5535731B2/en
Publication of JP2011214807A publication Critical patent/JP2011214807A/en
Application granted granted Critical
Publication of JP5535731B2 publication Critical patent/JP5535731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized-bed dryer and a fluidized-bed drying facility capable of suppressing dew formation by setting a temperature of generated steam generated by drying brown coal in a fluidized bed to be a temperature preventing dew formation of the generated steam.SOLUTION: The fluidized-bed dryer includes: a drying container 120 wherein the fluidized bed 111 is formed in a drying chamber 126 by making the brown coal 101 supplied to the drying chamber 126 flow by fluidized steam 107 supplied to the drying chamber 126 formed inside; and a superheating member 130 provided within the drying container 120 and arranged in a freeboard part F which is a region where the generated steam 104 is generated by drying the brown coal 101 in the fluidized bed 111.

Description

本発明は、褐炭等の被乾燥物を流動させながら乾燥させる流動層乾燥装置および流動層乾燥設備に関するものである。   The present invention relates to a fluidized bed drying apparatus and a fluidized bed drying facility for drying an object to be dried such as lignite while flowing.

従来、流動乾燥室に供給された石炭の下方から熱風を吹き上げて、石炭を流動させながら乾燥させる石炭の乾燥・分級装置を制御可能な制御装置が知られている(例えば、特許文献1参照)。この制御装置は、流動乾燥室内に吹き付けられる熱風の流量を制御する熱風流量制御装置を有している。ここで、石炭を通過した熱風である排出ガスの温度が結露温度以下になると、排出ガスに含まれる水分が結露し、この結露した部分に、熱風により乾燥された微粒の石炭(微粒炭)が付着する。このため、熱風流量制御装置は、熱風の流量を増加させ、排出ガスの温度を上昇させることにより、結露の発生を抑制している。   2. Description of the Related Art Conventionally, there is known a control device capable of controlling a coal drying / classifying device that blows hot air from below the coal supplied to the fluidized drying chamber to dry the coal while flowing (see, for example, Patent Document 1). . This control device has a hot air flow rate control device for controlling the flow rate of hot air blown into the fluidized drying chamber. Here, when the temperature of the exhaust gas, which is hot air that has passed through the coal, falls below the condensation temperature, moisture contained in the exhaust gas is condensed, and fine coal (pulverized coal) that has been dried by hot air is deposited in the condensed portion. Adhere to. For this reason, the hot air flow rate control device suppresses the occurrence of condensation by increasing the flow rate of hot air and raising the temperature of the exhaust gas.

特開平7−11270号公報JP 7-11270 A

ところで、上記の発生ガスの温度は、石炭に包含される水分の蒸発のし易さや、流動乾燥室内の温度等によって経時的に変化する。換言すれば、結露の発生を防止可能な熱風の流量は、石炭に包含される水分の蒸発のし易さや、流動乾燥室内の温度等によって、最適な流量が異なる。このため、発生ガスの温度を安定的に制御することは難しい。   By the way, the temperature of the generated gas changes with time depending on the easiness of evaporation of moisture contained in coal, the temperature in the fluidized drying chamber, and the like. In other words, the flow rate of hot air that can prevent the occurrence of condensation differs depending on the easiness of evaporation of moisture contained in coal, the temperature in the fluidized drying chamber, and the like. For this reason, it is difficult to stably control the temperature of the generated gas.

そこで、本発明は、流動層の被乾燥物を乾燥させることにより発生した発生蒸気の温度を、安定的に発生蒸気が結露(凝縮)しないような温度とすることにより、結露の発生を抑制可能な流動層乾燥装置および流動層乾燥設備を提供することを課題とする。   Therefore, the present invention can suppress the occurrence of condensation by setting the temperature of the generated steam generated by drying the material to be dried in the fluidized bed to a temperature at which the generated steam is not stably condensed (condensed). It is an object to provide a fluidized bed drying apparatus and a fluidized bed drying facility.

本発明の流動層乾燥装置は、内部に形成された乾燥室に供給される流動化ガスにより、乾燥室に供給された被乾燥物を流動させることで、乾燥室に流動層が形成される乾燥容器と、乾燥容器の内部に設けられ、流動層の被乾燥物が乾燥されることにより発生蒸気が発生する領域に設けられた過熱手段と、を備えたことを特徴とする。   The fluidized bed drying apparatus of the present invention is a dryer in which a fluidized bed is formed in a drying chamber by flowing a material to be dried supplied to the drying chamber with a fluidizing gas supplied to the drying chamber formed inside. And a superheater provided in a region where the generated steam is generated by drying the material to be dried of the fluidized bed.

この構成によれば、流動層の被乾燥物を乾燥させることにより発生する発生蒸気を、過熱手段により直接過熱することができる。このため、発生蒸気の温度を、安定的に発生蒸気が結露(凝縮)しないような温度にすることができるため、結露の発生を抑制することができる。   According to this structure, the generated steam generated by drying the material to be dried in the fluidized bed can be directly heated by the superheating means. For this reason, since the temperature of the generated steam can be set to a temperature at which the generated steam is not stably condensed (condensed), the occurrence of condensation can be suppressed.

この場合、過熱手段の過熱温度を制御可能な温度制御手段をさらに備えたことが、好ましい。   In this case, it is preferable to further include a temperature control means capable of controlling the superheating temperature of the superheating means.

この構成によれば、過熱手段の過熱温度を制御することができるため、過熱手段を通過する発生蒸気の温度を好適な温度とすることができる。   According to this configuration, since the superheat temperature of the superheater can be controlled, the temperature of the generated steam that passes through the superheater can be set to a suitable temperature.

この場合、発生蒸気の流れ方向において、過熱手段の下流側に設けられた温度検出手段をさらに備え、温度制御手段は、温度検出手段によって検出された検出温度に基づいて、過熱手段の過熱温度を制御することが、好ましい。   In this case, in the flow direction of the generated steam, it further includes a temperature detection means provided on the downstream side of the superheat means, and the temperature control means determines the superheat temperature of the superheat means based on the detected temperature detected by the temperature detection means. It is preferable to control.

この構成によれば、温度検出手段により過熱手段の下流側における発生蒸気の温度を検出することができる。これにより、温度制御手段は、過熱手段の下流側における発生蒸気の温度を把握することができるため、発生蒸気の検出温度に基づいて、過熱手段の温度を好適な温度とすることができる。   According to this configuration, the temperature of the generated steam on the downstream side of the superheating means can be detected by the temperature detection means. Thereby, since the temperature control means can grasp the temperature of the generated steam on the downstream side of the superheating means, the temperature of the superheating means can be set to a suitable temperature based on the detected temperature of the generated steam.

この場合、発生蒸気の流れ方向において、過熱手段の下流側には、発生蒸気に処理を実行可能な処理装置が設けられ、処理装置に導入される発生蒸気の圧力と、処理装置から導出される発生蒸気の圧力との圧力差を検出可能な圧力差検出手段をさらに備え、温度制御手段は、圧力差検出手段によって検出された圧力差に基づいて、過熱手段の過熱温度を制御することが、好ましい。   In this case, in the flow direction of the generated steam, a processing device capable of performing processing on the generated steam is provided downstream of the superheating means, and the pressure of the generated steam introduced into the processing device and the processing device are derived. Pressure difference detection means capable of detecting a pressure difference with the pressure of the generated steam, and the temperature control means controls the superheat temperature of the superheat means based on the pressure difference detected by the pressure difference detection means, preferable.

この構成によれば、圧力差検出手段により処理装置の通過前後における発生蒸気の圧力差を検出することができる。これにより、温度制御手段は、処理装置の通過前後における発生蒸気の圧力差を把握することができるため、温度制御手段は、発生蒸気の圧力差に基づいて、過熱手段の温度を好適な温度とすることができる。   According to this configuration, the pressure difference of the generated steam before and after passing through the processing apparatus can be detected by the pressure difference detection means. As a result, the temperature control means can grasp the pressure difference of the generated steam before and after passing through the processing apparatus. Therefore, the temperature control means sets the temperature of the superheating means to a suitable temperature based on the pressure difference of the generated steam. can do.

この場合、発生蒸気の流れ方向に直交する乾燥容器の断面積において、過熱手段の配設位置における乾燥容器の断面積は、過熱手段の上流側における乾燥容器の断面積に比して小さいことが、好ましい。   In this case, in the cross-sectional area of the drying container orthogonal to the flow direction of the generated steam, the cross-sectional area of the drying container at the position where the superheating means is disposed should be smaller than the cross-sectional area of the drying container upstream of the superheating means. ,preferable.

この構成によれば、過熱手段の上流側を流れる発生蒸気は、過熱手段に流入すると、乾燥容器の断面積が小さくなるため、過熱手段を通過する発生蒸気の流速が増加する。これにより、過熱手段の発生蒸気に対する伝熱効率を向上させることができる。   According to this configuration, when the generated steam flowing on the upstream side of the superheating means flows into the superheating means, the cross-sectional area of the drying container is reduced, so that the flow velocity of the generated steam that passes through the superheating means increases. Thereby, the heat transfer efficiency with respect to the generated steam of the superheating means can be improved.

この場合、乾燥容器の内部に設けられ、流動層の内部に配置された加熱手段を、さらに備えたことが、好ましい。   In this case, it is preferable to further include heating means provided inside the drying container and arranged inside the fluidized bed.

この構成によれば、加熱手段により流動層の被乾燥物を加熱することができるため、被乾燥物を好適に乾燥させることができる。   According to this structure, since the to-be-dried object of a fluidized bed can be heated with a heating means, an to-be-dried object can be dried suitably.

この場合、過熱手段には、その内部に高温ガスを流通可能な過熱ガス流路が設けられ、加熱手段には、その内部に高温ガスを流通可能な加熱ガス流路が設けられ、過熱ガス流路および加熱ガス流路にそれぞれ高温ガスを供給可能な高温ガス供給手段をさらに備えたことが、好ましい。   In this case, the superheating means is provided with a superheated gas flow path through which high temperature gas can be circulated, and the heating means is provided with a heated gas flow path through which high temperature gas can be circulated. It is preferable to further include a high temperature gas supply means capable of supplying a high temperature gas to the channel and the heated gas flow channel.

この構成によれば、高温ガス供給手段は、過熱ガス流路に高温ガスを流通させることで過熱手段を過熱することができ、また、加熱ガス流路に高温ガスを流通させることで加熱手段を加熱することができる。   According to this configuration, the high temperature gas supply means can superheat the superheating means by circulating the high temperature gas through the superheated gas flow path, and can also heat the heating means by circulating the high temperature gas through the heated gas flow path. Can be heated.

この場合、過熱手段には、その内部に高温ガスを流通可能な過熱ガス流路が設けられ、加熱手段には、その内部に高温ガスを流通可能な加熱ガス流路が設けられ、過熱ガス流路と加熱ガス流路とを接続するガス接続流路と、過熱ガス流路へ高温ガスを供給可能な高温ガス供給手段と、をさらに備えたことが、好ましい。   In this case, the superheating means is provided with a superheated gas flow path through which high temperature gas can be circulated, and the heating means is provided with a heated gas flow path through which high temperature gas can be circulated. It is preferable to further include a gas connection channel that connects the channel and the heated gas channel, and a high-temperature gas supply unit that can supply a high-temperature gas to the superheated gas channel.

この構成によれば、高温ガス供給手段は、過熱ガス流路に高温ガスを流通させることで過熱手段を過熱することができる。過熱ガス流路に流通した高温ガスは、ガス接続流路を介して、加熱ガス流路へ流通することで、加熱手段を加熱することができる。   According to this configuration, the high temperature gas supply means can superheat the superheat means by causing the high temperature gas to flow through the superheated gas flow path. The high-temperature gas that has flowed through the superheated gas channel can flow through the gas connection channel to the heated gas channel, thereby heating the heating means.

本発明の流動層乾燥設備は、被乾燥物を乾燥可能な上記の流動層乾燥装置と、発生蒸気を流動層乾燥装置の外部に排出する発生蒸気ラインと、発生蒸気ラインに介装され、発生蒸気中の粉塵を除去する集塵装置と、発生蒸気ラインにおける集塵装置の下流側に介装され、発生蒸気の熱を回収する熱回収システムと、集塵装置から粉塵が除去された発生蒸気の一部を分岐し、流動化ガスとして流動層乾燥装置内に供給する分岐ラインと、流動層乾燥装置によって乾燥された被乾燥物を冷却する冷却器と、を備えたことを特徴とする。   The fluidized bed drying facility of the present invention is provided with the above fluidized bed drying apparatus capable of drying an object to be dried, a generated steam line for discharging generated steam to the outside of the fluidized bed drying apparatus, and the generated steam line. A dust collector that removes dust in the steam, a heat recovery system that is disposed downstream of the dust collector in the generated steam line and recovers the heat of the generated steam, and generated steam from which dust has been removed from the dust collector And a cooler that cools an object to be dried that has been dried by the fluidized bed drying device.

この構成によれば、流動層乾燥装置において結露の発生を抑制しつつ、被乾燥物を好適に乾燥させることができる。   According to this configuration, the object to be dried can be suitably dried while suppressing the occurrence of condensation in the fluidized bed drying apparatus.

本発明の流動層乾燥装置および流動層乾燥設備によれば、流動層から発生した発生蒸気を、過熱手段により直接過熱することができ、これにより、発生蒸気の温度を、結露しないような温度とすることができるため、発生蒸気による結露の発生を抑制することができる。   According to the fluidized bed drying apparatus and the fluidized bed drying facility of the present invention, the generated steam generated from the fluidized bed can be directly superheated by the superheating means, whereby the temperature of the generated steam is set to a temperature at which no condensation occurs. Therefore, it is possible to suppress the occurrence of condensation due to the generated steam.

図1は、実施例1に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。FIG. 1 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the first embodiment is applied. 図2は、図1に示す流動層乾燥設備を適用した石炭ガス化複合発電システムの一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a combined coal gasification combined power generation system to which the fluidized bed drying facility shown in FIG. 1 is applied. 図3は、実施例2に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。FIG. 3 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the second embodiment is applied. 図4は、実施例3に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。FIG. 4 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the third embodiment is applied.

以下、添付した図面を参照して、本発明に係る流動層乾燥装置および流動層乾燥設備について説明する。なお、以下の実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。   Hereinafter, a fluidized bed drying apparatus and a fluidized bed drying facility according to the present invention will be described with reference to the accompanying drawings. The present invention is not limited to the following examples. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

本発明の実施例1について、図面を参照して説明する。図1は、実施例1に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。   A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the first embodiment is applied.

図1に示すように、流動層乾燥設備100は、被乾燥物として水分含量が高い褐炭101を供給する供給ホッパ118と、供給された褐炭101を乾燥させる流動層乾燥装置102と、褐炭101を乾燥させる際に発生する発生蒸気104を流動層乾燥装置102の外部に排出する発生蒸気ラインLと、前記発生蒸気ラインLに介装され、発生蒸気104中の粉塵を除去する集塵装置105と、発生蒸気ラインLにおける集塵装置105の下流側に介装され、発生蒸気104の熱を回収する熱回収システム106と、前記集塵装置105から粉塵が除去された発生蒸気104の一部を分岐し、流動化蒸気(流動化ガス)107として流動層乾燥装置102内に供給する分岐ラインLと、前記流動層乾燥装置102から抜き出された乾燥褐炭108を冷却して製品炭109とする冷却器110とを備えるものである。 As shown in FIG. 1, the fluidized bed drying facility 100 includes a supply hopper 118 that supplies lignite 101 having a high water content as an object to be dried, a fluidized bed drying apparatus 102 that dries the supplied lignite 101, and lignite 101. A generated steam line L 1 that discharges the generated steam 104 generated during drying to the outside of the fluidized bed drying apparatus 102, and a dust collector that is interposed in the generated steam line L 1 and removes dust in the generated steam 104. and 105, is interposed on the downstream side of the dust collecting apparatus 105 in generating steam line L 1, the heat recovery system 106 for recovering the steam generated 104 heat, the dust collecting apparatus generates steam 104 where dust is removed from 105 A branch line L 2 that is partly branched and supplied into the fluidized bed drying device 102 as fluidized steam (fluidized gas) 107, and extracted from the fluidized bed drying device 102. A cooler 110 that cools the dried lignite 108 to produce product charcoal 109 is provided.

流動層乾燥設備100において、褐炭101は、供給ホッパ118により供給ラインL0を介して流動層乾燥装置102内に投入され、流動層乾燥装置102内に別に導入される流動化蒸気107により流動されて流動層111を形成する。 In the fluidized bed drying facility 100, the lignite 101 is introduced into the fluidized bed drying device 102 by the supply hopper 118 via the supply line L 0, and is fluidized by the fluidized steam 107 separately introduced into the fluidized bed drying device 102. Thus, the fluidized bed 111 is formed.

流動層乾燥装置102は、内部に褐炭101が投入される乾燥容器120と、乾燥容器120内部に設けられたガス分散板121とが設けられている。このガス分散板121は、乾燥容器120内部の空間を、鉛直方向下方側(図示下側)に位置するチャンバ室125と、鉛直方向上方側(図示上側)に位置する乾燥室126とに区分けしている。チャンバ室125には、分岐ラインLから流動化蒸気107が導入され、また、ガス分散板121には、多数の貫通孔121aが形成されている。 The fluidized bed drying apparatus 102 includes a drying container 120 into which lignite 101 is charged and a gas dispersion plate 121 provided inside the drying container 120. The gas distribution plate 121 divides the space inside the drying container 120 into a chamber chamber 125 located on the lower side in the vertical direction (lower side in the drawing) and a drying chamber 126 located on the upper side in the vertical direction (upper side in the drawing). ing. The fluidized steam 107 is introduced into the chamber chamber 125 from the branch line L 2 , and a large number of through holes 121 a are formed in the gas dispersion plate 121.

従って、流動層乾燥装置102において、供給ホッパ118により褐炭101が乾燥容器120の乾燥室126内に投入され、チャンバ室125に流動化蒸気107が導入される。すると、チャンバ室125内に導入された流動化蒸気107は、ガス分散板121の貫通孔121aを通過して、乾燥室126内の褐炭101に対し流動化蒸気107を吹き上げることで、褐炭101を流動させる。これにより、乾燥室126内には、褐炭101が流動する流動層111が形成される。つまり、乾燥室126には、鉛直方向下方側に流動層111が形成され、鉛直方向上方側にフリーボード部Fが形成される。このフリーボード部Fは、流動層111の褐炭101が乾燥されることにより発生蒸気104が発生する領域となっている。   Therefore, in the fluidized bed drying apparatus 102, the brown coal 101 is introduced into the drying chamber 126 of the drying container 120 by the supply hopper 118, and the fluidized steam 107 is introduced into the chamber chamber 125. Then, the fluidized steam 107 introduced into the chamber chamber 125 passes through the through holes 121a of the gas dispersion plate 121 and blows the fluidized steam 107 to the lignite 101 in the drying chamber 126, thereby Let it flow. As a result, a fluidized bed 111 in which the lignite 101 flows is formed in the drying chamber 126. That is, in the drying chamber 126, the fluidized bed 111 is formed on the lower side in the vertical direction, and the free board portion F is formed on the upper side in the vertical direction. This free board part F is an area where the generated steam 104 is generated by drying the lignite 101 of the fluidized bed 111.

この流動層乾燥装置102は、流動層111の内部に設けられた加熱手段としての伝熱部材103と、フリーボード部Fに設けられた過熱手段としての過熱部材130と、伝熱部材103および過熱部材130に過熱蒸気(高温ガス)Aを供給可能な過熱蒸気供給装置(高温ガス供給手段)135とを備えている。また、流動層乾燥装置102は、過熱部材130の温度を制御可能な温度制御装置(温度制御手段)140と、温度制御装置140に接続された温度検出センサ(温度検出手段)141と、温度制御装置140に接続された圧力差検出センサ(圧力差検出手段)142と、温度制御装置140に接続された流量調整手段としての流量調整弁143とを備えている。   This fluidized bed drying apparatus 102 includes a heat transfer member 103 as a heating means provided in the fluidized bed 111, a superheat member 130 as a superheater provided in the free board portion F, a heat transfer member 103, and a superheater. A superheated steam supply device (high temperature gas supply means) 135 capable of supplying superheated steam (high temperature gas) A to the member 130 is provided. The fluidized bed drying apparatus 102 includes a temperature control device (temperature control means) 140 that can control the temperature of the superheat member 130, a temperature detection sensor (temperature detection means) 141 connected to the temperature control device 140, and a temperature control. A pressure difference detection sensor (pressure difference detection means) 142 connected to the apparatus 140 and a flow rate adjustment valve 143 as a flow rate adjustment means connected to the temperature control device 140 are provided.

伝熱部材103は、流動層111の褐炭101中の水分を除去するものであり、過熱蒸気(例えば150℃の蒸気)Aが流通可能な第1蒸気流路(加熱ガス流路)Rを有している。従って、伝熱部材103の第1蒸気流路Rに150℃の過熱蒸気Aが供給されると、伝熱部材103は、高温の過熱蒸気Aの潜熱を利用して褐炭101を乾燥させる。この後、乾燥に利用された過熱蒸気Aは、例えば150℃の凝縮水Bとして流動層乾燥装置102の外部に排出される。 The heat transfer member 103 removes moisture in the lignite 101 of the fluidized bed 111, and the first steam channel (heating gas channel) R 1 through which superheated steam (for example, 150 ° C. steam) A can flow is provided. Have. Therefore, when the 150 ° C. superheated steam A is supplied to the first steam flow path R 1 of the heat transfer member 103, the heat transfer member 103 dries the lignite 101 using the latent heat of the high temperature superheated steam A. Thereafter, the superheated steam A used for drying is discharged outside the fluidized bed drying apparatus 102 as, for example, 150 ° C. condensed water B.

すなわち、第1蒸気流路Rの内面では、過熱蒸気Aが凝縮して液体(水分)になるので、この際に放熱される凝縮潜熱を、褐炭101の乾燥の加熱に有効利用している。なお、高温の過熱蒸気A以外としては、相変化を伴う熱媒であれば何れでも良く、例えばフロンやペンタンやアンモニア等を例示することができる。また、伝熱部材103として熱媒体を用いる以外に電気ヒータを設置してもよい。なお、伝熱部材103によって褐炭101が乾燥される際に発生する発生蒸気104は、鉛直方向上方側(発生蒸気104の流れ方向の下流側)のフリーボード部Fへ流れる。 That is, on the inner surface of the first steam flow path R 1 , the superheated steam A condenses into a liquid (moisture), so the condensed latent heat radiated at this time is effectively used for heating the drying of the lignite 101. . Any heating medium other than the high-temperature superheated steam A may be used as long as it is accompanied by a phase change. Examples thereof include Freon, pentane, and ammonia. In addition to using a heat medium as the heat transfer member 103, an electric heater may be installed. The generated steam 104 generated when the lignite 101 is dried by the heat transfer member 103 flows to the free board portion F on the upper side in the vertical direction (downstream side in the flow direction of the generated steam 104).

過熱部材130は、フリーボード部Fに流れ込んだ発生蒸気104を過熱するものであり、過熱蒸気(例えば150℃の蒸気)Aが流通可能な第2蒸気流路(過熱ガス流路)Rを有している。従って、過熱部材130の第2蒸気流路Rに150℃の過熱蒸気Aが供給されると、過熱部材130は、高温の過熱蒸気Aの潜熱を利用して発生蒸気104を過熱する。この後、過熱に利用された過熱蒸気Aは、例えば150℃の凝縮水Bとして流動層乾燥装置102の外部に排出される。なお、伝熱部材103と同様に、過熱部材130も熱媒体を用いる以外に電気ヒータを設置してもよい。 The superheating member 130 superheats the generated steam 104 that has flowed into the freeboard portion F, and the second superheater (superheated gas channel) R 2 through which superheated steam (for example, 150 ° C. steam) A can flow is provided. Have. Therefore, when the 150 ° C. superheated steam A is supplied to the second steam flow path R 2 of the superheat member 130, the superheat member 130 uses the latent heat of the high temperature superheated steam A to superheat the generated steam 104. Thereafter, the superheated steam A used for overheating is discharged outside the fluidized bed drying apparatus 102 as, for example, 150 ° C. condensed water B. Note that, similarly to the heat transfer member 103, the superheat member 130 may be provided with an electric heater in addition to using a heat medium.

過熱蒸気供給装置135は、加熱ラインLを介して、伝熱部材103の第1蒸気流路Rに過熱蒸気Aを供給している。また、過熱蒸気供給装置135は、加熱ラインLから分岐する過熱ラインLを介して、過熱部材130の第2蒸気流路Rに過熱蒸気Aを供給している。つまり、過熱蒸気供給装置135は、伝熱部材103と過熱部材130とのそれぞれに過熱蒸気Aを供給することにより、伝熱部材103を加熱すると共に、過熱部材130を過熱している。 Superheated steam supplying device 135 via a heating line L 5, and supplies the superheated steam A to the first steam flow passage R 1 of the heat transfer member 103. Also, superheated steam supplying device 135 via a heating line L 6 branched from the heating line L 5, and supplies the superheated steam A to the second steam flow passage R 2 superheating member 130. That is, the superheated steam supply device 135 heats the heat transfer member 103 and superheats the superheat member 130 by supplying the superheated steam A to each of the heat transfer member 103 and the superheat member 130.

ここで、上記の過熱部材130は、温度制御装置140によって流量調整弁143の開度が調整されることにより温度制御される。流量調整弁143は、過熱ラインLに介設されており、過熱ラインLを流通する過熱蒸気Aの流量を調整している。 Here, the temperature of the overheating member 130 is controlled by adjusting the opening degree of the flow rate adjusting valve 143 by the temperature control device 140. Flow control valve 143 is interposed in overheating line L 6, and adjusts the flow rate of the superheated steam A flowing overheating line L 6.

温度検出センサ141は、発生蒸気ラインLに設けられ、発生蒸気ラインLを流通する発生蒸気104の温度を検出している。そして、温度検出センサ141は、検出した検出温度を、温度制御装置140へ向けて出力している。 Temperature detection sensor 141 is provided in the steam generation line L 1, and detects the temperature of the steam generated 104 for circulating steam generated line L 1. The temperature detection sensor 141 outputs the detected temperature detected toward the temperature control device 140.

圧力差検出センサ142は、集塵装置(処理装置)105の前後を流れる発生蒸気104の圧力差を検出可能に配設されている。つまり、圧力差検出センサ142は、集塵装置105の上流側における発生蒸気ラインLを流通する発生蒸気104の圧力を検出すると共に、集塵装置105の下流側における発生蒸気ラインLを流通する発生蒸気104の圧力を検出している。そして、圧力差検出センサ142は、集塵装置105の上流側における発生蒸気104の圧力と、集塵装置105の下流側における発生蒸気104の圧力との差分を圧力差として検出し、この圧力差を、温度制御装置140に出力している。 The pressure difference detection sensor 142 is disposed so as to be able to detect the pressure difference of the generated steam 104 flowing before and after the dust collector (processing device) 105. That is, the pressure difference detection sensor 142 detects the pressure of the generated steam 104 that flows through the generated steam line L 1 on the upstream side of the dust collector 105, and flows through the generated steam line L 1 on the downstream side of the dust collector 105. The pressure of the generated steam 104 is detected. The pressure difference detection sensor 142 detects a difference between the pressure of the generated steam 104 on the upstream side of the dust collector 105 and the pressure of the generated steam 104 on the downstream side of the dust collector 105 as a pressure difference, and this pressure difference. Is output to the temperature control device 140.

温度制御装置140は、温度検出センサ141から入力された検出温度と、圧力差検出センサ142から入力された圧力差とに基づいて、流量調整弁143の開度を調整することにより、過熱部材130の温度を制御している。   The temperature control device 140 adjusts the opening degree of the flow rate adjustment valve 143 based on the detected temperature input from the temperature detection sensor 141 and the pressure difference input from the pressure difference detection sensor 142, so that the superheater member 130. The temperature is controlled.

具体的に説明すると、温度制御装置140は、温度検出センサ141から入力された検出温度が、例えば、予め設定された設定温度、すなわち発生蒸気104が結露しないような温度であるか否かを判定する。判定した結果、検出温度が設定温度以上である場合、温度制御装置140は、流量調整弁143を閉弁側へ制御する一方で、検出温度が設定温度未満である場合、温度制御装置140は、流量調整弁143を開弁側へ制御する。   More specifically, the temperature control device 140 determines whether or not the detected temperature input from the temperature detection sensor 141 is, for example, a preset temperature, that is, a temperature at which the generated steam 104 is not condensed. To do. As a result of the determination, when the detected temperature is equal to or higher than the set temperature, the temperature control device 140 controls the flow rate adjustment valve 143 to the valve closing side, whereas when the detected temperature is lower than the set temperature, the temperature control device 140 The flow rate adjusting valve 143 is controlled to the valve opening side.

また、温度制御装置140は、圧力差検出センサ142から入力された圧力差が、例えば、予め設定された設定圧力差、すなわち発生蒸気104が結露しないような圧力差であるか否かを判定する。ここで、圧力差が大きくなる場合とは、集塵装置105の上流側の発生蒸気104の圧力に対し、集塵装置105の下流側の発生蒸気104の圧力が低くなった場合であり、これは、集塵装置105の下流側の発生蒸気104の温度が低くなることにより、発生蒸気104の圧力が低くなるからである。従って、判定した結果、圧力差が設定圧力差以上である場合、温度制御装置140は、流量調整弁143を開弁側へ制御する一方で、圧力差が設定圧力差未満である場合、温度制御装置140は、流量調整弁143を閉弁側へ制御する。   Further, the temperature control device 140 determines whether or not the pressure difference input from the pressure difference detection sensor 142 is, for example, a preset pressure difference that is set in advance, that is, a pressure difference that does not cause condensation of the generated steam 104. . Here, the case where the pressure difference becomes large is a case where the pressure of the generated steam 104 downstream of the dust collector 105 is lower than the pressure of the generated steam 104 upstream of the dust collector 105. This is because the pressure of the generated steam 104 decreases as the temperature of the generated steam 104 on the downstream side of the dust collector 105 decreases. Therefore, as a result of the determination, when the pressure difference is equal to or larger than the set pressure difference, the temperature control device 140 controls the flow rate adjustment valve 143 to the valve opening side, while when the pressure difference is less than the set pressure difference, the temperature control is performed. The device 140 controls the flow rate adjustment valve 143 to the valve closing side.

従って、流動層乾燥装置102において、流動層111の内部に設けられた伝熱部材103は、流動層111の褐炭101を加熱することにより、褐炭101を乾燥させる。褐炭101を乾燥させることにより発生した発生蒸気104は、流動層111からフリーボード部Fに流れ込む。そして、フリーボード部Fに流れ込んだ発生蒸気104は、過熱部材130によって過熱された後、発生蒸気ラインLにより流動層乾燥装置102の外部に排出される。 Therefore, in the fluidized bed drying apparatus 102, the heat transfer member 103 provided inside the fluidized bed 111 heats the lignite 101 of the fluidized bed 111 to dry the lignite 101. The generated steam 104 generated by drying the lignite 101 flows from the fluidized bed 111 into the free board portion F. The freeboard unit generating steam 104 flowing into the F, after being superheated by heating member 130 is discharged to the outside of the fluidized bed dryer 102 by generating steam line L 1.

この発生蒸気104には、褐炭101が乾燥し微粉化したものが含まれているので、サイクロンや電気集塵機等の集塵装置105により集塵して固体成分115として分離する。この固体成分115は、分離ラインLを通って、流動層乾燥装置102から抜き出された乾燥褐炭108に合流して混合され、冷却器110で冷却したものが、製品ラインLを通って、製品炭109として排出される。この製品炭109は、例えばボイラ、ガス化炉等の原料として利用に供される。 Since the generated steam 104 includes a pulverized coal 101 that has been dried and pulverized, it is collected as a solid component 115 by a dust collector 105 such as a cyclone or an electric dust collector. The solid component 115, through the separating line L 3, are mixed and joins the dry brown coal 108 withdrawn from the fluidized bed dryer 102, which was cooled by the cooler 110, through the product line L 4 , And discharged as product charcoal 109. This product charcoal 109 is used as a raw material for boilers, gasifiers, and the like.

一方、集塵装置105により集塵された後の発生蒸気104は、例えば105〜110℃の蒸気であるので、熱回収システム106で熱回収された後、水処理部112で処理され、排水113として流動層乾燥設備100の外部に排出されている。なお、集塵装置105により集塵された後の発生蒸気104は、例えば、熱交換器や蒸気タービン等に適用してその熱を有効利用するようにしてもよい。   On the other hand, since the generated steam 104 after being collected by the dust collector 105 is, for example, steam at 105 to 110 ° C., it is recovered by the heat recovery system 106, processed by the water treatment unit 112, and drained 113. As shown in FIG. Note that the generated steam 104 after being collected by the dust collector 105 may be applied to, for example, a heat exchanger, a steam turbine, or the like to effectively use the heat.

また、集塵装置105により集塵された後の発生蒸気104の一部は、分岐ラインLに介装された循環ファン114により流動層乾燥装置102内に送られて、褐炭101の流動層111を流動させる流動化蒸気107として利用される。なお、流動層111を流動化させる流動化媒体としては、発生蒸気104の一部を再利用しているが、これに限定されず、例えば窒素、二酸化炭素またはこれらのガスを含む低酸素濃度の空気を用いてもよい。 Part of the steam generated 104 after being dust collecting by a dust collector 105, is sent to the fluidized bed dryer 102 by the circulation fan 114 interposed in the branch line L 2, the fluidized bed of lignite 101 It is used as fluidized steam 107 that causes 111 to flow. As a fluidizing medium for fluidizing the fluidized bed 111, a part of the generated steam 104 is reused. However, the fluidizing medium is not limited to this. For example, nitrogen, carbon dioxide, or a low oxygen concentration containing these gases is used. Air may be used.

なお、被乾燥物として褐炭101を例示したが、水分含量の高いものであれば、亜瀝青炭等を含む低品位炭や、スラッジ等の被乾燥物を乾燥対象としてもよい。   In addition, although the brown coal 101 was illustrated as to-be-dried material, as long as it has a high water content, it is good also considering to-be-dried materials, such as low grade coal containing subbituminous coal, sludge, etc., and sludge.

続いて、実施の形態1に係る流動層乾燥装置102で乾燥した製品炭109を用い、石炭ガス化複合発電(Integrated Coal Gasification Combined Cycle:IGCC)システムに適用した一例を説明する。図2は、図1に示す流動層乾燥設備を適用した石炭ガス化複合発電システムの一例を示す概略図である。   Next, an example applied to an integrated coal gasification combined cycle (IGCC) system using the product coal 109 dried by the fluidized bed drying apparatus 102 according to the first embodiment will be described. FIG. 2 is a schematic diagram showing an example of a combined coal gasification combined power generation system to which the fluidized bed drying facility shown in FIG. 1 is applied.

図2に示すように、石炭ガス化複合発電システム200は、燃料である褐炭101を流動層乾燥設備100で乾燥させて製品炭109とした後、製品炭109をミル210で粉砕した微粉炭201aを処理してガス化ガス202に変換する石炭ガス化炉203と、前記ガス化ガス202を燃料として運転されるガスタービン(GT)204と、前記ガスタービン204からのタービン排ガス205を導入する排熱回収ボイラ((Heat Recovery Steam Generator:HRSG)206で生成した蒸気207により運転される蒸気タービン(ST)208と、前記ガスタービン204および/または前記蒸気タービン208と連結された発電機(G)209とを備えるものである。   As shown in FIG. 2, the coal gasification combined power generation system 200 is a pulverized coal 201 a obtained by drying brown coal 101 as a fuel in a fluidized bed drying facility 100 to obtain product coal 109 and then pulverizing the product coal 109 in a mill 210. A coal gasification furnace 203 that converts the gasified gas 202 into gasified gas 202, a gas turbine (GT) 204 that is operated using the gasified gas 202 as fuel, and an exhaust gas that introduces turbine exhaust gas 205 from the gas turbine 204. A steam turbine (ST) 208 operated by steam 207 generated by a heat recovery boiler (HRSG) 206, and a generator (G) connected to the gas turbine 204 and / or the steam turbine 208 209.

この石炭ガス化複合発電システム200は、ミル210で粉砕された微粉炭201aを石炭ガス化炉203でガス化し、生成ガスであるガス化ガス202を得る。このガス化ガス202は、サイクロン211およびガス精製装置212で除塵およびガス精製された後、発電手段であるガスタービン204の燃焼器213に供給され、ここで燃焼して高温・高圧の燃焼ガス214を生成する。そして、この燃焼ガス214によってガスタービン204を駆動する。このガスタービン204は、発電機209と連結されており、ガスタービン204が駆動することによって発電機209が電力を発生する。ガスタービン204を駆動した後のタービン排ガス205は、まだ約500〜600℃の温度を持っているため、排熱回収ボイラ(HRSG)206へ送られ、ここで熱エネルギーが回収される。この排熱回収ボイラ(HRSG)206では、タービン排ガス205の熱エネルギーによって蒸気207が生成され、この蒸気207によって蒸気タービン208を駆動する。この排熱回収ボイラ(HRSG)206で熱エネルギーが回収された排ガス215は、ガス浄化装置216で排ガス215中のNOxおよびSOx分が除去された後、煙突217を介して大気中へ放出される。なお、図中、符号218は復水器、219は空気、220は圧縮機、221は空気を窒素(N)と酸素(O)とに分離する空気分離装置(ASU)を各々図示する。 The coal gasification combined power generation system 200 gasifies pulverized coal 201a pulverized by a mill 210 in a coal gasification furnace 203 to obtain a gasified gas 202 which is a generated gas. The gasified gas 202 is dust-removed and gas-purified by a cyclone 211 and a gas purifier 212, and then supplied to a combustor 213 of a gas turbine 204, which is a power generation means. Is generated. The gas turbine 204 is driven by the combustion gas 214. The gas turbine 204 is connected to a generator 209, and the generator 209 generates electric power when the gas turbine 204 is driven. Since the turbine exhaust gas 205 after driving the gas turbine 204 still has a temperature of about 500 to 600 ° C., it is sent to an exhaust heat recovery boiler (HRSG) 206, where thermal energy is recovered. In the exhaust heat recovery boiler (HRSG) 206, steam 207 is generated by the thermal energy of the turbine exhaust gas 205, and the steam turbine 208 is driven by the steam 207. The exhaust gas 215 from which heat energy has been recovered by the exhaust heat recovery boiler (HRSG) 206 is released into the atmosphere via the chimney 217 after the NOx and SOx components in the exhaust gas 215 are removed by the gas purification device 216. . In the figure, reference numeral 218 denotes a condenser, 219 denotes air, 220 denotes a compressor, and 221 denotes an air separation device (ASU) that separates air into nitrogen (N 2 ) and oxygen (O 2 ). .

この石炭ガス化複合発電システム200によれば、高い水分を有する褐炭101を用いてガス化する場合においても、効率的な流動層乾燥装置102により褐炭101を乾燥しているので、ガス化効率が向上し、長期間に亙って安定して発電を行うことができる。   According to this coal gasification combined cycle power generation system 200, even when gasifying using lignite 101 having a high moisture content, since the lignite 101 is dried by the efficient fluidized bed drying apparatus 102, the gasification efficiency is high. The power generation can be improved stably over a long period of time.

なお、本実施例に係る流動層乾燥設備100で乾燥した製品炭109を用いた発電システムとしては、上述した石炭ガス化複合発電システム200に限らない。例えば、図には明示しないが、流動層乾燥設備100で乾燥した製品炭109をボイラ火炉に供給し、当該ボイラ火炉で発生した蒸気で蒸気タービンを駆動して発電機により出力を得る褐炭炊ボイラによる発電システムであってもよい。   In addition, as a power generation system using the product charcoal 109 dried with the fluidized-bed drying equipment 100 which concerns on a present Example, it is not restricted to the coal gasification combined cycle power generation system 200 mentioned above. For example, although not explicitly shown in the figure, a brown coal cooking boiler that supplies product charcoal 109 dried in the fluidized bed drying facility 100 to a boiler furnace, drives a steam turbine with steam generated in the boiler furnace, and obtains output by a generator. May be a power generation system.

以上の構成によれば、実施例1の流動層乾燥装置102を用いることで、流動層111の褐炭101を乾燥させることにより発生する発生蒸気104を、過熱部材130により直接過熱することができる。また、温度制御装置140は、過熱部材130の温度を制御することにより、発生蒸気104が結露(凝縮)しないような温度とすることができる。これにより、実施例1に係る流動層乾燥装置102は、発生蒸気104による結露の発生を抑制することができ、また、温度制御装置140により発生蒸気104の温度を安定的に制御することができる。   According to the above configuration, by using the fluidized bed drying apparatus 102 of the first embodiment, the generated steam 104 generated by drying the lignite 101 of the fluidized bed 111 can be directly superheated by the superheating member 130. Further, the temperature control device 140 can control the temperature of the superheating member 130 so that the generated steam 104 does not condense (condensate). Thereby, the fluidized-bed drying apparatus 102 which concerns on Example 1 can suppress generation | occurrence | production of the dew condensation by the generated steam 104, and can control the temperature of the generated steam 104 stably by the temperature control apparatus 140. .

また、温度制御装置140は、温度検出センサ141により検出した発生蒸気104の検出温度に基づいて、過熱部材130の温度を制御することができ、また、圧力差検出センサ142により検出した発生蒸気104の圧力差に基づいて、過熱部材130の温度を制御することができる。このため、温度制御装置140は、発生蒸気104の温度や圧力差を好適に把握することができ、これにより、過熱部材130の温度制御を好適に実行することができる。   Further, the temperature control device 140 can control the temperature of the superheated member 130 based on the detected temperature of the generated steam 104 detected by the temperature detection sensor 141, and the generated steam 104 detected by the pressure difference detection sensor 142. Based on the pressure difference, the temperature of the superheat member 130 can be controlled. For this reason, the temperature control apparatus 140 can grasp | ascertain suitably the temperature and pressure difference of the generation | occurrence | production steam 104, and can perform suitably the temperature control of the overheating member 130 by this.

また、過熱蒸気供給装置135は、第1蒸気流路Rおよび第2蒸気流路Rに、それぞれ過熱蒸気Aを供給することができるため、伝熱部材103を好適に加熱することができ、過熱部材130を好適に過熱することができる。 Also, superheated steam feeding device 135, the first steam flow passage R 1 and the second steam flow passage R 2, it is possible to supply superheated steam A, respectively, can be suitably heated heat transfer member 103 The overheating member 130 can be suitably heated.

なお、実施例1では、流動層111の内部に伝熱部材103を配設したが、これを廃した構成としてもよい。この場合、流動層111の褐炭101は、流動化蒸気107によって乾燥可能な構成とすることが好ましい。また、伝熱部材103および過熱部材130には、過熱蒸気供給装置135により過熱蒸気Aが送られたが、過熱蒸気Aに限らず、他の高温ガスを送ってもよい。さらに、実施例1において、温度制御装置140は、温度検出センサ141および圧力差検出センサ142の検出結果に基づいて、流量調整弁143を制御したが、温度検出センサ141または圧力差検出センサ142のいずれか一方を廃した構成としてもよい。つまり、温度制御装置140は、温度検出センサ141または圧力差検出センサ142の検出結果に基づいて、流量調整弁143を制御してもよい。   In the first embodiment, the heat transfer member 103 is disposed inside the fluidized bed 111. However, the heat transfer member 103 may be omitted. In this case, the lignite 101 of the fluidized bed 111 is preferably configured to be dried by the fluidized steam 107. Further, although the superheated steam A is sent to the heat transfer member 103 and the superheated member 130 by the superheated steam supply device 135, not only the superheated steam A but also other high-temperature gas may be sent. Furthermore, in the first embodiment, the temperature control device 140 controls the flow rate adjustment valve 143 based on the detection results of the temperature detection sensor 141 and the pressure difference detection sensor 142, but the temperature detection sensor 141 or the pressure difference detection sensor 142 It is good also as a structure which abolished either one. That is, the temperature control device 140 may control the flow rate adjustment valve 143 based on the detection result of the temperature detection sensor 141 or the pressure difference detection sensor 142.

次に、実施例2について、図面を参照して説明する。図3は、実施例2に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。なお、重複した記載を避けるべく、異なる部分についてのみ説明する。実施例1に係る流動層乾燥装置102は、過熱蒸気供給装置135により伝熱部材103および過熱部材130にそれぞれ過熱蒸気Aを供給したが、実施例2に係る流動層乾燥装置250では、過熱蒸気供給装置257により過熱蒸気Aは過熱部材256に供給された後、過熱部材256から伝熱部材255へ供給される。以下、実施例2の流動層乾燥装置250について説明する。   Next, Example 2 will be described with reference to the drawings. FIG. 3 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the second embodiment is applied. Only different parts will be described in order to avoid duplicate descriptions. In the fluidized bed drying apparatus 102 according to the first embodiment, the superheated steam A is supplied to the heat transfer member 103 and the superheated member 130 by the superheated steam supply apparatus 135, but in the fluidized bed drying apparatus 250 according to the second embodiment, the superheated steam A is supplied. After the superheated steam A is supplied to the superheated member 256 by the supply device 257, it is supplied from the superheated member 256 to the heat transfer member 255. Hereinafter, the fluidized bed drying apparatus 250 of Example 2 will be described.

図3に示すように、流動層乾燥装置250は、第1蒸気流路Rを有する伝熱部材255と、第2蒸気流路Rを有する過熱部材256と、第1蒸気流路Rおよび第2蒸気流路Rを接続する接続流路Rと、第2蒸気流路Rに過熱蒸気Aを供給可能な過熱蒸気供給装置257とを備えている。 As shown in FIG. 3, the fluidized bed dryer 250, the heat transfer and member 255, the superheated member 256 having a second steam flow passage R 2, the first steam flow passage R 1 having a first steam flow path R 1 and a connecting channel R 3 in which the second connecting steam path R 2, and a superheated steam supplying device 257 capable of supplying superheated steam a to a second steam flow path R 2.

過熱蒸気供給装置257は、過熱ラインLを介して、過熱部材256の第2蒸気流路Rに過熱蒸気Aを供給している。過熱部材256は、第2蒸気流路Rの一端が過熱ラインLに接続され、第2蒸気流路Rの他端が接続流路Rの一端に接続されている。接続流路Rは、その一端が第2蒸気流路Rの他端に接続され、その他端が伝熱部材255の第1蒸気流路Rの一端に接続されている。伝熱部材255は、第1蒸気流路Rの一端が接続流路Rの他端に接続され、第1蒸気流路Rの他端は凝縮水Bを流動層乾燥装置250の外部に排出可能に構成されている。なお、過熱ラインLには、実施例1の流量調整弁143が介設されている。 Superheated steam supplying device 257 via a heating line L 6, and supplies the superheated steam A to the second steam flow passage R 2 superheating member 256. Superheating member 256, a second end of the steam flow path R 2 is connected to a superheated line L 6, second end of the steam channel R 2 is connected to one end of the connecting channel R 3. One end of the connection channel R 3 is connected to the other end of the second steam channel R 2 , and the other end is connected to one end of the first steam channel R 1 of the heat transfer member 255. The heat transfer member 255 has one end of the first steam flow path R 1 connected to the other end of the connection flow path R 3 , and the other end of the first steam flow path R 1 supplies condensed water B to the outside of the fluidized bed drying apparatus 250. It is configured so that it can be discharged. Note that the heating line L 6, flow control valve 143 of Embodiment 1 is interposed.

従って、過熱蒸気供給装置257から過熱蒸気Aが過熱ラインLを通過して、過熱部材256に供給されると、過熱蒸気Aは、第2蒸気流路Rを流通して、過熱部材256を過熱する。この後、第2蒸気流路Rを流通した過熱蒸気Aは、接続流路Rを流通して、伝熱部材255に流入する。伝熱部材255に流入した過熱蒸気Aは、第1蒸気流路Rを流通して、伝熱部材255を加熱する。 Accordingly, when the superheated steam A passes from the superheated steam supply device 257 through the superheat line L 6 and is supplied to the superheated member 256, the superheated steam A flows through the second steam flow path R 2 and flows into the superheated member 256. Overheat. Thereafter, the superheated steam A that has flowed through the second steam flow path R 2 flows through the connection flow path R 3 and flows into the heat transfer member 255. Superheated steam A which has flown into the heat transfer member 255, and flows through the first vapor passage R 1, heating the heat transfer member 255.

以上の構成によれば、過熱蒸気供給装置257は、過熱蒸気Aを過熱部材256に供給することで、過熱部材256を過熱することができると共に、伝熱部材255を加熱することができる。これにより、過熱蒸気Aの流れを直列にすることができるため、流動層乾燥装置250の構成を簡易なものとすることができる。   According to the above configuration, the superheated steam supply device 257 can superheat the superheat member 256 by supplying the superheated steam A to the superheat member 256 and can heat the heat transfer member 255. Thereby, since the flow of the superheated steam A can be serialized, the structure of the fluidized bed drying apparatus 250 can be simplified.

次に、実施例3について、図面を参照して説明する。図4は、実施例3に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。なお、重複した記載を避けるべく、この場合も異なる部分についてのみ説明する。実施例1に係る流動層乾燥装置102は、その乾燥容器120の鉛直方向に直交する断面積が、鉛直方向において同じである。つまり、過熱部材130が設けられたフリーボード部Fにおける乾燥容器120の断面積と、流動層111における乾燥容器120の断面積とは同じである。一方で、実施例3に係る流動層乾燥装置270は、過熱部材273が設けられたフリーボード部Fにおける乾燥容器271の断面積と、流動層111における乾燥容器271の断面積とは異なっている。以下、実施例3の流動層乾燥装置270について説明する。   Next, Example 3 will be described with reference to the drawings. FIG. 4 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the third embodiment is applied. In this case, only different parts will be described in order to avoid redundant description. In the fluidized bed drying apparatus 102 according to the first embodiment, the cross-sectional area perpendicular to the vertical direction of the drying container 120 is the same in the vertical direction. That is, the cross-sectional area of the drying container 120 in the free board portion F provided with the superheating member 130 and the cross-sectional area of the drying container 120 in the fluidized bed 111 are the same. On the other hand, in the fluidized bed drying apparatus 270 according to the third embodiment, the cross-sectional area of the drying container 271 in the free board portion F provided with the superheat member 273 is different from the cross-sectional area of the drying container 271 in the fluidized bed 111. . Hereinafter, the fluidized bed drying apparatus 270 of Example 3 will be described.

この流動層乾燥装置270の乾燥容器271は、鉛直方向下方側に流動層111が形成され、鉛直方向上方側にフリーボード部Fが形成される。このとき、乾燥容器271は、そのフリーボード部Fにおける部分が、鉛直方向上方側に向かうにつれて先細りとなるテーパ形状となっている。このため、鉛直方向(つまり発生蒸気の流れ方向)に直交する乾燥容器271の断面積において、フリーボード部Fにおける乾燥容器271の断面積は、流動層111における乾燥容器271の断面積に比して小さくなっている。そして、テーパ状に形成されたフリーボード部Fの先端側(鉛直方向上方側)に過熱部材273が配置されている。なお、過熱部材273は、実施例1の過熱部材130とほぼ同様の構成であるが、フリーボード部Fにおける乾燥容器271の断面積が小さい分、過熱部材273のサイズも小さくなっている。   In the drying container 271 of the fluidized bed drying device 270, the fluidized bed 111 is formed on the lower side in the vertical direction, and the free board portion F is formed on the upper side in the vertical direction. At this time, the drying container 271 has a tapered shape in which a portion of the freeboard portion F tapers as it goes upward in the vertical direction. For this reason, in the cross-sectional area of the drying container 271 orthogonal to the vertical direction (that is, the flow direction of the generated steam), the cross-sectional area of the drying container 271 in the free board portion F is compared with the cross-sectional area of the drying container 271 in the fluidized bed 111. It is getting smaller. And the overheating member 273 is arrange | positioned at the front end side (vertical direction upper side) of the free board part F formed in the taper shape. The superheating member 273 has substantially the same configuration as that of the superheating member 130 of the first embodiment, but the size of the superheating member 273 is also reduced because the cross-sectional area of the drying container 271 in the free board portion F is small.

従って、流動層111から発生蒸気104が発生すると、発生蒸気104は、フリーボード部Fを通過するが、このとき、フリーボード部Fにおける乾燥容器271の断面積は、鉛直方向上方側へ向かって小さくなっていく。このため、鉛直方向上方側へ向かう発生蒸気104は、フリーボード部Fの断面積が小さくなる分、発生蒸気104の流速が上昇する。これにより、過熱部材273では、流速が上昇した発生蒸気104が通過する。   Therefore, when the generated steam 104 is generated from the fluidized bed 111, the generated steam 104 passes through the free board part F. At this time, the cross-sectional area of the drying container 271 in the free board part F is directed upward in the vertical direction. It gets smaller. For this reason, as for the generated steam 104 heading upward in the vertical direction, the flow velocity of the generated steam 104 increases as the cross-sectional area of the free board portion F decreases. As a result, the generated steam 104 having an increased flow rate passes through the superheating member 273.

以上の構成によれば、流動層111から発生した鉛直方向上方側へ向かう発生蒸気104は、過熱部材273が設けられたフリーボード部Fにおける乾燥容器271の断面積が小さくなる分、発生蒸気104の流速が上昇する。このため、過熱部材273には、流速が上昇した発生蒸気104が通過することから、過熱部材273の発生蒸気104に対する伝熱効率を向上させることができる。   According to the above configuration, the generated steam 104 generated from the fluidized bed 111 toward the upper side in the vertical direction is generated steam 104 because the cross-sectional area of the drying container 271 in the free board portion F provided with the superheat member 273 is reduced. Increases the flow rate. For this reason, since the generated steam 104 having an increased flow velocity passes through the superheat member 273, the heat transfer efficiency of the superheat member 273 with respect to the generated steam 104 can be improved.

以上のように、本発明に係る流動層乾燥装置および流動層乾燥設備は、被乾燥物として褐炭を用いるものに有用であり、特に、結露の発生を抑制する場合に適している。   As described above, the fluidized bed drying apparatus and the fluidized bed drying facility according to the present invention are useful for those using lignite as a material to be dried, and are particularly suitable for suppressing the occurrence of condensation.

100 流動層乾燥設備
101 褐炭
102 流動層乾燥装置
103 伝熱部材
104 発生蒸気
105 集塵装置
106 熱回収システム
107 流動化蒸気
108 乾燥褐炭
109 製品炭
110 冷却器
111 流動層
120 乾燥容器
125 チャンバ室
126 乾燥室
130 過熱部材
135 過熱蒸気供給装置
140 温度制御装置
141 温度検出センサ
142 圧力差検出センサ
143 流量調整弁
200 石炭ガス化複合発電システム
250 流動層乾燥装置(実施例2)
255 伝熱部材(実施例2)
256 過熱部材(実施例2)
257 過熱蒸気供給装置(実施例2)
270 流動層乾燥装置(実施例3)
271 乾燥容器(実施例3)
273 過熱部材(実施例3)
A 過熱蒸気
B 凝縮水
F フリーボード部
発生蒸気ライン
分岐ライン
分離ライン
製品ライン
加熱ライン
過熱ライン
第1蒸気流路(加熱ガス流路)
第2蒸気流路(過熱ガス流路)
接続流路(実施例2)
DESCRIPTION OF SYMBOLS 100 Fluidized bed drying equipment 101 Brown coal 102 Fluidized bed drying apparatus 103 Heat transfer member 104 Generated steam 105 Dust collector 106 Heat recovery system 107 Fluidized steam 108 Dry brown coal 109 Product charcoal 110 Cooler 111 Fluidized bed 120 Drying container 125 Chamber chamber 126 Drying chamber 130 Superheated member 135 Superheated steam supply device 140 Temperature control device 141 Temperature detection sensor 142 Pressure difference detection sensor 143 Flow rate adjustment valve 200 Coal gasification combined power generation system 250 Fluidized bed drying device (Example 2)
255 Heat transfer member (Example 2)
256 Overheating member (Example 2)
257 Superheated steam supply device (Example 2)
270 Fluidized bed dryer (Example 3)
271 Drying container (Example 3)
273 Superheater (Example 3)
A Superheated steam B Condensate F Free board section L 1 Generation steam line L 2 Branch line L 3 Separation line L 4 Product line L 5 Heating line L 6 Superheating line R 1 1st steam flow path (heating gas flow path)
R 2 second steam channel (superheated gas channel)
R 3 connecting channel (Example 2)

Claims (9)

内部に形成された乾燥室に供給される流動化ガスにより、前記乾燥室に供給された被乾燥物を流動させることで、前記乾燥室に流動層が形成される乾燥容器と、
前記乾燥容器の内部に設けられ、前記流動層の前記被乾燥物が乾燥されることにより発生蒸気が発生する領域に設けられた過熱手段と、を備えたことを特徴とする流動層乾燥装置。
A drying container in which a fluidized bed is formed in the drying chamber by flowing the material to be dried supplied to the drying chamber by a fluidizing gas supplied to the drying chamber formed inside,
A fluidized bed drying apparatus comprising: superheating means provided in a region where generated steam is generated by drying the material to be dried of the fluidized bed provided inside the drying container.
前記過熱手段の過熱温度を制御可能な温度制御手段をさらに備えたことを特徴とする請求項1に記載の流動層乾燥装置。   The fluidized bed drying apparatus according to claim 1, further comprising temperature control means capable of controlling a superheating temperature of the superheating means. 前記発生蒸気の流れ方向において、前記過熱手段の下流側に設けられた温度検出手段をさらに備え、
前記温度制御手段は、前記温度検出手段によって検出された検出温度に基づいて、前記過熱手段の過熱温度を制御することを特徴とする請求項2に記載の流動層乾燥装置。
In the flow direction of the generated steam, further comprising a temperature detecting means provided on the downstream side of the superheating means,
The fluidized bed drying apparatus according to claim 2, wherein the temperature control unit controls the superheat temperature of the superheat unit based on the detected temperature detected by the temperature detection unit.
前記発生蒸気の流れ方向において、前記過熱手段の下流側には、前記発生蒸気に処理を実行可能な処理装置が設けられ、
前記処理装置に導入される発生蒸気の圧力と、前記処理装置から導出される発生蒸気の圧力との圧力差を検出可能な圧力差検出手段をさらに備え、
前記温度制御手段は、前記圧力差検出手段によって検出された圧力差に基づいて、前記過熱手段の過熱温度を制御することを特徴とする請求項2または3に記載の流動層乾燥装置。
In the flow direction of the generated steam, a processing apparatus capable of executing processing on the generated steam is provided downstream of the superheating means,
Pressure difference detection means capable of detecting a pressure difference between the pressure of the generated steam introduced into the processing apparatus and the pressure of the generated steam derived from the processing apparatus;
The fluidized bed drying apparatus according to claim 2 or 3, wherein the temperature control means controls a superheat temperature of the superheat means based on the pressure difference detected by the pressure difference detection means.
前記発生蒸気の流れ方向に直交する前記乾燥容器の断面積において、前記過熱手段の配設位置における前記乾燥容器の断面積は、前記過熱手段の上流側における前記乾燥容器の断面積に比して小さいことを特徴とする請求項1ないし4のいずれか1項に記載の流動層乾燥装置。   In the cross-sectional area of the drying container perpendicular to the flow direction of the generated steam, the cross-sectional area of the drying container at the position where the superheating means is disposed is larger than the cross-sectional area of the drying container on the upstream side of the superheating means. The fluidized bed drying apparatus according to any one of claims 1 to 4, wherein the fluidized bed drying apparatus is small. 前記乾燥容器の内部に設けられ、前記流動層の内部に配置された加熱手段を、さらに備えたことを特徴とする請求項1ないし5のいずれか1項に記載の流動層乾燥装置。   The fluidized bed drying apparatus according to any one of claims 1 to 5, further comprising heating means provided inside the drying container and disposed inside the fluidized bed. 前記過熱手段には、その内部に高温ガスを流通可能な過熱ガス流路が設けられ、
前記加熱手段には、その内部に前記高温ガスを流通可能な加熱ガス流路が設けられ、
前記過熱ガス流路および前記加熱ガス流路にそれぞれ前記高温ガスを供給可能な高温ガス供給手段をさらに備えたことを特徴とする請求項6に記載の流動層乾燥装置。
The superheating means is provided with a superheated gas passage capable of circulating a high-temperature gas therein,
The heating means is provided with a heating gas flow path through which the high-temperature gas can flow,
The fluidized bed drying apparatus according to claim 6, further comprising a high-temperature gas supply unit capable of supplying the high-temperature gas to the superheated gas channel and the heated gas channel, respectively.
前記過熱手段には、その内部に高温ガスを流通可能な過熱ガス流路が設けられ、
前記加熱手段には、その内部に前記高温ガスを流通可能な加熱ガス流路が設けられ、
前記過熱ガス流路と前記加熱ガス流路とを接続するガス接続流路と、
前記過熱ガス流路へ前記高温ガスを供給可能な高温ガス供給手段と、をさらに備えたことを特徴とする請求項6に記載の流動層乾燥装置。
The superheating means is provided with a superheated gas passage capable of circulating a high-temperature gas therein,
The heating means is provided with a heating gas flow path through which the high-temperature gas can flow,
A gas connection channel connecting the superheated gas channel and the heated gas channel;
The fluidized bed drying apparatus according to claim 6, further comprising a high-temperature gas supply unit capable of supplying the high-temperature gas to the superheated gas flow path.
被乾燥物を乾燥可能な請求項1ないし8のいずれか1項に記載の流動層乾燥装置と、
前記発生蒸気を前記流動層乾燥装置の外部に排出する発生蒸気ラインと、
前記発生蒸気ラインに介装され、前記発生蒸気中の粉塵を除去する集塵装置と、
前記発生蒸気ラインにおける前記集塵装置の下流側に介装され、前記発生蒸気の熱を回収する熱回収システムと、
前記集塵装置から粉塵が除去された前記発生蒸気の一部を分岐し、流動化ガスとして前記流動層乾燥装置内に供給する分岐ラインと、
前記流動層乾燥装置によって乾燥された前記被乾燥物を冷却する冷却器と、を備えたことを特徴とする流動層乾燥設備。
The fluidized bed drying apparatus according to any one of claims 1 to 8, capable of drying an object to be dried;
A generated steam line for discharging the generated steam to the outside of the fluidized bed drying device;
A dust collector that is interposed in the generated steam line and removes dust in the generated steam;
A heat recovery system that is interposed downstream of the dust collector in the generated steam line and recovers the heat of the generated steam;
A branch line for branching a part of the generated steam from which dust is removed from the dust collector, and supplying the fluidized gas into the fluidized bed drying device;
A fluidized bed drying facility comprising: a cooler for cooling the material to be dried dried by the fluidized bed drying device.
JP2010086019A 2010-04-02 2010-04-02 Fluidized bed drying apparatus and fluidized bed drying equipment Active JP5535731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086019A JP5535731B2 (en) 2010-04-02 2010-04-02 Fluidized bed drying apparatus and fluidized bed drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086019A JP5535731B2 (en) 2010-04-02 2010-04-02 Fluidized bed drying apparatus and fluidized bed drying equipment

Publications (2)

Publication Number Publication Date
JP2011214807A true JP2011214807A (en) 2011-10-27
JP5535731B2 JP5535731B2 (en) 2014-07-02

Family

ID=44944733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086019A Active JP5535731B2 (en) 2010-04-02 2010-04-02 Fluidized bed drying apparatus and fluidized bed drying equipment

Country Status (1)

Country Link
JP (1) JP5535731B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214813A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Fluidized bed drying equipment
CN103602360A (en) * 2013-11-15 2014-02-26 华电电力科学研究院 Device for drying and upgrading lignite fluidized bed and technology of device
JP2014159932A (en) * 2013-02-20 2014-09-04 Mitsubishi Heavy Ind Ltd Fluid bed dryer
CN112361719A (en) * 2020-09-23 2021-02-12 上海化工研究院有限公司 Continuous fluidized bed drying system for vitamins in laboratory
KR102417652B1 (en) * 2021-11-05 2022-07-07 주식회사 엠티에스 Biomass solidification fuel manufacturing device using subcritical water
CN115183538A (en) * 2022-07-05 2022-10-14 鄂尔多斯市海川能源科技有限公司 Fracturing sand vibrated fluidized bed drying system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157323A (en) * 1979-05-28 1980-12-08 Escher Wyss Ag Method of thermally treating granular substance
JPH01120098U (en) * 1988-02-02 1989-08-15
JPH10246573A (en) * 1997-03-05 1998-09-14 Kawasaki Heavy Ind Ltd Method and device for drying and cooling fluidized bed
JPH10253251A (en) * 1997-03-14 1998-09-25 Kawasaki Heavy Ind Ltd Control method and device for fluidized bed drying machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157323A (en) * 1979-05-28 1980-12-08 Escher Wyss Ag Method of thermally treating granular substance
JPH01120098U (en) * 1988-02-02 1989-08-15
JPH10246573A (en) * 1997-03-05 1998-09-14 Kawasaki Heavy Ind Ltd Method and device for drying and cooling fluidized bed
JPH10253251A (en) * 1997-03-14 1998-09-25 Kawasaki Heavy Ind Ltd Control method and device for fluidized bed drying machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214813A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Fluidized bed drying equipment
JP2014159932A (en) * 2013-02-20 2014-09-04 Mitsubishi Heavy Ind Ltd Fluid bed dryer
CN103602360A (en) * 2013-11-15 2014-02-26 华电电力科学研究院 Device for drying and upgrading lignite fluidized bed and technology of device
CN103602360B (en) * 2013-11-15 2016-01-20 华电电力科学研究院 The device of brown coal fluidised bed drying and upgrading and technique thereof
CN112361719A (en) * 2020-09-23 2021-02-12 上海化工研究院有限公司 Continuous fluidized bed drying system for vitamins in laboratory
KR102417652B1 (en) * 2021-11-05 2022-07-07 주식회사 엠티에스 Biomass solidification fuel manufacturing device using subcritical water
CN115183538A (en) * 2022-07-05 2022-10-14 鄂尔多斯市海川能源科技有限公司 Fracturing sand vibrated fluidized bed drying system

Also Published As

Publication number Publication date
JP5535731B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5535731B2 (en) Fluidized bed drying apparatus and fluidized bed drying equipment
AU2012232314B2 (en) Fluidized bed drying device
JP2011214808A (en) Drying device, drying facility and drying method
JP2012215316A (en) Fluidized bed drying device, fluid bed drying facility and wet raw material drying method
JP5634100B2 (en) Fluidized bed drying apparatus and fluidized bed drying equipment
JP2011214559A (en) Low grade coal drying system
AU2011373344B2 (en) Fluidized bed drying facility
JP5535730B2 (en) Fluidized bed drying equipment
JP5675671B2 (en) Fluidized bed dryer
JP5461283B2 (en) Fluidized bed drying equipment
JP5634101B2 (en) Fluidized bed drying equipment
JP5634099B2 (en) Fluidized bed drying equipment
JP2011214805A (en) Fluidized-bed dryer and fluidized-bed drying facility
WO2012141217A1 (en) Fluidized bed drying apparatus
JP2011214817A (en) Fluidized bed drying device and fluidized bed drying facility
JP6621310B2 (en) Gasification device, control device, combined gasification power generation facility and control method
JP5748559B2 (en) Fluidized bed dryer
JP5822504B2 (en) Fluidized bed drying equipment
JP5622418B2 (en) Fluidized bed drying apparatus and fluidized bed drying equipment
JP2013178026A (en) Drying system
AU2011374784B2 (en) Fluidized bed drying apparatus and fluidized bed drying facility
JP5812896B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP5713801B2 (en) Fluidized bed dryer
WO2013021470A1 (en) Fluidized-bed drying device and fluidized-bed drying facility
JP5812575B2 (en) Boiler equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R151 Written notification of patent or utility model registration

Ref document number: 5535731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250